
Adafruit 1.54" eInk Display Breakouts
Created by Melissa LeBlanc-Williams

Last updated on 2021-09-14 05:34:22 PM EDT

2
4
5
8
8
9

10
10
11
11
14
14
14
16
17
19
19
19
20
20
21
23
25
25
25
26
26
26
26
27
27
27
27
28

29
29
29
30
30
31
32
32
33
38
39
44
49
49
49

Guide Contents

Guide Contents
Overview

We have multiple 1.54" EPD displays:
Pinouts
Power Pins
Data Control Pins
Assembly

Assembly
Add the E-Ink Display
And Solder!

Wiring
Breakout Wiring
Python Wiring

Usage & Expectations
Arduino Setup
Arduino Usage

1.54" Monochrome 200x200 Pixel Display
1.54" Tri-Color 152x152 OR 200x200 Pixel Display

Configure Pins
Configure Display Type & Size
Upload Sketch
Arduino Bitmaps
CircuitPython Usage

CircuitPython eInk displayio Library Installation
Adafruit_CircuitPython_SSD1608
Adafruit_CircuitPython_IL0373
Adafruit_CircuitPython_SSD1681

Image File
Monochrome Display Usage

Configure and Upload
Tri-Color Display Usage

HD Tri-Color Display
Standard Tri-Color Display
Configure and Upload

Python Setup
Python Installation of EPD Library
Download font5x8.bin
DejaVu TTF Font
Pillow Library

Python Usage
Monochrome Example
Tri-Color Example

Bitmap Example
Full Example Code
Image Drawing with Pillow
Drawing Shapes and Text with Pillow
Downloads
Files

Display shape/outline:

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 2 of 51

49
50

Schematic
Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 3 of 51

Overview

Easy e-paper finally comes to microcontrollers, with these breakouts, shields and friends that are designed

to make it a breeze to add a tri-color eInk display. Chances are you've seen one of those new-fangled 'e-

readers' like the Kindle or Nook. They have gigantic electronic paper 'static' displays - that means the

image stays on the display even when power is completely disconnected. The image is also high contrast

and very daylight readable. It really does look just like printed paper!

We've liked these displays for a long time, but they were never designed for makers to use. Finally, we

decided to make our own!

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 4 of 51

We have multiple 1.54" EPD displays:

The tri-color have black and red ink pixels and a white-ish background. We have a 152x152 Tri-Color

display (older, lower res screen) (https://adafru.it/QC0) and a 200x200 Tri-Color display (newer higher

res screen) (https://adafru.it/QC1)

The monochrome (black and white) display has 200x200 black pixels (https://adafru.it/QC2) on a

white-ish background. The monochrome displays take a lot less time to update, only a couple

seconds instead of 15 seconds!

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 5 of 51

https://www.adafruit.com/product/3625
https://www.adafruit.com/product/4868
https://www.adafruit.com/product/4196

Using our Arduino library, you can create a 'frame buffer' with what pixels you want to have activated and

then write that out to the display. Most simple breakouts leave it at that. But if you do the math, using even

the smallest 1.54" display: 152 x 152 pixels x 2 colors = 5.7 KBytes. Which won't fit into many microcontroller

memories. Heck, even if you do have 32KB of RAM, why waste 6KB?

So we did you a favor and tossed a small SRAM chip on the back. This chip shares the SPI port the eInk

display uses, so you only need one extra pin. And, no more frame-buffering! You can use the SRAM to set

up whatever you want to display, then shuffle data from SRAM to eInk when you're ready. The library we

wrote does all the work for you (https://adafru.it/BRK), you can just interface with it as if it were an

Adafruit_GFX compatible display (https://adafru.it/BRK).

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 6 of 51

https://github.com/adafruit/Adafruit_EPD
https://github.com/adafruit/Adafruit_EPD

For ultra-low power usages, the onboard 3.3V regulator has the Enable pin brought out so you can shut

down the power to the SRAM, MicroSD and display.

We even added on a MicroSD socket so you can store images, text files, whatever you like to display.

Everything is 3 or 5V logic safe so you can use it with any and all microcontrollers.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 7 of 51

Pinouts

This e-Paper display uses SPI to receive image data. Since the display is SPI, it was easy to add two more

SPI devices to share the bus - an SPI SRAM chip and SPI-driven SD card holder. There's quite a few pins

and a variety of possible combinations for control depending on your needs.

Power Pins

3-5V / Vin - this is the power pin, connect to 3-5VDC - it has reverse polarity protection but try to wire

it right!

3.3V out - this is the 3.3V output from the onboard regulator, you can 'borrow' about 100mA if you

need to power some other 3.3V logic devices

GND - this is the power and signal ground pin

ENAble - This pin is all the way on the right. It is connected to the enable pin on the onboard

Even though we have multiple 1.54" EPD displays, the pinouts and dimensions are the same for all

of them!
�

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 8 of 51

regulator that powers everything. If you want to really have the lowest possible power draw, pull this

pin low! Note that if you do so you will cut power to the eInk display but also the SPI RAM (thus

erasing it) and the SD card (which means you'll have to re-initialize it when you re-power

Data Control Pins

SCK - this is the SPI clock input pin, required for e-Ink, SRAM and SD card

MISO - this is the SPI Microcontroller In Serial Out pin, its used for the SD card and SRAM. It isn't used

for the e-Ink display which is write-only, however you'll likely be using the SRAM to buffer the display

so connect this one too!

MOSI - this is the SPI Microcontroller Out Serial In pin, it is used to send data from the microcontroller

to the SD card, SRAM and e-Ink display

ECS - this is the E-Ink Chip Select, required for controlling the display

D/C - this is the e-Ink Data/Command pin, required for controlling the display

SRCS - this is the SRAM Chip Select, required for communicating with the onboard RAM chip.

SDCS - this is the SD card Chip Select, required for communicating with the onboard SD card holder.

You can leave this disconnected if you aren't going to access SD cards

RST - this is the E-Ink ReSeT pin, you may be able to share this with your microcontroller reset pin but

if you can, connect it to a digital pin.

BUSY - this is the e-Ink busy detect pin, and is optional if you don't want to connect the pin (in which

case the code will just wait an approximate number of seconds)

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 9 of 51

Assembly

Assembly

Cut the header down to length if necessary. It will be easier to solder if you insert it into a breadboard

- long pins down

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 10 of 51

Add the E-Ink Display

Place the board over the pins so that the short pins poke

through the top of the breakout pads

And Solder!

Be sure to solder all pins for reliable electrical contact.

(For tips on soldering, be sure to check out the Guide to

Excellent Soldering (https://adafru.it/aTk)).

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 11 of 51

https://learn.adafruit.com//assets/71152
https://learn.adafruit.com//assets/71153
https://learn.adafruit.com//assets/71154
https://learn.adafruit.com//assets/71156
http://learn.adafruit.com/adafruit-guide-excellent-soldering

OK, you're done!

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 12 of 51

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 13 of 51

Wiring

Breakout Wiring

Wiring up the display in SPI mode is pretty easy as there's not that many pins! We'll be using hardware SPI,

but you can also use software SPI (any pins) later.

Vin connects to the microcontroller board's 5V or 3.3V power supply pin

GND connects to ground

CLK connects to SPI clock. It's easiest to connect it to pin 3 of the ICSP header .

MOSI connects to SPI MOSI. It's easiest to connect it to pin 4 of the ICSP header .

MISO connects to SPI MISO. It's easiest to connect it to pin 1 of the ICSP header .

ECS connects to our e-Ink Chip Select pin. We'll be using Digital 9

D/C connects to our e-Ink data/command select pin. We'll be using Digital 10.

SRCS connects to our SRAM Chip Select pin. We'll be using Digital 6

RST connects to our e-Ink reset pin. We'll be using Digital 8.

BUSY connects to our e-Ink busy pin. We'll be using Digital 7.

SDCS connects to our SD Card Chip Select pin. We'll be using Digital 5

Python Wiring

Raspberry Pi 3.3 to display VIN

Raspberry Pi GND to display GND

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 14 of 51

Raspberry Pi SCLK to display SCK

Raspberry Pi MOSI to display MOSI

Raspberry Pi GPIO CE0 to display ECS

Raspberry Pi GPIO 22 to display D/C

Raspberry Pi GPIO 27 to display RST

Raspberry Pi GPIO 17 to display BUSY

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 15 of 51

Usage & Expectations

One thing to remember with these small e-Ink screens is that its very slow compared to OLEDs, TFTs, or

even 'memory displays'. It will take may seconds to fully erase and replace an image

There's also a recommended limit on refeshing - you shouldn't refresh or change the display more than

every 3 minutes (180 seconds).

You don't have to refresh often, but with tri-color displays, the larger red ink dots will slowly rise, turning the

display pinkish instead of white background. To keep the background color clear and pale, refresh once a

day

Do not update more than once every 180 seconds or you may permanently damage the display�

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 16 of 51

Arduino Setup

To use the display, you will need to install the Adafruit_EPD library (code on our github

repository) (https://adafru.it/BRK). It is available from the Arduino library manager so we recommend using

that.

From the IDE open up the library manager...

And type in adafruit EPD to locate the library. Click Install

If you would like to draw bitmaps, do the same with adafruit ImageReader, click Install

Do the same to install the latest adafruit GFX library, click Install

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 17 of 51

https://github.com/adafruit/Adafruit_EPD

If using an earlier version of the Arduino IDE (pre-1.8.10), locate and install Adafruit_BusIO (newer versions

handle this prerequisite automatically).

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 18 of 51

Arduino Usage

1.54" Monochrome 200x200 Pixel Display

For the 200 x 200 monochrome display (https://adafru.it/QC2) we will run a monochrome demo.

Adafruit 1.54" Monochrome eInk / ePaper Display with SRAM
Easy e-paper finally comes to microcontrollers, with this breakout that's designed to make it a breeze to add a eInk display. Chances are

you've seen one of those new-fangled...

$24.95
In Stock

Open up File→Examples→Adafruit_EPD→ThinkInk_mono

1.54" Tri-Color 152x152 OR 200x200 Pixel Display

For the 152x152 OR 200x200 Tri-Color display, we will run the tricolor demo.

Adafruit 1.54" 152x152 Tri-Color eInk / ePaper Display with SRAM
Easy e-paper finally comes to microcontrollers, with this breakout that's designed to make it a breeze to add a tri-color eInk display.

Chances are you've seen one of those...

$22.50
In Stock

Here is where the differences in the tri-color/monochrome and chipset/dimensions start mattering.

Check carefully to make sure you are running the right example and creating the matching

ThinkInk type for your display or you wont see anything happen on the EPD (or the image may be

really weird looking)

�

Add to Cart

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 19 of 51

https://www.adafruit.com/product/4196
https://www.adafruit.com/product/4196
https://www.adafruit.com/product/4196
https://www.adafruit.com/product/3625

Adafruit 1.54" Tri-Color eInk / ePaper 200x200 Display with SRAM
Easy e-paper finally comes to microcontrollers, with this breakout that's designed to make it a breeze to add a tri-color eInk display.

Chances are you've seen one of those...

$19.95
In Stock

Open up File→Examples→Adafruit_EPD→ThinkInk_tricolor

Configure Pins
No matter what display you have, you will need to verify that your pins match your wiring. At the top of the

sketch find the lines that look like:

#define EPD_DC 10
#define EPD_CS 9
#define SRAM_CS 6
#define EPD_RESET 8 // can set to -1 and share with microcontroller Reset!
#define EPD_BUSY 7 // can set to -1 to not use a pin (will wait a fixed delay)

If you wired the display differently than on the wiring page, adjust the pin numbers accordingly.

Configure Display Type & Size
Find the part of the script where you can pick which display is going to be used. The eInk displays are

made up a combination of a Chipset and a Film in different sizes. We have narrowed it down to just a few

Add to Cart

Your browser does not support the video tag.

Add to Cart

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 20 of 51

https://www.adafruit.com/product/3625
https://www.adafruit.com/product/4868
https://www.adafruit.com/product/4868

choices between the size of the display, chipset, and film based on available combinations. In the sketch,

we have sorted it by size, so it's easy to find your display.

You will need to uncomment the appropriate initializer and and leave any other type commented.

For the 1.54" 200x200 Monochrome breakout (https://adafru.it/QC2) you will use ThinkInk_154_Mono_D27
display initializer.

For the 1.54" 152x152 Tri-Color breakout (https://adafru.it/QC0), you will use the

ThinkInk_154_Tricolor_Z17 display initializer.

For the 1.54" 200x200 Tri-Color breakout (https://adafru.it/QC1), you will use the

ThinkInk_154_Tricolor_Z90 display initializer.

For example, for the monochrome 200x200, uncomment this line, and comment any other line that is

creating a ThinkInk display object

// 1.54" Monochrome displays with 200x200 pixels and SSD1608 chipset
ThinkInk_154_Mono_D27 display(EPD_DC, EPD_RESET, EPD_CS, SRAM_CS, EPD_BUSY);

Upload Sketch
Go ahead and upload the sketch to your board. Once it is done uploading, open the Serial Monitor.

The display should start running a series of monochrome tests

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 21 of 51

https://www.adafruit.com/product/4196
https://www.adafruit.com/product/3625
https://www.adafruit.com/product/4868

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 22 of 51

Arduino Bitmaps

Not only can you draw shapes but you can also load images from the SD card, perfect for static images!

The 1.54" Monochrome display can show a max of 200x200 pixels and the Standard 1.54" Tri-Color display

can show a max of 152x152 pixels and the HD Tri-Color version can show a max of 200x200 pixels. Let's

use this Blinka bitmap for our demo. Select the one that is the correct size:

https://adafru.it/QC3

https://adafru.it/QC4

https://adafru.it/QC7

Download the blinka.bmp file and place it into the base directory of a microSD card and insert it into the

microSD socket in the breakout.

Plug the MicroSD card into the display. You may want to try the SD library examples before continuing,

especially one that lists all the files on the SD card

https://adafru.it/QC3

https://adafru.it/QC4

https://adafru.it/QC7

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 23 of 51

https://github.com/adafruit/Adafruit_ImageReader/raw/master/images/E-Ink%201.54/blinka_mono.bmp
https://raw.githubusercontent.com/adafruit/Adafruit_ImageReader/master/images/E-Ink%201.54/blinka.bmp
https://github.com/adafruit/Adafruit_ImageReader/raw/master/images/E-Ink%201.54/blinka_hd.bmp

Open the file->examples->Adafruit_ImageReader->ThinkInkDisplays example

Upload to your board and you should see an image of Blinka appear.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 24 of 51

CircuitPython Usage

CircuitPython eInk displayio Library Installation

To use displayio, you will need to install the appropriate library for your display.

First make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your

board. You will need the latest version of CircuitPython.

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and

install these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx). Our introduction

guide has a great page on how to install the library bundle (https://adafru.it/ABU) for both express and non-

express boards.

You will need to copy the appropriate displayio driver from the bundle lib folder to a lib folder on your

CIRCUITPY drive. The displayio driver contains the initialization codes specific to your display that are

needed to for it to work. Since there is more than one driver, you will need to copy the correct file over.

Here is a list of each of the displays and the correct driver for that display.

Adafruit_CircuitPython_SSD1608

The 200x200 monochrome display with SSD1608 driver (https://adafru.it/QC2) uses the

Adafruit_CircuitPython_SSD1608 library. Copy the adafruit_ssd1608.mpy file from the bundle to the lib

folder on your CIRCUITPY drive.

Adafruit 1.54" Monochrome eInk / ePaper Display with SRAM
Easy e-paper finally comes to microcontrollers, with this breakout that's designed to make it a breeze to add a eInk display. Chances are

you've seen one of those new-fangled...

$24.95
In Stock

Here is where the differences in the tri-color/monochrome and chipset/dimensions start mattering.

Check carefully to make sure you are running the right example and creating the matching library

type for your display or you wont see anything happen on the EPD (or the image may be really

weird looking)

�

To use the eInk displays with displayio, you will need to use the latest version of CircuitPython and

a board that can fit `displayio`. See the Support Matrix to determine if `displayio` is available on a

given board: https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html
�

Add to Cart

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 25 of 51

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html
https://www.adafruit.com/product/4196
https://www.adafruit.com/product/4196
https://www.adafruit.com/product/4196

Adafruit_CircuitPython_IL0373

The 152x152 Tri-Color display with IL0373 (https://adafru.it/QC0) uses the Adafruit_CircuitPython_ILI0373

library. Copy the adafruit_il0373.mpy file from the bundle to the lib folder on your CIRCUITPY drive.

Adafruit 1.54" 152x152 Tri-Color eInk / ePaper Display with SRAM
Easy e-paper finally comes to microcontrollers, with this breakout that's designed to make it a breeze to add a tri-color eInk display.

Chances are you've seen one of those...

$22.50
In Stock

Adafruit_CircuitPython_SSD1681

The 200x200 Tri-Color display with SSD1681 driver (https://adafru.it/QC1) uses the

Adafruit_CircuitPython_SSD1681 library. Copy the adafruit_ssd1681.mpy file from the bundle to the lib

folder on your CIRCUITPY drive.

Adafruit 1.54" Tri-Color eInk / ePaper 200x200 Display with SRAM
Easy e-paper finally comes to microcontrollers, with this breakout that's designed to make it a breeze to add a tri-color eInk display.

Chances are you've seen one of those...

$19.95
In Stock

Image File

To show you how to use the eInk with displayio, we'll show you how to draw a bitmap onto it. First start by

downloading display-ruler.bmp

https://adafru.it/UIa

Copy display-ruler.bmp into the root directory of your CIRCUITPY drive.

Monochrome Display Usage

In the examples folder for your SSD1608 displayio driver, there should be a test for your display which we

have listed here:

Add to Cart

Your browser does not support the video tag.

Add to Cart

https://adafru.it/UIa

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 26 of 51

https://www.adafruit.com/product/3625
https://www.adafruit.com/product/3625
https://www.adafruit.com/product/3625
https://www.adafruit.com/product/4868
https://www.adafruit.com/product/4868
https://www.adafruit.com/product/4868
https://github.com/adafruit/Adafruit_CircuitPython_IL0373/raw/main/examples/display-ruler.bmp

Temporarily unable to load content:

Configure and Upload

You will want to change the epd_reset and epd_busy to the correct values. If you wired it up as shown on

the Wiring page, you will want to change it to these values:

epd_reset = board.D8
epd_busy = board.D7

Save it to your CIRCUITPY drive as code.py and it should automatically run. Your display will look

something like this:

Tri-Color Display Usage

HD Tri-Color Display

In the examples folder for your SSD1681 displayio driver, there should be a test for your display which we

have listed here:

Temporarily unable to load content:

Standard Tri-Color Display

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 27 of 51

In the examples folder for your ILI0373 displayio driver, there should be a test for your display which we

have listed here:

Temporarily unable to load content:

Configure and Upload

For either display, you will want to change the epd_reset and epd_busy to the correct values. If you wired

it up as shown on the Wiring page, you will want to change it to these values:

epd_reset = board.D8
epd_busy = board.D7

Save it to your CIRCUITPY drive as code.py and it should automatically run. Your display will look

something like this:

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 28 of 51

Python Setup

It's easy to use eInk breakouts with Python and the Adafruit CircuitPython

EPD (https://adafru.it/BTd) library. This library allows you to easily write Python code to control the display.

Since there's dozens of Linux computers/boards you can use we will show wiring for Raspberry Pi. For

other platforms, please visit the guide for CircuitPython on Linux to see whether your platform is

supported (https://adafru.it/BSN).

You'll need to install the Adafruit_Blinka library that provides the CircuitPython support in Python. This

may also require enabling SPI on your platform and verifying you are running Python 3. Since each

platform is a little different, and Linux changes often, please visit the CircuitPython on Linux guide to get

your computer ready (https://adafru.it/BSN)!

Python Installation of EPD Library

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-epd

If your default Python is version 3 you may need to run 'pip' instead. Just make sure you aren't trying to use

CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

Download font5x8.bin

This library also requires a font file to run! You can download it below. Before continuing, make sure the

folder you are running scripts from contains the font5x8.bin file.

Note this is not a kernel driver that will let you have the console appear on the eInk. However, this

is handy when you want to use the eInk display purely from 'user Python' code!
�

You can only use this technique with Linux/computer devices that have hardware SPI support, and

not all single board computers have an SPI device, so check before continuing
�

https://adafru.it/Gfb

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 29 of 51

https://github.com/adafruit/Adafruit_CircuitPython_EPD
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://github.com/adafruit/Adafruit_CircuitPython_framebuf/raw/master/examples/font5x8.bin

https://adafru.it/Gfb

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't, you can run the

following to install it:

sudo apt-get install ttf-dejavu

Pillow Library

Some of the examples also use PIL, the Python Imaging Library, to allow graphics and using text with

custom fonts. There are several system libraries that PIL relies on, so installing via a package manager is

the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 30 of 51

Python Usage

To demonstrate the usage of the display, we'll initialize it and draw some lines from the Python REPL.

Run the following code to import the necessary modules and set up the pin assignments. We set the SRAM

CS pin to None because the Raspberry Pi has lots of RAM, so we don't really need it.

import digitalio
import busio
import board
from adafruit_epd.epd import Adafruit_EPD

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
ecs = digitalio.DigitalInOut(board.CE0)
dc = digitalio.DigitalInOut(board.D22)
rst = digitalio.DigitalInOut(board.D27)
busy = digitalio.DigitalInOut(board.D17)
srcs = None

Run the following code to initialize the Monochrome display:

Adafruit 1.54" Monochrome eInk / ePaper Display with SRAM
Easy e-paper finally comes to microcontrollers, with this breakout that's designed to make it a breeze to add a eInk display. Chances are

you've seen one of those new-fangled...

$24.95
In Stock

from adafruit_epd.ssd1608 import Adafruit_SSD1608

display = Adafruit_SSD1608(200, 200, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs, rst_pin=rst,
busy_pin=busy)

Note this is not a kernel driver that will let you have the console appear on the eInk. However, this

is handy when you want to use the eInk display purely from 'user Python' code!
�

You can only use this technique with Linux/computer devices that have hardware SPI support, and

not all single board computers have an SPI device, so check before continuing
�

Depending on the exact E-Ink display you're using, the driver and object initialization will differ a

bit because we have to tell Python what the chip driver is, and what the size of the display is!
�

Add to Cart

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 31 of 51

https://www.adafruit.com/product/4196
https://www.adafruit.com/product/4196

Run the following code to initialize the lower-res Tri-Color display:

Adafruit 1.54" 152x152 Tri-Color eInk / ePaper Display with SRAM
Easy e-paper finally comes to microcontrollers, with this breakout that's designed to make it a breeze to add a tri-color eInk display.

Chances are you've seen one of those...

$22.50
In Stock

from adafruit_epd.il0373 import Adafruit_IL0373
display = Adafruit_IL0373(152, 152, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs, rst_pin=rst,
busy_pin=busy)

Run the following code to initialize the newer high-res Tri-Color display:

Adafruit 1.54" Tri-Color eInk / ePaper 200x200 Display with SRAM
Easy e-paper finally comes to microcontrollers, with this breakout that's designed to make it a breeze to add a tri-color eInk display.

Chances are you've seen one of those...

$19.95
In Stock

from adafruit_epd.ssd1681 import Adafruit_SSD1681

display = Adafruit_SSD1681(200, 200, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs, rst_pin=rst,
busy_pin=busy)

Monochrome Example

Now we can clear the screens buffer and draw some shapes. Once we're done drawing, we need to tell

the screen to update using the display() method.

display.rotation = 2
display.fill(Adafruit_EPD.WHITE)

display.fill_rect(20, 20, 50, 60, Adafruit_EPD.BLACK)
display.hline(80, 30, 60, Adafruit_EPD.BLACK)
display.vline(80, 30, 60, Adafruit_EPD.BLACK)

display.display()

Tri-Color Example

Add to Cart

Your browser does not support the video tag.

Add to Cart

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 32 of 51

https://www.adafruit.com/product/3625
https://www.adafruit.com/product/3625
https://www.adafruit.com/product/4868
https://www.adafruit.com/product/4868

The Tri-Color example is almost the same as the monochrome example, except we added another color in.

Once we're done drawing, we need to tell the screen to update using the display() method.

display.rotation = 2
display.fill(Adafruit_EPD.WHITE)

display.fill_rect(20, 20, 50, 60, Adafruit_EPD.RED)
display.hline(80, 30, 60, Adafruit_EPD.BLACK)
display.vline(80, 30, 60, Adafruit_EPD.BLACK)

display.display()

Your display will look something like this:

That's all there is to drawing simple shapes with eInk displays and CircuitPython!

Bitmap Example
Here's a complete example of how to display a bitmap image on your display. Note that any .bmp image

you want to display must be exactly the size of your display. We will be using the image below on the

1.54" display. Click the button below to download the image and save it as blinka.bmp on your Raspberry

Pi. We will be using a Tri-Color bitmap, but it should still work on a monochrome display.

https://adafru.it/QEy

https://adafru.it/QEy

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 33 of 51

https://github.com/adafruit/Adafruit_ImageReader/raw/master/images/E-Ink%201.54/blinka.bmp

https://adafru.it/QC7

Save the following code to your Raspberry Pi as epd_bitmap.py.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import digitalio
import busio
import board
from adafruit_epd.epd import Adafruit_EPD
from adafruit_epd.il0373 import Adafruit_IL0373
from adafruit_epd.il91874 import Adafruit_IL91874 # pylint: disable=unused-import
from adafruit_epd.il0398 import Adafruit_IL0398 # pylint: disable=unused-import
from adafruit_epd.ssd1608 import Adafruit_SSD1608 # pylint: disable=unused-import
from adafruit_epd.ssd1675 import Adafruit_SSD1675 # pylint: disable=unused-import
from adafruit_epd.ssd1680 import Adafruit_SSD1680 # pylint: disable=unused-import
from adafruit_epd.ssd1681 import Adafruit_SSD1681 # pylint: disable=unused-import

create the spi device and pins we will need
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
ecs = digitalio.DigitalInOut(board.D10)
dc = digitalio.DigitalInOut(board.D9)
srcs = digitalio.DigitalInOut(board.D7) # can be None to use internal memory
rst = digitalio.DigitalInOut(board.D11) # can be None to not use this pin
busy = digitalio.DigitalInOut(board.D12) # can be None to not use this pin

give them all to our driver
print("Creating display")
display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display
display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display
display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color display
display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display
display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display
display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display
display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display
display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display
display = Adafruit_IL0373(
 104,
 212, # 2.13" Tri-color display
 spi,
 cs_pin=ecs,
 dc_pin=dc,
 sramcs_pin=srcs,
 rst_pin=rst,
 busy_pin=busy,
)

IF YOU HAVE A FLEXIBLE DISPLAY (2.13" or 2.9") uncomment these lines!
display.set_black_buffer(1, False)
display.set_color_buffer(1, False)

display.rotation = 0

https://adafru.it/QC7

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 34 of 51

https://github.com/adafruit/Adafruit_ImageReader/raw/master/images/E-Ink%201.54/blinka_hd.bmp

display.rotation = 0

FILENAME = "blinka.bmp"

def read_le(s):
 # as of this writting, int.from_bytes does not have LE support, DIY!
 result = 0
 shift = 0
 for byte in bytearray(s):
 result += byte << shift
 shift += 8
 return result

class BMPError(Exception):
 pass

def display_bitmap(epd, filename): # pylint: disable=too-many-locals, too-many-branches
 try:
 f = open(filename, "rb")
 except OSError:
 print("Couldn't open file")
 return

 print("File opened")
 try:
 if f.read(2) != b"BM": # check signature
 raise BMPError("Not BitMap file")

 bmpFileSize = read_le(f.read(4))
 f.read(4) # Read & ignore creator bytes

 bmpImageoffset = read_le(f.read(4)) # Start of image data
 headerSize = read_le(f.read(4))
 bmpWidth = read_le(f.read(4))
 bmpHeight = read_le(f.read(4))
 flip = True

 print(
 "Size: %d\nImage offset: %d\nHeader size: %d"
 % (bmpFileSize, bmpImageoffset, headerSize)
)
 print("Width: %d\nHeight: %d" % (bmpWidth, bmpHeight))

 if read_le(f.read(2)) != 1:
 raise BMPError("Not singleplane")
 bmpDepth = read_le(f.read(2)) # bits per pixel
 print("Bit depth: %d" % (bmpDepth))
 if bmpDepth != 24:
 raise BMPError("Not 24-bit")
 if read_le(f.read(2)) != 0:
 raise BMPError("Compressed file")

 print("Image OK! Drawing...")

 rowSize = (bmpWidth * 3 + 3) & ~3 # 32-bit line boundary

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 35 of 51

 rowSize = (bmpWidth * 3 + 3) & ~3 # 32-bit line boundary

 for row in range(bmpHeight): # For each scanline...
 if flip: # Bitmap is stored bottom-to-top order (normal BMP)
 pos = bmpImageoffset + (bmpHeight - 1 - row) * rowSize
 else: # Bitmap is stored top-to-bottom
 pos = bmpImageoffset + row * rowSize

 # print ("seek to %d" % pos)
 f.seek(pos)
 rowdata = f.read(3 * bmpWidth)
 for col in range(bmpWidth):
 b, g, r = rowdata[3 * col : 3 * col + 3] # BMP files store RGB in BGR
 if r < 0x80 and g < 0x80 and b < 0x80:
 epd.pixel(col, row, Adafruit_EPD.BLACK)
 elif r >= 0x80 and g >= 0x80 and b >= 0x80:
 pass # epd.pixel(row, col, Adafruit_EPD.WHITE)
 elif r >= 0x80:
 epd.pixel(col, row, Adafruit_EPD.RED)
 except OSError:
 print("Couldn't read file")
 except BMPError as e:
 print("Failed to parse BMP: " + e.args[0])
 finally:
 f.close()
 print("Finished drawing")

clear the buffer
display.fill(Adafruit_EPD.WHITE)
display_bitmap(display, FILENAME)
display.display()

Before running it, we need to change a few pin definitions though. Find the section of code that looks like

this:

ecs = digitalio.DigitalInOut(board.D10)
dc = digitalio.DigitalInOut(board.D9)
srcs = digitalio.DigitalInOut(board.D7) # can be None to use internal memory
rst = digitalio.DigitalInOut(board.D11) # can be None to not use this pin
busy = digitalio.DigitalInOut(board.D12) # can be None to not use this pin

Change the pins to the following to match the wiring on the Raspberry Pi:

ecs = digitalio.DigitalInOut(board.CE0)
dc = digitalio.DigitalInOut(board.D22)
srcs = None
rst = digitalio.DigitalInOut(board.D27)
busy = digitalio.DigitalInOut(board.D17)

Next, find the section that looks like this:

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 36 of 51

display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display
display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display
display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display
display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display
display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display
display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display
display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display
display = Adafruit_IL0373(
 104,
 212,
 spi, # 2.13" Tri-color display
 cs_pin=ecs,
 dc_pin=dc,
 sramcs_pin=srcs,
 rst_pin=rst,
 busy_pin=busy,
)

Comment out these lines:

display = Adafruit_IL0373(
 104,
 212, # 2.13" Tri-color display

and uncomment the line that corresponds with your display.

Next we tell the display the rotation setting we want to use. This can be a value between 0-3 . For the 1.54"

displays, a value of 2 seems to work well.

display.rotation = 2

Now go to the command prompt on your Raspberry Pi and run the script with the following command:

python3 epd_bitmap.py

After a few seconds, your display should show an image like this:

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 37 of 51

Full Example Code
Here is the full example code.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import digitalio
import busio
import board
from adafruit_epd.epd import Adafruit_EPD
from adafruit_epd.il0373 import Adafruit_IL0373
from adafruit_epd.il91874 import Adafruit_IL91874 # pylint: disable=unused-import
from adafruit_epd.il0398 import Adafruit_IL0398 # pylint: disable=unused-import
from adafruit_epd.ssd1608 import Adafruit_SSD1608 # pylint: disable=unused-import
from adafruit_epd.ssd1675 import Adafruit_SSD1675 # pylint: disable=unused-import
from adafruit_epd.ssd1680 import Adafruit_SSD1680 # pylint: disable=unused-import
from adafruit_epd.ssd1681 import Adafruit_SSD1681 # pylint: disable=unused-import

create the spi device and pins we will need
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
ecs = digitalio.DigitalInOut(board.D12)
dc = digitalio.DigitalInOut(board.D11)
srcs = digitalio.DigitalInOut(board.D10) # can be None to use internal memory
rst = digitalio.DigitalInOut(board.D9) # can be None to not use this pin
busy = digitalio.DigitalInOut(board.D5) # can be None to not use this pin

To run the code sample below, you will need to change the pins the same way as you did in the

Tri-color Bitmap Example.
�

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 38 of 51

busy = digitalio.DigitalInOut(board.D5) # can be None to not use this pin

give them all to our drivers
print("Creating display")
display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display
display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display
display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color display
display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display
display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display
display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display
display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display
display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display
display = Adafruit_IL0373(
 104,
 212, # 2.13" Tri-color display
 spi,
 cs_pin=ecs,
 dc_pin=dc,
 sramcs_pin=srcs,
 rst_pin=rst,
 busy_pin=busy,
)

IF YOU HAVE A FLEXIBLE DISPLAY (2.13" or 2.9") uncomment these lines!
display.set_black_buffer(1, False)
display.set_color_buffer(1, False)

display.rotation = 1

clear the buffer
print("Clear buffer")
display.fill(Adafruit_EPD.WHITE)
display.pixel(10, 100, Adafruit_EPD.BLACK)

print("Draw Rectangles")
display.fill_rect(5, 5, 10, 10, Adafruit_EPD.RED)
display.rect(0, 0, 20, 30, Adafruit_EPD.BLACK)

print("Draw lines")
display.line(0, 0, display.width - 1, display.height - 1, Adafruit_EPD.BLACK)
display.line(0, display.height - 1, display.width - 1, 0, Adafruit_EPD.RED)

print("Draw text")
display.text("hello world", 25, 10, Adafruit_EPD.BLACK)
display.display()

Image Drawing with Pillow
In this image, we will use Pillow to resize and crop the image automatically and draw it the the ePaper

Display. Pillow is really powerful and with it you can open and render additional file formats such as PNG

or JPG. Let's start with downloading a PNG of blinka that has been adjusted down to 3 colors so it prints

nicely on an ePaper Display. We are using PNG for this because it is a lossless format and won't introduce

unexpected colors in.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 39 of 51

Make sure you save it as blinka.png and place it in the same folder as your script. Here's the code we'll be

loading onto the Raspberry Pi. Go ahead and copy it onto your Raspberry Pi and save it as

epd_pillow_image.py. We'll go over the interesting parts.

SPDX-FileCopyrightText: 2019 Melissa LeBlanc-Williams for Adafruit Industries
SPDX-License-Identifier: MIT

"""
Image resizing and drawing using the Pillow Library. For the image, check out the
associated Adafruit Learn guide at:
https://learn.adafruit.com/adafruit-eink-display-breakouts/python-code

"""

import digitalio
import busio
import board
from PIL import Image
from adafruit_epd.il0373 import Adafruit_IL0373
from adafruit_epd.il91874 import Adafruit_IL91874 # pylint: disable=unused-import
from adafruit_epd.il0398 import Adafruit_IL0398 # pylint: disable=unused-import
from adafruit_epd.ssd1608 import Adafruit_SSD1608 # pylint: disable=unused-import
from adafruit_epd.ssd1675 import Adafruit_SSD1675 # pylint: disable=unused-import
from adafruit_epd.ssd1680 import Adafruit_SSD1680 # pylint: disable=unused-import
from adafruit_epd.ssd1681 import Adafruit_SSD1681 # pylint: disable=unused-import

create the spi device and pins we will need
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
ecs = digitalio.DigitalInOut(board.CE0)
dc = digitalio.DigitalInOut(board.D22)
srcs = None
rst = digitalio.DigitalInOut(board.D27)
busy = digitalio.DigitalInOut(board.D17)

give them all to our driver
display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display
display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display
display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color or mono display
display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 40 of 51

display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display
display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display
display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display
display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display
display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display
display = Adafruit_IL0373(
 104,
 212, # 2.13" Tri-color display
 spi,
 cs_pin=ecs,
 dc_pin=dc,
 sramcs_pin=srcs,
 rst_pin=rst,
 busy_pin=busy,
)

IF YOU HAVE A FLEXIBLE DISPLAY (2.13" or 2.9") uncomment these lines!
display.set_black_buffer(1, False)
display.set_color_buffer(1, False)

display.rotation = 1

image = Image.open("blinka.png")

Scale the image to the smaller screen dimension
image_ratio = image.width / image.height
screen_ratio = display.width / display.height
if screen_ratio < image_ratio:
 scaled_width = image.width * display.height // image.height
 scaled_height = display.height
else:
 scaled_width = display.width
 scaled_height = image.height * display.width // image.width
image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Crop and center the image
x = scaled_width // 2 - display.width // 2
y = scaled_height // 2 - display.height // 2
image = image.crop((x, y, x + display.width, y + display.height)).convert("RGB")

Convert to Monochrome and Add dithering
image = image.convert("1").convert("L")

Display image.
display.image(image)
display.display()

So we start with our usual imports including a couple of Pillow modules and the ePaper display drivers.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 41 of 51

import digitalio
import busio
import board
from PIL import Image, ImageDraw
from adafruit_epd.il0373 import Adafruit_IL0373
from adafruit_epd.il91874 import Adafruit_IL91874
from adafruit_epd.il0398 import Adafruit_IL0398
from adafruit_epd.ssd1608 import Adafruit_SSD1608
from adafruit_epd.ssd1675 import Adafruit_SSD1675
from adafruit_epd.ssd1681 import Adafruit_SSD1681

That is followed by initializing the SPI bus and defining a few pins here. The reason we chose these is

because they allow you to use the same code with the EPD bonnets if you chose to do so.

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
ecs = digitalio.DigitalInOut(board.CE0)
dc = digitalio.DigitalInOut(board.D22)
srcs = None
rst = digitalio.DigitalInOut(board.D27)
busy = digitalio.DigitalInOut(board.D17)

We wanted to make these examples work on as many displays as possible with very few changes. The

2.13" Tri-color display is selected by default. For other displays, go ahead and comment out the following

lines:

display = Adafruit_IL0373(
 104,
 212, # 2.13" Tri-color display

and uncomment the line appropriate for your display.

#display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display
#display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display
#display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display
#display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display
#display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display
#display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display
#display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display
display = Adafruit_IL0373(
 104,
 212, # 2.13" Tri-color display
 spi,
 cs_pin=ecs,
 dc_pin=dc,
 sramcs_pin=srcs,
 rst_pin=rst,
 busy_pin=busy
)

Next change the rotation setting to 2 .

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 42 of 51

display.rotation = 2

Next we open the Blinka image, which we've named blinka.png, which assumes it is in the same directory

that you are running the script from. Feel free to change it if it doesn't match your configuration.

image = Image.open("blinka.png")

Here's where it starts to get interesting. We want to scale the image so that it matches either the width or

height of the display, depending on which is smaller, so that we have some of the image to chop off when

we crop it. So we start by calculating the width to height ration of both the display and the image. If the

height is the closer of the dimensions, we want to match the image height to the display height and let it

be a bit wider than the display. Otherwise, we want to do the opposite.

Once we've figured out how we're going to scale it, we pass in the new dimensions and using

a Bicubic rescaling method, we reassign the newly rescaled image back to image . Pillow has quite a few

different methods to choose from, but Bicubic does a great job and is reasonably fast.

Nearest actually gives a little better result with the Tri-color eInks, but loses detail with displaying a color

image on the monochrome display, so we decided to go with the best balance.

image_ratio = image.width / image.height
screen_ratio = display.width / display.height
if screen_ratio < image_ratio:
 scaled_width = image.width * display.height // image.height
 scaled_height = display.height
else:
 scaled_width = display.width
 scaled_height = image.height * display.width // image.width
image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Next we want to figure the starting x and y points of the image where we want to begin cropping it so that

it ends up centered. We do that by using a standard centering function, which is basically requesting the

difference of the center of the display and the center of the image. Just like with scaling, we replace

the image variable with the newly cropped image.

x = scaled_width // 2 - display.width // 2
y = scaled_height // 2 - display.height // 2
image = image.crop((x, y, x + display.width, y + display.height))

Finally, we take our image , draw it to the frame buffer and display it. At this point, the image should have

the exact same dimensions at the display and fill it completely.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 43 of 51

display.image(image)
display.display()

Now go to the command prompt on your Raspberry Pi and run the script with the following command:

python3 epd_pillow_image.py

After a few seconds, your display should show this image:

Drawing Shapes and Text with Pillow
In the next example, we'll take a look at drawing shapes and text. This is very similar to the displayio

example, but it uses Pillow instead. Go ahead and copy it onto your Raspberry Pi and save it as

epd_pillow_demo.py. Here's the code for that.

SPDX-FileCopyrightText: 2019 Melissa LeBlanc-Williams for Adafruit Industries
SPDX-License-Identifier: MIT

"""
ePaper Display Shapes and Text demo using the Pillow Library.

"""

import digitalio
import busio
import board
from PIL import Image, ImageDraw, ImageFont
from adafruit_epd.il0373 import Adafruit_IL0373
from adafruit_epd.il91874 import Adafruit_IL91874 # pylint: disable=unused-import

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 44 of 51

from adafruit_epd.il91874 import Adafruit_IL91874 # pylint: disable=unused-import
from adafruit_epd.il0398 import Adafruit_IL0398 # pylint: disable=unused-import
from adafruit_epd.ssd1608 import Adafruit_SSD1608 # pylint: disable=unused-import
from adafruit_epd.ssd1675 import Adafruit_SSD1675 # pylint: disable=unused-import
from adafruit_epd.ssd1680 import Adafruit_SSD1680 # pylint: disable=unused-import
from adafruit_epd.ssd1681 import Adafruit_SSD1681 # pylint: disable=unused-import

First define some color constants
WHITE = (0xFF, 0xFF, 0xFF)
BLACK = (0x00, 0x00, 0x00)
RED = (0xFF, 0x00, 0x00)

Next define some constants to allow easy resizing of shapes and colors
BORDER = 20
FONTSIZE = 24
BACKGROUND_COLOR = BLACK
FOREGROUND_COLOR = WHITE
TEXT_COLOR = RED

create the spi device and pins we will need
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
ecs = digitalio.DigitalInOut(board.CE0)
dc = digitalio.DigitalInOut(board.D22)
srcs = None
rst = digitalio.DigitalInOut(board.D27)
busy = digitalio.DigitalInOut(board.D17)

give them all to our driver
display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display
display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display
display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color or mono display
display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display
display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display
display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display
display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display
display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display
display = Adafruit_IL0373(
 104,
 212, # 2.13" Tri-color display
 spi,
 cs_pin=ecs,
 dc_pin=dc,
 sramcs_pin=srcs,
 rst_pin=rst,
 busy_pin=busy,
)

IF YOU HAVE A FLEXIBLE DISPLAY (2.13" or 2.9") uncomment these lines!
display.set_black_buffer(1, False)
display.set_color_buffer(1, False)

display.rotation = 1

image = Image.new("RGB", (display.width, display.height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 45 of 51

Draw a filled box as the background
draw.rectangle((0, 0, display.width - 1, display.height - 1), fill=BACKGROUND_COLOR)

Draw a smaller inner foreground rectangle
draw.rectangle(
 (BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER - 1),
 fill=FOREGROUND_COLOR,
)

Load a TTF Font
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", FONTSIZE)

Draw Some Text
text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text(
 (display.width // 2 - font_width // 2, display.height // 2 - font_height // 2),
 text,
 font=font,
 fill=TEXT_COLOR,
)

Display image.
display.image(image)
display.display()

Just like in the last example, we'll do our imports, but this time we're including the ImageDraw and

ImageFont Pillow modules because we'll be drawing some text this time.

import digitalio
import busio
import board
from PIL import Image, ImageDraw, ImageFont
from adafruit_epd.il0373 import Adafruit_IL0373
from adafruit_epd.il91874 import Adafruit_IL91874
from adafruit_epd.il0398 import Adafruit_IL0398
from adafruit_epd.ssd1608 import Adafruit_SSD1608
from adafruit_epd.ssd1675 import Adafruit_SSD1675
from adafruit_epd.ssd1681 import Adafruit_SSD1681

Next we define some colors that can be used with Pillow.

WHITE = (0xFF, 0xFF, 0xFF)
BLACK = (0x00, 0x00, 0x00)
RED = (0xFF, 0x00, 0x00)

After that, we create some parameters that are easy to change. If you had a smaller display for instance,

you could reduce the FONTSIZE and BORDER parameters. The BORDER will be the size in pixels of the

green border between the edge of the display and the inner purple rectangle. The FONTSIZE will be the

size of the font in points so that we can adjust it easily for different displays. You could play around with

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 46 of 51

the colors as well. One thing to note is that on monochrome displays, the RED will show up as BLACK .

For the 1.54" display, a BORDER value of 10 and a FONTSIZE value of 20 looks good.

BORDER = 10
FONTSIZE = 20
BACKGROUND_COLOR = BLACK
FOREGROUND_COLOR = WHITE
TEXT_COLOR = RED

After that, the initializer and rotation sections are exactly the same as in the previous example. If you have

are using a different display than the 2.13" Tri-color, go ahead and adjust your initializer as explained in

the previous example. After that, we will create an image with our dimensions and use that to create

a draw object. The draw object will have all of our drawing functions.

image = Image.new('RGB', (display.width, display.height))

draw = ImageDraw.Draw(image)

Next we clear whatever is on the screen by drawing a rectangle using the BACKGROUND_COLOR that

takes up the full screen.

draw.rectangle((0, 0, display.width, display.height), fill=BACKGROUND_COLOR)

Next we will draw an inner rectangle using the FOREGROUND_COLOR . We use the BORDER parameter

to calculate the size and position that we want to draw the rectangle.

draw.rectangle((BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER - 1),
 fill=FOREGROUND_COLOR)

Next we'll load a TTF font. The DejaVuSans.ttf font should come preloaded on your Pi in the location in the

code. We also make use of the FONTSIZE parameter that we discussed earlier.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', FONTSIZE)

Now we draw the text Hello World onto the center of the display. You may recognize the centering

calculation was the same one we used to center crop the image in the previous example. In this example

though, we get the font size values using the getsize() function of the font object.

text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw.text((display.width//2 - font_width//2, display.height//2 - font_height//2),
 text, font=font, fill=TEXT_COLOR)

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 47 of 51

Finally, just like before, we display the image.

display.image(image)
display.display()

Now go to the command prompt on your Raspberry Pi and run the script with the following command:

python3 epd_pillow_demo.py

After a few seconds, your display should show this image:

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 48 of 51

Downloads

Files
Fritzing object in Adafruit Fritzing Library (https://adafru.it/aP3)

IL0376F E-Ink interface chip datasheet (https://adafru.it/BRW)

SSD1608 E-Ink interface chip datasheet (https://adafru.it/QC5)

SSD1681 Datasheet (https://adafru.it/QC6)

PCB Files on GitHub (https://adafru.it/BRX)

Display shape/outline:

Schematic

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 49 of 51

https://github.com/adafruit/Fritzing-Library
https://cdn-learn.adafruit.com/assets/assets/000/057/648/original/IL0376F.pdf
https://cdn-learn.adafruit.com/assets/assets/000/099/574/original/SSD1608.pdf
https://cdn-learn.adafruit.com/assets/assets/000/099/573/original/SSD1681.pdf
https://github.com/adafruit/Adafruit-E-Paper-Display-Breakout-PCBs

Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts Page 50 of 51

© Adafruit Industries Last Updated: 2021-09-14 05:34:22 PM EDT Page 51 of 51

	Guide Contents
	Overview
	We have multiple 1.54" EPD displays:

	Pinouts
	Power Pins
	Data Control Pins
	Assembly
	Assembly
	Add the E-Ink Display
	And Solder!

	Wiring
	Breakout Wiring
	Python Wiring

	Usage & Expectations
	Arduino Setup
	Arduino Usage
	1.54" Monochrome 200x200 Pixel Display
	1.54" Tri-Color 152x152 OR 200x200 Pixel Display

	Configure Pins
	Configure Display Type & Size
	Upload Sketch
	Arduino Bitmaps
	CircuitPython Usage
	CircuitPython eInk displayio Library Installation
	Adafruit_CircuitPython_SSD1608
	Adafruit_CircuitPython_IL0373
	Adafruit_CircuitPython_SSD1681

	Image File
	Monochrome Display Usage
	Configure and Upload

	Tri-Color Display Usage
	HD Tri-Color Display
	Standard Tri-Color Display
	Configure and Upload

	Python Setup
	Python Installation of EPD Library
	Download font5x8.bin
	DejaVu TTF Font
	Pillow Library

	Python Usage
	Monochrome Example
	Tri-Color Example

	Bitmap Example
	Full Example Code
	Image Drawing with Pillow
	Drawing Shapes and Text with Pillow
	Downloads
	Files
	Display shape/outline:
	Schematic
	Fabrication Print

