RP2040 A microcontroller by Raspberry Pi

Raspberry P1 Pico C/C++ SDK
Libraries and tools for

C/C++ development on
RP2040 microcontrollers

Raspberry Pi Ltd

Raspberry Pi Pico C/C++ SDK

Colophon

Copyright © 2020-2023 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.)

The documentation of the RP2040 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0
International (CC BY-ND).

build-date: 2023-03-02
build-version: ae3b121-clean

About the SDK

Throughout the text "the SDK" refers to our Raspberry Pi Pico SDK. More details about the SDK can be
found throughout this book. Source code included in the documentation is Copyright © 2020-2022
Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.) and licensed under the 3-Clause BSD license.

Legal disclaimer notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM
TIME TO TIME (“RESOURCES") ARE PROVIDED BY RASPBERRY PI LTD (“RPL") "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO
EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the
RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for
their selection and use of the RESOURCES and any application of the products described in them. User agrees to
indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the
RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use
of the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous
environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, weapons systems or safety-critical applications (including life support
systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or
severe physical or environmental damage (“High Risk Activities”). RPL specifically disclaims any express or implied
warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High
Risk Activities.

Raspberry Pi products are provided subject to RPL's Standard Terms. RPL’s provision of the RESOURCES does not
expand or otherwise modify RPL's Standard Terms including but not limited to the disclaimers and warranties
expressed in them.

]
Legal disclaimer notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://github.com/raspberrypi/pico-sdk
https://opensource.org/licenses/BSD-3-Clause
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/

Raspberry Pi Pico C/C++ SDK

Table of contents

Colophon - oo 1
Legal disclaimer notice 1
T.About the SDK. .« ..o 6
T INtroduCtion « .. 6
1.2. Anatomy of a SDK Application 6
2.SDK architecture. 9
2.1.The Build System. 9
2.2.Every Library is an INTERFACE 10
2.3.SDK Library Structure 11
2.3.1. Higher-level Libraries. 11
2.3.2. Runtime Support (pico_runtime, pico_standard_link) 11
2.3.3. Hardware Support Libraries 12
2.3.4. Hardware Structs Library 13
2.3.5. Hardware Registers Library 14
2.3.6. TiNYUSB POrt. . ..o 15
2.4.Directory StrUCTUre 15
2.4.1. Locations of Files. 16
2.5. Conventions for Library Functions 17
2.5.1. Function Naming Conventions. 17
2.5.2. Return Codes and Error Handling. 18
2.53.Useof Inline FUnNctions 19
2.5.4. Builder Pattern for Hardware Configuration APIs 19
2.6. Customisation and Configuration Using Preprocessor variables 20
2.6.1. Preprocessor Variables via Board Configuration File 21
2.6.2. Preprocessor Variables Per Binary or Library viaCMake 21
2.7.SDK RUNTIME « . i 22
2.7.1. Standard Input/Output (stdio) SUPPOrt 22
2.7.2. Floating-point SUPPOIt. 22
2.7.3.Hardware Divider 25
2.8. MUItI-COre SUPPOIt. - . .. 26
2.9.Using CHt. oo 26
2.0, NeXt StePS . . . i 27
3. Using programmable I/0 (P10). 28
3.1. What is Programmable I/0 (P10)?. 28
311 Background. .o 28
3.1.2.1/0 Using dedicated hardware onyour PC 28
3.1.3.1/0 Using dedicated hardware on your Raspberry Pi or microcontroller. 28
3.1.4.1/0 Using software control of GPIOs ("bit-banging”) 29
3.1.5. Programmable I/0 Hardware using FPGAs and CPLDs 30
3.1.6. Programmable I/0 Hardware using PIO 30
3.2. Getting started with P10 31
3.2.1. AFirst PIO Application 31
3.2.2. AReal Example: WS2812 LEDS 35
3.2.3.PI0and DMA (A Logic Analyser) 43
3.2.4. Furtherexamples 48
3.3.Using PIOASM, the PIO Assembler. 48
3.3 T Usage oo 48
3.3.2. DireCtives .ol 49
3.3.3.Values 50
3.3LA EXPreSSIONS . ..o 50
3.3.5. COMMENTSo 50
3.3.6. Labels 51
3.3.7.InStruCtionS. . ..o 51
3.3.8. PseudoinstruCtions 51
3.3.9. OQutput pass through 52

Table of contents

Raspberry Pi Pico C/C++ SDK
]

3.3.10. Language generators 52
3.4. PIO Instruction Set Reference 57
AT SUMMAY. .o 58
34 2. M 58
B B WAL oo 59
A4 IN 60
B4 5. OUT 61
346, PUSH . oo 62
AT PULL oo 63
A8 MOV . 64
A9 IRQ . oo 66
A0, SET o 67

4. Library documentation 68
Appendix A: App NOTES - 69
Attachinga 7 segment LED via GPIO 69
Wiring information 69
Listof Files .. 69

Bill of Materials. oo 71
DHT-11, DHT-22, and AM2302 SENSOIS. 72
Wiring information 72
List of Files .. oo 73

Bill of Materials. o 75
Attachinga 16x2 LCD via TTL. 75
Wiring information 76
List of Files .. oo 76

Bill of Materials. 79
Attaching a microphone usingthe ADC. 80
Wiring information 81
List of Files .. 81

Bill of Materials. 82
Attaching a BME280 temperature/humidity/pressure sensorviaSPl. 83
Wiring information 83
Listof Files 83

Bill of Materials. 88
Attaching a MPU9250 accelerometer/gyroscope via SPl. 88
Wiring information 88
Listof Files .. 89

Bill of Materials. oo 92
Attaching a MPU6050 accelerometer/gyroscope via I2C 92
Wiring information 93
List of Files .. oo 93

Bill of Materials. 96
Attachinga 16x2 LCD via 12C 96
Wiring information 96
List of Files .. oo 96

Bill of Materials. 100
Attaching a BMP280 temp/pressure sensor via I2C 100
Wiring information 100
Listof Files . .o 101

Bill of Materials. 106
Attaching a LIS3DH Nano Accelerometer viai2c. 106
Wiring information 106
Listof Files . . . 107

Bill of Materials. 110
Attaching a MCP9808 digital temperature sensorvial2C 110
Wiring information 110
Listof Files . . . 110

Bill of Materials. 113
Attaching a MMAB8451 3-axis digital accelerometervia I2C. 114
Wiring information 114

]
Table of contents 3

Raspberry Pi Pico C/C++ SDK
]

Listof Files . . . 114

Bill of Materials. 117
Attaching an MPL3115A2 altimeter via 12C 117
Wiring information 118
Listof Files . .. 118

Bill of Materials. 122
Attachingan OLED display via 12C 122
Wiring information 123
Listof Files . .. 124
Bill of Materials. 134
Attaching a PAT1010D Mini GPS module via I12C. 135
Wiring information 135
Listof Files . .. 135
Bill of Materials. 138
Attaching a PCF8523 Real Time Clock via 12C 139
Wiring information 139
Listof Files . .. 139
Bill of Materials. 143
Appendix B: SDK configuration. 144
Configuration Parameters. 145
Appendix C: CMake build configuration 154
Configuration Parameters. 154
Control of binary type produced (advanced). 155
Appendix D: Board configuration 156
Board Configuration. 156
The Configuration files 156
Building applications with a custom board configuration. 158
Available configuration parameters. 158
Appendix E: Building the SDK APl documentation. 159
Appendix F: SDKrelease history. 160
Release 1.0.0 (20/Jan/20271) 160
Release 1.0.1 (01/Feb/20271) 160
Boot Stage 2 . . . 160
Release 1.1.0 (05/Mar/20271) 160
Backwards incompatibility 161
Release 1.1.1 (OT/APr/20271) .. . 161
Release 1.1.2 (07/APr/2021) ..o 161
Release 1.2.0 (03/Jun/20271) 161
New/improved Board headers 161
Updated TinyUSB t0 0.10.To 161
Added CMSIS core headers 161
APLIMProVEMENtS 162
General code improvements. 163
SV D 164
PIOASIMI. © oo 164
RTOS interoperability 164
CMake build changes. 164
Boot Stage 2 i 164
Release 1.3.0 (02/NOV/20271) 164
Updated TinyUSB t0 0.12.0 164
New Board SUPPOIt 164
Updated SVD, hardware_regs, hardware_structs 165
Behavioural Changes 166
Other Notable Improvements 166
CMake build . . . 168
PIOASIMN . 168
elf2Uf 2 168
Release 1.3.1 (18/May/2022). 168
New Board SUPpOIt - . .. 168
Notable Library Changes/Improvements 169

]
Table of contents 4

Raspberry Pi Pico C/C++ SDK

BUIld . 169
PIOASIN . i 170

elf Ut 170
Release 1.4.0 (30/JUn/2022) 170
New Board SUPPOIt . . . o 170
Wireless SUPpPOrt - . 170
Notable Library Changes/Improvements 171
BUIld . 173
Release 1.5.0 (11/Feb/2023) 173
New Board SUPPOIt . . . 173
Library Changes/Improvements. 173
New Librarieso 176
BUIId . o 177
Bluetooth Support for Pico W (BETA) 177
Appendix G: Documentation release history. 179

Table of contents 5

Raspberry Pi Pico C/C++ SDK

Chapter 1. About the SDK

1.1. Introduction

The SDK (Software Development Kit) provides the headers, libraries and build system necessary to write programs for
RP2040-based devices such as Raspberry Pi Pico in C, C++ or Arm assembly language.

The SDK is designed to provide an APl and programming environment that is familiar both to non-embedded C
developers and embedded C developers alike. A single program runs on the device at a time with a conventional main()
method. Standard C/C++ libraries are supported along with APIs for accessing RP2040’s hardware, including DMA,
IRQs, and the wide variety fixed function peripherals and PIO (Programmable 10).

Additionally the SDK provides higher level libraries for dealing with timers, USB, synchronization and multi-core
programming, along with additional high level functionality built using PIO such as audio. These libraries should be
comprehensive enough that your application code rarely, if at all, needs to access hardware registers directly. However,
if you do need or prefer to access the raw hardware, you will also find complete and fully-commented register definition
headers in the SDK. There’s no need to look up addresses in the datasheet.

The SDK can be used to build anything from simple applications, full fledged runtime environments such as
MicroPython, to low level software such as RP2040’s on-chip bootrom itself.

Looking to get started?

This book documents the SDK APIs, explains the internals and overall design of the SDK, and explores
some deeper topics like using the PIO assembler to build new interfaces to external hardware. For a
quick start with setting up the SDK and writing SDK programs, Getting started with Raspberry Pi Pico is
the best place to start.

1.2. Anatomy of a SDK Application

Before going completely depth-first in our traversal of the SDK, it's worth getting a little breadth by looking at one of the
SDK examples covered in Getting started with Raspberry Pi Pico, in more detail.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/blink/blink.c

1 /**

2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
3 *

4 * SPDX-License-Identifier: BSD-3-Clause

§ &/

6

7 #include "pico/stdlib.h"

8

9 int main() {
10 #ifndef PICO_DEFAULT_LED_PIN
11 #warning blink example requires a board with a regular LED

12 #else

13 const uint LED_PIN = PICO_DEFAULT_LED_PIN;
14 gpio_init(LED_PIN);

15 gpio_set_dir (LED_PIN, GPIO_OUT);

16 while (true) {

17 gpio_put(LED_PIN, 1);

18 sleep_ms(250) ;

]
1.1. Introduction 6

https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://github.com/raspberrypi/pico-examples/blob/master/blink/blink.c

Raspberry Pi Pico C/C++ SDK
]

19 gpio_put(LED_PIN, ©);
20 sleep_ms(250);

21 }

22 #endif

23 }

This program consists only of a single C file, with a single function. As with almost any C programming environment, the
function called main() is special, and is the point where the language runtime first hands over control to your program,
after doing things like initialising static variables with their values. In the SDK the main() function does not take any
arguments. It's quite common for the main() function not to return, as is shown here.

© NoTE

The return code of main() is ignored by the SDK runtime, and the default behaviour is to hang the processor on exit.

At the top of the C file, we include a header called pico/stdlib.h. This is an umbrella header that pulls in some other
commonly used headers. In particular, the ones needed here are hardware/gpio.h, which is used for accessing the general
purpose 10s on RP2040 (the gpio_xxx functions here), and pico/time.h which contains, among other things, the sleep_ms
function. Broadly speaking, a library whose name starts with pico provides high level APIs and concepts, or aggregates
smaller interfaces; a name beginning with hardware indicates a thinner abstraction between your code and RP2040 on-
chip hardware.

So, using mainly the hardware_gpio and pico_time libraries, this C program will blink an LED connected to GPIO25 on and
off, twice per second, forever (or at least until unplugged). In the directory containing the C file (you can click the link
above the source listing to go there), there is one other file which lives alongside it.

Directory listing of pico-examples/blink

blink
—— blink.c

L—— CMakelists.txt

0 directories, 2 files

The second file is a CMake file, which tells the SDK how to turn the C file into a binary application for an RP2040-based
microcontroller board. Later sections will detail exactly what CMake is, and why it is used, but we can look at the
contents of this file without getting mired in those details.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/blink/CMakeLists.txt

add_executable(blink
blink.c
)

1
2

8

4

5 # pull in common dependencies

6 target_link_libraries(blink pico_stdlib)
7
8

create map/bin/hex file etc.
9 pico_add_extra_outputs(blink)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(blink)

The add_executable function in this file declares that a program called blink should be built from the C file shown earlier.
This is also the target name used to build the program: in the pico-examples repository you can say make blink in your
build directory, and that name comes from this line. You can have multiple executables in a single project, and the pico-
examples repository is one such project.

]
1.2. Anatomy of a SDK Application 7

https://github.com/raspberrypi/pico-examples/blob/master/blink/CMakeLists.txt

Raspberry Pi Pico C/C++ SDK

The target_link_libraries is pulling in the SDK functionality that our program needs. If you don't ask for a library, it
doesn’t appear in your program binary. Just like pico/stdlib.h is an umbrella header that includes things like pico/time.h
and hardware/gpio.h, pico_stdlib is an umbrella library that makes libraries like pico_time and hardware_gpio available to
your build, so that those headers can be included in the first place, and the extra C source files are compiled and linked.
If you need less common functionality, like accessing the DMA hardware, you can call those libraries out here (e.g.
listing hardware_dma before or after pico_stdlib).

We could end the CMake file here, and that would be enough to build the blink program. By default, the build will
produce an ELF file (executable linkable format), containing all of your code and the SDK libraries it uses. You can load
an ELF into RP2040's RAM or external flash through the Serial Wire Debug port, with a debugger setup like gdb and
openocd. It's often easier to program your Raspberry Pi Pico or other RP2040 board directly over USB with BOOTSEL
mode, and this requires a different type of file, called UF2, which serves the same purpose here as an ELF file, but is
constructed to survive the rigours of USB mass storage transfer more easily. The pico_add_extra_outputs function
declares that you want a UF2 file to be created, as well as some useful extra build output like disassembly and map
files.

© NoTE

The ELF file is converted to a UF2 with an internal SDK tool called elf2uf2, which is bootstrapped automatically as
part of the build process.

The example_auto_set_url function is to do with how you are able to read this source file in this document you are reading
right now, and click links to take you to the listing on GitHub. You'll see this on the pico-examples applications, but it's not
necessary on your own programs. You are seeing how the sausage is made.

Finally, a brief note on the pico_stdlib library. Besides common hardware and high-level libraries like hardware_gpio and
pico_time, it also pulls in components like pico_standard_link —which contains linker scripts and crt@ for SDK —and
pico_runtime, which contains code running between crt@ and main(), getting the system into a state ready to run code by
putting things like clocks and resets in a safe initial state. These are incredibly low-level components that most users
will not need to worry about. The reason they are mentioned is to point out that they are ultimately explicit dependencies
of your program, and you can choose not to use them, whilst still building against the SDK and using things like the
hardware libraries.

1.2. Anatomy of a SDK Application 8

Raspberry Pi Pico C/C++ SDK

Chapter 2. SDK architecture

RP2040 is a powerful chip, and in particular was designed with a disproportionate amount of system RAM for its point
in the microcontroller design space. However it is an embedded environment, so RAM, CPU cycles and program space
are still at a premium. As a result the tradeoffs between performance and other factors (e.g. edge case error handling,
runtime vs compile time configuration) are necessarily much more visible to the developer than they might be on other,
higher level platforms.

The intention within the SDK has been for features to just work out of the box, with sensible defaults, but also to give the
developer as much control and power as possible (if they want it) to fine tune every aspect of the application they are
building and the libraries used.

The next few sections try to highlight some of the design decisions behind the SDK: the how and the why, as much as
the what.

© NoTE

Some parts of this overview are quite technical or deal with very low-level parts of the SDK and build system. You
might prefer to skim this section at first and then read it thoroughly at a later time, after writing a few SDK
applications.

2.1. The Build System

The SDK uses CMake to manage the build. CMake is widely supported by IDEs (Integrated Development Environments),
which can use a CMakelists.txt file to discover source files and generate code autocomplete suggestions. The same
CMakelists.txt file provides a terse specification of how your application (or your project with many distinct applications)
should be built, which CMake uses to generate a robust build system used by make, ninja or other build tools. The build
system produced is customised for the platform (e.g. Windows, or a Linux distribution) and by any configuration
variables the developer chooses.

Section 2.6 shows how CMake can set configuration defines for a particular program, or based on which RP2040 board
you are building for, to configure things like default pin mappings and features of SDK libraries. These defines are listed
in Appendix B, and Board Configuration files are covered in more detail in Appendix D. Additionally Appendix C
describes CMake variables you can use to control the functionality of the build itself.

Apart from being a widely used build system for C/C++ development, CMake is fundamental to the way the SDK is
structured, and how applications are configured and built.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/blink/CMakeLists.txt

add_executable(blink
blink.c

)

1
2

8

4

5 # pull in common dependencies

6 target_link_libraries(blink pico_stdlib)
7
8

create map/bin/hex file etc.
9 pico_add_extra_outputs(blink)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(blink)

Looking here at the blink example, we are defining a new executable blink with a single source file blink.c, with a single

]
2.1. The Build System 9

https://cmake.org
https://github.com/raspberrypi/pico-examples/blob/master/blink/CMakeLists.txt

Raspberry Pi Pico C/C++ SDK
]

dependency pico_stdlib. We also are using a SDK provided function pico_add_extra_outputs to ask additional files to be
produced beyond the executable itself (.uf2, .hex, .bin, .map, .dis).

The SDK builds an executable which is bare metal, i.e. it includes the entirety of the code needed to run on the device
(other than floating point and other optimized code contained in the bootrom within RP2040).

pico_stdlib is an INTERFACE library and provides all of the rest of the code and configuration needed to compile and link
the blink application. You will notice if you do a build of blink (https://github.com/raspberrypi/pico-examples/blob/
master/blink/blink.c) that in addition to the single blink.c file, the inclusion of pico_stdlib causes about 40 other source
files to be compiled to flesh out the blink application such that it can be run on RP2040.

2.2. Every Library is an INTERFACE

All libraries within the SDK are INTERFACE libraries. (Note this does not include the C/C++ standard libraries provided by
the compiler). Conceptually, a CMake INTERFACE library is a collection of:

® Source files

® |nclude paths

® Compiler definitions (visible to code as #defines)
® Compile and link options

® Dependencies (on other INTERFACE libraries)

The INTERFACE libraries form a tree of dependencies, with each contributing source files, include paths, compiler
definitions and compile/link options to the build. These are collected based on the libraries you have listed in your
CMakelists.txt file, and the libraries depended on by those libraries, and so on recursively. To build the application, each
source file is compiled with the combined include paths, compiler definitions and options and linked into an executable
according to the provided link options.

When building an executable with the SDK, all of the code for one executable, including the SDK libraries, is (re)compiled
for that executable from source. Building in this way allows your build configuration to specify customised settings for
those libraries (e.g. enabling/disabling assertions, setting the sizes of static buffers), on a per-application basis, at
compile time. This allows for faster and smaller binaries, in addition of course to the ability to remove support for
unwanted features from your executable entirely.

In the example CMakeLists.txt we declare a dependency on the (INTERFACE) library pico_stdlib. This INTERFACE library itself
depends on other INTERFACE libraries (pico_runtime, hardware_gpio, hardware_uart and others). pico_stdlib provides all the
basic functionality needed to get a simple application running and toggling GPIOs and printing to a UART, and the linker
will garbage collect any functions you don't call, so this doesn’t bloat your binary. We can take a quick peek into the
directory structure of the hardware_gpio library, which our blink example uses to turn the LED on and off:

hardware_gpio
—— CMakelLists.txt
—— gpio.c
—— include
—— hardware
—— gpio.h

Depending on the hardware_gpio INTERFACE library in your application causes gpio.c to be compiled and linked into your
executable, and adds the include directory shown here to your search path, so that a #include "hardware/gpio.h" will pull
in the correct header in your code.

INTERFACE libraries also make it easy to aggregate functionality into readily consumable chunks (such as pico_stdlib),
which don’t directly contribute any code, but depend on a handful of lower-level libraries that do. Like a metapackage,
this lets you pull in a group of libraries related to a particular goal without listing them all by name.

]
2.2. Every Library is an INTERFACE 10

https://github.com/raspberrypi/pico-examples/blob/master/blink/blink.c
https://github.com/raspberrypi/pico-examples/blob/master/blink/blink.c

Raspberry Pi Pico C/C++ SDK

© IMPORTANT

SDK functionality is grouped into separate INTERFACE libraries, and each INTERFACE library contributes the code and
include paths for that library. Therefore you must declare a dependency on the INTERFACE library you need directly (or
indirectly through another INTERFACE library) for the header files to be found during compilation of your source file (or
for code completion in your IDE).

O NoTE

As all libraries within the SDK are INTERFACE libraries, we will simply refer to them as libraries or SDK libraries from
now on.

2.3. SDK Library Structure

The full API listings are given in Chapter 4; this chapter gives an overview of how SDK libraries are organised, and the
relationships between them.

There are a number of layers of libraries within the SDK. This section starts with the highest-level libraries, which can be
used in C or C++ applications, and navigates all the way down to the hardware_regs library, which is a comprehensive set
of hardware definitions suitable for use in Arm assembly as well as C and C++, before concluding with a brief note on
how the TinyUSB stack can be used from within the SDK.

2.3.1. Higher-level Libraries

These libraries (pico_xxx) provide higher-level APIs, concepts and abstractions. The APIs are listed in High Level APIs.
These may be libraries that have cross-cutting concerns between multiple pieces of hardware (for example the sleep_
functions in pico_time need to concern themselves both with RP2040’s timer hardware and with how processors enter
and exit low power states), or they may be pure software infrastructure required for your program to run smoothly. This
includes libraries for things like:

® Alarms, timers and time functions
® Multi-core support and synchronization primitives
e Utility functions and data structures

These libraries are generally built upon one or more underlying hardware_ libraries, and often depend on each other.

© NoTE

More libraries will be forthcoming in the future (e.g. - Audio support (via PIO), DPI/VGA/MIPI Video support (via PIO)
file system support, SDIO support via (PlO)), most of which are available but not yet fully
supported/stable/documented in the Pico Extras GitHub repository.

2.3.2. Runtime Support (pico_runtime, pico_standard_link)

These are libraries that bundle functionality which is common to most RP2040-based applications. APIs are listed in
Runtime Infrastructure.

pico_runtime aggregates the libraries (listed in pico_runtime) that provide a familiar C environment for executing code,
including:

® Runtime startup and initialization

]
2.3. SDK Library Structure 1

https://www.raspberrypi.com/documentation/pico-sdk/high_level.html
https://github.com/raspberrypi/pico-extras
https://www.raspberrypi.com/documentation/pico-sdk/runtime.html
https://www.raspberrypi.com/documentation/pico-sdk/runtime.html#pico_runtime

Raspberry Pi Pico C/C++ SDK
]

® Choice of language level single/double precision floating point support (and access to the fast on-RP2040
implementations)

® Compact printf support, and mapping of stdout
® Language level / and % support for fast division using RP2040°s hardware dividers

® The function runtime_init() which performs minimal hardware initialisation (e.g. default PLL and clock
configuration), and calls functions with constructor attributes before entering main()

pico_standard_link encapsulates the standard linker setup needed to configure the type of application binary layout in
memory, and link to any additional C and/or C++ runtime libraries. It also includes the default crt, which provides the
initial entry point from the flash second stage bootloader, contains the initial vector table (later relocated to RAM), and
initialises static data and RAM-resident code if the application is running from flash.

© NoTE

There is more high-level discussion of pico_runtime in Section 2.7

@ TIP

Both pico_runtime and pico_standard_link are included with pico_stdlib

2.3.3. Hardware Support Libraries

These are individual libraries (hardware_xxx) providing actual APIs for interacting with each piece of physical
hardware/peripheral. They are lightweight and provide only thin abstractions. The APIs are listed in Hardware APls.

These libraries generally provide functions for configuring or interacting with the peripheral at a functional level, rather
than accessing registers directly, e.g.

pio_sm_set_wrap(pio, sm, bottom, top);

rather than:

pio->sm[sm].execctrl =

(pio->sm[sm].execctrl & ~(PIO_SMO_EXECCTRL_WRAP_TOP_BITS |
PIO_SMO_EXECCTRL_WRAP_BOTTOM_BITS)) |

(bottom << PIO_SMO_EXECCTRL_WRAP_BOTTOM_LSB) |

(top << PIO_SMO_EXECCTRL_WRAP_TOP_LSB);

The hardware_ libraries are intended to have a very minimal runtime cost. They generally do not require any or much
RAM, and do not rely on other runtime infrastructure. In general their only dependencies are the hardware_structs and
hardware_regs libraries that contain definitions of memory-mapped register layout on RP2040. As such they can be used
by low-level or other specialized applications that don’t want to use the rest of the SDK libraries and runtime.

]
2.3. SDK Library Structure 12

https://www.raspberrypi.com/documentation/pico-sdk/hardware.html

Raspberry Pi Pico C/C++ SDK

© NoTE

void pio_sm_set_wrap(PIO pio, uint sm, uint bottom, uint top) {} is actually implemented as a static inline function
in https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_pio/include/hardware/pio.h
directly as shown above.

Using static inline functions is common in SDK header files because such methods are often called with
parameters that have fixed known values at compile time. In such cases, the compiler is often able to fold the code
down to a single register write (or in this case a read, AND with a constant value, OR with a constant value, and a
write) with no function call overhead. This tends to produce much smaller and faster binaries.

2.3.3.1. Hardware Claiming

The hardware layer does provide one small abstraction which is the notion of claiming a piece of hardware. This
minimal system allows registration of peripherals or parts of peripherals (e.g. DMA channels) that are in use, and the
ability to atomically claim free ones at runtime. The common use of this system - in addition to allowing for safe
runtime allocation of resources - provides a better runtime experience for catching software misconfigurations or
accidental use of the same piece hardware by multiple independent libraries that would otherwise be very painful to
debug.

2.3.4. Hardware Structs Library

The hardware_structs library provides a set of C structures which represent the memory mapped layout of RP2040
registers in the system address space. This allows you to replace something like the following (which you'd write in C
with the defines from the lower-level hardware_regs)

*(volatile uint32_t *)(PIOO_BASE + PIO_SM1_SHIFTCTRL_OFFSET) |=
PIO_SM1_SHIFTCTRL_AUTOPULL_BITS;

with something like this (where pio0@ is a pointer to type pio_hw_t at address PIO0_BASE):

pioB->sm[1].shiftctrl |= PIO_SM1_SHIFTCTRL_AUTOPULL_BITS;

The structures and associated pointers to memory mapped register blocks hide the complexity and potential error-
prone-ness of dealing with individual memory locations, pointer casts and volatile access. As a bonus, the structs tend
to produce better code with older compilers, as they encourage the reuse of a base pointer with offset load/stores,
instead of producing a 32 bit literal for every register accessed.

The struct headers are named consistently with both the hardware libraries and the hardware_regs register headers. For
example, if you access the hardware_pio library's functionality through hardware/pio.h, the hardware_structs library (a
dependee of hardware_pio) contains a header you can include as hardware/structs/pio.h if you need to access a register
directly, and this itself will pull in hardware/regs/pio.h for register field definitions. The PIO header is a bit lengthy to
include here. hardware/structs/pll.h is a shorter example to give a feel for what these headers actually contain:

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/pll.h Lines 24 - 53

24 typedef struct {

25 _REG_(PLL_CS_OFFSET) // PLL_CS

26 // Control and Status

27 // 6x80000000 [31] : LOCK (0): PLL is locked

28 // 0x06000100 [8] : BYPASS (8): Passes the reference clock to the output instead of

the divided VCO

]
2.3. SDK Library Structure 13

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_pio/include/hardware/pio.h#L897-L906
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/pll.h#L24-L53

Raspberry Pi Pico C/C++ SDK
]

29 // 6x0000003f [5:0] : REFDIV (1): Divides the PLL input reference clock
30 io_rw_32 cs;

31

32 _REG_(PLL_PWR_OFFSET) // PLL_PWR

33 // Controls the PLL power modes

34 // 0x00000020 [5] : VCOPD (1): PLL VCO powerdown

35 // 0x00000008 [3] : POSTDIVPD (1): PLL post divider powerdown
36 // 0x00000004 [2] : DSMPD (1): PLL DSM powerdown

37 // 6x00000001 [0] D PD (1): PLL powerdown

38 io_rw_32 pwr;

39

40 _REG_(PLL_FBDIV_INT_OFFSET) // PLL_FBDIV_INT

41 // Feedback divisor

42 // 0x00000fff [11:0] : FBDIV_INT (8): see ctrl reg description for constraints
43 io_rw_32 fbdiv_int;

44

45 _REG_(PLL_PRIM_OFFSET) // PLL_PRIM

46 // Controls the PLL post dividers for the primary output

47 // 0x00070000 [18:16] : POSTDIV1 (6x7): divide by 1-7

48 // 6x00007000 [14:12] : POSTDIV2 (6x7): divide by 1-7

49 io_rw_32 prim;

50 } pll_hw_t;

51

52 #define pll_sys_hw ((pll_hw_t *)PLL_SYS_BASE)
53 #define pll_usb_hw ((pll_hw_t *)PLL_USB_BASE)

The structure contains the layout of the hardware registers in a block, and some defines bind that layout to the base
addresses of the instances of that peripheral in the RP2040 global address map.

Additionally, you can use one of the atomic set, clear, or xor address aliases of a piece of hardware to set, clear or toggle
respectively the specified bits in a hardware register (as opposed to having the CPU perform a read/modify/write); e.g:

hw_set_alias(pio®)->sm[1].shiftctrl = PIO_SM1_SHIFTCTRL_AUTOPULL_BITS;

Or, equivalently

hw_set_bits(&pioB->sm[1].shiftctrl, PIO_SM1_SHIFTCTRL_AUTOPULL_BITS);

O NOTE

The hardware atomic set/clear/XOR 10 aliases are used extensively in the SDK libraries, to avoid certain classes of
data race when two cores, or an IRQ and foreground code, are accessing registers concurrently.

O NoTE

On RP2040 the atomic register aliases are a native part of the peripheral, not a CPU function, so the system DMA can
also perform atomic set/clear/XOR operation on registers.

2.3.5. Hardware Registers Library

The hardware_regs library is a complete set of include files for all RP2040 registers, autogenerated from the hardware
itself. This is all you need if you want to peek or poke a memory mapped register directly, however higher level libraries
provide more user friendly ways of achieving what you want in C/C++.

]
2.3. SDK Library Structure 14

Raspberry Pi Pico C/C++ SDK

For example, here is a snippet from hardware/regs/sio.h:

// Description : Single-cycle IO block

// Provides core-local and inter-core hardware for the two

// processors, with single-cycle access.

// == === ===== === === === =======

#ifndef HARDWARE_REGS_SIO_DEFINED
#define HARDWARE_REGS_SIO_DEFINED

// ===== == ==== ===== === === ==================
// Register : SIO_CPUID

// Description : Processor core identifier

// Value is @ when read from processor core 6, and 1 when read

// from processor core 1.

#define SIO_CPUID_OFFSET 0x06000000
#define SIO_CPUID_BITS Oxffffffff
#define SIO_CPUID_RESET "-"
#define SIO_CPUID_MSB 31

#define SIO_CPUID_LSB 0

#define SIO_CPUID_ACCESS "RO"

These header files are fairly heavily commented (the same information as is present in the datasheet register listings, or
the SVD files). They define the offset of every register, and the layout of the fields in those registers, as well as the
access type of the field, e.g. "RO" for read-only.

@ TP

The headers in hardware_regs contain only comments and #define statements. This means they can be included from
assembly files (.S, so the C preprocessor can be used), as well as C and C++ files.

2.3.6. TinyUSB Port

In addition to the core SDK libraries, we provide a RP2040 port of TinyUSB as the standard device and host USB support
library within the SDK, and the SDK contains some build infrastructure for easily pulling this into your application.

The tinyusb_dev or tinyusb_host libraries within the SDK can be included in your application dependencies in
CMakeLists.txt to add device or host support to your application respectively. Additionally, the tinyusb_board library is
available to provide the additional "board support” code often used by TinyUSB demos. See the README in Pico
Examples for more information and example code for setting up a fully functional application.

© IMPORTANT

RP2040 USB hardware supports both Host and Device modes, but the two can not be used concurrently.

2.4. Directory Structure

We have discussed libraries such as pico_stdlib and hardware_gpio above. Imagine you wanted to add some code using
RP2040’s DMA controller to the hello_world example in pico-examples. To do this you need to add a dependency on
another library, hardware_dma, which is not included by default by pico_stdlib (unlike, say, hardware_uart).

You would change your CMakeLists.txt to list both pico_stdlib and hardware_dma as dependencies of the hello_world target
(executable). (Note the line breaks are not required)

2.4. Directory Structure 15

https://github.com/raspberrypi/pico-examples
https://github.com/raspberrypi/pico-examples

Raspberry Pi Pico C/C++ SDK
]

Table 1. Top-level
directories

target_link_libraries(hello_world
pico_stdlib
hardware_dma

And in your source code you would include the DMA hardware library header as such:

#include "hardware/dma.h"

Trying to include this header without listing hardware_dma as a dependency will fail, and this is due to how SDK files are
organised into logical functional units on disk, to make it easier to add functionality in the future.

As an aside, this correspondence of hardware_dma — hardware/dma.h is the convention for all toplevel SDK library headers.
The library is called foo_bar and the associated header is foo/bar.h. Some functions may be provided inline in the
headers, others may be compiled and linked from additional .c files belonging to the library. Both of these require the
relevant hardware_ library to be listed as a dependency, either directly or through some higher-level bundle like
pico_stdlib.

O NoOTE

Some libraries have additional headers which are located in foo/bar/other.h

You may want to actually find the files in question (although most IDEs will do this for you). The on disk files are actually
split into multiple top-level directories. This is described in the next section.

2.4.1. Locations of Files
Whilst you may be focused on building a binary to run specifically on Raspberry Pi Pico, which uses a RP2040, the SDK
is structured in a more general way. This is for two reasons:

1. To support other future chips in the RP2 family

2. To support testing of your code off device (this is host mode)

The latter is useful for writing and running unit tests, but also as you develop your software, for example your debugging
code or work in progress software might actually be too big or use too much RAM to fit on the device, and much of the
software complexity may be non-hardware-specific.

The code is thus split into top level directories as follows:

Path Description

src/rp2040/ This contains the hardware_regs and hardware_structs libraries mentioned earlier, which
are specific to RP2040.

src/rp2_common/ This contains the hardware_ library implementations for individual hardware components,
and pico_ libraries or library implementations that are closely tied to RP2040 hardware.
This is separate from /src/rp2040 as there may be future revisions of RP2040, or other
chips in the RP2 family, which can use a common SDK and API whilst potentially having
subtly different register definitions.

src/common/ This is code that is common to all builds. This is generally headers providing hardware
abstractions for functionality which are simulated in host mode, along with a lot of the
pico_ library implementations which, to the extent they use hardware, do so only through
the hardware_ abstractions.

]
2.4. Directory Structure 16

Raspberry Pi Pico C/C++ SDK
]

Path Description

src/host/ This is a basic set of replacement SDK library implementations sufficient to get simple
Raspberry Pi Pico applications running on your computer (Raspberry Pi OS, Linux,
macO0S or Windows using Cygwin or Windows Subsystem for Linux). This is not
intended to be a fully functional simulator, however it is possible to inject additional
implementations of libraries to provide more complete functionality.

There is a CMake variable PICO_PLATFORM that controls the environment you are building for:

When doing a regular RP2040 build (PICO_PLATFORM=rp2040, the default), you get code from common, rp2_common and rp2040;
when doing a host build (PIC0_PLATFROM=host), you get code from common and host.

Within each top-level directory, the libraries have the following structure (reading foo_bar as something like hardware_uart
or pico_time)

top-level_dir/

top-level_dir/foo_bar/include/foo/bar.h # header file
top-level_dir/foo_bar/CMakeLists.txt # build configuration
top-level_dir/foo_bar/bar.c # source file(s)

As a concrete example, we can list the hardware_uvart directory under pico-sdk/rp2_common (you may also recall the
hardware_gpio library we looked at earlier):

hardware_uart
—— CMakelLists.txt
—— include

\ —— hardware

| L—— uvart.h
—— uart.c

vart.h contains function declarations and preprocessor defines for the hardware_uvart library, as well as some inline
functions that are expected to be particularly amenable to constant folding by the compiler. vart.c contains the
implementations of more complex functions, such as calculating and setting up the divisors for a given UART baud rate.

O NoOTE

The directory top-level _dir/foo_bar/include is added as an include directory to the INTERFACE library foo_bar, which is
what allows you to include "foo/bar.h" in your application

2.5. Conventions for Library Functions

This section covers some common patterns you will see throughout the SDK libraries, such as conventions for function
names, how errors are reported, and the approach used to efficiently configure hardware with many register fields
without having unreadable numbers of function arguments.

2.5.1. Function Naming Conventions

SDK functions follow a common naming convention for consistency and to avoid name conflicts. Some names are
quite long, but that is deliberate to be as specific as possible about functionality, and of course because the SDK API is
a C API and does not support function overloading.

]
2.5. Conventions for Library Functions 17

Raspberry Pi Pico C/C++ SDK
]

Table 2. SDK Suffixes
for (non-)blocking
functions and
timeouts.

2.5.1.1. Name prefix

Functions are prefixed by the library/functional area they belong to; e.g. public functions in the hardware_dma library are
prefixed with dma_. Sometime the prefix refers to a sub group of library functionality (e.g. channel_config_)

2.5.1.2. Verb

A verb typically follows the prefix specifying that action performed by the function. set_ and get_ (or is_ for booleans)
are probably the most common and should always be present; i.e. a hypothetical method would be
oven_get_temperature() and food_add_salt(), rather than oven_temperature() and food_salt().

2.5.1.3. Suffixes

2.5.1.3.1. Blocking/Non-Blocking Functions and Timeouts
Suffix Param Description
(none) The method is non-blocking, i.e. it does not wait on any external

condition that could potentially take a long time.

_blocking The method is blocking, and may potentially block indefinitely
until some specific condition is met.

_blocking_until absolute_time_t until The method is blocking until some specific condition is met,
however it will return early with a timeout condition (see Section
2.5.2) if the until time is reached.

_timeout_ms uint32_t timeout_ms The method is blocking until some specific condition is met,
however it will return early with a timeout condition (see Section
2.5.2) after the specified number of milliseconds

_timeout_us uint64_t timeout_us The method is blocking until some specific condition is met,
however it will return early with a timeout condition (see Section
2.5.2) after the specified number of microseconds

2.5.2. Return Codes and Error Handling

As mentioned earlier, there is a decision to be made as to whether/which functions return error codes that can be
handled by the caller, and indeed whether the caller is likely to actually do something in response in an embedded
environment. Also note that very often return codes are there to handle parameter checking, e.g. when asked to do
something with the 27th DMA channel (when there are actually only 12).

In many cases checking for obviously invalid (likely program bug) parameters in (often inline) functions is prohibitively
expensive in speed and code size terms, and therefore we need to be able to configure it on/off, which precludes return
codes being returned for these exceptional cases.

The SDK follows two strategies:

1. Methods that can legitimately fail at runtime due to runtime conditions e.g. timeouts, dynamically allocated
resource, can return a status which is either a bool indicating success or not, or an integer return code from the
PICO_ERROR_ family; non-error returns are >= 0.

2. Other items like invalid parameters, or failure to allocate resources which are deemed program bugs (e.g. two
libraries trying to use the same statically assigned piece of hardware) do not affect a return code (usually the
functions return void) and must cause some sort of exceptional event.

As of right now the exceptional event is a C assert, so these checks are always disabled in release builds by

]
2.5. Conventions for Library Functions 18

Raspberry Pi Pico C/C++ SDK
]

default. Additionally most of the calls to assert are disabled by default for code/size performance (even in debug
builds); You can set PARAM_ASSERTIONS_ENABLE_ALL=1 or PARAM_ASSERTIONS_DISABLE_ALL=1 in your build to change the
default across the entire SDK, or say PARAM_ASSERTIONS ENABLED_I2€=0/1 to explicitly specify the behavior for the
hardware_i2c module

In the future we expect to support calling a custom function to throw an exception in C++ or other environments
where stack unwinding is possible.

3. Obviously sometimes the calling code whether it be user code or another higher level function, may not want the
called function to assert on bad input, in which case it is the responsibility of the caller to check the validity (there
are a good number of API functions provided that help with this) of their arguments, and the caller can then choose
to provide a more flexible runtime error experience.

4. Finally some code may choose to "panic” directly if it detects an invalid state. A "panic" involves writing a message
to standard output and then halting (by executing a breakpoint instruction). Panicking is a good response when it
is undesirable to even attempt to continue given the current situation.

2.5.3. Use of Inline Functions

SDK libraries often contain a mixture of static inline functions in header files, and non-static functions in C source files.
In particular, the hardware_ libraries are likely to contain a higher proportion of inline function definitions in their headers.
This is done for speed and code size.

The code space needed to setup parameters for a regular call to a small function in another compilation unit can be
substantially larger than the function implementation. Compilers have their own metrics to decide when to inline
function implementations at their call sites, but the use of static inline definitions gives the compiler more freedom to
do this.

One reason this is particularly effective in the context of hardware register access is that these functions often:
1. Have relatively many parameters, which
2. Are immediately shifted and masked to combine with some register value, and
3. Are often constants known at compile time

So if the implementation of a hardware access function is inlined, the compiler can propagate the constant parameters
through whatever bit manipulation and arithmetic that function may do, collapsing a complex function down to "please
write this constant value to this constant address". Again, we are not forcing the compiler to do this, but the SDK
consistently tries to give it freedom to do so.

The result is that there is generally no overhead using the lower-level hardware_ functions as compared with using
preprocessor macros with the hardware_regs definitions, and they tend to be much less error-prone.

2.5.4. Builder Pattern for Hardware Configuration APIs

The SDK uses a builder pattern for the more complex configurations, which provides the following benefits:

1. Readability of code (avoid "death by parameters" where a configuration function takes a dozen integers and
booleans)

2. Tiny runtime code (thanks to the compiler)
3. Less brittle (the addition of another item to a hardware configuration will not break existing code)

Take the following hypothetical code example to (quite extensively) configure a DMA channel:

int dma_channel = 3;

dma_channel_config config = dma_get_default_channel_config(dma_channel);
channel_config_set_read_increment(&config, true);
channel_config_set_write_increment(&config, true);

]
2.5. Conventions for Library Functions 19

Raspberry Pi Pico C/C++ SDK
]

channel_config_set_dreq(&config, DREQ_SPIB_RX);
channel_config_set_transfer_data_size(&config, DMA_SIZE_8);
dma_set_config(dma_channel, &config, false);

The value of dma_channel is known at compile time, so the compiler can replace dma_channel with 3 when generating code
(constant folding). The dma_ methods are static inline methods (from https://github.com/raspberrypi/pico-sdk/blob/
master/src/rp2_common/hardware_dma/include/hardware/dma.h) meaning the implementations can be folded into
your code by the compiler and, consequently, your constant parameters (like DREQ_SP10_RX) are propagated though this
local copy of the function implementation. The resulting code is usually smaller, and certainly faster, than the register
shuffling caused by setting up a function call.

The net effect is that the compiler actually reduces all of the above to the following code:

Effective code produced by the C compiler for the DMA configuration

*(volatile uint32_t *)(DMA_BASE + DMA_CH3_AL1_CTRL_OFFSET) = 0x00089831;

It may seem counterintuitive that building up the configuration by passing a struct around, and committing the final
result to the IO register, would be so much more compact than a series of direct register modifications using register
field accessors. This is because the compiler is customarily forbidden from eliminating 10 accesses (illustrated here
with a volatile keyword), with good reason. Consequently it's easy to unwittingly generate code that repeatedly puts a
value into a register and pulls it back out again, changing a few bits at a time, when we only care about the final value of
the register. The configuration pattern shown here avoids this common pitfall.

O NoOTE

The SDK code is designed to make builder patterns efficient in both Release and Debug builds. Additionally, even if
not all values are known constant at compile time, the compiler can still produce the most efficient code possible
based on the values that are known.

2.6. Customisation and Configuration Using Preprocessor
variables

The SDK allows use of compile time definitions to customize the behavior/capabilities of libraries, and to specify
settings (e.g. physical pins) that are unlikely to be changed at runtime This allows for much smaller more efficient code,
and avoids additional runtime overheads and the inclusion of code for configurations you might choose at runtime even
though you actually don't (e.g. support PWM audio when you are only using 12S)!

Remember that because of the use of INTERFACE libraries, all the libraries your application(s) depend on are built from
source for each application in your build, so you can even build multiple variants of the same application with different
baked in behaviors.

Appendix B has a comprehensive list of the available preprocessor defines, what they do, and what their default values
are.

Preprocessor variables may be specified in a number of ways, described in the following sections.

]
2.6. Customisation and Configuration Using Preprocessor variables 20

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_dma/include/hardware/dma.h
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_dma/include/hardware/dma.h

Raspberry Pi Pico C/C++ SDK

© NoTE

Whether compile time configuration or runtime configuration or both is supported/required is dependent on the
particular library itself. The general philosophy however, is to allow sensible default behavior without the user
specifying any settings (beyond those provided by the board configuration).

2.6.1. Preprocessor Variables via Board Configuration File

Many of the common configuration settings are actually related to the particular RP2040 board being used, and include
default pin settings for various SDK libraries. The board being used is specified via the P1C0_B0ARD CMake variable which
may be specified on the CMake command line or in the environment. The default PIC0_B0ARD if not specified is pico.

The board configuration provides a header file which specifies defaults if not otherwise specified; for example
https://github.com/raspberrypi/pico-sdk/blob/master/src/boards/include/boards/pico.h specifies

#ifndef PICO_DEFAULT_LED_PIN
#define PICO_DEFAULT_LED_PIN 25
#endif

The header my_board_name.h is included by all other SDK headers as a result of setting PIC0_BOARD=my_board_name. You may
wish to specify your own board configuration in which case you can set PICO_BOARD_HEADER_DIRS in the environment
or CMake to a semicolon separated list of paths to search for my_board_name.h.

2.6.2. Preprocessor Variables Per Binary or Library via CMake

We could modify the https://github.com/raspberrypi/pico-examples/blob/master/hello_world/CMakeLists.txt with
target_compile_definitions to specify an alternate set of UART pins to use.

Modified hello_world CMakeLists.txt specifying different UART pins

add_executable(hello_world
hello_world.c

SPECIFY two preprocessor definitions for the target hello_world
target_compile_definitions(hello_world PRIVATE
PICO_DEFAULT_UART_TX_PIN=16
PICO_DEFAULT_UART_RX_PIN=17

Pull in our pico_stdlib which aggregates commonly used features
target_link_libraries(hello_world pico_stdlib)

create map/bin/hex/uf2 file etc.
pico_add_extra_outputs(hello_world)

The target_compile_definitions specifies preprocessor definitions that will be passed to the compiler for every source
file in the target hello_world (which as mentioned before includes all of the sources for all dependent INTERFACE
libraries). PRIVATE is required by CMake to specify the scope for the compile definitions. Note that all preprocessor
definitions used by the SDK have a PIC0_ prefix.

]
2.6. Customisation and Configuration Using Preprocessor variables 21

https://github.com/raspberrypi/pico-sdk/blob/master/src/boards/include/boards/pico.h
https://github.com/raspberrypi/pico-examples/blob/master/hello_world/CMakeLists.txt

Raspberry Pi Pico C/C++ SDK

2.7. SDK Runtime

For those coming from non-embedded programming, or from other devices, this section will give you an idea of how
various C/C++ language level concepts are handled within the SDK

2.7.1. Standard Input/Output (stdio) Support

The SDK runtime packages a lightweight printf library by Marco Paland, linked as pico_printf. It also contains
infrastructure for routing stdout and stdin to various hardware interfaces, which is documented under pico_stdio:

* A UART interface specified by a board configuration header. The default for Raspberry Pi Pico is 115200 baud on
GPIOO (TX) and GPIO1 (RX)

® A USB CDC ACM virtual serial port, using TinyUSB’s CDC support. The virtual serial device can be accessed
through RP2040’s dedicated USB hardware interface, in Device mode.

® (Experimental) minimal semihosting support to direct stdout to an external debug host connected via the Serial
Wire Debug link on RP2040

These can be accessed using standard calls like printf, puts, getchar, found in the standard <stdio.h> header. By default,
stdout converts bare linefeed characters to carriage return plus linefeed, for better display in a terminal emulator. This
can be disabled at runtime, at build time, or the CR-LF support can be completely removed.

stdout is broadcast to all interfaces that are enabled, and stdin is collected from all interfaces which are enabled and
support input. Since some of the interfaces, particularly USB, have heavy runtime and binary size cost, only the UART
interface is included by default. You can add/remove interfaces for a given program at build time with e.g.

pico_enable_stdio_usb(target_name, 1)

2.7.2. Floating-point Support

The SDK provides a highly optimized single and double precision floating point implementation. In addition to being
fast, many of the functions are actually implemented using support provided in the RP2040 bootrom. This means the
interface from your code to the ROM floating point library has very minimal impact on your program size, certainly using
dramatically less flash storage than including the standard floating point routines shipped with your compiler.

The physical ROM storage on RP2040 has single-cycle access (with a dedicated arbiter on the RP2040 busfabric), and
accessing code stored here does not put pressure on the flash cache or take up space in memory, so not only are the
routines fast, the rest of your code will run faster due them being resident in ROM.

This implementation is used by default as it is the best choice in the majority of cases, however it is also possible to
switch to using the regular compiler soft floating point support.

2.7.2.1. Functions

The SDK provides implementations for all the standard functions from math.h. Additional functions can be found in
pico/float.h and pico/double.h.

2.7.2.2. Speed/Tradeoffs

The overall goal for the bootrom floating-point routines is to achieve good performance within a small footprint, the
emphasis being more on improved performance for the basic operations (add, subtract, multiply, divide and square root,
and all conversion functions), and more on reduced footprint for the scientific functions (trigonometric functions,
logarithms and exponentials).

]
2.7. SDK Runtime 22

https://www.raspberrypi.com/documentation/pico-sdk/runtime.html#pico_stdio

Raspberry Pi Pico C/C++ SDK
]

The |IEEE single- and double-precision data formats are used throughout, but in the interests of reducing code size, input
denormals are treated as zero and output denormals are flushed to zero, and output NaNs are rendered as infinities.
Only the round-to-nearest, even-on-tie rounding mode is supported. Traps are not supported. Whether input NaNs are
treated as infinities or propagated is configurable.

The five basic operations (add, subtract, multiply, divide, sqrt) return results that are always correctly rounded (round-to-
nearest).

The scientific functions always return results within 1 ULP (unit in last place) of the exact result. In many cases results
are better.

The scientific functions are calculated using internal fixed-point representations so accuracy (as measured in ULP error
rather than in absolute terms) is poorer in situations where converting the result back to floating point entails a large
normalising shift. This occurs, for example, when calculating the sine of a value near a multiple of pi, the cosine of a
value near an odd multiple of pi/2, or the logarithm of a value near 1. Accuracy of the tangent function is also poorer
when the result is very large. Although covering these cases is possible, it would add considerably to the code footprint,
and there are few types of program where accuracy in these situations is essential.

The following table shows the results from a benchmark

O NoTE
Whilst the SDK floating point support makes use of the routines in the RP2040 bootrom, it hides some of the
limitations of the raw ROM functions (e.g. limited sin/cos range), in order to be largely indistinguishable from the
compiler-provided functionality. Certain smaller functions have also been re-implemented for even more speed
outside of the limited bootrom space.
Tab{e 3. SDK 5 Function ROMY/SDK (us) GCC 9 (us) Performance Ratio
CCC 9 implementation | aeabj_fadd 72.4 99.8 138%
for ARM AEABI
floating point __aeabi_fsub 86.7 133.6 154%
functions (these
unusually named __aeabi_frsub 89.8 140.6 157%
functions provide the
support for basic __aeabi_fmul 61.5 145 236%
operations on float
and doubletypes) | aeabi_fdiv 74.7 437.5 586%
__aeabi_fcmplt 39 61.1 157%
__aeabi_fcmple 40.5 61.1 151%
__aeabi_fcmpgt 40.5 61.2 151%
__aeabi_fcmpge 41 61.2 149%
__aeabi_fcmpeq 40 41.5 104%
__aeabi_dadd 994 142.5 143%
__aeabi_dsub 114.2 182 159%
__aeabi_drsub 108 181.2 168%
__aeabi_dmul 168.2 338 201%
__aeabi_ddiv 1971 412.2 209%
__aeabi_dcmplt 53 88.3 167%
__aeabi_dcmple 54.6 88.3 162%
__aeabi_dcmpgt 54.4 86.6 159%
__aeabi_dcmpge 55 86.6 157%

2.7. SDK Runtime

23

Raspberry Pi Pico C/C++ SDK

__aeabi_dcmpeq 54 64.3 119%
__aeabi_f2iz 17 24.5 144%
__aeabi_f2uiz 42.5 106.5 251%
__aeabi_f2lz 63.1 1240.5 1966%
__aeabi_f2ulz 46.1 1157 2510%
__aeabi_i2f 435 63 145%
__aeabi_ui2f 41.5 55.8 134%
__aeabi_l2f 75.2 643.3 855%
__aeabi_ul2f 71.4 531.5 744%
__aeabi_d2iz 30.6 441 144%
__aeabi_d2uiz 75.7 159.1 210%
__aeabi_d2Iz 81.2 1267.8 1561%
__aeabi_d2ulz 65.2 1148.3 1761%
__aeabi_i2d 44.4 61.9 139%
__aeabi_ui2d 43.4 51.3 118%
__aeabi_l2d 104.2 559.3 537%
__aeabi_ul2d 102.2 458.1 448%
__aeabi_f2d 20 31 155%
__aeabi_d2f 36.4 66 181%

2.7.2.3. Configuration and Alternate Implementations

There are three different floating point implementations provided

Name Description

default The default; equivalent to pico

pico Use the fast/compact SDK/bootrom implementations

compiler Use the standard compiler provided soft floating point implementations

none

Map all functions to a runtime assertion. You can use this when you know you don't
want any floating point support to make sure it isn't accidentally pulled in by some
library.

These settings can be set independently for both "float" and "double”:

For "float" you can call pico_set_float_implementation(TARGET NAME) in your CMakelists.txt to choose a specific
implementation for a particular target, or set the CMake variable PICO_DEFAULT_FLOAT_IMPL to pico_float_NANE to set the

default.

For "double" you can call pico_set_double_implementation(TARGET NAME) in your CMakelists.txt to choose a specific
implementation for a particular target, or set the CMake variable PICO_DEFAULT_DOUBLE_IMPL to pico_double_NAME to set the

default.

2.7. SDK Runtime

24

Raspberry Pi Pico C/C++ SDK
]

Figure 1. 32-bit divides
by divider size using
GCC library (blue), or
the SDK library (red)
with the RP2040
hardware divider.

@ T

The pico floating point library adds very little to your binary size, however it must include implementations for any
used functions that are not present in V1 of the bootrom, which is present on early Raspberry Pi Pico boards. If you
know that you are only using RP2040s with V2 of the bootrom, then you can specify defines
PICO_FLOAT_SUPPORT_ROM_V1=0 and PICO_DOUBLE_SUPPORT_ROM_V1=0 so the extra code will not be included. Any use of those
functions on a RP2040 with a V1 bootrom will cause a panic at runtime. See the RP2040 Datasheet for more
specific details of the bootrom functions.

2.7.2.3.1. NaN Propagation

The SDK implementation by default treats input NaNs as infinites. If you require propagation of NaN inputs to outputs
and NaN outputs for domain errors, then you can set the compile definitions PICO_FLOAT_PROPAGATE_NANS and
PICO_DOUBLE_PROPAGATE_NANS to 1, at the cost of a small runtime overhead.

2.7.3. Hardware Divider

The SDK includes optimized 32- and 64-bit division functions accelerated by the RP2040 hardware divider, which are
seamlessly integrated with the C / and % operators. The SDK also supplies a high level APl which includes combined
quotient and remainder functions for 32- and 64-bit, also accelerated by the hardware divider.

See Figure 1 and Figure 2 for 32-bit and 64-bit integer divider comparison.

1 | —
2 ——— —GCC
3 [—— = Pico
4
5 |—
6
7
8
9
10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
I I I I |
0 50 100 150 200 250

]
2.7. SDK Runtime 25

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK
]

Figure 2. 64-bit divides
by divider size using
GCC library (blue), or
the SDK library (red)
with the RP2040
hardware divider.

— GCC
= Pico

S3coNonawna

0 200 400 600 800 1000 1200

2.8. Multi-core support

Multi-core support should be familiar to those used to programming with threads in other environments. The second
core is just treated as a second thread within your application; initially the second core (corel as it is usually referred to;
the main application thread runs on core@) is halted, however you can start it executing some function in parallel from
your main application thread.

Core 1 (the second core) is started by calling multicore_launch_corel(some_function_pointer); on core 0, which wakes the
core from its low-power sleep state and provides it with its entry point —some function you have provided which
hopefully has a descriptive name like void corel_main() { }. This function, as well as others such as pushing and
popping data through the inter-core mailbox FIFOs, is listed under pico_multicore.

Care should be taken with calling C library functions from both cores simultaneously as they are generally not designed
to be thread safe. You can use the mutex_ API provided by the SDK in the pico_sync library (https://github.com/
raspberrypi/pico-sdk/blob/master/src/common/pico_sync/include/pico/mutex.h) from within your own code.

© NoOTE

That the SDK version of printf is always safe to call from both cores. malloc, calloc and free are additionally wrapped
to make it thread safe when you include the pico_multicore as a convenience for C++ programming, where some
object allocations may not be obvious.

2.9. Using C++

The SDK has a C style API, however the SDK headers may be safely included from C++ code, and the functions called
(they are declared with C linkage).

C++ files are integrated into SDK projects in the same way as C files: listing them in your CMakeLists.txt file under either
the add_executable() entry, or a separate target_sources() entry to append them to your target.

2.8. Multi-core support 26

https://www.raspberrypi.com/documentation/pico-sdk/high_level.html#pico_multicore
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_sync/include/pico/mutex.h
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_sync/include/pico/mutex.h

Raspberry Pi Pico C/C++ SDK

To save space, exception handling is disabled by default; this can be overridden with the CMake environment variable
PICO_CXX_ENABLE_EXCEPTIONS=1. There are a handful of other C++ related PIC0_CxX vars listed in Appendix C.

2.10. Next Steps

This has been quite a deep dive. If you've somehow made it through this chapter without building any software, now
would be a perfect time to divert to the Getting started with Raspberry Pi Pico book, which has detailed instructions on
connecting to your RP2040 board and loading an application built with the SDK.

Chapter 3 gives some background on RP2040’s unique Programmable I/0 subsystem, and walks through building some
applications which use PIO to talk to external hardware.

Chapter 4 is a comprehensive listing of the SDK APIs. The APIs are listed according to groups of related functionality
(e.g. low-level hardware access).

2.10. Next Steps

27

https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf

Raspberry Pi Pico C/C++ SDK

Chapter 3. Using programmable I/O
(PIO)

3.1. What is Programmable 1/0 (P10)?

Programmable 1/0 (PIO) is a new piece of hardware developed for RP2040. It allows you to create new types of (or
additional) hardware interfaces on your RP2040-based device. If you've looked at fixed peripherals on a microcontroller,
and thought "l want to add 4 more UARTSs", or "I'd like to output DPI video', or even "l need to communicate with this
cursed serial device | found on AliExpress, but no machine has hardware support’, then you will have fun with this
chapter.

P10 hardware is described extensively in chapter 3 of the RP2040 Datasheet. This is a companion to that text, focussing
on how, when and why to use PIO in your software. To start, we're going to spend a while discussing why 1/0 is hard,
what the current options are, and what PIO does differently, before diving into some software tutorials. We will also try
to illuminate some of the more important parts of the hardware along the way, but will defer to the datasheet for full
explanations.

@ T

You can skip to the first software tutorial if you'd prefer to dive straight in.

3.1.1. Background

Interfacing with other digital hardware components is hard. It often happens at very high frequencies (due to amounts
of data that need to be transferred), and has very exact timing requirements.

3.1.2. 1/0 Using dedicated hardware on your PC

Traditionally, on your desktop or laptop computer, you have one option for hardware interfacing. Your computer has
high speed USB ports, HDMI outputs, PCle slots, SATA drive controllers etc. to take care of the tricky and time sensitive
business of sending and receiving ones and zeros, and responding with minimal latency or interruption to the graphics
card, hard drive etc. on the other end of the hardware interface.

The custom hardware components take care of specific tasks that the more general multi-tasking CPU is not designed
for. The operating system drivers perform higher level management of what the hardware components do, and
coordinate data transfers via DMA to/from memory from the controller and receive IRQs when high level tasks need
attention. These interfaces are purpose-built, and if you have them, you should use them.

3.1.3. 1/0 Using dedicated hardware on your Raspberry Pi or microcontroller

Not so common on PCs: your Raspberry Pi or microcontroller is likely to have dedicated hardware on chip for managing
UART, I2C, SPI, PWM, 12S, CAN bus and more over general purpose I/0 pins (GPIOs). Like USB controllers (also found on
some microcontrollers, including the RP2040 on Raspberry Pi Pico), I12C and SPI are general purpose buses which
connect to a wide variety of external hardware, using the same piece of on-chip hardware. This includes sensors,
external flash, EEPROM and SRAM memories, GPIO expanders, and more, all of them widely and cheaply available. Even
HDMI uses 12C to communicate video timings between Source and Sink, and there is probably a microcontroller
embedded in your TV to handle this.

These protocols are simpler to integrate into very low-cost devices (i.e. not the host), due to their relative simplicity and

]
3.1. What is Programmable 1/0 (PIO)? 28

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK
]

Table 4. Types of
hardware

modest speed. This is important for chips with mostly analogue or high-power circuitry: the silicon fabrication
techniques used for these chips do not lend themselves to high speed or gate count, so if your switchmode power
supply controller has some serial configuration interface, it is likely to be something like I12C. The number of traces
routed on the circuit board, the number of pins required on the device package, and the PCB technology required to
maintain signal integrity are also factors in the choice of these protocols. A microcontroller needs to communicate with
these devices to be part of a larger embedded system.

This is all very well, but the area taken up by these individual serial peripherals, and the associated cost, often leaves
you with a limited menu. You may end up paying for a bunch of stuff you don’t need, and find yourself without enough of
what you really want. Of course you are out of luck if your microcontroller does not have dedicated hardware for the
type of hardware device you want to attach (although in some cases you may be able to bridge over USB, 12C or SPI at
the cost of buying external hardware).

3.1.4.1/0 Using software control of GPIOs ("bit-banging")

The third option on your Raspberry Pi or microcontroller — any system with GPIOs which the processor(s) can access
easily —is to use the CPU to wiggle (and listen to) the GPIOs at dizzyingly high speeds, and hope to do so with
sufficiently correct timing that the external hardware still understands the signals.

As a bit of background it is worth thinking about types of hardware that you might want to interface, and the
approximate signalling speeds involved:

Interface Speed Interface

1-10Hz Push buttons, indicator LEDs
300Hz HDMI CEC

10-100kHz Temperature sensors (DHT11), one-wire serial
<100kHz 12C Standard mode
22-100+kHz PCM audio

300+kHz PWM audio

400-1200kHz WS2812 LED string
10-3000kHz UART serial

12MHz USB Full Speed

1-100MHz SPI

20-300MHz DPI/VGA video

480MHz USB High Speed
10-4000MHz Ethernet LAN

12-4000MHz SD card

250-20000MHz HDMI/DVI video

"Bit-Banging" (i.e. using the processor to hammer out the protocol via the GPIOs) is very hard. The processor isn't really
designed for this. It has other work to do... for slower protocols you might be able to use an IRQ to wake up the
processor from what it was doing fast enough (though latency here is a concern) to send the next bit(s). Indeed back in
the early days of PC sound it was not uncommon to set a hardware timer interrupt at 11kHz and write out one 8-bit PCM
sample every interrupt for some rather primitive sounding audio!

Doing that on a PC nowadays is laughed at, even though they are many order of magnitudes faster than they were back
then. As processors have become faster in terms of overwhelming number-crunching brute force, the layers of software
and hardware between the processor and the outside world have also grown in number and size. In response to the
growing distance between processors and memory, PC-class processors keep many hundreds of instructions in-flight

]
3.1. What is Programmable 1/0 (PIO)? 29

Raspberry Pi Pico C/C++ SDK
]

on a single core at once, which has drawbacks when trying to switch rapidly between hard real time tasks. However,
IRQ-based bitbanging can be an effective strategy on simpler embedded systems.

Above certain speeds — say a factor of 1000 below the processor clock speed — IRQs become impractical, in part due to
the timing uncertainty of actually entering an interrupt handler. The alternative when "bit-banging" is to sit the processor
in a carefully timed loop, often painstakingly written in assembly, trying to make sure the GPIO reading and writing
happens on the exact cycle required. This is really really hard work if indeed possible at all. Many heroic hours and likely
thousands of GitHub repositories are dedicated to the task of doing such things (a large proportion of them for LED
strings).

Additionally of course, your processor is now busy doing the "bit-banging", and cannot be used for other tasks. If your
processor is interrupted even for a few microseconds to attend to one of the hard peripherals it is also responsible for,
this can be fatal to the timing of any bit-banged protocol. The greater the ratio between protocol speed and processor
speed, the more cycles your processor will spend uselessly idling in between GPIO accesses. Whilst it is eminently
possible to drive a 115200 baud UART output using only software, this has a cost of >10,000 cycles per byte if the
processor is running at 133MHz, which may be poor investment of those cycles.

Whilst dealing with something like an LED string is possible using "bit-banging", once your hardware protocol gets faster
to the point that it is of similar order of magnitude to your system clock speed, there is really not much you can hope to
do. The main case where software GPIO access is the best choice is LEDs and push buttons.

Therefore you're back to custom hardware for the protocols you know up front you are going to want (or more
accurately, the chip designer thinks you might need).

3.1.5. Programmable I/0 Hardware using FPGAs and CPLDs

A field-programmable gate array (FPGA), or its smaller cousin, the complex programmable logic device (CPLD), is in
many ways the perfect solution for tailor-made 1/0 requirements, whether that entails an unusual type or unusual
mixture of interfaces. FPGAs are chips with a configurable logic fabric — effectively a sea of gates and flipflops, some
other special digital function blocks, and a routing fabric to connect them —which offer the same level of design
flexibility available to chip designers. This brings with it all the advantages of dedicated I/0 hardware:

* Absolute precision of protocol timing (within limitations of your clock source)
® Capable of very high 1/0 throughput
* Offload simple, repetitive calculations that are part of the I/0 standard (checksums)

® Present a simpler interface to host software; abstract away details of the protocol, and handle these details
internally.

The main drawback of FPGAs in embedded systems is their cost. They also present a very unfamiliar programming
model to those well-versed in embedded software: you are not programming at all, but rather designing digital
hardware. One you have your FPGA you will still need some other processing element in your system to run control
software, unless you are using an FPGA expensive enough to either fit a soft CPU core, or contain a hardened CPU core
alongside the FPGA fabric.

eFPGAs (embedded FPGAs) are available in some microcontrollers: a slice of FPGA logic fabric integrated into a more
conventional microcontroller, usually with access to some GPIOs, and accessible over the system bus. These are
attractive from a system integration point of view, but have a significant area overhead compared with the usual serial
peripherals found on a microcontroller, so either increase the cost and power dissipation, or are very limited in size. The
issue of programming complexity still remains in eFPGA-equipped systems.

3.1.6. Programmable 1/0 Hardware using PIO

The PIO subsystem on RP2040 allows you to write small, simple programs for what are called PIO state machines, of
which RP2040 has eight split across two PIO instances. A state machine is responsible for setting and reading one or
more GPIOs, buffering data to or from the processor (or RP2040’s ultra-fast DMA subsystem), and notifying the
processor, via IRQ or polling, when data or attention is needed.

]
3.1. What is Programmable 1/0 (PIO)? 30

Raspberry Pi Pico C/C++ SDK

These programs operate with cycle accuracy at up to system clock speed (or the program clocks can be divided down
to run at slower speeds for less frisky protocols).

PIO state machines are much more compact than the general-purpose Cortex-M0+ processors on RP2040. In fact, they
are similar in size (and therefore cost) to a standard SPI peripheral, such as the PL022 SPI also found on RP2040,
because much of their area is spent on components which are common to all serial peripherals, like FIFOs, shift
registers and clock dividers. The instruction set is small and regular, so not much silicon is spent on decoding the

instructions. There is no need to feel guilty about dedicating a state machine solely to a single I/0 task, since you have 8
of them!

In spite of this, a PIO state machine gets a lot more done in one cycle than a Cortex-M0+ when it comes to 1/0: for
example, sampling a GPIO value, toggling a clock signal and pushing to a FIFO all in one cycle, every cycle. The trade-off
is that a PIO state machine is not remotely capable of running general purpose software. As we shall see though,
programming a PIO state machine is quite familiar for anyone who has written assembly code before, and the small
instruction set should be fairly quick to pick up for those who haven't.

For simple hardware protocols - such as PWM or duplex SPI - a single PIO state machine can handle the task of

implementing the hardware interface all on its own. For more involved protocols such as SDIO or DPI video you may end
up using two or three.

@ i

If you are ever tempted to "bit-bang” a protocol on RP2040, don't! Use the PIO instead. Frankly this is true for
anything that repeatedly reads or writes from GPIOs, but certainly anything which aims to transfer data.

3.2. Getting started with PIO

It is possible to write PIO programs both within the C++ SDK and directly from MicroPython.

Additionally the future intent is to add APIs to trivially have new UARTs, PWM channels etc created for you, using a
menu of pre-written PIO programs, but for now you'll have to follow along with example code and do that yourself.

3.2.1. AFirst PIO Application

Before getting into all of the fine details of the PIO assembly language, we should take the time to look at a small but
complete application which:

1. Loads a program into a PIO’s instruction memory

2. Sets up a PIO state machine to run the program

3. Interacts with the state machine once it is running.
The main ingredients in this recipe are:

® A PIO program

® Some software, written in C, to run the whole show

* A CMake file describing how these two are combined into a program image to load onto a RP2040-based
development board

3.2. Getting started with PIO 31

Raspberry Pi Pico C/C++ SDK

@ T

The code listings in this section are all part of a complete application on GitHub, which you can build and run. Just
click the link above each listing to go to the source. In this section we are looking at the pio/hello_pio example in

pico-examples. You might choose to build this application and run it, to see what it does, before reading through this
section.

O NoTE

The focus here is on the main moving parts required to use a PIO program, not so much on the PIO program itself.
This is a lot to take in, so we will stay high-level in this example, and dig in deeper on the next one.

3.2.1.1. PIO Program
This is our first PIO program listing. It's written in PIO assembly language.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.pio Lines 7 - 15

7 .program hello

8

9 ; Repeatedly get one word of data from the TX FIFO, stalling when the FIFO is
10 ; empty. Write the least significant bit to the OUT pin group.

11

12 loop:

13 pull

14 out pins, 1
15 jmp loop

The pull instruction takes one data item from the transmit FIFO buffer, and places it in the output shift register (OSR).
Data moves from the FIFO to the OSR one word (32 bits) at a time. The OSR is able to shift this data out, one or more
bits at a time, to further destinations, using an out instruction.

FIFOs?

FIFOs are data queues, implemented in hardware. Each state machine has two FIFOs, between the state
machine and the system bus, for data travelling out of (TX) and into (RX) the chip. Their name (first in,
first out) comes from the fact that data appears at the FIFO’s output in the same order as it was
presented to the FIFO's input.

The out instruction here takes one bit from the data we just pull-ed from the FIFO, and writes that data to some pins. We
will see later how to decide which pins these are.

The jmp instruction jumps back to the 1loop: label, so that the program repeats indefinitely. So, to sum up the function of
this program: repeatedly take one data item from a FIFO, take one bit from this data item, and write it to a pin.

Our .pio file also contains a helper function to set up a PIO state machine for correct execution of this program:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.pio Lines 18 - 33

18 static inline void hello_program_init(PIO pio, uint sm, uint offset, uint pin) {

19 pio_sm_config ¢ = hello_program_get_default_config(offset);

20

21 // Map the state machine's OUT pin group to one pin, namely the ‘pin’
22 // parameter to this function.

23 sm_config_set_out_pins(&c, pin, 1);

3.2. Getting started with PIO 32

https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.pio#L7-L15
https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.pio#L18-L33

Raspberry Pi Pico C/C++ SDK
]

24
25
26
27
28
29
30
31
32
33 }

// Set this pin's GPIO function (connect PIO to the pad)
pio_gpio_init(pio, pin);

// Set the pin direction to output at the PIO
pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

// Load our configuration, and jump to the start of the program
pio_sm_init(pio, sm, offset, &c);

// Set the state machine running

pio_sm_set_enabled(pio, sm, true);

Here the main thing to set up is the GPIO we intend to output our data to. There are three things to consider here:

1. The state machine needs to be told which GPIO or GPIOs to output to. There are four different pin groups which
are used by different instructions in different situations; here we are using the out pin group, because we are just

using an out instruction.

2. The GPIO also needs to be told that PIO is in control of it (GPIO function select)

3. If we are using the pin for output only, we need to make sure that PIO is driving the output enable line high. PIO can

drive this line up and down programmatically using e.g. an out pindirs instruction, but here we are setting it up
before starting the program.

3.2.1.2. C Program

P10 won't do anything until it's been configured properly, so we need some software to do that. The PIO file we just
looked at — hello.pio —is converted automatically (we will see later how) into a header containing our assembled PIO
program binary, any helper functions we included in the file, and some useful information about the program. We
include this as hello.pio.h.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.c

1
2
3
4

/**
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
24

0 N o O

#include "pico/stdlib.h"
#include "hardware/pio.h"

9 // Our assembled program:
10 #include "hello.pio.h"

11

12 int main() {

13 #ifndef PICO_DEFAULT_LED_PIN

14 #warning pio/hello_pio example requires a board with a regular LED
15 #else

16
17
18
19
20
21
22
23
24
25
26
27
28
29

// Choose which PIO instance to use (there are two instances)
PIO pio = piod;

// Our assembled program needs to be loaded into this PIO's instruction

// memory. This SDK function will find a location (offset) in the

// instruction memory where there is enough space for our program. We need
// to remember this location!

uint offset = pio_add_program(pio, &hello_program);

// Find a free state machine on our chosen PIO (erroring if there are
// none). Configure it to run our program, and start it, using the

// helper function we included in our .pio file.

uint sm = pio_claim_unused_sm(pio, true);

hello_program_init(pio, sm, offset, PICO_DEFAULT_LED_PIN);

]
3.2. Getting started with PIO 33

https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/hello.c

Raspberry Pi Pico C/C++ SDK
]

30

31 // The state machine is now running. Any value we push to its TX FIFO will
32 // appear on the LED pin.

33 while (true) {

34 // Blink

85 pio_sm_put_blocking(pio, sm, 1);
36 sleep_ms(500);

37 // Blonk

38 pio_sm_put_blocking(pio, sm, 0);
39 sleep_ms(500);

40 }

41 #endif

42 }

You might recall that RP2040 has two PIO blocks, each of them with four state machines. Each PIO block has a 32-slot
instruction memory which is visible to the four state machines in the block. We need to load our program into this
instruction memory before any of our state machines can run the program. The function pio_add_program() finds free
space for our program in a given PIO’s instruction memory, and loads it.

32 Instructions?

This may not sound like a lot, but the PIO instruction set can be very dense once you fully explore its
features. A perfectly serviceable UART transmit program can be implemented in four instructions, as
shown in the pio/uart_tx example in pico-examples. There are also a couple of ways for a state machine
to execute instructions from other sources — like directly from the FIFOs — which you can read all about
in the RP2040 Datasheet.

Once the program is loaded, we find a free state machine and tell it to run our program. There is nothing stopping us
from ordering multiple state machines to run the same program. Likewise, we could instruct each state machine to run
a different program, provided they all fit into the instruction memory at once.

We're configuring this state machine to output its data to the LED on your Raspberry Pi Pico board. If you have already
built and run the program, you probably noticed this already!

At this point, the state machine is running autonomously. The state machine will immediately stall, because it is waiting
for data in the TX FIFO, and we haven't provided any. The processor can push data directly into the state machine’s TX
FIFO using the pio_sm_put_blocking() function. (_blocking because this function stalls the processor when the TX FIFO is
full.) Writing a 1 will turn the LED on, and writing a 0 will turn the LED off.

3.2.1.3. CMake File

We have two lovely text files sat on our computer, with names ending with .pio and .c, but they aren’t doing us much
good there. A CMake file describes how these are built into a binary suitable for loading onto your Raspberry Pi Pico or
other RP2040-based board.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/CMakeLists.txt

add_executable(hello_pio)
pico_generate_pio_header(hello_pio ${CMAKE_CURRENT_LIST_DIR}/hello.pio)
target_sources(hello_pio PRIVATE hello.c)

target_link_libraries(hello_pio PRIVATE
pico_stdlib
hardware_pio

.
2
3
4
5
6
7
8
9

18)

]
3.2. Getting started with PIO 34

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://github.com/raspberrypi/pico-examples/blob/master/pio/hello_pio/CMakeLists.txt

Raspberry Pi Pico C/C++ SDK
]

Figure 3. WS2812 line
format. Wide positive
pulse for 1, narrow
positive pulse for 0,
very long negative
pulse for latch enable

11

12 pico_add_extra_outputs(hello_pio)
13

14 # add url via pico_set_program_url
15 example_auto_set_url(hello_pio)

add_executable(): Declare that we are building a program called hello_pio

® pico_generate_pio_header(): Declare that we have a PIO program, hello.pio, which we want to be built into a C header
for use with our program

target_sources(): List the source code files for our hello_pio program. In this case, just one C file.

target_link_libraries(): Make sure that our program is built with the PIO hardware API, so we can call functions
like pio_add_program() in our C file.

® pico_add_extra_outputs(): By default we just get an .elf file as the build output of our app. Here we declare we also
want extra build formats, like a .uf2 file which can be dragged and dropped directly onto a Raspberry Pi Pico
attached over USB.

Assuming you already have pico-examples and the SDK installed on your machine, you can run

S mkdir build

$ cd build

S cmake ..

$ make hello_pio

To build this program.

3.2.2. A Real Example: WS2812 LEDs

The WS2812 LED (sometimes sold as NeoPixel) is an addressable RGB LED. In other words, it's an LED where the red,
green and blue components of the light can be individually controlled, and it can be connected in such a way that many
WS2812 LEDs can be controlled individually, with only a single control input. Each LED has a pair of power supply
terminals, a serial data input, and a serial data output.

When serial data is presented at the LED’s input, it takes the first three bytes for itself (red, green, blue) and the
remainder is passed along to its serial data output. Often these LEDs are connected in a single long chain, each LED
connected to a common power supply, and each LED’s data output connected through to the next LED'’s input. A long
burst of serial data to the first in the chain (the one with its data input unconnected) will deposit three bytes of RGB data
in each LED, so their colour and brightness can be individually programmed.

Symbol X 1 X 0 X 0 X 1 X Lach Jf

Output / \ / \ /_ \ /_ _\ //

Unfortunately the LEDs receive and retransmit serial data in quite an unusual format. Each bit is transferred as a
positive pulse, and the width of the pulse determines whether it is a 1 or a @ bit. There is a family of WS2812-like LEDs
available, which often have slightly different timings, and demand precision. It is possible to bit-bang this protocol, or to
write canned bit patterns into some generic serial peripheral like SPI or 12S to get firmer guarantees on the timing, but
there is still some software complexity and cost associated with generating the bit patterns.

Ideally we would like to have all of our CPU cycles available to generate colour patterns to put on the lights, or to handle
any other responsibilities the processor may have in the embedded system the LEDs are connected to.

]
3.2. Getting started with PIO 35

Raspberry Pi Pico C/C++ SDK
]

@ T

Once more, this section is going to discuss a real, complete program, that you can build and run on your Raspberry
Pi Pico. Follow the links above the program listings if you'd prefer to build the program yourself and run it, before
going through it in detail. This section explores the pio/ws2812 example in pico-examples.

3.2.2.1. PIO Program

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio Lines 7 - 26

7 .program ws2812

8 .side_set 1

9

10 .define public T1 2
11 .define public T2 5
12 .define public T3 3

13

14 .lang_opt python sideset_init = pico.PIO0.OUT_HIGH

15 .lang_opt python out_init = pico.PIO.OUT_HIGH

16 .lang_opt python out_shiftdir = 1

17

18 .wrap_target

19 bitloop:

20 out x, 1 side @ [T3 - 1] ; Side-set still takes place when instruction stalls
21 jmp !x do_zero side 1 [T1 - 1] ; Branch on the bit we shifted out. Positive pulse
22 do_one:

23 jmp bitloop side 1 [T2 - 1] ; Continue driving high, for a long pulse

24 do_zero:

25 nop side @ [T2 - 1] ; Or drive low, for a short pulse

26 .wrap

The previous example was a bit of a whistle-stop tour of the anatomy of a PIO-based application. This time we will
dissect the code line-by-line. The first line tells the assembler that we are defining a program named ws2812:

.program ws2812

We can have multiple programs in one .pio file (and you will see this if you click the GitHub link above the main program
listing), and each of these will have its own .program directive with a different name. The assembler will go through each
program in turn, and all the assembled programs will appear in the output file.

Each PIO instruction is 16 bits in size. Generally, 5 of those bits in each instruction are used for the “delay” which is
usually 0 to 31 cycles (after the instruction completes and before moving to the next instruction). If you have read the
P10 chapter of the RP2040 Datasheet, you may have already know that these 5 bits can be used for a different purpose:

.side_set 1

This directive .side_set 1 says we're stealing one of those delay bits to use for "side-set". The state machine will use this
bit to drive the values of some pins, once per instruction, in addition to what the instructions are themselves doing. This
is very useful for high frequency use cases (e.g. pixel clocks for DPI panels), but also for shrinking program size, to fit
into the shared instruction memory.

Note that stealing one bit has left our delay range from 0-15 (4 bits), but that is quite natural because you rarely want to

mix side-set with lower frequency stuff. Because we didn't say .side_set 1 opt, which would mean the side-set is

]
3.2. Getting started with PIO 36

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio#L7-L26
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK

optional (at the cost of another bit to say whether the instruction does a side-set), we have to specify a side-set value for
every instruction in the program. This is the side N you will see on each instruction in the listing.

.define public T1 2
.define public T2 5
.define public T3 3

.define lets you declare constants. The public keyword means that the assembler will also write out the value of the
define in the output file for use by other software: in the context of the SDK, this is a #define. We are going to use T1, T2
and T3 in calculating the delay cycles on each instruction.

.lang_opt python

This is used to specify some PIO hardware defaults as used by the MicroPython PIO library. We don't need to worry
about them in the context of SDK applications.

.wrap_target

We'll ignore this for now, and come back to it later, when we meet its friend .wrap.

bitloop:

This is a label. A label tells the assembler that this point in your code is interesting to you, and you want to refer to it
later by name. Labels are mainly used with jmp instructions.

out x, 1 side @ [T3 - 1] ; Side-set still takes place when instruction stalls

Finally we reach a line with a PIO instruction. There is a lot to see here.

® This is an out instruction. out takes some bits from the output shift register (OSR), and writes them somewhere
else. In this case, the OSR will contain pixel data destined for our LEDs.

® [T3 - 1] is the number of delay cycles (T3 minus 1). T3 is a constant we defined earlier.

* x (one of two scratch registers; the other imaginatively called y) is the destination of the write data. State machines
use their scratch registers to hold and compare temporary data.

® side 0: Drive low (0) the pin configured for side-set.

® Everything after the ; character is a comment. Comments are ignored by the assembler: they are just notes for
humans to read.

3.2. Getting started with PIO 37

Raspberry Pi Pico C/C++ SDK
]

Output Shift Register

The OSR is a staging area for data entering the state machine through the TX FIFO. Data is pulled from

the TX FIFO into the OSR one 32-bit chunk at a time. When an out instruction is executed, the OSR can

break this data into smaller pieces by shifting to the left or right, and sending the bits that drop off the
end to one of a handful of different destinations, such as the pins.

The amount of data to be shifted is encoded by the out instruction, and the direction of the shift (left or
right) is configured ahead of time. For full details and diagrams, see the RP2040 Datasheet.

So, the state machine will do the following operations when it executes this instruction:
1. Set 0 on the side-set pin (this happens even if the instruction stalls because no data is available in the OSR)
2. Shift one bit out of the OSR into the x register. The value of the x register will be either 0 or 1.

3. Wait 13 - 1 cycles after the instruction (l.e. the whole thing takes T3 cycles since the instruction itself took a cycle).
Note that when we say cycle, we mean state machine execution cycles: a state machine can be made to execute at
a slower rate than the system clock, by configuring its clock divider.

Let's look at the next instruction in the program.

jmp !x do_zero side 1 [T1 - 1] ; Branch on the bit we shifted out. Positive pulse

1. side 10n the side-set pin (this is the leading edge of our pulse)
2. If x == 0 then go to the instruction labelled do_zero, otherwise continue on sequentially to the next instruction
3. We delay 71 - 1 after the instruction (whether the branch is taken or not)

Let's look at what our output pin has done so far in the program.

Figure 4. The state T < T
machine drives the

line low for time T1 as GPIO
it shifts out one data

bit from the OSR, and

then high for time 72 The pin has been low for time T3, and high for time T1. If the x register is 1 (remember this contains our 1 bit of pixel

whilst branching o0 ata) then we will fall through to the instruction labelled do_one:
the value of the bit.

%

do_one:
jmp bitloop side 1 [T2 - 1] ; Continue driving high, for a long pulse

On this side of the branch we do the following:
1. side 10n the side-set pin (continue the pulse)

2. jmp unconditionally back to bitloop (the label we defined earlier, at the top of the program); the state machine is
done with this data bit, and will get another from its OSR

3. Delay for 12 - 1 cycles after the instruction

The waveform at our output pin now looks like this:

]
3.2. Getting started with PIO 38

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK

Figure 5. On a one
data bit, the line is
driven low for time T3,
high for time T1, then
high for an additional
time T2

Figure 6. On a zero
data bit, the line is
driven low for time T3,
high for time T1, then
low again for time T1

€ B — P T ——————— 72—
I

GPIO

This accounts for the case where we shifted a 1 data bit into the x register. For a @ bit, we will have jumped over the last
instruction we looked at, to the instruction labelled do_zero:

do_zero:
nop side @ [T2 - 1] ; Or drive low, for a short pulse

1. side 0 on the side-set pin (the trailing edge of our pulse)
2. nop means no operation. We don’t have anything else we particularly want to do, so waste a cycle
3. The instruction takes T2 cycles in total

For the x == 0 case, we get this on our output pin:

E—— B ——————— Tl —————— P —— T2 ——p
1
1

GPIO | O

The final line of our program is this:

.wrap

This matches with the .wrap_target directive at the top of the program. Wrapping is a hardware feature of the state
machine which behaves like a wormhole: you go in through the .wrap statement and appear at the .wrap_target zero
cycles later, unless the .urap is preceded immediately by a jmp whose condition is true. This is important for getting
precise timing with programs that must run quickly, and often also saves you a slot in the instruction memory.

@ TP

Often an explicit .wrap_target/.wrap pair is not necessary, because the default configuration produced by pioasn has
an implicit wrap from the end of the program back to the beginning, if you didn’t specify one.

NOPs

NOP, or no operation, means precisely that: do nothing! You may notice there is no nop instruction
defined in the instruction set reference: nop is really a synonym for mov y, yin PIO assembly.

Why did we insert a nop in this example when we could have jmp-ed? Good question! It's a dramatic
device we contrived so we could discuss nop and .wrap. Writing documentation is hard. In general,
though, nop is useful when you need to perform a side-set and have nothing else to do, or you need a
very slightly longer delay than is available on a single instruction.

It is hopefully becoming clear why our timings T1, T2, T3 are numbered this way, because what the LED string sees
really is one of these two cases:

]
3.2. Getting started with PIO 39

Raspberry Pi Pico C/C++ SDK

Figure 7. The line is
initially low in the idle
(latch) state, and the
LED is waiting for the
first rising edge. It
sees our pulse timings
in the order T1-T2-T3,
until the very last T3,
where it sees a much
longer negative period
once the state
machine runs out of
data.

T ————— P —— T2 —— P —— T3 —»
1

-

Data=0

LV

Data=1

This should look familiar if you refer back to Figure 3.

After thoroughly dissecting our program, and hopefully being satisfied that it will repeatedly send one well-formed data
bit to a string of WS2812 LEDs, we're left with a question: where is the data coming from? This is more thoroughly
explained in the RP2040 Datasheet, but the data that we are shifting out from the OSR came from the state machine’s
TX FIFO. The TX FIFO is a data buffer between the state machine and the rest of RP2040, filled either via direct poking
from the CPU, or by the system DMA, which is much faster.

The out instruction shifts data out from the OSR, and zeroes are shifted in from the other end to fill the vacuum.
Because the OSR is 32 bits wide, you will start getting zeroes once you have shifted out a total of 32 bits. There is a pull
instruction which explicitly takes data from the TX FIFO and put it in the OSR (stalling the state machine if the FIFO is
empty).

However, in the majority of cases it is simpler to configure autopull, a mode where the state machine automatically
refills the OSR from the TX FIFO (an automatic pull) when a configured number of bits have been shifted out. Autopull
happens in the background, in parallel with whatever else the state machine may be up to (in other words it has a cost
of zero cycles). We'll see how this is configured in the next section.

3.2.2.2. State Machine Configuration

When we run pioasm on the .pio file we have been looking at, and ask it to spit out SDK code (which is the default), it will
create some static variables describing the program, and a method ws2812_default_program_config which configures a
PIO state machine based on user parameters, and the directives in the actual PIO program (namely the .side_set and
.wrap in this case).

Of course how you configure the PIO SM when using the program is very much related to the program you have written.
Rather than try to store a data representation off all that information, and parse it at runtime, for the use cases where
you'd like to encapsulate setup or other API functions with your PIO program, you can embed code within the .pio file.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio Lines 31 - 47

31 static inline void ws2812_program_init(PIO pio, uint sm, uint offset, uint pin, float freq,
bool rgbw) {

32

33 pio_gpio_init(pio, pin);

34 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

85

36 pio_sm_config ¢ = ws2812_program_get_default_config(offset);
37 sm_config_set_sideset_pins(&c, pin);

38 sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24);

39 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);

40

41 int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3;

42 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
43 sm_config_set_clkdiv(&c, div);

44

45 pio_sm_init(pio, sm, offset, &c);

46 pio_sm_set_enabled(pio, sm, true);

47 }

In this case we are passing through code for the SDK, as requested by this line you will see if you click the link on the
above listing to see the context:

3.2. Getting started with PIO

40

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio#L31-L47

Raspberry Pi Pico C/C++ SDK
]

% c-sdk {

We have here a function ws2812_program_init which is provided to help the user to instantiate an instance of the LED
driver program, based on a handful of parameters:

pio

Which of RP2040’s two PIO instances we are dealing with

sm

Which state machine on that PIO we want to configure to run the WS2812 program
offset

Where the PIO program was loaded in PIO’s 5-bit program address space
pin

which GPIO pin our WS2812 LED chain is connected to
freq

The frequency (or rather baud rate) we want to output data at.
rgbw

True if we are using 4-colour LEDs (red, green, blue, white) rather than the usual 3.
Such that:

pio_gpio_init(pio, pin); Configure a GPIO for use by PIO. (Set the GPIO function select.)

pio_set_consecutive_pindirs(pio, sm, pin, 1, true); Sets the PIO pin direction of 1 pin starting at pin number pin to
out

pio_sm_config ¢ = ws2812_program_default_config(offset); Get the default configuration using the generated function
for this program (this includes things like the .wrap and .side_set configurations from the program). We'll modify
this configuration before loading it into the state machine.

sm_config_sideset_pins(&c, pin); Sets the side-set to write to pins starting at pin pin (we say starting at because if
you had .side_set 3, then it would be outputting values on numbers pin, pin+1, pin+2)

sm_config_out_shift(&c, false, true, rgbw ? 32 : 24); False for shift_to_right (i.e. we want to shift out MSB first).
True for autopull. 32 or 24 for the number of bits for the autopull threshold, i.e. the point at which the state
machine triggers a refill of the OSR, depending on whether the LEDs are RGB or RGBW.

int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3; This is the total number of execution cycles to output a
single bit. Here we see the benefit of .define public; we can use the T1 - T3 values in our code.

float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit); sm_config_clkdiv(&c, div); Slow the state machine’s
execution down, based on the system clock speed and the number of execution cycles required per WS2812 data
bit, so that we achieve the correct bit rate.

pio_sm_init(pio, sm, offset, &c); Load our configuration into the state machine, and go to the start address (
offset)

pio_sm_enable(pio, sm, true); And make it go now!

At this point the program will be stuck on the first out waiting for data. This is because we have autopull enabled, the
OSR is initially empty, and there is no data to be pulled. The state machine refuses to continue until the first piece of
data arrives in the FIFO.

As an aside, this last point sheds some light on the slightly cryptic comment at the start of the PIO program:

out x, 1 side @ [T3 - 1] ; Side-set still takes place when instruction stalls

]
3.2. Getting started with PIO 41

Raspberry Pi Pico C/C++ SDK
]

This comment is giving us an important piece of context. We stall on this instruction initially, before the first data is
added, and also every time we finish sending the last piece of data at the end of a long serial burst. When a state
machine stalls, it does not continue to the next instruction, rather it will reattempt the current instruction on the next
divided clock cycle. However, side-set still takes place. This works in our favour here, because we consequently always
return the line to the idle (low) state when we stall.

3.2.2.3. C Program

The companion to the .pio file we've looked at is a .c file which drives some interesting colour patterns out onto a string
of LEDs. We'll just look at the parts that are directly relevant to PIO.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c Lines 25 - 27

25 static inline void put_pixel(uint32_t pixel_grb) {
26 pio_sm_put_blocking(pio®, @, pixel_grb << 8u);
27 }

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c Lines 29 - 34

29 static inline uint32_t urgb_u32(uint8_t r, uint8_t g, uint8_t b) {

30 return

31 ((uint32_t) (r) << 8) |
32 ((uint32_t) (g) << 16) |
33 (uint32_t) (b);

34 }

Here we are writing 32-bit values into the FIFO, one at a time, directly from the CPU. pio_sm_put_blocking is a helper
method that waits until there is room in the FIFO before pushing your data.

You'll notice the << 8 in put_pixel(): remember we are shifting out starting with the MSB, so we want the 24-bit colour
values at the top. This works fine for WGBR too, just that the W is always 0.

This program has a handful of colour patterns, which call our put_pixel helper above to output a sequence of pixel
values:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c Lines 50 - 55

50 void pattern_random(uint len, uint t) {

51 if (t % 8)

52 return;

53 for (int i1 = 0; i < len; ++i)
54 put_pixel(rand());

55 }

The main function loads the program onto a PIO, configures a state machine for 800 kbaud WS2812 transmission, and
then starts cycling through the colour patterns randomly.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c Lines 84 - 108

84 int main() {

85 //set_sys_clock_48();

86 stdio_init_all();

87 printf("WS2812 Smoke Test, using pin %d", WS2812_PIN);
88

89 // todo get free sm

90 PIO pio = pio@;

]
3.2. Getting started with PIO 42

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c#L25-L27
https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c#L29-L34
https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c#L50-L55
https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.c#L84-L108

Raspberry Pi Pico C/C++ SDK
]

91 int sm = 0;

92 uint offset = pio_add_program(pio, &ws2812_program);
93

94 ws2812_program_init(pio, sm, offset, WS2812_PIN, 8060000, IS_RGBW);
95

96 int t = 6;

97 while (1) {

98 int pat = rand() % count_of(pattern_table);

99 int dir = (rand() >>30) & 1 ? 1 : -1;

100 puts(pattern_table[pat].name);

101 puts(dir == 1 ? "(forward)" : "(backward)");

102 for (int i = @; i < 1000; ++i) {

103 pattern_table[pat].pat(NUM_PIXELS, t);

104 sleep_ms(10);

105 t += dir;

106 }

107 }

108 }

3.2.3. P10 and DMA (A Logic Analyser)

So far we have looked at writing data to PIO directly from the processor. This often leads to the processor spinning its
wheels waiting for room in a FIFO to make a data transfer, which is not a good investment of its time. It also limits the
total data throughput you can achieve.

RP2040 is equipped with a powerful direct memory access unit (DMA), which can transfer data for you in the
background. Suitably programmed, the DMA can make quite long sequences of transfers without supervision. Up to one
word per system clock can be transferred to or from a PIO state machine, which is, to be quite technically precise, more
bandwidth than you can shake a stick at. The bandwidth is shared across all state machines, but you can use the full
amount on one state machine.

Let's take a look at the logic_analyser example, which uses PIO to sample some of RP2040’s own pins, and capture a
logic trace of what is going on there, at full system speed.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c Lines 40 - 63

40 void logic_analyser_init(PIO pio, uint sm, uint pin_base, uint pin_count, float div) {

41 // Load a program to capture n pins. This is just a single ‘in pins, n’
42 // instruction with a wrap.

43 uint16_t capture_prog_instr = pio_encode_in(pio_pins, pin_count);

44 struct pio_program capture_prog = {

45 .instructions = &capture_prog_instr

46 .length = 1,

47 .origin = -1

48 ¥

49 uint offset = pio_add_program(pio, &capture_prog);

50

51 // Configure state machine to loop over this ‘in' instruction forever,
52 // with autopush enabled.

53 pio_sm_config ¢ = pio_get_default_sm_config();

54 sm_config_set_in_pins(&c, pin_base);

55 sm_config_set_wrap(&c, offset, offset);

56 sm_config_set_clkdiv(&c, div);

57 // Note that we may push at a < 32 bit threshold if pin_count does not
58 // divide 32. We are using shift-to-right, so the sample data ends up
59 // left-justified in the FIFO in this case, with some zeroes at the LSBs.
60 sm_config_set_in_shift(&c, true, true, bits_packed_per_word(pin_count));
61 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_RX);

62 pio_sm_init(pio, sm, offset, &c);

63 }

]
3.2. Getting started with PIO 43

https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c#L40-L63

Raspberry Pi Pico C/C++ SDK

Our program consists only of a single in pins, <pin_count> instruction, with program wrapping and autopull enabled.
Because the amount of data to be shifted is only known at runtime, and because the program is so short, we are
generating the program dynamically here (using the pio_encode_ functions) instead of pushing it through pioasm. The
program is wrapped in a data structure stating how big the program is, and where it must be loaded — in this case origin
= -1 meaning "don’t care".

Input Shift Register

The input shift register (ISR) is the mirror image of the OSR. Generally data flows through a state
machine in one of two directions: System — TX FIFO — OSR — Pins, or Pins — ISR — RX FIFO —
System. An in instruction shifts data into the ISR.

If you don't need the ISR’s shifting ability — for example, if your program is output-only — you can use the
ISR as a third scratch register. It's 32 bits in size, the same as X, Y and the OSR. The full details are in the
RP2040 Datasheet.

We load the program into the chosen PIO, and then configure the input pin mapping on the chosen state machine so
that its in pins instruction will see the pins we care about. For an in instruction we only need to worry about configuring
the base pin, i.e. the pin which is the least significant bit of the in instruction’s sample. The number of pins to be
sampled is determined by the bit count parameter of the in pins instruction — it will sample n pins starting at the base
we specified, and shift them into the ISR.

Pin Groups (Mapping)

We mentioned earlier that there are four pin groups to configure, to connect a state machine’s internal
data buses to the GPIOs it manipulates. A state machine accesses all pins within a group at once, and
pin groups can overlap. So far we have seen the out, side-set and in pin groups. The fourth is set.

The out group is the pins affected by shifting out data from the OSR, using out pins or out pindirs, up to
32 bits at a time. The set group is used with set pins and set pindirs instructions, up to 5 bits at a time,
with data that is encoded directly in the instruction. It's useful for toggling control signals. The side-set
group is similar to the set group, but runs simultaneously with another instruction. Note: mov pin uses
the in or out group, depending on direction.

Configuring the clock divider optionally slows down the state machine’s execution: a clock divisor of n means 1
instruction will be executed per n system clock cycles. The default system clock frequency for SDK is 125MHz.

sm_config_set_in_shift sets the shift direction to rightward, enables autopush, and sets the autopush threshold to 32.
The state machine keeps an eye on the total amount of data shifted into the ISR, and on the in which reaches or
breaches a total shift count of 32 (or whatever number you have configured), the ISR contents, along with the new data
from the in. goes straight to the RX FIFO. The ISR is cleared to zero in the same operation.

sm_config_set_fifo_join is used to manipulate the FIFOs so that the DMA can get more throughput. If we want to sample
every pin on every clock cycle, that's a lot of bandwidth! We've finished describing how the state machine should be
configured, so we use pio_sm_init to load the configuration into the state machine, and get the state machine into a
clean initial state.

3.2. Getting started with PIO 44

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK
]

FIFO Joining

Each state machine is equipped with a FIFO going in each direction: the TX FIFO buffers data on its way
out of the system, and the RX FIFO does the same for data coming in. Each FIFO has four data slots,
each holding 32 bits of data. Generally you want FIFOs to be as deep as possible, so there is more slack
time between the timing-critical operation of a peripheral, and data transfers from system agents which
may be quite busy or have high access latency. However this comes with significant hardware cost.

If you are only using one of the two FIFOs — TX or RX — a state machine can pool its resources to

provide a single FIFO with double the depth. The RP2040 Datasheet goes into much more detail,
including how this mechanism actually works under the hood.

Our state machine is ready to sample some pins. Let's take a look at how we hook up the DMA to our state machine,

and tell the

state machine to start sampling once it sees some trigger condition.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c Lines 65 - 87

65 void logic_analyser_arm(PIO pio, uint sm, uint dma_chan, uint32_t *capture_buf, size_t

capt
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87 }

ure_size_words,

uint trigger_pin, bool trigger_level) {
pio_sm_set_enabled(pio, sm, false);
// Need to clear _input shift counter_, as well as FIFO, because there may be
// partial ISR contents left over from a previous run. sm_restart does this.
pio_sm_clear_fifos(pio, sm);
pio_sm_restart(pio, sm);

dma_channel_config ¢ = dma_channel_get_default_config(dma_chan);
channel_config_set_read_increment(&c, false);
channel_config_set_write_increment(&c, true);
channel_config_set_dreq(&c, pio_get_dreq(pio, sm, false));

dma_channel_configure(dma_chan, &c,

capture_buf, // Destination pointer
&pio->rxf[sm], // Source pointer
capture_size_words, // Number of transfers
true // Start immediately

)5

pio_sm_exec(pio, sm, pio_encode_wait_gpio(trigger_level, trigger_pin));
pio_sm_set_enabled(pio, sm, true);

We want the DMA to read from the RX FIFO on our PIO state machine, so every DMA read is from the same address.
The write address, on the other hand, should increment after every DMA transfer so that the DMA gradually fills up our
capture buffer as data comes in. We need to specify a data request signal (DREQ) so that the DMA transfers data at the

proper rate.

Data request signals

The DMA can transfer data incredibly fast, and almost invariably this will be much faster than your PIO

program actually needs. The DMA paces itself based on a data request handshake with the state

machine, so there’s no worry about it overflowing or underflowing a FIFO, as long as you have selected

the correct DREQ signal. The state machine coordinates with the DMA to tell it when it has room
available in its TX FIFO, or data available in its RX FIFO.

We need to provide the DMA channel with an initial read address, an initial write address, and the total number of
reads/writes to be performed (not the total number of bytes). We start the DMA channel immediately — from this point

3.2. Getting started with PI

0

45

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c#L65-L87

Raspberry Pi Pico C/C++ SDK
]

on, the DMA is poised, waiting for the state machine to produce data. As soon as data appears in the RX FIFO, the DMA
will pounce and whisk the data away to our capture buffer in system memory.

As things stand right now, the state machine will immediately go into a 1-cycle loop of in instructions once enabled.
Since the system memory available for capture is quite limited, it would be better for the state machine to wait for some
trigger before it starts sampling. Specifically, we are using await pin instruction to stall the state machine until a certain
pin goes high or low, and again we are using one of the pio_encode_ functions to encode this instruction on-the-fly.

pio_sm_exec tells the state machine to immediately execute some instruction you give it. This instruction never gets
written to the instruction memory, and if the instruction stalls (as it will in this case — a wait instruction’s job is to stall)
then the state machine will latch the instruction until it completes. With the state machine stalled on the wait instruction,
we can enable it without being immediately flooded by data.

At this point everything is armed and waiting for the trigger signal from the chosen GPIO. This will lead to the following
sequence of events:

1. The wait instruction will clear
2. On the very next cycle, state machine will start to execute in instructions from the program memory
3. As soon as data appears in the RX FIFO, the DMA will start to transfer it.

4. Once the requested amount of data has been transferred by the DMA, it'll automatically stop

State Machine EXEC Functionality

So far our state machines have executed instructions from the instruction memory, but there are other
options. One is the SMx_INSTR register (used by pio_sm_exec()): the state machine will immediately execute
whatever you write here, momentarily interrupting the current program it’s running if necessary. This is
useful for poking around inside the state machine from the system side, for initial setup.

The other two options, which use the same underlying hardware, are out exec (shift out an instruction

from the data being streamed through the OSR, and execute it) and mov exec (execute an instruction

stashed in e.g. a scratch register). Besides making people’s eyes bulge, these are really useful if you
want the state machine to perform some data-defined operation at a certain point in an output stream.

The example code provides this cute function for displaying the captured logic trace as ASCII art in a terminal:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c Lines 89 - 108

89 void print_capture_buf(const uint32_t *buf, uint pin_base, uint pin_count, uint32_t
n_samples) {

90 // Display the capture buffer in text form, like this:

91 M) @85 == == == == _==__==

92 A7 @18 o _em=ss === ===

93 printf("Capture:\n");

94 // Each FIFO record may be only partially filled with bits, depending on

95 // whether pin_count is a factor of 32.

96 uint record_size_bits = bits_packed_per_word(pin_count);

97 for (int pin = @; pin < pin_count; ++pin) {

98 printf("%02d: ", pin + pin_base);

99 for (int sample = 0; sample < n_samples; ++sample) {

100 uint bit_index = pin + sample * pin_count;

101 uint word_index = bit_index / record_size_bits;

102 // Data is left-justified in each FIFO entry, hence the (32 - record_size_bits)
offset

103 uint word_mask = 1u << (bit_index % record_size_bits + 32 - record_size_bits);

104 printf(buf[word_index] & word_mask ? "-" : "_");

105 }

106 printf("\n");

107 }

108 }

]
3.2. Getting started with PIO 46

https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c#L89-L108

Raspberry Pi Pico C/C++ SDK
]

We have everything we need now for RP2040 to capture a logic trace of its own pins, whilst running some other
program. Here we're setting up a PWM slice to output at around 15MHz on two GPIOs, and attaching our brand
spanking new logic analyser to those same two GPIOs.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c Lines 110 - 159

110 int main() {

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

stdio_init_all();
printf("PIO logic analyser example\n");

// We're going to capture into a u32 buffer, for best DMA efficiency. Need

// to be careful of rounding in case the number of pins being sampled

// isn't a power of 2.

uint total_sample_bits = CAPTURE_N_SAMPLES * CAPTURE_PIN_COUNT;

total_sample_bits += bits_packed_per_word(CAPTURE_PIN_COUNT) - 1;

uint buf_size_words = total_sample_bits / bits_packed_per_word(CAPTURE_PIN_COUNT);
uint32_t *capture_buf = malloc(buf_size_words * sizeof(uint32_t));
hard_assert(capture_buf);

// Grant high bus priority to the DMA, so it can shove the processors out
// of the way. This should only be needed if you are pushing things up to
// >16bits/clk here, i.e. if you need to saturate the bus completely.
bus_ctrl_hw->priority = BUSCTRL_BUS_PRIORITY_DMA_W_BITS |

BUSCTRL_BUS_PRIORITY_DMA_R_BITS;

127
128
129
130
131
132
133
134
135

PIO pio = pio®;
uint sm = 0;
uint dma_chan = 0;

logic_analyser_init(pio, sm, CAPTURE_PIN_BASE, CAPTURE_PIN_COUNT, 1.f);

printf("Arming trigger\n");
logic_analyser_arm(pio, sm, dma_chan, capture_buf, buf_size_words, CAPTURE_PIN_BASE,

true);

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159 }

printf("Starting PWM example\n");
// PWM example: —--=——-=—--—— -~
gpio_set_function(CAPTURE_PIN_BASE, GPIO_FUNC_PWM) ;
gpio_set_function(CAPTURE_PIN_BASE + 1, GPIO_FUNC_PWM);
// Topmost value of 3: count from @ to 3 and then wrap, so period is 4 cycles
pwm_hw->slice[@].top = 3;
// Divide frequency by two to slow things down a little
pwm_hw->slice[@].div = 4 << PWM_CHO_DIV_INT_LSB;
// Set channel A to be high for 1 cycle each period (duty cycle 1/4) and
// channel B for 3 cycles (duty cycle 3/4)
pwm_hw->slice[@].cc =
(1 << PWM_CH@_CC_A_LSB) |
(3 << PWM_CHO_CC_B_LSB);
// Enable this PWM slice
pwm_hw->slice[@].csr = PWM_CHO_CSR_EN_BITS;
A e e e

// The logic analyser should have started capturing as soon as it saw the
// first transition. Wait until the last sample comes in from the DMA.

dma_channel_wait_for_finish_blocking(dma_chan);

print_capture_buf(capture_buf, CAPTURE_PIN_BASE, CAPTURE_PIN_COUNT, CAPTURE_N_SAMPLES);

The output of the program looks like this:

]
3.2. Getting started with PIO 47

https://github.com/raspberrypi/pico-examples/blob/master/pio/logic_analyser/logic_analyser.c#L110-L159

Raspberry Pi Pico C/C++ SDK
]

Starting PWM example
Capture:
168 ==== SIS SIS SIS sees

3.2.4. Further examples

Hopefully what you have seen so far has given some idea of how PIO applications can be built with the SDK. The
RP2040 Datasheet contains many more documented examples, which highlight particular hardware features of PIO, or
show how particular hardware interfaces can be implemented.

You can also browse the pio/ directory in the Pico Examples repository.

3.3. Using PIOASM, the PIO Assembler

Up until now, we have glossed over the details of how the assembly program in our .pio file is translated into a binary
program, ready to be loaded into our PIO state machine. Programs that handle this task — translating assembly code
into binary — are generally referred to as assemblers, and PIO is no exception in this regard. The SDK includes an
assembler for PIO, called pioasm. The SDK handles the details of building this tool for you behind the scenes, and then
using it to build your PIO programs, for you to #include from your C or C++ program. pioasm can also be used directly, and
has a few features not used by the C++ SDK, such as generating programs suitable for use with the MicroPython PIO
library.

If you have built the pico-examples repository at any point, you will likely already have a pioasm binary in your build
directory, located under build/tools/pioasm/pioasm, which was bootstrapped for you before building any applications that
depend on it. If we want a standalone copy of pioasm, perhaps just to explore the available command-line options, we
can obtain it as follows (assuming the SDK is extracted at $PIC0O_SDK_PATH):

$ mkdir pioasm_build

S cd pioasm_build

$ cmake SPICO_SDK_PATH/tools/pioasm
S make

And then invoke as:

$./pioasm

3.3.1. Usage

A description of the command line arguments can be obtained by running:
S pioasm -?
giving:

]
3.3. Using PIOASM, the PIO Assembler 48

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://github.com/raspberrypi/pico-examples

Raspberry Pi Pico C/C++ SDK
]

Table 5. pioasm
directives

usage: pioasm <options> <input> (<output>)

Assemble file of PIO program(s) for use in applications.
<input> the input filename
<output> the output filename (or filename prefix if the output
format produces multiple outputs).
if not specified, a single output will be written to stdout

options:
-0 <output_format> select output_format (default 'c-sdk'); available options are:
c-sdk
C header suitable for use with the Raspberry Pi Pico SDK
python
Python file suitable for use with MicroPython
hex
Raw hex output (only valid for single program inputs)
-p <output_param> add a parameter to be passed to the outputter
-?, --help print this help and exit
© NoTE

Within the SDK you do not need to invoke pioasm directly, as the CMake function pico_generate_pio_header (TARGET
PIO_FILE) takes care of invoking pioasm and adding the generated header to the include path of the target TARGET
for you.

3.3.2. Directives

The following directives control the assembly of PIO programs:

.define (PUBLIC) <symbol> <value> Define an integer symbol named <symbol> with the value <value> (see Section
3.3.3). If this .define appears before the first program in the input file, then the
define is global to all programs, otherwise it is local to the program in which it
occurs. If PUBLIC is specified the symbol will be emitted into the assembled
output for use by user code. For the SDK this takes the form of:

ftdefine <program_name>_<symbol> value for program symbols or #define <symbol>
value for global symbols

.program <name> Start a new program with the name <name>. Note that that name is used in
code so should be alphanumeric/underscore not starting with a digit. The
program lasts until another .program directive or the end of the source file. PIO
instructions are only allowed within a program

.origin <offset> Optional directive to specify the PIO instruction memory offset at which the
program must load. Most commonly this is used for programs that must load
at offset 0, because they use data based JMPs with the (absolute) jmp target
being stored in only a few bits. This directive is invalid outside of a program

.side_set <count> (opt) (pindirs) If this directive is present, <count> indicates the number of side-set bits to be
used. Additionally opt may be specified to indicate that a side <value>is
optional for instructions (note this requires stealing an extra bit — in addition
to the <count> bits — from those available for the instruction delay). Finally,
pindirs may be specified to indicate that the side set values should be applied
to the PINDIRs and not the PINs. This directive is only valid within a program
before the first instruction

]
3.3. Using PIOASM, the PIO Assembler 49

Raspberry Pi Pico C/C++ SDK

.wrap_target

.wrap

.lang_opt <lang> <name> <option>

Place prior to an instruction, this directive specifies the instruction where
execution continues due to program wrapping. This directive is invalid outside
of a program, may only be used once within a program, and if not specified
defaults to the start of the program

Placed after an instruction, this directive specifies the instruction after which,
in normal control flow (i.e. jmp with false condition, or no jmp), the program
wraps (to .wrap_target instruction). This directive is invalid outside of a
program, may only be used once within a program, and if not specified
defaults to after the last program instruction.

Specifies an option for the program related to a particular language generator.
(See Section 3.3.10). This directive is invalid outside of a program

.word <value> Stores a raw 16-bit value as an instruction in the program. This directive is
invalid outside of a program.
3.3.3. Values
The following types of values can be used to define integer numbers or branch targets
Table 6. Values i . .
,abeé ralues integer An integer value e.g. 3 or -7
pioasm, i.e. <value>
hex A hexadecimal value e.g. 0xf
binary A binary value e.g. 0b1001
symbol A value defined by a .define (see [pioasm_define])
<label> The instruction offset of the label within the program. This makes most sense when used with
a JMP instruction (see Section 3.4.2)
(<expression>) An expression to be evaluated; see expressions. Note that the parentheses are necessary.

3.3.4. Expressions

Expressions may be freely used within pioasm values.

Table 7. Expressions . .
o . <expression> + <expression>
in pioasm i.e.

The sum of two expressions

<expression> . .
<expression> - <expression>

The difference of two expressions

<expression> * <expression>

The multiplication of two expressions

<expression> / <expression>

The integer division of two expressions

- <expression>

The negation of another expression

i <expression>

The bit reverse of another expression

<value>

Any value (see Section 3.3.3)

3.3.5. Comments

Line comments are supported with // or ;

C-style block comments are supported via /* and */

3.3. Using PIOASM, the PIO Assembler

50

Raspberry Pi Pico C/C++ SDK

3.3.6. Labels

Labels are of the form:
<symbol>:

or

PUBLIC <symbol>:

at the start of a line.

@ TIP

A label is really just an automatic .define with a value set to the current program instruction offset. A PUBLIC label is
exposed to the user code in the same way as a PUBLIC .define.

3.3.7. Instructions

All pioasm instructions follow a common pattern:
<instruction> (side <side_set_value>) ([<delay_value>])

where:

<instruction> Is an assembly instruction detailed in the following sections. (See Section 3.4)

<side_set_value> |s a value (see Section 3.3.3) to apply to the side_set pins at the start of the instruction. Note that
the rules for a side-set value via side <side_set_value> are dependent on the .side_set (see
[pioasm_side_set]) directive for the program. If no .side_set is specified then the side
<side_set_value> is invalid, if an optional number of sideset pins is specified then side
<side_set_value> may be present, and if a non-optional number of sideset pins is specified, then
side <side_set_value> is required. The <side_set_value> must fit within the number of side-set bits
specified in the .side_set directive.

<delay_value> Specifies the number of cycles to delay after the instruction completes. The delay_value is
specified as a value (see Section 3.3.3), and in general is between 0 and 31 inclusive (a 5-bit
value), however the number of bits is reduced when sideset is enabled via the .side_set (see
[pioasm_side_set]) directive. If the <delay_value> is not present, then the instruction has no delay

O NoTE

sections below as this is the style used in the SDK.

pioasm instruction names, keywords and directives are case insensitive; lower case is used in the Assembly Syntax

O NoTE

style in each case as this is the style used in the SDK.

Commas appear in some Assembly Syntax sections below, but are entirely optional, e.g. out pins, 3 may be written
out pins 3, and jmp x-- label may be written as jmp x--, label. The Assembly Syntax sections below uses the first

3.3.8. Pseudoinstructions

Currently pioasm provides one pseudoinstruction, as a convenience:

3.3. Using PIOASM, the PIO Assembler

51

Raspberry Pi Pico C/C++ SDK

nop Assembles to mov y, y. "No operation’, has no particular side effect, but a useful vehicle for a side-set
operation or an extra delay.

3.3.9. Output pass through

Text in the PIO file may be passed, unmodified, to the output based on the language generator being used.

For example the following (comment and function) would be included in the generated header when the default c-sdk
language generator is used.

% c-sdk {

// an inline function (since this is going in a header file)
static inline int some_c_code() {
return 0;

}
%}

The general format is

% target {
pass through contents
%}

with targets being recognized by a particular language generator (see Section 3.3.10; note that target is usually the
language generator name e.g. c-sdk, but could potentially be some_1anguage.some_group if the language generator supports
different classes of pass through with different output locations.

This facility allows you to encapsulate both the PIO program and the associated setup required in the same source file.
See Section 3.3.10 for a more complete example.
3.3.10. Language generators

The following example shows a multi program source file (with multiple programs) which we will use to highlight c-sdk
and python output features

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio

1 3

2 ; Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
3,

4 ; SPDX-License-Identifier: BSD-3-Clause

5 ;

6

7 .program ws2812

8 .side_set 1

9

10 .define public T1 2

11 .define public T2 5

12 .define public T3 3

13

14 .lang_opt python sideset_init = pico.PIO0.OUT_HIGH
15 .lang_opt python out_init = pico.PIO.OUT_HIGH
16 .lang_opt python out_shiftdir = 1

17

3.3. Using PIOASM, the PIO Assembler 52

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/ws2812.pio

Raspberry Pi Pico C/C++ SDK
]

18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78

.wrap_target
bitloop:
out x, 1 side @ [T3 - 1] ; Side-set still takes place when instruction stalls
jmp !'x do_zero side 1 [T1 - 1] ; Branch on the bit we shifted out. Positive pulse
do_one:

jmp bitloop side 1 [T2 - 1] ; Continue driving high, for a long pulse
do_zero:
nop side @ [T2 - 1] ; Or drive low, for a short pulse
.wrap
% c-sdk {
#include "hardware/clocks.h"

static inline void ws2812_program_init(PIO pio, uint sm, uint offset, uint pin, float freq,
bool rgbw) {

pio_gpio_init(pio, pin);
pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

pio_sm_config ¢ = ws2812_program_get_default_config(offset);
sm_config_set_sideset_pins(&c, pin);
sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24);
sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);

int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3;
float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
sm_config_set_clkdiv(&c, div);

pio_sm_init(pio, sm, offset, &c);
pio_sm_set_enabled(pio, sm, true);
}

%)

.program ws2812_parallel

.define public T1 2
.define public T2 5
.define public T3 3

.wrap_target
out x, 32
mov pins, 'null [T1-1]
mov pins, x [T2-1]
mov pins, null [T3-2]
.wrap

% c-sdk {
#include "hardware/clocks.h"

static inline void ws2812_parallel_program_init(PIO pio, uint sm, uint offset, uint
pin_base, uint pin_count, float freq) {
for(uint i=pin_base; i<pin_base+pin_count; i++) {
pio_gpio_init(pio, 1i);
}

pio_sm_set_consecutive_pindirs(pio, sm, pin_base, pin_count, true);

pio_sm_config ¢ = ws2812_parallel_program_get_default_config(offset);
sm_config_set_out_shift(&c, true, true, 32);
sm_config_set_out_pins(&c, pin_base, pin_count);
sm_config_set_set_pins(&c, pin_base, pin_count);
sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);

int cycles_per_bit = ws2812_parallel_T1 + ws2812_parallel_T2 + ws2812_parallel_T3;

]
3.3. Using PIOASM, the PIO Assembler

53

Raspberry Pi Pico C/C++ SDK
]

79 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
80 sm_config_set_clkdiv(&c, div);

81

82 pio_sm_init(pio, sm, offset, &c);

83 pio_sm_set_enabled(pio, sm, true);

84 }

85 %}

3.3.10.1. c-sdk

The c-sdk language generator produces a single header file with all the programs in the PIO source file:

The pass through sections (% c-sdk {) are embedded in the output, and the PUBLIC defines are available via #define

@ TP

pioasm creates a function for each program (e.g. ws2812_program_get_default_config()) returning a pio_sm_config based
on the .side_set, .wrap and .wrap_target settings of the program, which you can then use as a basis for configuration
the PIO state machine.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/generated/ws2812.pio.h

1 Jf s==—ccccmcoscosossonossonosconmeoosEosonoEEEEEo00D //
2 // This file is autogenerated by pioasm; do not edit! //
8 [======m=cecosssssscocoscosssoocoosooossosoososoSss //
4
5 #pragma once
6
7 #if !PICO_NO_HARDWARE
8 #include "hardware/pio.h"
9 #endif
10
11 /) ====== //
12 // ws2812 //
18 /) ====== //
14
15 #define ws2812_wrap_target 0
16 #define ws2812_wrap 3
17
18 #define ws2812_T1 2
19 #define ws2812_T2 5
20 #define ws2812_T3 3
21
22 static const uintl16_t ws2812_program_instructions[] = {
23 // .wrap_target
24 0x6221, // 8: out x, 1 side 0 [2]
25 0x1123, // 1: jmp Ix, 3 side 1 [1]
26 ox14ee, // 2: jmp /] side 1 [4]
27 Oxa442, // 3: nop side 0 [4]
28 // .wrap
29 };
30
31 #if !PICO_NO_HARDWARE
32 static const struct pio_program ws2812_program = {
33 .instructions = ws2812_program_instructions,
34 .length = 4,
35 .origin = -1,
36 };
37

]
3.3. Using PIOASM, the PIO Assembler 54

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/generated/ws2812.pio.h

Raspberry Pi Pico C/C++ SDK
]

38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

92
93
94
95
96

97

static inline pio_sm_config ws2812_program_get_default_config(uint offset) {

pio_sm_config ¢ = pio_get_default_sm_config();
sm_config_set_wrap(&c, offset + ws2812_wrap_target, offset + ws2812_wrap);
sm_config_set_sideset(&c, 1, false, false);
return c;
}
#include "hardware/clocks.h"

static inline void ws2812_program_init(PIO pio, uint sm, uint offset, uint pin, float freq,
bool rgbw) {

pio_gpio_init(pio, pin);
pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);
pio_sm_config ¢ = ws2812_program_get_default_config(offset);
sm_config_set_sideset_pins(&c, pin);
sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24);
sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3;
float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
sm_config_set_clkdiv(&c, div);
pio_sm_init(pio, sm, offset, &c);
pio_sm_set_enabled(pio, sm, true);

}

#endif

AR //

// ws2812_parallel //

AR //

#define ws2812_parallel_wrap_target @
#define ws2812_parallel_wrap 3

#define ws2812_parallel_T1 2
#define ws2812_parallel T2 5
#define ws2812_parallel_T3 3

static const uint16_t ws2812_parallel_program_instructions[] = {

// .wrap_target
0x6020, // 0: out X, 32
Oxaleb, // 1: mov pins, !null [1]
Oxa4e1, // 2: mov pins, x [4]
oxale3, // 3: mov pins, null [1]
// .wrap

b

#if !PICO_NO_HARDWARE

static const struct pio_program ws2812_parallel_program = {
.instructions = ws2812_parallel_program_instructions,
.length = 4,
.origin = -1,

b

static inline pio_sm_config ws2812_parallel_program_get_default_config(uint offset) {
pio_sm_config ¢ = pio_get_default_sm_config();
sm_config_set_wrap(&c, offset + ws2812_parallel_wrap_target, offset +
ws2812_parallel_wrap);
return c;

#include "hardware/clocks.h"
static inline void ws2812_parallel_program_init(PIO pio, uint sm, uint offset, uint
pin_base, uint pin_count, float freq) {

for(uint i=pin_base; i<pin_base+pin_count; i++) {

]
3.3. Using PIOASM, the PIO Assembler 55

Raspberry Pi Pico C/C++ SDK
]

98 pio_gpio_init(pio, 1i);
99 }
100 pio_sm_set_consecutive_pindirs(pio, sm, pin_base, pin_count, true);
101 pio_sm_config c = ws2812_parallel_program_get_default_config(offset);
102 sm_config_set_out_shift(&c, true, true, 32);
103 sm_config_set_out_pins(&c, pin_base, pin_count);
104 sm_config_set_set_pins(&c, pin_base, pin_count);
105 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
106 int cycles_per_bit = ws2812_parallel_T1 + ws2812_parallel_T2 + ws2812_parallel_T3;
107 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
108 sm_config_set_clkdiv(&c, div);
109 pio_sm_init(pio, sm, offset, &c);
110 pio_sm_set_enabled(pio, sm, true);
111 }
112
113 #endif
3.3.10.2. python

The python language generator produces a single python file with all the programs in the P10 source file:

The pass through sections (% python {) would be embedded in the output, and the PUBLIC defines are available as python
variables.

Also note the use of .1ang_opt python to pass initializers for the @pico.asm_pio decorator

@ TP

The python language output is provided as a utility. MicroPython supports programming with the PIO natively, so you
may only want to use pioasm when sharing PIO code between the SDK and MicroPython. No effort is currently made
to preserve label names, symbols or comments, as it is assumed you are either using the PIO file as a source or
python; not both. The python language output can of course be used to bootstrap your MicroPython PIO
development based on an existing PIO file.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/generated/ws2812.py

import rp2
from machine import Pin

0w NOoO g WN =

I
- ® ©
H*

ws2812_T1
ws2812_T2
ws2812_T3

)

A W N
n n I
w o N

-
[$;]

@rp2.asm_pio(sideset_init=pico.PI0.0UT_HIGH, out_init=pico.PI0.OUT_HIGH, out_shiftdir=1)
def ws2812():

=
o

17 wrap_target()

18 label("0")

19 out(x, 1) .side(@) [2] # @
20 jmp(not_x, "3") .side(1) [1] # 1
21 jmp(“8") .side(1) [4] # 2
22 label("3")

23 nop () .side(@) [4] # 3

]
3.3. Using PIOASM, the PIO Assembler 56

https://github.com/raspberrypi/pico-examples/blob/master/pio/ws2812/generated/ws2812.py

Raspberry Pi Pico C/C++ SDK

24 wrap()

25

26

27

UG i =m=mmmmsssssmsss #

29 # ws2812_parallel #

30 # ————---———————- #

&l

32 ws2812_parallel_T1 = 2

33 ws2812_parallel T2 = 5

34 ws2812_parallel T3 = 3

85

36 @rp2.asm_pio()

37 def ws2812_parallel():

38 wrap_target()

39 out(x, 32) #0
40 mov(pins, invert(null)) [11 # 1
41 mov(pins, x) [4] #2
42 mov(pins, null) [1] # 3
43 wrap()

3.3.10.3. hex

The hex generator only supports a single input program, as it just dumps the raw instructions (one per line) as a 4-
character hexadecimal number.

Given:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.pio

g

2 ; Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
3

4 ; SPDX-License-Identifier: BSD-3-Clause

5 ;

6

7 .program squarewave

8 set pindirs, 1 ; Set pin to output

9 again:

10 set pins, 1 [1] ; Drive pin high and then delay for one cycle
11 set pins, © ; Drive pin low

12 jmp again ; Set PC to label “again’

The hex output produces:

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/generated/squarewave.hex

1 €081
2 elo1
3 €000
4 0001

3.4. PIO Instruction Set Reference

3.4. PIO Instruction Set Reference 57

https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/squarewave.pio
https://github.com/raspberrypi/pico-examples/blob/master/pio/squarewave/generated/squarewave.hex

Raspberry Pi Pico C/C++ SDK

O NoTE

This section refers in places to concepts and pieces of hardware discussed in the RP2040 Datasheet. You are
encouraged to read the PIO chapter of the datasheet to get the full context for what these instructions do.

3.4.1. Summary

P10 instructions are 16 bits long, and have the following encoding:

Table 8.PIO Bit: 15 | 14 | 13 | 12 | 11 | 10 | o 8 7 6 5 4 3 2 1 0
instruction encoding
Jup 0 0 0 Delay/side-set Condition Address
WAIT 0 0 1 Delay/side-set Pol Source Index
IN 0 1 0 Delay/side-set Source Bit count
ouT 0 1 1 Delay/side-set Destination Bit count
PUSH 1 0 0 Delay/side-set 0 IfF Blk 0 0 0 0 0
PULL 1 0 0 Delay/side-set 1 IfE | Blk 0 0 0 0 0
Mov 1 0 1 Delay/side-set Destination Op Source
1RQ 1 1 0 Delay/side-set 0 Clr | Wait Index
SET 1 1 1 Delay/side-set Destination Data

All PIO instructions execute in one clock cycle.

The Delay/side-set field is present in all instructions. Its exact use is configured for each state machine by

PINCTRL_SIDESET_COUNT:

® Up to 5 MSBs encode a side-set operation, which optionally asserts a constant value onto some GPIOs,

concurrently with main instruction execution logic

® Remaining LSBs (up to 5) encode the number of idle cycles inserted between this instruction and the next

3.4.2. JMP

3.4.2.1. Encoding

Bit: 15 14 13 12 | 11 | 10 | 9 | 8

AN

5

4|3|2|1|0

P 0 0 0 Delay/side-set

Condition

Address

3.4.2.2. Operation

Set program counter to Address if Condition is true, otherwise no operation.

Delay cycles on a JMP always take effect, whether Condition is true or false, and they take place after Condition is

evaluated and the program counter is updated.
® Condition:
o 000: (no condition): Always

o 001: !X: scratch X zero

3.4. PIO Instruction Set Reference

58

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK
]

o 010: X--: scratch X non-zero, prior to decrement
o 011:1Y: scratch Y zero

o 100: Y--: scratch Y non-zero, prior to decrement
o 107: X!=Y: scratch X not equal scratch Y

o 110: PIN: branch on input pin

o 111: !0SRE: output shift register not empty

® Address: Instruction address to jump to. In the instruction encoding this is an absolute address within the PIO
instruction memory.

JMP PIN branches on the GPIO selected by EXECCTRL_IMP_PIN, a configuration field which selects one out of the maximum
of 32 GPIO inputs visible to a state machine, independently of the state machine’s other input mapping. The branch is
taken if the GPIO is high.

10SRE compares the bits shifted out since the last PULL with the shift count threshold configured by SHIFTCTRL_PULL_THRESH.
This is the same threshold used by autopull.

JMP X-- and JMP Y-- always decrement scratch register X or Y, respectively. The decrement is not conditional on the
current value of the scratch register. The branch is conditioned on the initial value of the register, i.e. before the
decrement took place: if the register is initially nonzero, the branch is taken.

3.4.2.3. Assembler Syntax

jmp (<cond>) <target>

where:
<cond> Is an optional condition listed above (e.g. !x for scratch X zero). If a condition code is not specified,
the branch is always taken
<target> Is a program label or value (see Section 3.3.3) representing instruction offset within the program (the
first instruction being offset 0). Note that because the PIO JMP instruction uses absolute addresses
in the PIO instruction memory, JMPs need to be adjusted based on the program load offset at
runtime. This is handled for you when loading a program with the SDK, but care should be taken when
encoding JMP instructions for use by 0UT EXEC
3.4.3. WAIT

3.4.3.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WAIT 0 0 1 Delay/side-set Pol Source Index

3.4.3.2. Operation

Stall until some condition is met.

Like all stalling instructions, delay cycles begin after the instruction completes. That is, if any delay cycles are present,
they do not begin counting until after the wait condition is met.

® Polarity:

]
3.4. PIO Instruction Set Reference 59

Raspberry Pi Pico C/C++ SDK
]

o 1:waitforai.
o 0:wait foraO0.
® Source: what to wait on. Values are:

o 00: GP10: System GPIO input selected by Index. This is an absolute GPIO index, and is not affected by the state
machine’s input |10 mapping.

o 07: PIN: Input pin selected by Index. This state machine’s input I0 mapping is applied first, and then Index
selects which of the mapped bits to wait on. In other words, the pin is selected by adding Index to the
PINCTRL_IN_BASE configuration, modulo 32.

o 10: IRQ: PIO IRQ flag selected by Index
o 11: Reserved
® |ndex: which pin or bit to check.
WAIT x IRQ behaves slightly differently from other WAIT sources:
® If Polarity is 1, the selected IRQ flag is cleared by the state machine upon the wait condition being met.

® The flag index is decoded in the same way as the IRQ index field: if the MSB is set, the state machine ID (0...3) is
added to the IRQ index, by way of modulo-4 addition on the two LSBs. For example, state machine 2 with a flag
value of '0x11" will wait on flag 3, and a flag value of '0x13" will wait on flag 1. This allows multiple state machines
running the same program to synchronise with each other.

A CcAUTION

WAIT 1 IRQ x should not be used with IRQ flags presented to the interrupt controller, to avoid a race condition with a
system interrupt handler

3.4.3.3. Assembler Syntax
wait <polarity> gpio <gpio_num>
wait <polarity> pin <pin_num>

wait <polarity> irq <irg_num> (rel)

where:
<polarity> Is a value (see Section 3.3.3) specifying the polarity (either 0 or 1)
<pin_num> Is a value (see Section 3.3.3) specifying the input pin number (as mapped by the SM input pin
mapping)
<gpio_num> Is a value (see Section 3.3.3) specifying the actual GPIO pin number

<irg_num> (rel) s avalue (see Section 3.3.3) specifying The irq number to wait on (0-7). If rel is present, then the
actual irg number used is calculating by replacing the low two bits of the irq number (irg_num,)
with the low two bits of the sum (irg_num;, + sm_num,,;) where sm_num, is the state machine
number

3.44.IN

3.4.4.1. Encoding

]
3.4. PIO Instruction Set Reference 60

Raspberry Pi Pico C/C++ SDK
]

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IN 0 1 0 Delay/side-set Source Bit count

3.4.4.2. Operation

Shift Bit count bits from Source into the Input Shift Register (ISR). Shift direction is configured for each state machine by
SHIFTCTRL_IN_SHIFTDIR. Additionally, increase the input shift count by Bit count, saturating at 32.

® Source:
o 000: PINS
o 001: X (scratch register X)
o 010: Y (scratch register Y)
o 011:NULL (all zeroes)
o 100: Reserved
o 107: Reserved
o 110: ISR
o 111:0SR
® Bit count: How many bits to shift into the ISR. 1...32 bits, 32 is encoded as 00000.

If automatic push is enabled, IN will also push the ISR contents to the RX FIFO if the push threshold is reached
(SHIFTCTRL_PUSH_THRESH). IN still executes in one cycle, whether an automatic push takes place or not. The state machine
will stall if the RX FIFO is full when an automatic push occurs. An automatic push clears the ISR contents to all-zeroes,
and clears the input shift count.

IN always uses the least significant Bit count bits of the source data. For example, if PINCTRL_IN_BASE is set to 5, the
instruction IN PINS, 3 will take the values of pins 5, 6 and 7, and shift these into the ISR. First the ISR is shifted to the left
or right to make room for the new input data, then the input data is copied into the gap this leaves. The bit order of the
input data is not dependent on the shift direction.

NULL can be used for shifting the ISR’s contents. For example, UARTs receive the LSB first, so must shift to the right.
After 8 IN PINS, 1 instructions, the input serial data will occupy bits 31...24 of the ISR. An IN NULL, 24 instruction will shift
in 24 zero bits, aligning the input data at ISR bits 7...0. Alternatively, the processor or DMA could perform a byte read
from FIFO address + 3, which would take bits 31...24 of the FIFO contents.

3.4.4.3. Assembler Syntax

in <source>, <bit_count>

where:

<source> Is one of the sources specified above.

<bit_count> Is a value (see Section 3.3.3) specifying the number of bits to shift (valid range 1-32)
3.4.5. OUT

3.4.5.1. Encoding

]
3.4. PIO Instruction Set Reference 61

Raspberry Pi Pico C/C++ SDK
]

Bit:

15 14 13 12 11 10 9 8 7 6 5 4

2

out

0 1 1 Delay/side-set Destination

Bit count

3.4.5.2. Operation

Shift Bit count bits out of the Output Shift Register (OSR), and write those bits to Destination. Additionally, increase the
output shift count by Bit count, saturating at 32.

® Destination:

o

o

000: PINS

001: x (scratch register X)

010: Y (scratch register Y)

011: NULL (discard data)

100: PINDIRS

101: PC

110: ISR (also sets ISR shift counter to Bit count)

111: EXEC (Execute OSR shift data as instruction)

® Bit count: how many bits to shift out of the OSR. 1...32 bits, 32 is encoded as 00000.

A 32-bit value is written to Destination: the lower Bit count bits come from the OSR, and the remainder are zeroes. This
value is the least significant Bit count bits of the OSR if SHIFTCTRL_OUT_SHIFTDIR is to the right, otherwise it is the most
significant bits.

PINS and PINDIRS use the OUT pin mapping.

If automatic pull is enabled, the OSR is automatically refilled from the TX FIFO if the pull threshold, SHIFTCTRL_PULL_THRESH,
is reached. The output shift count is simultaneously cleared to 0. In this case, the 0UT will stall if the TX FIFO is empty,
but otherwise still executes in one cycle.

OUT EXEC allows instructions to be included inline in the FIFO datastream. The 0UT itself executes on one cycle, and the

instruction from the OSR is executed on the next cycle. There are no restrictions on the types of instructions which can
be executed by this mechanism. Delay cycles on the initial 0UT are ignored, but the executee may insert delay cycles as

normal.

0UT PC behaves as an unconditional jump to an address shifted out from the OSR.

3.4.5.3. Assembler Syntax

out <destination>, <bit_count>

where:

<destination> Is one of the destinations specified above.

<bit_count>

3.4.6. PUSH

Is a value (see Section 3.3.3) specifying the number of bits to shift (valid range 1-32)

3.4. PIO Instruction Set Reference

62

Raspberry Pi Pico C/C++ SDK
]

3.4.6.1. Encoding

Bit: 15 14 13 12 | 11 | 10 | 9 | 8 7 6 5 4 3 2 1 0

PUSH 1 0 0 Delay/side-set 0 IfF Blk 0 0 0 0 0

3.4.6.2. Operation

Push the contents of the ISR into the RX FIFO, as a single 32-bit word. Clear ISR to all-zeroes.

e Iffull: If 1, do nothing unless the total input shift count has reached its threshold, SHIFTCTRL_PUSH_THRESH (the same
as for autopush).

® Block: If 1, stall execution if RX FIFO is full.

PUSH IFFULL helps to make programs more compact, like autopush. It is useful in cases where the IN would stall at an
inappropriate time if autopush were enabled, e.g. if the state machine is asserting some external control signal at this
point.

The P10 assembler sets the Block bit by default. If the Block bit is not set, the PUSH does not stall on a full RX FIFO, instead
continuing immediately to the next instruction. The FIFO state and contents are unchanged when this happens. The ISR
is still cleared to all-zeroes, and the FDEBUG_RXSTALL flag is set (the same as a blocking PUSH or autopush to a full RX FIFO)
to indicate data was lost.

3.4.6.3. Assembler Syntax

push (iffull’)
push (iffull’) block

push (iffull) noblock

where:

iffull Is equivalent to IfFull == 1 above. i.e. the default if this is not specified is IfFull ==

block Is equivalent to Block == 1 above. This is the default if neither block nor noblock are specified
noblock Is equivalent to Block == @ above.

3.4.7. PULL

3.4.7.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PULL 1 0 0 Delay/side-set 1 IfE Blk 0 0 0 0 0

3.4.7.2. Operation

Load a 32-bit word from the TX FIFO into the OSR.

e IfEmpty: If 1, do nothing unless the total output shift count has reached its threshold, SHIFTCTRL_PULL_THRESH (the
same as for autopull).

® Block: If 1, stall if TX FIFO is empty. If O, pulling from an empty FIFO copies scratch X to OSR.

]
3.4. PIO Instruction Set Reference 63

Raspberry Pi Pico C/C++ SDK
]

Some peripherals (UART, SPI...) should halt when no data is available, and pick it up as it comes in; others (12S) should
clock continuously, and it is better to output placeholder or repeated data than to stop clocking. This can be achieved
with the Block parameter.

A nonblocking PULL on an empty FIFO has the same effect as MOV 0SR, X. The program can either preload scratch register
X with a suitable default, or execute a MOV X, 0SR after each PULL NOBLOCK, so that the last valid FIFO word will be recycled
until new data is available.

PULL IFEMPTY is useful if an 0UT with autopull would stall in an inappropriate location when the TX FIFO is empty. For
example, a UART transmitter should not stall immediately after asserting the start bit. IfEmpty permits some of the same
program simplifications as autopull, but the stall occurs at a controlled point in the program.

O NoTE

When autopull is enabled, any PULL instruction is a no-op when the OSR is full, so that the PULL instruction behaves as
a barrier. 0UT NULL, 32 can be used to explicitly discard the OSR contents. See the RP2040 Datasheet for more detail
on autopull.

3.4.7.3. Assembler Syntax

pull (ifempty)
pull (ifempty) block

pull (ifempty) noblock

where:

ifempty Is equivalent to IfEmpty == 1 above. i.e. the default if this is not specified is IfEmpty == 0
block Is equivalent to Block == 1 above. This is the default if neither block nor noblock are specified
noblock Is equivalent to Block == @ above.

3.4.8. MOV

3.4.8.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MoV 1 0 1 Delay/side-set Destination Op Source

3.4.8.2. Operation

Copy data from Source to Destination.
® Destination:
o 000: PINS (Uses same pin mapping as 0UT)
o 001: X (Scratch register X)
o 010:Y (Scratch register Y)
o 011: Reserved

o 100: EXEC (Execute data as instruction)

]
3.4. PIO Instruction Set Reference 64

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK
]

o

o 110: ISR (Input shift counter is reset to 0 by this operation, i.e. empty)

o 111:0SR (Output shift counter is reset to 0 by this operation, i.e. full)

101: PC

® QOperation:

o

o

o

o

00: None
01: Invert (bitwise complement)
10: Bit-reverse

11: Reserved

® Source:

o

]

000: PINS (Uses same pin mapping as IN)
001: X

010: v

071: NULL

100: Reserved

1071: STATUS

110: ISR

111:0SR

MOV PC causes an unconditional jump. MOV EXEC has the same behaviour as 0UT EXEC (Section 3.4.5), and allows register
contents to be executed as an instruction. The MOV itself executes in 1 cycle, and the instruction in Source on the next

cycle. Delay cycles on MOV EXEC are ignored, but the executee may insert delay cycles as normal.

The STATUS source has a value of all-ones or all-zeroes, depending on some state machine status such as FIFO
full/empty, configured by EXECCTRL_STATUS_SEL.

MOV can manipulate the transferred data in limited ways, specified by the Operation argument. Invert sets each bit in
Destination to the logical NOT of the corresponding bit in Source, i.e. 1 bits become 0 bits, and vice versa. Bit reverse sets

each bit n in Destination to bit 31 - n in Source, assuming the bits are numbered 0 to 31.

MOV dst, PINS reads pins using the IN pin mapping, and writes the full 32-bit value to the destination without masking.
The LSB of the read value is the pin indicated by PINCTRL_IN_BASE, and each successive bit comes from a higher-
numbered pin, wrapping after 31.

3.4.8.3.

Assembler Syntax

mov <destination>, (op) <source>

where:
<destination> Is one of the destinations specified above.
<op> If present, is:
1 or ~ for NOT (Note: this is always a bitwise NOT)
:: for bit reverse
<source> Is one of the sources specified above.

]
3.4. PIO Instruction Set Reference

65

Raspberry Pi Pico C/C++ SDK
]

3.4.9.1RQ

3.4.9.1. Encoding

Bit: 15 14 13 12|11|10|9|8 7 6 S 4|3|2|1|0

1RQ 1 1 0 Delay/side-set 0 Clr | Wait Index

3.4.9.2. Operation

Set or clear the IRQ flag selected by Index argument.
® Clear: if 1, clear the flag selected by Index, instead of raising it. If Clear is set, the Wait bit has no effect.
® Wait: if 1, halt until the raised flag is lowered again, e.g. if a system interrupt handler has acknowledged the flag.
® Index:
o The 3 LSBs specify an IRQ index from 0-7. This IRQ flag will be set/cleared depending on the Clear bit.

o If the MSB is set, the state machine ID (0...3) is added to the IRQ index, by way of modulo-4 addition on the
two LSBs. For example, state machine 2 with a flag value of 0x11 will raise flag 3, and a flag value of 0x13 will
raise flag 1.

IRQ flags 4-7 are visible only to the state machines; IRQ flags 0-3 can be routed out to system level interrupts, on either
of the PIO’s two external interrupt request lines, configured by IRQ@_INTE and IRQ1_INTE.

The modulo addition bit allows relative addressing of 'IRQ" and 'WAIT" instructions, for synchronising state machines
which are running the same program. Bit 2 (the third LSB) is unaffected by this addition.

If wait is set, Delay cycles do not begin until after the wait period elapses.

3.4.9.3. Assembler Syntax

irq <irg_num> (rel)
irq set <irg_num> (rel)
irg nowait <irg_num> (rel)
irg wait <irg_num> (rel)
irq clear <irg_num> (rel)
where:
<irg_num> (rel) s avalue (see Section 3.3.3) specifying The irq number to wait on (0-7). If rel is present, then the

actual irg number used is calculating by replacing the low two bits of the irq number (irg_num,)
with the low two bits of the sum (irg_num;, + sm_num,,) where sm_num, is the state machine

number
irq Means set the IRQ without waiting
irqg set Also means set the IRQ without waiting
irg nowait Again, means set the IRQ without waiting
irg wait Means set the IRQ and wait for it to be cleared before proceeding
irq clear Means clear the IRQ

]
3.4. PIO Instruction Set Reference 66

Raspberry Pi Pico C/C++ SDK
]

3.4.10. SET

3.4.10.1. Encoding

Bit:

15 14 13 12|11|10|9|8

7|6|5

SET

1 1 1 Delay/side-set

Destination

3.4.10.2. Operation

Write immediate value Data to Destination.

® Destination:

o

o

000: PINS

001: X (scratch register X) 5 LSBs are set to Data, all others cleared to 0.

010: Y (scratch register Y) 5 LSBs are set to Data, all others cleared to 0.

011: Reserved
100: PINDIRS

101: Reserved
110: Reserved

111: Reserved

® Data: 5-bit immediate value to drive to pins or register.

This can be used to assert control signals such as a clock or chip select, or to initialise loop counters. As Data is 5 bits in

size, scratch registers can be SET to values from 0-31, which is sufficient for a 32-iteration loop.

The mapping of SET and 0UT onto pins is configured independently. They may be mapped to distinct locations, for
example if one pin is to be used as a clock signal, and another for data. They may also be overlapping ranges of pins: a
UART transmitter might use SET to assert start and stop bits, and 0UT instructions to shift out FIFO data to the same pins.

3.4.10.3. Assembler Syntax

set <destination>, <value>

where:
<destination> Is one of the destinations specified above.
<value> The value (see Section 3.3.3) to set (valid range 0-31)

]
3.4. PIO Instruction Set Reference

67

Raspberry Pi Pico C/C++ SDK

Chapter 4. Library documentation

Full library API documentation can be found online at https://www.raspberrypi.com/documentation/pico-sdk/

Figure 8. The
Raspberry Pi
documentation site.

eee M- < 0

‘ Raspberry Pi

For home For industry

Computers

Y

Introduction

An introduction to the Pico SDK

©® NoTE

raspberrypi.com

<]

)

Hardware ~ Software ~ Documentation News Forums Foundation

The official documentation for
Raspberry Pi computers and microcontrollers

Accessories Microcontrollers

Hardware APIs

This group of libraries provides a thin and efficient
C API/ abstractions to access the RP2040
hardware without having to read and write

hardware registers directly

Raspberry Pi Documentation

Pico C SDK

Release 1.5.0

O

High Level APIs

This group of libraries provide higher level
functionality that isn't hardware related or provides
aricher set of functionality above the basic
hardware interfaces

You can also build the API documentation locally, see Appendix E.

Chapter 4. Library documentation

68

https://www.raspberrypi.com/documentation/pico-sdk/

Raspberry Pi Pico C/C++ SDK

Figure 9. Wiring
Diagram for 7
segment LED.

Appendix A: App Notes

Attaching a 7 segment LED via GPIO

This example code shows how to interface the Raspberry Pi Pico to a generic 7 segment LED device. It uses the LED to
count from 0 to 9 and then repeat. If the button is pressed, then the numbers will count down instead of up.

Wiring information

Our 7 Segment display has pins as follows.

By default we are allocating GPIO 2 to segment A, 3 to B etc. So, connect GPIO 2 to pin A on the 7 segment LED display
and so on. You will need the appropriate resistors (68 ohm should be fine) for each segment. The LED device used here
is common anode, so the anode pin is connected to the 3.3v supply, and the GPIOs need to pull low (to ground) to
complete the circuit. The pull direction of the GPIOs is specified in the code itself.

Connect the switch to connect on pressing. One side should be connected to ground, the other to GPIO 9.

..
..

fritzing

List of Files

CMakelists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/gpio/hello_7segment/CMakeLists. txt

1 add_executable(hello_7segment

2 hello_7segment.c
3)
4

5 # pull in common dependencies

6 target_link_libraries(hello_7segment pico_stdlib)
7

8 # create map/bin/hex file etc.

]
Attaching a 7 segment LED via GPIO 69

https://github.com/raspberrypi/pico-examples/blob/master/gpio/hello_7segment/CMakeLists.txt

Raspberry Pi Pico C/C++ SDK
]

9 pico_add_extra_outputs(hello_7segment)
10

11 # add url via pico_set_program_url

12 example_auto_set_url(hello_7segment)

hello_7segment.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/gpio/hello_7segment/hello_7segment.c

1 /**

2 * Copyright (c) 2620 Raspberry Pi (Trading) Ltd.
3 *

4 * SPDX-License-Identifier: BSD-3-Clause

584/

6

7 #include <stdio.h>

8 #include "pico/stdlib.h"

9 #include "hardware/gpio.h"

11 /%
12 Our 7 Segment display has pins as follows:

14 --A--

16 --G--
17 E ¢
18 --D--

20 By default we are allocating GPIO 2 to segment A, 3 to B etc.
21 So, connect GPIO 2 to pin A on the 7 segment LED display etc. Don't forget
22 the appropriate resistors, best to use one for each segment!

24 Connect button so that pressing the switch connects the GPIO 9 (default) to
25 ground (pull down)
26 */

28 #define FIRST_GPIO 2
29 #define BUTTON_GPIO (FIRST_GPIO+7)

31 // This array converts a number 6-9 to a bit pattern to send to the GPIOs
32 int bits[10] = {

33 ox3f, // 0
34 oxe6, // 1
85 ox5b, // 2
36 oxaf, // 3
37 ox66, // 4
38 ox6d, // 5
39 ox7d, // 6
40 oxe7, // 7
41 ox7f, // 8
42 0x67 // 9
43 };

44

45 /// \tag::hello_gpio[]
46 int main() {

47 stdio_init_all();

48 printf("Hello, 7segment - press button to count down!\n");
49

50 // We could use gpio_set_dir_out_masked() here

51 for (int gpio = FIRST_GPIO; gpio < FIRST_GPIO + 7; gpio++) {

]
Attaching a 7 segment LED via GPIO 70

https://github.com/raspberrypi/pico-examples/blob/master/gpio/hello_7segment/hello_7segment.c

Raspberry Pi Pico C/C++ SDK

52 gpio_init(gpio);

53 gpio_set_dir(gpio, GPIO_OUT);

54 // Our bitmap above has a bit set where we need an LED on, BUT, we are pulling low to
light

55! // so invert our output

56 gpio_set_outover(gpio, GPIO_OVERRIDE_INVERT);

57)

58

59 gpio_init(BUTTON_GPIO);

60 gpio_set_dir(BUTTON_GPIO, GPIO_IN);

61 // We are using the button to pull down to @v when pressed, so ensure that when

62 // unpressed, it uses internal pull ups. Otherwise when unpressed, the input will

63 // be floating.

64 gpio_pull_up(BUTTON_GPIO);

65

66 int val = 9;

67 while (true) {

68 // Count upwards or downwards depending on button input

69 // We are pulling down on switch active, so invert the get to make

70 // a press count downwards

71 if (!gpio_get(BUTTON_GPIO)) {

72 if (val == 9) {

73 val = @;

74 } else {

75 val++;

76 }

77 } else if (val == 0) {

78 val = 9;

79 } else {

80 val--;

81 }

82

83 // We are starting with GPIO 2, our bitmap starts at bit @ so shift to start at 2.

84 int32_t mask = bits[val] << FIRST_GPIO;

85

86 // Set all our GPIOs in one go!

87 // If something else is using GPIO, we might want to use gpio_put_masked()

88 gpio_set_mask(mask) ;

89 sleep_ms(250);

90 gpio_clr_mask(mask) ;

91 }

92

93 return 0;

94 }

95 /// \end::hello_gpio[]

Bill of Materials

Table 9. A list of . .
materials required for ltem Quantlty Details
the example Breadboard 1 generic part
Raspberry Pi Pico 1 https://www.raspberrypi.com/
products/raspberry-pi-pico/
7 segment LED module 1 generic part
68 ohm resistor 7 generic part
DIL push to make switch 1 generic switch

]
Attaching a 7 segment LED via GPIO 71

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/

Raspberry Pi Pico C/C++ SDK

Figure 10. Wiring the
DHT-22 temperature
sensor to Raspberry Pi
Pico, and connecting
Pico’s UARTO to the
Raspberry Pi 4.

M/M Jumper wires 10 generic part

DHT-11, DHT-22, and AM2302 Sensors

The DHT sensors are fairly well known hobbyist sensors for measuring relative humidity and temperature using a
capacitive humidity sensor, and a thermistor. While they are slow, one reading every ~2 seconds, they are reliable and
good for basic data logging. Communication is based on a custom protocol which uses a single wire for data.

© NoTE

The DHT-11 and DHT-22 sensors are the most common. They use the same protocol but have different
characteristics, the DHT-22 has better accuracy, and has a larger sensor range than the DHT-11. The sensor is
available from a number of retailers.

Wiring information

See Figure 10 for wiring instructions.

oy
oy

fri’tz,i’ng;

O NoTE

One of the pins (pin 3) on the DHT sensor will not be connected, it is not used.

You will want to place a 10 kQ resistor between VCC and the data pin, to act as a medium-strength pull up on the data
line.

Connecting UARTO of Pico to Raspberry Pi as in Figure 10 and you should see something similar to Figure 11 in minicom
when connected to /dev/seriald on the Raspberry Pi.

]
DHT-11, DHT-22, and AM2302 Sensors 72

Raspberry Pi Pico C/C++ SDK

Figure 11. Serial

output over Pico’s
UARTO in a terminal [) FT232R USB UART — 80x24 — 115200.8.N.1 a
window. 54.9%, Temperature = 28.5C (83.3F)

4.9%, Temperature 8.5C (83.3F)
55.0%, Temperature = 28.5C (83.3F)

Connect to /dev/serial® by typing,

$ minicom -b 115200 -o -D /dev/serial®@

at the command line.

List of Files

A list of files with descriptions of their function;

CMakelLists.txt

Make file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/gpio/dht_sensor/CMakeLists.txt

add_executable(dht
dht.c

)
target_link_libraries(dht pico_stdlib)
pico_add_extra_outputs(dht)
add url via pico_set_program_url

example_auto_set_url(dht)

dht.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/gpio/dht_sensor/dht.c

/A%
2 * Copyright (c) 2626 Raspberry Pi (Trading) Ltd.
3 *

DHT-11, DHT-22, and AM2302 Sensors 73

https://github.com/raspberrypi/pico-examples/blob/master/gpio/dht_sensor/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/master/gpio/dht_sensor/dht.c

Raspberry Pi Pico C/C++ SDK
]

4

0w N o

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44 void read_from_dht(dht_reading *result) {

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

* SPDX-License-Identifier: BSD-3-Clause
**/

#include <stdio.h>
#include <math.h>

#include "pico/stdlib.h"
#include "hardware/gpio.h"

#ifdef PICO_DEFAULT_LED_PIN
#define LED_PIN PICO_DEFAULT_LED_PIN
#endif

const uint DHT_PIN = 15;
const uint MAX_TIMINGS = 85;

typedef struct {
float humidity;
float temp_celsius;
} dht_reading;

void read_from_dht(dht_reading *result);

int main() {
stdio_init_all();
gpio_init(DHT_PIN);
#ifdef LED_PIN
gpio_init(LED_PIN);
gpio_set_dir(LED_PIN, GPIO_OUT);
#endif
while (1) {
dht_reading reading;
read_from_dht(&reading) ;

float fahrenheit = (reading.temp_celsius * 9 /
printf("Humidity = %.1f%%, Temperature = %.1fC (%.1fF)\n",
reading.humidity, reading.temp_celsius,

sleep_ms(2000) ;

int data[5] = {8, @0, @, @, 0};
uint last = 1;
uint j = 0;

gpio_set_dir(DHT_PIN, GPIO_OUT);
gpio_put(DHT_PIN, ©);
sleep_ms(20);

gpio_set_dir (DHT_PIN, GPIO_IN);

#ifdef LED_PIN
gpio_put(LED_PIN, 1);
#endif

for (uint i = @; i < MAX_TIMINGS; i++) {

uint count = 0;

while (gpio_get(DHT_PIN) == last) {

count++;

sleep_us(1);

if (count == 255) break;
}
last = gpio_get(DHT_PIN);
if (count == 255) break;

5) + 32;

fahrenheit) ;

]
DHT-11, DHT-22, and AM2302 Sensors

74

Raspberry Pi Pico C/C++ SDK

67 if ((1 >= 4) 8& (1 % 2 == 8)) {

68 data[j / 8] <<= 1;

69 if (count > 16) data[j / 8] |= 1;

70 j++;

71 }

72 }

73 #ifdef LED_PIN

74 gpio_put(LED_PIN, ©);

75 #endif

76

77 if ((j >= 40) && (data[4] == ((data[@] + data[1] + data[2] + data[3]) & BxFF))) {
78 result->humidity = (float) ((data[@] << 8) + data[1]) / 10;
79 if (result->humidity > 100) {

80 result->humidity = data[@];

81 }

82 result->temp_celsius = (float) (((data[2] & Ox7F) << 8) + data[3]) / 10;
83 if (result->temp_celsius > 125) {

84 result->temp_celsius = data[2];

85 }

86 if (data[2] & 0x80) {

87 result->temp_celsius = -result->temp_celsius;

88 }

89 } else {

90 printf("Bad data\n");

91 }

92 }

Bill of Materials

Table 10. A list of

materials required for Item Quantity Details
the example Breadboard 1 generic part
Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

10 kQ resistor 1 generic part
M/M Jumper wires 4 generic part
DHT-22 sensor 1 generic part

Attaching a 16x2 LCD via TTL

This example code shows how to interface the Raspberry Pi Pico to one of the very common 16x2 LCD character
displays. Due to the large number of pins these displays use, they are commonly used with extra drivers or backpacks.

In this example,

we will use an Adafruit LCD display backpack, which supports communication over USB or TTL. A

monochrome display with an RGB backlight is also used, but the backpack is compatible with monochrome backlight
displays too. There is another example that uses 12C to control a 16x2 display.

The backpack processes a set of commands that are documented here and preceded by the "special" byte OxFE. The
backpack does the ASCII character conversion and even supports custom character creation. In this example, we use
the Pico’s primary UART (uart0) to read characters from our computer and send them via the other UART (uart1) to print
them onto the LCD. We also define a special startup sequence and vary the display’s backlight color.

Attaching a 16x2 LCD via TTL

75

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://learn.adafruit.com/usb-plus-serial-backpack/command-reference

Raspberry Pi Pico C/C++ SDK

Figure 12. Wiring
Diagram for LCD with
TTL backpack.

O NoTE

You can change where stdio output goes (Pico’s USB, uart0 or both) with CMake directives. The CMakeLists.txt file
shows how to enable both.

Wiring information

Wiring up the backpack to the Pico requires 3 jumpers, to connect VCC (3.3v), GND, TX. The example here uses both of
the Pico’s UARTS, one (uart0) for stdio and the other (uart1) for communication with the backpack. Pin 8 is used as the
TX pin. Power is supplied from the 3.3V pin. To connect the backpack to the display, it is common practice to solder it
onto the back of the display, or during the prototyping stage to use the same parallel lanes on a breadboard.

O NoTE

While this display will work at 3.3V, it will be quite dim. Using a 5V source will make it brighter.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

cseee

ese e s s e s e e e s s es s e

© D20 0B D52 B3 D34 DBS DBG DE7LED+ X G

cees e

fritzing

List of Files

CMakelLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/uart/lcd_uart/CMakeLists.txt

add_executable(lcd_uart
lcd_uart.c

)

1
2
8
4
5 # pull in common dependencies and additional uart hardware support
6 target_link_libraries(lcd_uart pico_stdlib hardware_uart)

7

8 # enable usb output and uart output

modify here as required

10 pico_enable_stdio_usb(lcd_uart 1)

11 pico_enable_stdio_uart(lcd_uart 1)

12

13 # create map/bin/hex file etc.

14 pico_add_extra_outputs(lcd_uart)

15

16 # add url via pico_set_program_url

O

]
Attaching a 16x2 LCD via TTL 76

https://github.com/raspberrypi/pico-examples/blob/master/uart/lcd_uart/CMakeLists.txt

Raspberry Pi Pico C/C++ SDK

17 example_auto_set_url(lcd_uart)

led_uart.c

The example

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/uart/Icd_uart/lcd_uart.c

Vi

*

&

o N O o WN =

- A
N = ® O

If th

a2 4a A a a4
O 0 N o U b~ W

GND (
*/

N NN
N 2 ©

#include
#include

NN
A W

#include

N
[}

#include
#include

NN NN
O 0 N o

#define
#define
#define
#define
#define

W W W w w w
a b WON -2

// basic
#define
#define
#define
#define
#define
#define
#define
#define

A DA B DD DD OOOWOW®
g b WN 2 ®©® O 0N O

// curso
#define
#define
#define
#define
#define
#define
#define
#define

SIS, IS, NS, TS T O O N N
A O®N 2 ® © © N O

code.

* Copyright (c) 2621 Raspberry Pi (Trading) Ltd.

* SPDX-License-Identifier: BSD-3-Clause

/* Example code to drive a 16x2 LCD panel via an Adafruit TTL LCD "backpack"

Optionally, the backpack can be connected the VBUS (pin 40) at 5V if
the Pico in question is powered by USB for greater brightness.

is is done, then no other connections should be made to the backpack apart
from those listed below as the backpack's logic levels will change.

Connections on Raspberry Pi Pico board, other boards may vary.
GPIO 8 (pin 11)-> RX on backpack

3.3v (pin 36) -> 3.3v on backpack
pin 38) -> GND on backpack

<stdio.h>

<math.h>
"pico/stdlib.h"
"pico/binary_info.h"
"hardware/uart.h"

// leave uart@ free for stdio

UART_ID uartil
BAUD_RATE 9660
UART_TX_PIN 8
LCD_WIDTH 16
LCD_HEIGHT 2

commands
LCD_DISPLAY_ON 6x42
LCD_DISPLAY_OFF 6x46
LCD_SET_BRIGHTNESS 6x99
LCD_SET_CONTRAST 0x560
LCD_AUTOSCROLL_ON ©6x51
LCD_AUTOSCROLL_OFF 6x52
LCD_CLEAR_SCREEN 6x58
LCD_SET_SPLASH 0x46

r commands
LCD_SET_CURSOR_POS 0x47
LCD_CURSOR_HOME 6x48
LCD_CURSOR_BACK 6x4C
LCD_CURSOR_FORWARD 0x4D

LCD_UNDERLINE_CURSOR_ON 0x4A
LCD_UNDERLINE_CURSOR_OFF 6x4B

LCD_BLOCK_CURSOR_ON 6x53

LCD_BLOCK_CURSOR_OFF 6x54

Attaching a 16x2 LCD via TTL

7

https://github.com/raspberrypi/pico-examples/blob/master/uart/lcd_uart/lcd_uart.c

Raspberry Pi Pico C/C++ SDK
]

55 // rgb commands

56 #define LCD_SET_BACKLIGHT_COLOR 6xD@

57 #define LCD_SET_DISPLAY_SIZE 6xD1

58

59 // change to @ if display is not RGB capable
60 #define LCD_IS_RGB 1

61

62 void lcd_write(uint8_t cmd, uint8_t* buf, uint8_t buflen) {
63 // all commands are prefixed with OxFE

64 const uint8_t pre = OxFE;

65 uart_write_blocking(UART_ID, &pre, 1);

66 uart_write_blocking(UART_ID, &cmd, 1);

67 uart_write_blocking(UART_ID, buf, buflen);

68 sleep_ms(10); // give the display some time

69 }

70

71 void lcd_set_size(uint8_t w, uint8_t h) {

72 // sets the dimensions of the display

73 uint8_t buf[] = { w, h };

74 lcd_write(LCD_SET_DISPLAY_SIZE, buf, 2);

75 }

76

77 void lcd_set_contrast(uint8_t contrast) {

78 // sets the display contrast

79 lcd_write(LCD_SET_CONTRAST, &contrast, 1);

80 }

81

82 void lcd_set_brightness(uint8_t brightness) {

83 // sets the backlight brightness

84 lcd_write(LCD_SET_BRIGHTNESS, &brightness, 1);
85 }

86

87 void lcd_set_cursor(bool is_on) {

88 // set is_on to true if we want the blinking block and underline cursor to show
89 if (is_on) {

90 lcd_write(LCD_BLOCK_CURSOR_ON, NULL, 0);
91 lcd_write(LCD_UNDERLINE_CURSOR_ON, NULL, @);
92 } else {

93 lcd_write(LCD_BLOCK_CURSOR_OFF, NULL, ©);
94 lcd_write(LCD_UNDERLINE_CURSOR_OFF, NULL, 0);
95 }

96 }

97

98 void lcd_set_backlight(bool is_on) {

99 // turn the backlight on (true) or off (false)
100 if (is_on) {

101 lcd_write(LCD_DISPLAY_ON, (uint8_t *) @, 1);
102 } else {

103 lcd_write(LCD_DISPLAY_OFF, NULL, 9);

104 }

105 }

106

107 void lcd_clear() {

108 // clear the contents of the display

109 lcd_write(LCD_CLEAR_SCREEN, NULL, ©);

110 }

111

112 void lcd_cursor_reset() {

113 // reset the cursor to (1, 1)

114 lcd_write(LCD_CURSOR_HOME, NULL, 0);

115 }

116

117 #if LCD_IS_RGB

]
Attaching a 16x2 LCD via TTL 78

Raspberry Pi Pico C/C++ SDK
]

118 void lcd_set_backlight_color(uint8_t r, uint8_t g, uint8_t b) {

119 // only supported on RGB displays!

120 uint8_t buf[]l = { r, g, b };

121 lcd_write(LCD_SET_BACKLIGHT_COLOR, buf, 3);

122 }

123 #endif

124

125 void led_init() {

126 lcd_set_backlight(true);

127 lcd_set_size(LCD_WIDTH, LCD_HEIGHT);

128 lcd_set_contrast(155);

129 lcd_set_brightness(255);

130 lcd_set_cursor(false);

131 }

132

133 int main() {

134 stdio_init_all();

135 uart_init(UART_ID, BAUD_RATE);

136 uart_set_translate_crlf(UART_ID, false);

137 gpio_set_function(UART_TX_PIN, GPIO_FUNC_UART);

138

139 bi_decl(bi_1pin_with_func(UART_TX_PIN, GPIO_FUNC_UART));:

140

141 led_init();

142

143 // define startup sequence and save to EEPROM

144 // no more or less than 32 chars, if not enough, fill remaining ones with spaces
145 uint8_t splash_buf[] = "Hello LCD, from Pi Towers! "

146 lcd_write(LCD_SET_SPLASH, splash_buf, LCD_WIDTH * LCD_HEIGHT);
147

148 lcd_cursor_reset();

149 lcd_clear();

150

151 #if LCD_IS_RGB

152 uint8_t i = @; // it's ok if this overflows and wraps, we're using sin
153 const float frequency = 0.1f;

154 float red, green, blue;

155 #endif

156

157 while (1) {

158 // send any chars from stdio straight to the backpack

159 char ¢ = getchar();

160 // any bytes not followed by OxFE (the special command) are interpreted
161 // as text to be displayed on the backpack, so we just send the char
162 // down the UART byte pipe!

163 if (c < 128) uart_putc_raw(UART_ID, c); // skip extra non-ASCII chars
164 #if LCD_IS_RGB

165 // change the display color on keypress, rainbow style!

166 red = sin(frequency * i + @) * 127 + 128;

167 green = sin(frequency * i + 2) * 127 + 128;

168 blue = sin(frequency * i + 4) * 127 + 128;

169 lcd_set_backlight_color(red, green, blue);

170 i++;

171 #endif

172 }

173 }

Bill of Materials

Attaching a 16x2 LCD via TTL 79

Raspberry Pi Pico C/C++ SDK

Table 11. A list of
materials required for
the example

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico 1 https://www.raspberrypi.com/
products/raspberry-pi-pico/

16x2 RGB LCD panel 3.3v 1 generic part, available on Adafruit

16x2 LCD backpack 1 from Adafruit

M/M Jumper wires 3 generic part

Attaching a microphone using the ADC

This example code shows how to interface the Raspberry Pi Pico with a standard analog microphone via the onboard
analog to digital converter (ADC). In this example, we use an ICS-40180 breakout board by SparkFun but any analog
microphone should be compatible with this tutorial. SparkFun have written a guide for this board that goes into more
detail about the board and how it works.

@ T

An analog to digital converter (ADC) is responsible for reading continually varying input signals that may range from
0 to a specified reference voltage (in the Pico’s case this reference voltage is set by the supply voltage and can be
measured on pin 35, ADC_VREF) and converting them into binary, i.e. a number that can be digitally stored.

The Pico has a 12-bit ADC (ENOB of 8.7-bit, see RP2040 datasheet section 4.9.3 for more details), meaning that a read
operation will return a number ranging from 0 to 4095 (2*12 - 1) for a total of 4096 possible values. Therefore, the
resolution of the ADC is 3.3/4096, so roughly steps of 0.8 millivolts. The SparkFun breakout uses an OPA344
operational amplifier to boost the signal coming from the microphone to voltage levels that can be easily read by the
ADC. An important side effect is that a bias of 0.5*Vcc is added to the signal, even when the microphone is not picking
up any sound.

The ADC provides us with a raw voltage value but when dealing with sound, we're more interested in the amplitude of
the audio signal. This is defined as one half the peak-to-peak amplitude. Included with this example is a very simple
Python script that will plot the voltage values it receives via the serial port. By tweaking the sampling rates, and various
other parameters, the data from the microphone can be analysed in various ways, such as in a Fast Fourier Transform
to see what frequencies make up the signal.

Figure 13. Example Microphone ADC example - o &
output from included

Python script 30

2.54

2.0 1

Voltage (V)

1.5+

1.0 1

0.5 1

0.0

T T T T T
24100 24150 24200 24250 24300
Samples

Attaching a microphone using the ADC 80

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.adafruit.com/product/398
https://www.adafruit.com/product/781
https://learn.sparkfun.com/tutorials/mems-microphone-hookup-guide
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK

Wiring information

Wiring up the device requires 3 jumpers, to connect VCC (3.3v), GND, and AOUT. The example here uses ADCO, which is
GP26. Power is supplied from the 3.3V pin.

@ WARNING

Most boards will take a range of VCC voltages from the Pico’s default 3.3V to the 5 volts commonly seen on other
microcontrollers. Ensure your board doesn't output an analogue signal greater than 3.3V as this may result in
permanent damage to the Pico’s ADC.

Figure 14. Wiring ® o 0 0 o e o o 0 0 e e o 0o 0 e e o 0 0 e o e 0
Diagram for ICS-40180 e o 0o 0 0 e o o o 0 e o o o 0 . e o o e e o o o
microphone breakout
board.

® & & & & & & 0 0 6 0 0 8 8 S S S S S S S S S S S EEYE Y e

L] e @ o o o

. ORaspberrv i

. R p

.
L] e @ o o

fritzing

List of Files

CMakelLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/adc/microphone_adc/CMakeLists. txt

add_executable(microphone_adc
microphone_adc.c

)

1
2

8

4

5 # pull in common dependencies and adc hardware support

6 target_link_libraries(microphone_adc pico_stdlib hardware_adc)
7
8

create map/bin/hex file etc.
9 pico_add_extra_outputs(microphone_adc)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(microphone_adc)

microphone_adc.c

The example code.

]
Attaching a microphone using the ADC 81

https://github.com/raspberrypi/pico-examples/blob/master/adc/microphone_adc/CMakeLists.txt

Raspberry Pi Pico C/C++ SDK
]

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/adc/microphone_adc/microphone_adc.c

1 g

2 * Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
3 *

4 * SPDX-License-Identifier: BSD-3-Clause

5 @y

6

7 #include <stdio.h>

8 #include "pico/stdlib.h"

9 #include "hardware/gpio.h"

10 #include "hardware/adc.h"

11 #include "hardware/uart.h"

12 #include "pico/binary_info.h"

13

14 /* Example code to extract analog values from a microphone using the ADC
15 with accompanying Python file to plot these values

16

17 Connections on Raspberry Pi Pico board, other boards may vary.
18

19 GPIO 26/ADCO (pin 31)-> AOUT or AUD on microphone board

20 3.3v (pin 36) -> VCC on microphone board

21 GND (pin 38) -> GND on microphone board

22 */

23

24 #define ADC_NUM @

25 #define ADC_PIN (26 + ADC_NUM)

26 #define ADC_VREF 3.3

27 #define ADC_RANGE (1 << 12)

28 #define ADC_CONVERT (ADC_VREF / (ADC_RANGE - 1))

29

30 int main() {

31 stdio_init_all();

32 printf("Beep boop, listening...\n");

33

34 bi_decl(bi_program_description("Analog microphone example for Raspberry Pi Pico")); //
for picotool

85 bi_decl(bi_1pin_with_name(ADC_PIN, "ADC input pin"));

36

37 adc_init();

38 adc_gpio_init(ADC_PIN);

39 adc_select_input(ADC_NUM);

40

41 uint adc_raw;

42 while (1) {

43 adc_raw = adc_read(); // raw voltage from ADC

44 printf("%.2f\n", adc_raw * ADC_CONVERT) ;

45 sleep_ms(10);

46 }

47

48 return 0;

49 }

Bill of Materials

Table 12. A list of . .
materials required for Item Quantity Details
the example .
g Breadboard 1 generic part

Attaching a microphone using the ADC 82

https://github.com/raspberrypi/pico-examples/blob/master/adc/microphone_adc/microphone_adc.c

Raspberry Pi Pico C/C++ SDK

Raspberry Pi Pico 1 https://www.raspberrypi.com/
products/raspberry-pi-pico/

ICS-40180 microphone breakout 1 From SparkFun
board or similar

M/M Jumper wires 3 generic part

Attaching a BME280 temperature/humidity/pressure
sensor via SPI

This example code shows how to interface the Raspberry Pi Pico to a BME280 temperature/humidity/pressure. The
particular device used can be interfaced via I12C or SPI, we are using SPI, and interfacing at 3.3v.

This examples reads the data from the sensor, and runs it through the appropriate compensation routines (see the chip
datasheet for details https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-
ds002.pdf). At startup the compensation parameters required by the compensation routines are read from the chip.)

Wiring information

Wiring up the device requires 6 jumpers as follows:
® GPIO 16 (pin 21) MISO/spi0_rx— SDO/SDO on bme280 board
® GPIO 17 (pin 22) Chip select — CSB/!CS on bme280 board
® GPIO 18 (pin 24) SCK/spi0_sclk — SCL/SCK on bme280 board
® GPIO 19 (pin 25) MOSI/spi0_tx — SDA/SDI on bme280 board
® 3.3v (pin 3;6) — VCC on bme280 board
® GND (pin 38) — GND on bme280 board

The example here uses SPI port 0. Power is supplied from the 3.3V pin.

O NoOTE

There are many different manufacturers who sell boards with the BME280. Whilst they all appear slightly different,
they all have, at least, the same 6 pins required to power and communicate. When wiring up a board that is different
to the one in the diagram, ensure you connect up as described in the previous paragraph.

Figure 15. Wiring
Diagram for bme280.

fritzing

List of Files

Attaching a BME280 temperature/humidity/pressure sensor via SPI 83

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.sparkfun.com/products/18011
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf

Raspberry Pi Pico C/C++ SDK
]

CMakelists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/spi/bme280_spi/CMakeLists.txt

add_executable(bme280_spi
bme280_spi.c
)

pull in common dependencies and additional spi hardware support
target_link_libraries(bme286_spi pico_stdlib hardware_spi)

0w N O o WwN =

create map/bin/hex file etc.
pico_add_extra_outputs(bme286_spi)

o}

10
11 # add url via pico_set_program_url
12 example_auto_set_url(bme280_spi)

bme280_spi.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/spi/bme280_spi/bme280_spi.c

1 /**
2 * Copyright (c) 20626 Raspberry Pi (Trading) Ltd.

3 *

4 * SPDX-License-Identifier: BSD-3-Clause

B =y

6

7 #include <stdio.h>

8 #include <string.h>

9 #include "pico/stdlib.h"
10 #include "pico/binary_info.h"
11 #include "hardware/spi.h"
12
13 /* Example code to talk to a bme280 humidity/temperature/pressure sensor.
14
15 NOTE: Ensure the device is capable of being driven at 3.3v NOT 5v. The Pico
16 GPIO (and therefore SPI) cannot be used at 5v.

17

18 You will need to use a level shifter on the SPI lines if you want to run the
19 board at 5v.

20

21 Connections on Raspberry Pi Pico board and a generic bme286 board, other

22 boards may vary.

23

24 GPIO 16 (pin 21) MISO/spi6_rx-> SDO/SDO on bme286 board
25 GPIO 17 (pin 22) Chip select -> CSB/!CS on bme286 board
26 GPIO 18 (pin 24) SCK/spi@_sclk -> SCL/SCK on bme286 board
27 GPIO 19 (pin 25) MOSI/spib_tx -> SDA/SDI on bme286 board
28 3.3v (pin 36) -> VCC on bme286 board

29 GND (pin 38) -> GND on bme286 board

30

31 Note: SPI devices can have a number of different naming schemes for pins. See

32 the Wikipedia page at https://en.wikipedia.org/wiki/Serial_Peripheral_Interface

33 for variations.

34

35 This code uses a bunch of register definitions, and some compensation code derived
36 from the Bosch datasheet which can be found here.

&7 https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme286-

]
Attaching a BME280 temperature/humidity/pressure sensor via SPI 84

https://github.com/raspberrypi/pico-examples/blob/master/spi/bme280_spi/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/master/spi/bme280_spi/bme280_spi.c

Raspberry Pi Pico C/C++ SDK
]

38
39
40
a1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

12)
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

dse02.pdf
27

#define READ_BIT 6x86

int32_t t_fine;

uint16_t dig_T1;

int16_t dig_T2, dig_T3;

uint16_t dig_P1;

int16_t dig_P2, dig_P3, dig_P4, dig_P5, dig_P6, dig_P7, dig_P8, dig_P9;
uint8_t dig_H1, dig_H3;

int8_t dig_H6;

int16_t dig_H2, dig_H4, dig_H5;

/* The following compensation functions are required to convert from the raw ADC
data from the chip to something usable. Each chip has a different set of
compensation parameters stored on the chip at point of manufacture, which are
read from the chip at startup and used in these routines.
&7
int32_t compensate_temp(int32_t adc_T) {

int32_t varil, var2, T;

varl = ((((adc_T >> 3) - ((int32_t) dig_T1 << 1))) * ((int32_t) dig_T2)) >> 11;

var2 (((((adec_T >> 4) - ((int32_t) dig_T1)) * ((adc_T >> 4) - ((int32_t) dig_T1))) >>
* ((int32_t) dig_T3))

>> 14;

t_fine = var1 + var2;
T = (t_fine * 5 + 128) >> 8;
return T;

uint32_t compensate_pressure(int32_t adc_P) {
int32_t vari, var2;
uint32_t p;
(((int32_t) t_fine) >> 1) - (int32_t) 64000;
var2 = (((var1l >> 2) * (varl >> 2)) >> 11) * ((int32_t) dig_P6);
var2 = var2 + ((var1l * ((int32_t) dig_P5)) << 1);
var2 = (var2 >> 2) + (((int32_t) dig_P4) << 16);
(((dig_P3 * (((var1 >> 2) * (varl >> 2)) >> 13)) >> 3) + ((((int32_t) dig_P2) *

varil

varl

varl) >> 1)) >> 18;

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

varl = ((((32768 + var1)) * ((int32_t) dig_P1)) >> 15);
if (var1l == @)
return 0;
p = (((uint32_t) (((int32_t) 1848576) - adc_P) - (var2 >> 12))) * 3125;
if (p < 6x80000000)
p=(p<<1)/ ((uint32_t) var1);
else
p = (p / (uint32_t) varl) * 2;
varl = (((int32_t) dig_P9) * ((int32_t) (((p >> 3) * (p >> 3)) >> 13))) >> 12;
var2 = (((int32_t) (p >> 2)) * ((int32_t) dig_P8)) >> 13;
p = (uint32_t) ((int32_t) p + ((varl + var2 + dig_P7) >> 4));
return p;
}
uint32_t compensate_humidity(int32_t adc_H) {

int32_t v_x1_u32r;
v_x1_u32r = (t_fine - ((int32_t) 76800));
v_x1_u32r = (((((adc_H << 14) - (((int32_t) dig_H4) << 20) - (((int32_t) dig_H5) *

v_x1_u32r)) +

]
Attaching a BME280 temperature/humidity/pressure sensor via SPI 85

Raspberry Pi Pico C/C++ SDK
]

97

((int32_t) 16384)) >> 15) * (((((((v_x1_ud2r * ((int32_t) dig_H6)) >>

10) * (((v_x1_u32r *

98

((int32_t) dig_H3))

99
100
101

102
103
104
105
106 }
107

dig_H1)) >> 4));

>> 11) + ((int32_t) 32768))) >> 18) + ((int32_t) 2097152)) *

((int32_t) dig_H2) + 8192) >> 14));
v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) * ((int32_t)
v_x1_u32r = (v_x1_u32r < 0 ? 0 : v_x1_u32r);
v_x1_u32r = (v_x1_u32r > 419430400 ? 419430400 : v_x1_u32r);

return (uint32_t) (v_x1_u32r >> 12);

108 #ifdef PICO_DEFAULT_SPI_CSN_PIN
109 static inline void cs_select() {

110
111
112
113 }
114

asm volatile("nop \n nop \n nop");
gpio_put(PICO_DEFAULT_SPI_CSN_PIN, @); // Active low
asm volatile("nop \n nop \n nop");

115 static inline void cs_deselect() {

116 asm volatile("nop \n nop \n nop");

117 gpio_put(PICO_DEFAULT_SPI_CSN_PIN, 1);
118 asm volatile("nop \n nop \n nop");

119 }

120 #endif

121

122 #if defined(spi_default) && defined(PICO_DEFAULT_SPI_CSN_PIN)
123 static void write_register(uint8_t reg, uint8_t data) {

124
125
126
127
128
129
130
131 }
132

uint8_t buf[2];

buf[@] = reg & Ox7f; // remove read bit as this is a write
buf[1] = data;

cs_select();

spi_write_blocking(spi_default, buf, 2);

cs_deselect();

sleep_ms(10);

133 static void read_registers(uint8_t reg, uint8_t *buf, uint16_t len) {

134
135
136
137
138
139
140
141
142
143
144 }
145

// For this particular device, we send the device the register we want to read

// first, then subsequently read from the device. The register is auto incrementing
// so we don't need to keep sending the register we want, just the first.

reg |= READ_BIT;

cs_select();

spi_write_blocking(spi_default, ®, 1);

sleep_ms(10);

spi_read_blocking(spi_default, @, buf, len);

cs_deselect();

sleep_ms(10);

146 /* This function reads the manufacturing assigned compensation parameters from the device */
147 void read_compensation_parameters() {

148
149
150
151
152
153
154
155
156

uint8_t buffer[26];

read_registers(0x88, buffer, 24);

dig_T1 = buffer[@] | (buffer[1] << 8);
dig_T2 = buffer[2] | (buffer[3] << 8);
dig_T3 = buffer[4] | (buffer[5] << 8);
dig_P1 = buffer[6] | (buffer[7] << 8);

]
Attaching a BME280 temperature/humidity/pressure sensor via SPI 86

Raspberry Pi Pico C/C++ SDK
]

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

182

183
184
185
186
187
188
189

190
191
192
193
194
195
196
197
198
199
200
201
202

203
204
205
206
207
208
209
210
211
212
213
214

dig_P2 = buffer[8] | (buffer[9] << 8);
dig_P3 = buffer[10] | (buffer[11] <<
dig_P4 = buffer[12] | (buffer[13] <<
dig_P5 = buffer[14] | (buffer[15] <<
dig_P6 = buffer[16] | (buffer[17] <<

|

|

|

dig_P7 = buffer[18] (buffer[19] <<
dig_P8 = buffer[20] (buffer[21] <<
dig_P9 = buffer[22] (buffer[23] <<

0 O O 0 0 0 0 -
— — — — — — —

dig_H1 = buffer[25];

read_registers(@xE1, buffer, 8);

dig_H2 = buffer[@] | (buffer[1] << 8);

dig_H3 = (int8_t) buffer[2];

dig_H4 = buffer[3] << 4 | (buffer[4] & Oxf);
dig_H5 = (buffer[5] >> 4) | (buffer[6] << 4);
dig_H6 = (int8_t) buffer[7];

static void bme280_read_raw(int32_t *humidity, int32_t *pressure, int32_t *temperature) {
uint8_t buffer[8];

read_registers(0xF7, buffer, 8);
*pressure = ((uint32_t) buffer[@] << 12) | ((uint32_t) buffer[1] << 4) | (buffer[2] >>

4);
*temperature = ((uint32_t) buffer[3] << 12) | ((uint32_t) buffer[4] << 4) | (buffer[5]
=2 4);
*humidity = (uint32_t) buffer[6] << 8 | buffer[7];
}
#endif

int main() {
stdio_init_all();
#if Idefined(spi_default) || !defined(PICO_DEFAULT_SPI_SCK_PIN) ||
!defined(PICO_DEFAULT_SPI_TX_PIN) || !defined(PICO_DEFAULT_SPI_RX_PIN) ||
!'defined (PICO_DEFAULT_SPI_CSN_PIN)
#warning spi/bme286_spi example requires a board with SPI pins
puts("Default SPI pins were not defined");
#else

printf("Hello, bme2808! Reading raw data from registers via SPI...\n");

// This example will use SPIO at 0.5MHz.

spi_init(spi_default, 560 * 1000);

gpio_set_function(PICO_DEFAULT_SPI_RX_PIN, GPIO_FUNC_SPI);

gpio_set_function(PICO_DEFAULT_SPI_SCK_PIN, GPIO_FUNC_SPI);

gpio_set_function(PICO_DEFAULT_SPI_TX_PIN, GPIO_FUNC_SPI);

// Make the SPI pins available to picotool

bi_decl(bi_3pins_with_func(PICO_DEFAULT_SPI_RX_PIN, PICO_DEFAULT_SPI_TX_PIN,
PICO_DEFAULT_SPI_SCK_PIN, GPIO_FUNC_SPI));

// Chip select is active-Iow, so we'll initialise it to a driven-high state
gpio_init(PICO_DEFAULT_SPI_CSN_PIN);

gpio_set_dir (PICO_DEFAULT_SPI_CSN_PIN, GPIO_OUT);
gpio_put(PICO_DEFAULT_SPI_CSN_PIN, 1);

// Make the CS pin available to picotool
bi_decl(bi_1pin_with_name(PICO_DEFAULT_SPI_CSN_PIN, "SPI CS"));

// See if SPI is working - interrograte the device for its I2C ID number, should be 6x60
uint8_t id;

read_registers(0xDO, &id, 1);

printf("Chip ID is @x%x\n", id);

]
Attaching a BME280 temperature/humidity/pressure sensor via SPI 87

Raspberry Pi Pico C/C++ SDK

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237 }
238
239
240 #endif
241 }

read_compensation_parameters();

write_register(@xF2, Ox1); // Humidity oversampling register - going for x1
write_register(@OxF4, 0x27);// Set rest of oversampling modes and run mode to normal

int32_t humidity, pressure, temperature;

while (1) {

bme286_read_raw(&humidity, &pressure, &temperature);

// These are the raw numbers from the chip, so we need to run through the
// compensations to get human understandable numbers

pressure = compensate_pressure(pressure);

temperature = compensate_temp(temperature);

humidity = compensate_humidity(humidity);

printf("Humidity = %.2f%%\n", humidity / 1024.0);
printf("Pressure = %dPa\n", pressure);

printf("Temp. = %.2fC\n", temperature / 100.0);

sleep_ms(1000) ;

return 0;

Bill of Materials

Table 13. A list of

materials required for Item Quantity Details
the example Breadboard 1 generic part
Raspberry Pi Pico 1 https://www.raspberrypi.com/
products/raspberry-pi-pico/
BME280 board 1 generic part
M/M Jumper wires 6 generic part

Attaching a MPU9250 accelerometer/gyroscope via SPI

This example code shows how to interface the Raspberry Pi Pico to the MPU9250 accelerometer/gyroscope board. The

particular device used can be interfaced via I12C or SPI, we are using SPI, and interfacing at 3.3v.

© NoTE

This is a very basic example, and only recovers raw data from the sensor. There are various calibration options
available that should be used to ensure that the final results are accurate. It is also possible to wire up the interrupt
pin to a GPIO and read data only when it is ready, rather than using the polling approach in the example.

Wiring information

Wiring up the device requires 6 jumpers as follows:

Attaching a MPU9250 accelerometer/gyroscope via SPI

88

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/

Raspberry Pi Pico C/C++ SDK
]

® GPIO 4 (pin 6) MISO/spiO_rx— ADO on MPU9250 board
® GPIO 5 (pin 7) Chip select — NCS on MPU9250 board

® GPIO 6 (pin 9) SCK/spiO_sclk — SCL on MPU9250 board
® GPIO 7 (pin 10) MOSI/spi0_tx — SDA on MPU9250 board
® 3.3v (pin 36) — VCC on MPU9250 board

® GND (pin 38) — GND on MPU9250 board

The example here uses SPI port 0. Power is supplied from the 3.3V pin.

O NoTE

There are many different manufacturers who sell boards with the MPU9250. Whilst they all appear slightly different,
they all have, at least, the same 6 pins required to power and communicate. When wiring up a board that is different
to the one in the diagram, ensure you connect up as described in the previous paragraph.

Figure 16. Wiring $999% 99009 09909 0990 90990 20990 Teeee Peese veese esees
Diagram for MPU9250.

fritzing

List of Files

CMakelLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/spi/mpu9250_spi/CMakeLists.txt

add_executable(mpu9250_spi
mpu9250_spi.c
)

1
2
8
4
5 # pull in common dependencies and additional spi hardware support
6 target_link_libraries(mpu9250_spi pico_stdlib hardware_spi)

7

8

create map/bin/hex file etc.
9 pico_add_extra_outputs(mpu92506_spi)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(mpu9250_spi)

mpu9250_spi.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/spi/mpu9250_spi/mpu9250_spi.c

IV
2 * Copyright (c) 2626 Raspberry Pi (Trading) Ltd.
3 *

]
Attaching a MPU9250 accelerometer/gyroscope via SPI 89

https://github.com/raspberrypi/pico-examples/blob/master/spi/mpu9250_spi/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/master/spi/mpu9250_spi/mpu9250_spi.c

Raspberry Pi Pico C/C++ SDK
]

* SPDX-License-Identifier: BSD-3-Clause
27

#include <stdio.h>

#include <string.h>

9 #include "pico/stdlib.h"

10 #include "pico/binary_info.h"
11 #include "hardware/spi.h”

12
13 /* Example code to talk to a MPU9250 MEMS accelerometer and gyroscope.
14 Ignores the magnetometer, that is left as a exercise for the reader.
15

16 This is taking to simple approach of simply reading registers. It's perfectly
17 possible to link up an interrupt line and set things up to read from the

18 inbuilt FIFO to make it more useful.

19

20 NOTE: Ensure the device is capable of being driven at 3.3v NOT 5v. The Pico
21 GPIO (and therefor SPI) cannot be used at 5v.

22

23 You will need to use a level shifter on the I2C lines if you want to run the
24 board at 5v.

25

26 Connections on Raspberry Pi Pico board and a generic MPU9250 board, other
27 boards may vary.

28

29 GPIO 4 (pin 6) MISO/spi@_rx-> ADO on MPU9256 board
30 GPIO 5 (pin 7) Chip select -> NCS on MPU9256 board
31 GPIO 6 (pin 9) SCK/spi6@_sclk -> SCL on MPU9256 board
32 GPIO 7 (pin 18) MOSI/spif_tx -> SDA on MPU92560 board
33 3.3v (pin 36) -> VCC on MPU9256 board

34 GND (pin 38) -> GND on MPU9256 board

35

36 Note: SPI devices can have a number of different naming schemes for pins. See
37 the Wikipedia page at https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
38 for variations.

39 The particular device used here uses the same pins for I2C and SPI, hence the
40 using of I2C names

41 */

42

43 #define PIN_MISO 4

44 #define PIN_.CS 5

45 #define PIN_SCK 6

46 #define PIN_MOSI 7
47

48 #define SPI_PORT spi@
49 #define READ_BIT 0x86

50

51 static inline void cs_select() {

52 asm volatile("nop \n nop \n nop");

59 gpio_put(PIN_CS, @); // Active low

54 asm volatile("nop \n nop \n nop");

55 }

56

57 static inline void cs_deselect() {

58 asm volatile("nop \n nop \n nop");

59 gpio_put(PIN_CS, 1);

60 asm volatile("nop \n nop \n nop");

61 }

62

63 static void mpu9250_reset() {

64 // Two byte reset. First byte register, second byte data

65 // There are a load more options to set up the device in different ways that could be
added here

]
Attaching a MPU9250 accelerometer/gyroscope via SPI 90

Raspberry Pi Pico C/C++ SDK
]

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
1083
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

uint8_t buf[] = {0x6B, 0x00};
cs_select();
spi_write_blocking(SPI_PORT, buf, 2);
cs_deselect();

static void read_registers(uint8_t reg, uint8_t *buf, uint16_t len) {

// For this particular device, we send the device the register we want to read
// first, then subsequently read from the device. The register is auto incrementing
// so we don't need to keep sending the register we want, just the first.

reg |= READ_BIT;

cs_select();

spi_write_blocking(SPI_PORT, ®, 1);
sleep_ms(10);

spi_read_blocking(SPI_PORT, @, buf, len);
cs_deselect();

sleep_ms(10);

static void mpu9250_read_raw(int16_t accel[3], int16_t gyro[3], int16_t *temp) {

uint8_t buffer[6];

// Start reading acceleration registers from register 6x3B for 6 bytes
read_registers(0x3B, buffer, 6);

for (int i = 0; i < 3; i++) {

accel[i] = (buffer[i * 2] << 8 | buffer[(i * 2) + 1]);
// Now gyro data from reg 0x43 for 6 bytes
read_registers(0x43, buffer, 6);
for (int i = 0; i < 3; i++) {

gyro[i] = (buffer[i * 2] << 8 | buffer[(i * 2) + 1]);;
// Now temperature from reg 6x41 for 2 bytes

read_registers(0x41, buffer, 2);

*temp = buffer[0] << 8 | buffer[1];

int main() {

stdio_init_all();

printf("Hello, MPU9250! Reading raw data from registers via SPI...\n");

// This example will use SPIO at 0.5MHz.

spi_init(SPI_PORT, 568 * 1000);

gpio_set_function(PIN_MISO, GPIO_FUNC_SPI);

gpio_set_function(PIN_SCK, GPIO_FUNC_SPI);

gpio_set_function(PIN_MOSI, GPIO_FUNC_SPI);

// Make the SPI pins available to picotool
bi_decl(bi_3pins_with_func(PIN_MISO, PIN_MOSI, PIN_SCK, GPIO_FUNC_SPI));

// Chip select is active-Iow, so we'll initialise it to a driven-high state
gpio_init(PIN_CS);

gpio_set_dir(PIN_CS, GPIO_OUT);

gpio_put(PIN_CS, 1);

// Make the CS pin available to picotool

]
Attaching a MPU9250 accelerometer/gyroscope via SPI 91

Raspberry Pi Pico C/C++ SDK
]

129 bi_decl(bi_1pin_with_name(PIN_CS, "SPI CS"));

130

131 mpu9250_reset();

132

133 // See if SPI is working - interrograte the device for its I2C ID number, should be 6x71

134 uint8_t id;

135 read_registers(0x75, &id, 1);

136 printf("I2C address is @x%x\n", id);

137

138 int16_t acceleration[3], gyro[3], temp;

139

140 while (1) {

141 mpu9250_read_raw(acceleration, gyro, &temp);

142

143 // These are the raw numbers from the chip, so will need tweaking to be really
useful.

144 // See the datasheet for more information

145 printf("Acc. X = %d, Y = %d, Z = %d\n", acceleration[@], acceleration[1],
acceleration[2]);

146 printf("Gyro. X = %d, Y = %d, Z = %d\n", gyro[@], gyro[1], gyro[2]);

147 // Temperature is simple so use the datasheet calculation to get deg C.

148 // Note this is chip temperature.

149 printf("Temp. = %f\n", (temp / 348.8) + 36.53);

150

151 sleep_ms(100);

152 }

153

154 return 0;

155 }

Bill of Materials

Table 14. A list of

materials required for ltem Quantlty Details
the example Breadboard 1 generic part
Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

MPU9250 board 1 generic part

M/M Jumper wires 6 generic part

Attaching a MPU6050 accelerometer/gyroscope via 12C

This example code shows how to interface the Raspberry Pi Pico to the MPU6050 accelerometer/gyroscope board. This
device uses 12C for communications, and most MPU6050 parts are happy running at either 3.3 or 5v. The Raspberry Pi
RP2040 GPIO’s work at 3.3v so that is what the example uses.

]
Attaching a MPU6050 accelerometer/gyroscope via I2C 92

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/

Raspberry Pi Pico C/C++ SDK

© NoTE

This is a very basic example, and only recovers raw data from the sensor. There are various calibration options
available that should be used to ensure that the final results are accurate. It is also possible to wire up the interrupt
pin to a GPIO and read data only when it is ready, rather than using the polling approach in the example.

Wiring information

Wiring up the device requires 4 jumpers, to connect VCC (3.3v), GND, SDA and SCL. The example here uses 12C port 0,
which is assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the 3.3V pin.

O NoOTE

There are many different manufacturers who sell boards with the MPU6050. Whilst they all appear slightly different,
they all have, at least, the same 4 pins required to power and communicate. When wiring up a board that is different
to the one in the diagram, ensure you connect up as described in the previous paragraph.

Figure 17. Wiring ceses eeese ssees seses eeese seecs Seses esese seecs seces
Diagram for MPU6050.

fritzing

List of Files

CMakelLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/mpu6050_i2c/CMakeLists. txt

add_executable(mpu60650_i2c
mpu6650_i2c.c

)

1
2
8
4
5 # pull in common dependencies and additional i2c hardware support
6 target_link_libraries(mpu6050_i2c pico_stdlib hardware_i2c)

7

8

create map/bin/hex file etc.
9 pico_add_extra_outputs(mpu6650_i2c)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(mpu6650_i2c)

mpu6050_i2c.c

The example code.
Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/mpu6050_i2c/mpu6050_i2c.c

1 /#*

]
Attaching a MPU6050 accelerometer/gyroscope via I2C 93

https://github.com/raspberrypi/pico-examples/blob/master/i2c/mpu6050_i2c/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/master/i2c/mpu6050_i2c/mpu6050_i2c.c

Raspberry Pi Pico C/C++ SDK
]

o N o o WwN

O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62

*
*

*

Y

#1in
#1in
#1n
#1n
#in

/*

“Y

//
sta

Copyright (c) 2620 Raspberry Pi (Trading) Ltd.

SPDX-License-Identifier: BSD-3-Clause

clude <stdio.h>

clude <string.h>

clude "pico/stdlib.h”
clude "pico/binary_info.h"
clude "hardware/i2c.h"

Example code to talk to a MPU6050 MEMS accelerometer and gyroscope

This is taking to simple approach of simply reading registers. It's perfectly
possible to link up an interrupt line and set things up to read from the
inbuilt FIFO to make it more useful.

NOTE: Ensure the device is capable of being driven at 3.3v NOT 5v. The Pico
GPIO (and therefor I2C) cannot be used at 5v.

You will need to use a level shifter on the I2C lines if you want to run the
board at 5v.

Connections on Raspberry Pi Pico board, other boards may vary.

GPIO PICO_DEFAULT_I2C_SDA_PIN (On Pico this is GP4 (pin 6)) -> SDA on MPU6656 board
GPIO PICO_DEFAULT_I2C_SCL_PIN (On Pico this is GP5 (pin 7)) -> SCL on MPU6656 board
3.3v (pin 36) -> VCC on MPU6656 board
GND (pin 38) -> GND on MPU6656 board

By default these devices are on bus address 0x68
tic int addr = 0x68;

#ifdef i2c_default

sta

tic void mpu6050_reset() {
// Two byte reset. First byte register, second byte data
// There are a load more options to set up the device in different ways that could be

added here

sta

bus

uint8_t buf[] = {@x6B, ©x80};
i2c_write_blocking(i2c_default, addr, buf, 2, false);

tic void mpu6050_read_raw(int16_t accel[3], int16_t gyro[3], int16_t *temp) {
// For this particular device, we send the device the register we want to read
// first, then subsequently read from the device. The register is auto incrementing
// so we don't need to keep sending the register we want, just the first.

uint8_t buffer[6];

// Start reading acceleration registers from register 0x3B for 6 bytes

uint8_t val = Bx3B;

i2c_write_blocking(i2c_default, addr, &val, 1, true); // true to keep master control of
i2c_read_blocking(i2c_default, addr, buffer, 6, false);

for (int i = @; i < 3; i++) {

accel[i] = (buffer[i * 2] << 8 | buffer[(i * 2) + 1]);

// Now gyro data from reg 0x43 for 6 bytes
// The register is auto incrementing on each read
val = 0x43;

]
Attaching a MPU6050 accelerometer/gyroscope via I2C 94

Raspberry Pi Pico C/C++ SDK
]

63 i2c_write_blocking(i2c_default, addr, &val, 1, true);

64 i2c_read_blocking(i2c_default, addr, buffer, 6, false); // False - finished with bus
65

66 for (int i = @; i < 3; i++) {

67 gyro[i] = (buffer[i * 2] << 8 | buffer[(i * 2) + 1]);;

68 }

69

70 // Now temperature from reg 6x41 for 2 bytes

71 // The register is auto incrementing on each read

72 val = 0x41;

73 i2c_write_blocking(i2c_default, addr, &val, 1, true);

74 i2c_read_blocking(i2c_default, addr, buffer, 2, false); // False - finished with bus
75

76 *temp = buffer[0] << 8 | buffer[1];

77 }

78 #endif

79

80 int main() {

81

stdio_init_all();

82 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
Idefined(PICO_DEFAULT_I2C_SCL_PIN)

83 #warning i2c/mpu6050_1i2c example requires a board with I2C pins

84 puts("Default I2C pins were not defined");

85 #else

86 printf("Hello, MPU6050! Reading raw data from registers...\n");

87

88 // This example will use I2C@ on the default SDA and SCL pins (4, 5 on a Pico)

89 i2c_init(i2c_default, 400 * 1000);

90 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);

91 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);

92 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);

93 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);

94 // Make the I2C pins available to picotool

95 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
GPIO_FUNC_I2C));

96

97 mpu6050_reset();

98

99 int16_t acceleration[3], gyro[3], temp;

100

101 while (1) {

102 mpu6050_read_raw(acceleration, gyro, &temp);

103

104 // These are the raw numbers from the chip, so will need tweaking to be really
useful.

105 // See the datasheet for more information

106 printf("Acc. X = %d, Y = %d, Z = %d\n", acceleration[@], acceleration[1],

acceleration[2]);

107 printf("Gyro. X = %d, Y = %d, Z = %d\n", gyro[@], gyro[1], gyro[2]);
108 // Temperature is simple so use the datasheet calculation to get deg C.
109 // Note this is chip temperature.

110 printf("Temp. = %f\n", (temp / 340.8) + 36.53);

111

112 sleep_ms(100);

113 }

114

115 #endif

116 return 0;

117 }

]
Attaching a MPU6050 accelerometer/gyroscope via I2C 95

Raspberry Pi Pico C/C++ SDK

Bill of Materials

Table 15. A list of

materials required for Item Quantity Details
the example Breadboard 1 generic part
Raspberry Pi Pico 1 https://www.raspberrypi.com/
products/raspberry-pi-pico/
MPU6050 board 1 generic part
M/M Jumper wires 4 generic part

Attaching a 16x2 LCD via I12C

This example code shows how to interface the Raspberry Pi Pico to one of the very common 16x2 LCD character
displays. The display will need a 3.3V 12C adapter board as this example uses 12C for communications.

O NoTE

scope of this example.

These LCD displays can also be driven directly using GPIO without the use of an adapter board. That is beyond the

Wiring information

Wiring up the device requires 4 jumpers, to connect VCC (3.3v), GND, SDA and SCL. The example here uses I12C port 0,
which is assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the 3.3V pin.

@ WARNING

will be dim.

Many displays of this type are 5v. If you wish to use a 5v display you will need to use level shifters on the SDA and
SCL lines to convert from the 3.3V used by the RP2040. Whilst a 5v display will just about work at 3.3y, the display

Figure 18. Wiring

Diagram for
LCDT602A LCD with
12C bridge.

List of Files

fritzing

Attaching a 16x2 LCD via I2C

96

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/

Raspberry Pi Pico C/C++ SDK

CMakelists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/lcd_1602_i2c/CMakeLists. txt

0w N O o WwN =

o}

10

e
)

add_executable(lcd_1602_i2c

d_1602_i2c.c

pull in common dependencies and additional i2c hardware support
target_link_libraries(lcd_1602_i2c pico_stdlib hardware_i2c)

create map/bin/hex file etc.
pico_add_extra_outputs(lcd_1602_i2c)

11 # add url via pico_set_program_url
12 example_auto_set_url(lcd_1602_1i2c)

led_1602_i2c.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/lcd_1602_i2c/lcd_1602_i2c.c

1 /**

2 * Copyright (c) 20626 Raspberry Pi (Trading) Ltd.

3 *

4 * SPDX-License-Identifier: BSD-3-Clause

B =y

6

7 #include <stdio.h>

8 #include <string.h>

9 #include "pico/stdlib.h"

10 #include "hardware/i2c.h"

11 #include "pico/binary_info.h"

12

13 /* Example code to drive a 16x2 LCD panel via a I2C bridge chip (e.g. PCF8574)
14

15 NOTE: The panel must be capable of being driven at 3.3v NOT 5v. The Pico
16 GPIO (and therefor I2C) cannot be used at 5v.

17

18 You will need to use a level shifter on the I2C lines if you want to run the
19 board at 5v.
20
21 Connections on Raspberry Pi Pico board, other boards may vary.
22
23 GPIO 4 (pin 6)-> SDA on LCD bridge board
24 GPIO 5 (pin 7)-> SCL on LCD bridge board
25 3.3v (pin 36) -> VCC on LCD bridge board
26 GND (pin 38) -> GND on LCD bridge board
27 */
28 // commands
29 const int LCD_CLEARDISPLAY = 0x01;
30 const int LCD_RETURNHOME = 0x02;
31 const int LCD_ENTRYMODESET = 0x04;
32 const int LCD_DISPLAYCONTROL = ©x08;
33 const int LCD_CURSORSHIFT = 0x10;
34 const int LCD_FUNCTIONSET = 0x20;
35 const int LCD_SETCGRAMADDR = 0x40;
36 const int LCD_SETDDRAMADDR = 0x80;
&7

Attaching a 16x2 LCD via I2C

97

https://github.com/raspberrypi/pico-examples/blob/master/i2c/lcd_1602_i2c/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/master/i2c/lcd_1602_i2c/lcd_1602_i2c.c

Raspberry Pi Pico C/C++ SDK
]

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

// flags for display entry mode
const int LCD_ENTRYSHIFTINCREMENT = ©x01;
const int LCD_ENTRYLEFT = 0x02;

// flags for display and cursor control
const int LCD_BLINKON = 0x01;

const int LCD_CURSORON = 0x02;

const int LCD_DISPLAYON = 0x04;

// flags for display and cursor shift
const int LCD_MOVERIGHT = 0x04;
const int LCD_DISPLAYMOVE = ©x08;

// flags for function set
const int LCD_5x106DOTS = 0x04;
const int LCD_2LINE = 0x08;
const int LCD_8BITMODE = 0x10;

// flag for backlight control
const int LCD_BACKLIGHT = ©0x@8;

const int LCD_ENABLE_BIT = 0x04;

// By default these LCD display drivers are on bus address 0x27
static int addr = @x27;

// Modes for lcd_send_byte
#define LCD_CHARACTER 1
#define LCD_COMMAND [Z]

#define MAX_LINES 2
#define MAX_CHARS 16
/* Quick helper function for single byte transfers */

void i2c_write_byte(uint8_t val) {
#ifdef i2c_default

i2c_write_blocking(i2c_default, addr, &val, 1, false);
#endif

}

void lcd_toggle_enable(uint8_t val) {

// Toggle enable pin on LCD display

// We cannot do this too quickly or things don't work
#define DELAY_US 660

sleep_us(DELAY_US);
i2c_write_byte(val | LCD_ENABLE_BIT);
sleep_us(DELAY_US);
i2c_write_byte(val & ~LCD_ENABLE_BIT);
sleep_us(DELAY_US) ;
}
// The display is sent a byte as two separate nibble transfers

void lcd_send_byte(uint8_t val, int mode) {
uint8_t high = mode | (val & 0xF@) | LCD_BACKLIGHT;
uint8_t low = mode | ((val << 4) & OxF@) | LCD_BACKLIGHT;

i2c_write_byte(high);
lcd_toggle_enable(high);
i2c_write_byte(low);
lcd_toggle_enable(low) ;

void lcd_clear(void) {

]
Attaching a 16x2 LCD via I2C 98

Raspberry Pi Pico C/C++ SDK
]

101 lcd_send_byte(LCD_CLEARDISPLAY, LCD_COMMAND) ;
102 }

103

104 // go to location on LCD

105 void lcd_set_cursor(int line, int position) {

106 int val = (line == @) ? Ox80 + position : OxC@ + position;
107 lcd_send_byte(val, LCD_COMMAND);

108 }

109

110 static void inline lcd_char(char val) {

111 lcd_send_byte(val, LCD_CHARACTER);

112 }

113

114 void lcd_string(const char *s) {

115 while (*s) {

116 lcd_char(*s++);

117 }

118 }

119

120 void lcd_init() {

121 lcd_send_byte(0x03, LCD_COMMAND) ;

122 lcd_send_byte(0x083, LCD_COMMAND) ;

123 lcd_send_byte(0x03, LCD_COMMAND) ;

124 lcd_send_byte(8x62, LCD_COMMAND);

125

126 lcd_send_byte(LCD_ENTRYMODESET | LCD_ENTRYLEFT, LCD_COMMAND) ;
127 lcd_send_byte(LCD_FUNCTIONSET | LCD_2LINE, LCD_COMMAND) ;
128 lcd_send_byte(LCD_DISPLAYCONTROL | LCD_DISPLAYON, LCD_COMMAND) ;
129 lcd_clear();

130 }

131

132 int main() {
133 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
!defined(PICO_DEFAULT_I2C_SCL_PIN)

134 #warning i2c/lcd_1602_i2c example requires a board with I2C pins

135 #else

136 // This example will use I2C@ on the default SDA and SCL pins (4, 5 on a Pico)

137 i2c_init(i2c_default, 100 * 1000);

138 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);

139 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);

140 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);

141 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);

142 // Make the I2C pins available to picotool

143 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
GPIO_FUNC_I2C));

144

145 led_init();

146

147 static char *message[] =

148 {

149 "RP2040 by", "Raspberry Pi"

150 "A brand new", "microcontroller",

151 "Twin core M@", "Full C SDK",

152 "More power in", "your product",

153 "More beans", "than Heinz!"

154 }:

155

156 while (1) {

157 for (int m = @; m < sizeof(message) / sizeof(message[@]); m += MAX_LINES) {

158 for (int line = @; line < MAX_LINES; line++) {

159 lcd_set_cursor(line, (MAX_CHARS / 2) - strlen(message[m + line]) / 2);

160 lcd_string(message[m + linel);

161 }

]
Attaching a 16x2 LCD via I2C 99

Raspberry Pi Pico C/C++ SDK

162 sleep_ms(2000) ;
163 lcd_clear();
164 }

165 }

166

167 return 9;

168 #endif

169 }

Bill of Materials

Table 16. A list of . .
materials required for ltem Quantlty Details
the example Breadboard 1 generic part
Raspberry Pi Pico 1 https://www.raspberrypi.com/
products/raspberry-pi-pico/
1602A based LCD panel 3.3v 1 generic part
1602A to 12C bridge device 3.3v 1 generic part
M/M Jumper wires 4 generic part

Attaching a BMP280 temp/pressure sensor via 12C

This example code shows how to interface the Raspberry Pi Pico with the popular BMP280 temperature and air
pressure sensor manufactured by Bosch. A similar variant, the BME280, exists that can also measure humidity. There is
another example that uses the BME280 device but talks to it via SPI as opposed to I2C.

The code reads data from the sensor’s registers every 500 milliseconds and prints it via the onboard UART. This
example operates the BMP280 in normal mode, meaning that the device continuously cycles between a measurement
period and a standby period at a regular interval we can set. This has the advantage that subsequent reads do not
require configuration register writes and is the recommended mode of operation to filter out short-term disturbances.

@ TP

The BMP280 is highly configurable with 3 modes of operation, various oversampling levels, and 5 filter settings. Find
the datasheet online (https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-
bmp280-ds001.pdf) to explore all of its capabilities beyond the simple example given here.

Wiring information

Wiring up the device requires 4 jumpers, to connect VCC (3.3v), GND, SDA and SCL. The example here uses the default

12C port 0, which is assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the 3.3V pin from the
Pico.

Attaching a BMP280 temp/pressure sensor via I12C 100

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf

Raspberry Pi Pico C/C++ SDK

@ WARNING

The BMP280 has a maximum supply voltage rating of 3.6V. Most breakout boards have voltage regulators that will
allow a range of input voltages of 2-6V, but make sure to check beforehand.

Figure 19. Wiring e o 0o 0 @ e o 0 0 0 e o o 0o @ e o o 0o @ e o o o @
Diagram for BMP280 o o 0 0 0 o o 0 0 0 o o o 0 0 o e o 0 0 e e o @
sensor via I12C.

Pi Pico

fritzing

List of Files

CMakelLists.txt

CMake file to incorporate the example into the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/bmp280_i2c/CMakeLists. txt

add_executable(bmp286_i2c
bmp280_i2c.c
)

1
2
8
4
5 # pull in common dependencies and additional i2c hardware support
6 target_link_libraries(bmp286_i2c pico_stdlib hardware_i2c)

7

8

create map/bin/hex file etc.
9 pico_add_extra_outputs(bmp280_i2c)

11 # add url via pico_set_program_url
12 example_auto_set_url(bmp286_i2c)

bmp280_i2c.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/bmp280_i2c/bmp280_i2c.c

/**
* Copyright (c) 2621 Raspberry Pi (Trading) Ltd.

*

* SPDX-License-Identifier: BSD-3-Clause
**/

o g WN =2

]
Attaching a BMP280 temp/pressure sensor via I12C 101

https://github.com/raspberrypi/pico-examples/blob/master/i2c/bmp280_i2c/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/master/i2c/bmp280_i2c/bmp280_i2c.c

Raspberry Pi Pico C/C++ SDK
]

7
8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

#include <stdio.h>

#include "hardware/i2c.h"
#include "pico/binary_info.h"
#include "pico/stdlib.h"

/* Example code to talk to a BMP286 temperature and pressure sensor

NOTE: Ensure the device is capable of being driven at 3.3v NOT 5v. The Pico
GPIO (and therefore I2C) cannot be used at 5v.

You will need to use a level shifter on the I2C lines if you want to run the
board at 5v.

Connections on Raspberry Pi Pico board, other boards may vary.

GPIO PICO_DEFAULT_I2C_SDA_PIN (on Pico this is GP4 (pin 6)) -> SDA on BMP286
board
GPIO PICO_DEFAULT_I2C_SCK_PIN (on Pico this is GP5 (pin 7)) -> SCL on
BMP286 board
3.3v (pin 36) -> VCC on BMP286 board
GND (pin 38) -> GND on BMP286 board

&7

// device has default bus address of 0x76
#define ADDR _u(6x76)

// hardware registers

#define REG_CONFIG _u(@xF5)
#define REG_CTRL_MEAS _u(6xF4)
#define REG_RESET _u(OxEQ)

#define REG_TEMP_XLSB _u(6xFC)
#define REG_TEMP_LSB _u(@xFB)
#define REG_TEMP_MSB _u(0xFA)

#define REG_PRESSURE_XLSB _u(0xF9)
#define REG_PRESSURE_LSB _u(0xF8)
#define REG_PRESSURE_MSB _u(0xF7)

// calibration registers

#define REG_DIG_T1_LSB _u(6x88)
#define REG_DIG_TT1_MSB _u(0x89)
#define REG_DIG_T2_LSB _u(0x8A)
#define REG_DIG_T2_MSB _u(6x8B)
#define REG_DIG_T3_LSB _u(6x8C)
#define REG_DIG_T3_MSB _u(6x8D)
#define REG_DIG_PT1_LSB _u(0x8E)
#define REG_DIG_P1_MSB _u(6x8F)
#define REG_DIG_P2_LSB _u(6x90)
#define REG_DIG_P2_MSB _u(6x91)
#define REG_DIG_P3_LSB _u(6x92)
#define REG_DIG_P3_MSB _u(6x93)
#define REG_DIG_P4_LSB _u(6x94)
#define REG_DIG_P4_MSB _u(6x95)
#define REG_DIG_P5_LSB _u(6x96)
#define REG_DIG_P5_MSB _u(6x97)
#define REG_DIG_P6_LSB _u(6x98)
#define REG_DIG_P6_MSB _u(6x99)
#define REG_DIG_P7_LSB _u(0x9A)
#define REG_DIG_P7_MSB _u(6x9B)
#define REG_DIG_P8_LSB _u(6x9C)
#define REG_DIG_P8_MSB _u(6x9D)

]
Attaching a BMP280 temp/pressure sensor via I12C

102

Raspberry Pi Pico C/C++ SDK
]

70 #define REG_DIG_P9_LSB _u(6x9E)

71 #define REG_DIG_P9_MSB _u(6x9F)

72

73 // number of calibration registers to be read
74 #define NUM_CALIB_PARAMS 24

75

76 struct bmp286_calib_param {
77 // temperature params
78 uint16_t dig_t1;

79 int16_t dig_t2;

80 int16_t dig_t3;

81

82 // pressure params

83 uint16_t dig_p1;

84 int16_t dig_p2;

85 int16_t dig_p3;

86 int16_t dig_p4;

87 int16_t dig_p5;

88 int16_t dig_p6;

89 int16_t dig_p7;

90 int16_t dig_p8;

91 int16_t dig_p9;

92 };

93

94 #ifdef i2c_default
95 void bmp286_init() {

96 // use the "handheld device dynamic" optimal setting (see datasheet)

97 uint8_t buf[2];

98

99 // 500ms sampling time, x16 filter

100 const uint8_t reg_config_val = ((0x04 << 5) | (8x05 << 2)) & OxFC;

101

102 // send register number followed by its corresponding value

103 buf[@] = REG_CONFIG;

104 buf[1] = reg_config_val;

105 i2c_write_blocking(i2c_default, ADDR, buf, 2, false);

106

107 // osrs_t x1, osrs_p x4, normal mode operation

108 const uint8_t reg_ctrl_meas_val = (0x01 << 5) | (0x@83 << 2) | (06x03);

109 buf[@] = REG_CTRL_MEAS;

110 buf[1] = reg_ctrl_meas_val;

111 i2c_write_blocking(i2c_default, ADDR, buf, 2, false);

112 }

113

114 void bmp280_read_raw(int32_t* temp, int32_t* pressure) {

115 // BMP286 data registers are auto-incrementing and we have 3 temperature and

116 // pressure registers each, so we start at OxF7 and read 6 bytes to OxFC

117 // note: normal mode does not require further ctrl_meas and config register writes

118

119 uint8_t buf[6];

120 uint8_t reg = REG_PRESSURE_MSB;

121 i2c_write_blocking(i2c_default, ADDR, ®, 1, true); // true to keep master control of
bus

122 i2c_read_blocking(i2c_default, ADDR, buf, 6, false); // false - finished with bus

123

124 // store the 26 bit read in a 32 bit signed integer for conversion

125 *pressure = (buf[0] << 12) | (buf[1] << 4) | (buf[2] >> 4);

126 *temp = (buf[3] << 12) | (buf[4] << 4) | (buf[5] >> 4);

127 }

128

129 void bmp280_reset() {

130 // reset the device with the power-on-reset procedure

131 uint8_t buf[2] = { REG_RESET, ©xB6 };

]
Attaching a BMP280 temp/pressure sensor via I12C 103

Raspberry Pi Pico C/C++ SDK
]

132 i2c_write_blocking(i2c_default, ADDR, buf, 2, false);

133 }

134

135 // intermediate function that calculates the fine resolution temperature
136 // used for both pressure and temperature conversions

137 int32_t bmp286_convert(int32_t temp, struct bmp286_calib_param* params) {

138 // use the 32-bit fixed point compensation implementation given in the

139 // datasheet

140

141 int32_t vari, var2;

142 varl = ((((temp >> 3) - ((int32_t)params->dig_t1 << 1))) * ((int32_t)params->dig_t2))
>> 11,

143 var2 = (((((temp >> 4) - ((int32_t)params->dig_t1)) * ((temp >> 4) - ((int32_t)params-
>dig_t1))) >> 12) * ((int32_t)params->dig_t3)) >> 14;

144 return varl + var2;

145 }

146

147 int32_t bmp286_convert_temp(int32_t temp, struct bmp280_calib_param* params) {

148 // uses the BMP280 calibration parameters to compensate the temperature value read from
its registers

149 int32_t t_fine = bmp28@_convert(temp, params);

150 return (t_fine * 5 + 128) >> 8;

151 }

152

153 int32_t bmp286_convert_pressure(int32_t pressure, int32_t temp, struct bmp286_calib_param*
params) {

154 // uses the BMP286 calibration parameters to compensate the pressure value read from its
registers

155

156 int32_t t_fine = bmp28@_convert(temp, params);

157

158 int32_t vari, var2;

159 uint32_t converted = 0.0;

160 varl = (((int32_t)t_fine) >> 1) - (int32_t)64000;

161 var2 = (((var1 >> 2) * (varl >> 2)) >> 11) * ((int32_t)params->dig_p6);

162 var2 += ((var1 * ((int32_t)params->dig_p5)) << 1);

163 var2 = (var2 >> 2) + (((int32_t)params->dig_p4) << 16);

164 var1l = (((params->dig_p3 * (((var1 >> 2) * (var1l >> 2)) >> 13)) >> 3) + ((((int32_t
)params->dig_p2) * varl1) >> 1)) >> 18;

165 var1l = ((((32768 + var1)) * ((int32_t)params->dig_p1)) >> 15);

166 if (var1l == 0) {

167 return @; // avoid exception caused by division by zero

168 }

169 converted = (((uint32_t)(((int32_t)1048576) - pressure) - (var2 >> 12))) * 3125;

170 if (converted < 0x806000000) {

171 converted = (converted << 1) / ((uint32_t)varl);

172 } else {

173 converted = (converted / (uint32_t)varil) * 2;

174 }

175 var1l = (((int32_t)params->dig_p9) * ((int32_t)(((converted >> 3) * (converted >> 3)) >>
13))) >> 12;

176 var2 = (((int32_t)(converted >> 2)) * ((int32_t)params->dig_p8)) >> 13;

177 converted = (uint32_t)((int32_t)converted + ((var1 + var2 + params->dig_p7) >> 4));

178 return converted;

179 }

180

181 void bmp2860_get_calib_params(struct bmp286_calib_param* params) {

182 // raw temp and pressure values need to be calibrated according to

183 // parameters generated during the manufacturing of the sensor

184 // there are 3 temperature params, and 9 pressure params, each with a LSB

185 // and MSB register, so we read from 24 registers

186

187 uint8_t buf[NUM_CALIB_PARAMS] = { @ };

]
Attaching a BMP280 temp/pressure sensor via I12C 104

Raspberry Pi Pico C/C++ SDK
]

188
189
bus
190
191

uint8_t reg =

// read in one

i2c_read_blocking(i2c_default, ADDR, buf, NUM_CALIB_PARAMS, false);

done reading

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207 }
208
209
210
211
212
213

// store these
params->dig_t1
params->dig_t2
params->dig_t3

params->dig_p1
params->dig_p2

REG_DIG_T1_LSB;
i2c_write_blocking(i2c_default, ADDR, ®, 1, true);

// true to keep master control of

go as register addresses auto-increment
// false, we're

in a struct for later use

= (uint16_t) (buf[1] << 8) | buf[0];
= (int16_t) (buf[3] << 8) | buf[2];
= (int16_t) (buf[5] << 8) | buf[4];

= (uint16_t) (buf[7] << 8) | buf[6];
= (int16_t) (buf[9] << 8) | buf[8];

params->dig_p3 = (int16_t)(buf[11] << 8) | buf[10];
params->dig_p4 = (int16_t)(buf[13] << 8) | buf[12];
params->dig_p5 = (int16_t)(buf[15] << 8) | buf[14];
params->dig_p6 = (int16_t)(buf[17] << 8) | buf[16];
params->dig_p7 = (int16_t)(buf[19] << 8) | buf[18];
params->dig_p8 = (intl16_t)(buf[21] << 8) | buf[20];
params->dig_p9 = (int16_t)(buf[23] << 8) | buf[22];

#endif

int main() {

stdio_init_all();

214 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
!'defined(PICO_DEFAULT_I2C_SCL_PIN)

215 #warning i2c / bmp286_i2c example requires a board with I2C pins

216 puts("Default I2C pins were not defined");

217 #else

218 // useful information for picotool

219 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
GPIO_FUNC_I2C));

220 bi_decl(bi_program_description("BMP2806 I2C example for the Raspberry Pi Pico"));

221

222 printf("Hello, BMP288! Reading temperaure and pressure values from sensor...\n");

223

224 // I2C is "open drain", pull ups to keep signal high when no data is being sent

225 i2c_init(i2c_default, 100 * 1000);

226 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);

227 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);

228 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);

229 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);

230

231 // configure BMP286

232 bmp286_init();

233

234 // retrieve fixed compensation params

235 struct bmp280_calib_param params;

236 bmp286_get_calib_params(¶ms) ;

237

238 int32_t raw_temperature;

239 int32_t raw_pressure;

240

241 sleep_ms(250); // sleep so that data polling and register update don't collide

242 while (1) {

243 bmp286_read_raw(&raw_temperature, &raw_pressure);

244 int32_t temperature = bmp2806_convert_temp(raw_temperature, ¶ms);

245 int32_t pressure = bmp280_convert_pressure(raw_pressure, raw_temperature, ¶ms);

246 printf("Pressure = %.3f kPa\n", pressure / 1000.f);

Attaching a BMP280 temp/pressure sensor via I12C

105

Raspberry Pi Pico C/C++ SDK
]

Table 17. A list of
materials required for
the example

247 printf("Temp. = %.2f C\n", temperature / 100.f);
248 // poll every 500ms

249 sleep_ms(5600);

250 }

251

252 #endif

253 return 0;

254 }

Bill of Materials

Item Quantity Details
Breadboard 1 generic part
Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

BMP280-based breakout board 1 from Pimoroni

M/M Jumper wires 4 generic part

Attaching a LIS3DH Nano Accelerometer via i2c.

This example shows you how to interface the Raspberry Pi Pico to the LIS3DH accelerometer and temperature sensor.

The code reads and displays the acceleration values of the board in the 3 axes and the ambient temperature value. The
datasheet for the sensor can be found at https://www.st.com/resource/en/datasheet/cd00274221.pdf. The device is
being operated on 'normal mode' and at a frequency of 1.344 kHz (this can be changed by editing the ODR bits of
CTRL_REG4). The range of the data is controlled by the FS bit in CTRL_REG4 and is equal to +2g in this example. The
sensitivity depends on the operating mode and data range; exact values can be found on page 10 of the datasheet. In
this case, the sensitivity value is 4mg (where g is the value of gravitational acceleration on the surface of Earth). In order
to use the auxiliary ADC to read temperature, the we must set the BDU bit to 1 in CTRL_REG4 and the ADC_EN bit to 1 in
TEMP_CFG_REG. Temperature is communicated through ADC 3.

© NoTE

The sensor doesn't have features to eliminate offsets in the data and these will need to be taken into account in the
code.

Wiring information

Wiring up the device requires 4 jumpers, to connect VIN, GND, SDA and SCL. The example here uses 12C port 0, which is
assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the 3V pin.

]
Attaching a LIS3DH Nano Accelerometer via i2c. 106

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://shop.pimoroni.com/products/bmp280-breakout-temperature-pressure-altitude-sensor
https://www.st.com/resource/en/datasheet/cd00274221.pdf

Raspberry Pi Pico C/C++ SDK

Figure 20. Wiring
Diagram for LIS3DH.

VEAVEVWEVEW e o L] L] L . L] e e o o 0
L

ORaspberry i
% =
I

LIS3DH

AL A2 A3

fritzing

List of Files

CMakelLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/lis3dh_i2c/CMakelLists.txt

add_executable(lis3dh_i2c
lis3dh_i2c.c
)

1
2
8
4
5 # pull in common dependencies and additional i2c hardware support
6 target_link_libraries(lis3dh_i2c pico_stdlib hardware_i2c)

7

8

create map/bin/hex file etc.
9 pico_add_extra_outputs(lis3dh_i2c)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(lis3dh_i2c)

lis3dh_i2c.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/lis3dh_i2c/lis3dh_i2c.c

1 /**

2 * Copyright (c) 2626 Raspberry Pi (Trading) Ltd.
3 *

4 * SPDX-License-Identifier: BSD-3-Clause

514/

6

7 #include <stdio.h>

8 #include <string.h>

9 #include "pico/stdlib.h"

10 #include "pico/binary_info.h"

11 #include "hardware/i2c.h”

12

13 /* Example code to talk to a LIS3DH Mini GPS module.

]
Attaching a LIS3DH Nano Accelerometer via i2c. 107

https://github.com/raspberrypi/pico-examples/blob/master/i2c/lis3dh_i2c/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/master/i2c/lis3dh_i2c/lis3dh_i2c.c

Raspberry Pi Pico C/C++ SDK
]

14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

This example reads data from all 3 axes of the accelerometer and uses an auxillary ADC to
output temperature values.

Connections on Raspberry Pi Pico board, other boards may vary.

GPIO PICO_DEFAULT_I2C_SDA_PIN (On Pico this is 4 (physical pin 6)) -> SDA on LIS3DH board
GPIO PICO_DEFAULT_I2C_SCK_PIN (On Pico this is 5 (physical pin 7)) -> SCL on LIS3DH board
3.3v (physical pin 36) -> VIN on LIS3DH board
GND (physical pin 38) -> GND on LIS3DH board

27

// By default this device is on bus address 0x18

const int ADDRESS = 0x18;

const uint8_t CTRL_REG_1 = 0x20;
const uint8_t CTRL_REG_4 = 0x23;
const uint8_t TEMP_CFG_REG = 0xCO;

#ifdef i2c_default

void lis3dh_init() {
uint8_t buf[2];

// Turn normal mode and 1.344kHz data rate on

buf[@] = CTRL_REG_1;

buf[1] = 0x97;

i2c_write_blocking(i2c_default, ADDRESS, buf, 2, false);

// Turn block data update on (for temperature sensing)
buf[e] CTRL_REG_4;

buf[1] = 0x80;

i2c_write_blocking(i2c_default, ADDRESS, buf, 2, false);

// Turn auxillary ADC on

buf[@] = TEMP_CFG_REG;

buf[1] = @xCo;

i2c_write_blocking(i2c_default, ADDRESS, buf, 2, false);

void lis3dh_calc_value(uint16_t raw_value, float *final_value, bool isAccel) {
// Convert with respect to the value being temperature or acceleration reading
float scaling;
float senstivity = 0.004f; // g per unit

if (isAccel == true) {
scaling = 64 / senstivity;
} else {
scaling = 64;

// raw_value is signed
*final_value = (float) ((int16_t) raw_value) / scaling;

void lis3dh_read_data(uint8_t reg, float *final_value, bool IsAccel) {
// Read two bytes of data and store in a 16 bit data structure
uint8_t 1sb;
uint8_t msb;
uint16_t raw_accel;
i2c_write_blocking(i2c_default, ADDRESS, ®, 1, true);
i2c_read_blocking(i2c_default, ADDRESS, &1lsb, 1, false);

]
Attaching a LIS3DH Nano Accelerometer via i2c.

108

Raspberry Pi Pico C/C++ SDK
]

76 reg |= 0x01;

77 i2c_write_blocking(i2c_default, ADDRESS, ®, 1, true);
78 i2c_read_blocking(i2c_default, ADDRESS, &msb, 1, false);
79

80 raw_accel = (msb << 8) | 1sb;

81

82 lis3dh_calc_value(raw_accel, final_value, IsAccel);

83 }

84

85 #endif

86

87 int main() {

88 stdio_init_all();

89 #if !defined(i2c_default) [| !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
!defined(PICO_DEFAULT_I2C_SCL_PIN)
90 #warning i2c/lis3dh_i2c example requires a board with I2C pins

91 puts("Default I2C pins were not defined");

92 #else

93 printf("Hello, LIS3DH! Reading raw data from registers...\n");

94

95 // This example will use I2CO on the default SDA and SCL pins (4, 5 on a Pico)

96 i2c_init(i2c_default, 400 * 1000);

97 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);

98 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);

99 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);

100 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);

101 // Make the I2C pins available to picotool

102 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
GPIO_FUNC_I2C));

103

104 float x_accel, y_accel, z_accel, temp;

105

106 lis3dh_init();

107

108 while (1) {

109 lis3dh_read_data(@x28, &x_accel, true);

110 lis3dh_read_data(@x2A, &y_accel, true);

111 lis3dh_read_data(@x2C, &z_accel, true);

112 lis3dh_read_data(@xeC, &temp, false);

113

114 // Display data

115 printf("TEMPERATURE: %.3f%cC\n", temp, 176);

116 // Acceleration is read as a multiple of g (gravitational acceleration on the Earth's
surface)

117 printf("ACCELERATION VALUES: \n");

118 printf ("X acceleration: %.3fg\n", x_accel);

119 printf("Y acceleration: %.3fg\n", y_accel);

120 printf("Z acceleration: %.3fg\n", z_accel);

121

122 sleep_ms(5600);

123

124 // Clear terminal

125 printf("\e[1;1H\e[2J");

126 }

127 #endif

128 return 0;

129 }

]
Attaching a LIS3DH Nano Accelerometer via i2c. 109

Raspberry Pi Pico C/C++ SDK

Bill of Materials

Table 18. A list of

materials required for Item Quantity Details
the example Breadboard 1 generic part
Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

LIS3DH board 1 https://www.adafruit.com/product/
2809
M/M Jumper wires 4 generic part

Attaching a MCP9808 digital temperature sensor via 12C

This example code shows how to interface the Raspberry Pi Pico to the MCP9808 digital temperature sensor board.

This example reads the ambient temperature value each second from the sensor and sets upper, lower and critical
limits for the temperature and checks if alerts need to be raised. The CONFIG register can also be used to check for an
alert if the critical temperature is surpassed.

Wiring information

Wiring up the device requires 4 jumpers, to connect VDD, GND, SDA and SCL. The example here uses 12C port 0, which is
assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the VSYS pin.

Figure 21. Wiring e o 0 0 0 o o 0o 0o @ o o o 0o @ e o o 0o @ e o o o @
Diagram for MCP9808. o o 0o 0o 0 e o 0 0o @ o o o 0o @ e o o 0o @ e o o o @

fritzing

List of Files

CMakelLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/mcp9808_i2c/CMakelLists. txt
1 add_executable(mcp9808_i2c
2 mcp9808_i2c.c

Attaching a MCP9808 digital temperature sensor via I12C 110

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.adafruit.com/product/2809
https://www.adafruit.com/product/2809
https://github.com/raspberrypi/pico-examples/blob/master/i2c/mcp9808_i2c/CMakeLists.txt

Raspberry Pi Pico C/C++ SDK

pull

target_

in common dependencies and additional i2c hardware support
link_libraries(mcp9808_i2c pico_stdlib hardware_i2c)

create map/bin/hex file etc.
pico_add_extra_outputs(mcp98068_i2c)

11 # add url via pico_set_program_url
12 example_auto_set_url(mcp9808_i2c)

mcp9808_i2c.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/mcp9808_i2c/mcp9808_i2c.c

o N O o WN 2

= A 42 A 4 a A a A
W 0O N OO U b WN 2 ® O

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43

/**

* Copyright (c) 2026 Raspberry Pi (Trading) Ltd.

*

* SPDX-License-Identifier: BSD-3-Clause

=Y

#include <stdio.h>

#include <string.h>

#include "pico/stdlib.h"
#include "pico/binary_info.h"
#include "hardware/i2c.h"

/* Example code to talk to a MCP9868 *0.5°C Digital temperature Sensor

This reads and writes to registers on the board.

Connections on Raspberry Pi Pico board, other boards may vary.

GPIO PICO_DEFAULT_I2C_SDA_PIN (On Pico this is GP4 (physical pin 6)) -> SDA on MCP9868

board

GPIO PICO_DEFAULT_I2C_SCK_PIN (On Pico this is GP5 (physcial pin 7)) -> SCL on MCP9868

board

Vsys (physical pin 39) -> VDD on MCP9868 board
GND (physical pin 38) -> GND on MCP9868 board

“Y

//The bus address is determined by the state of pins A@, A1 and A2 on the MCP9868 board
static uint8_t ADDRESS = 0x18;

//hardware registers

const
const
const
const
const
const
const

uint8_t REG_POINTER = 0x00;
uint8_t REG_CONFIG = 0x01;
uint8_t REG_TEMP_UPPER = 0x02;
uint8_t REG_TEMP_LOWER = 0x@3;
uint8_t REG_TEMP_CRIT = 0x04;
uint8_t REG_TEMP_AMB = 0x05;
uint8_t REG_RESOLUTION = 0x@8;

void mcp9808_check_limits(uint8_t upper_byte) {

// Check flags and raise alerts accordingly
if ((upper_byte & 0x40) == 0x40) { //TA > TUPPER

printf("Temperature is above the upper temperature limit.\n");

]
Attaching a MCP9808 digital temperature sensor via I12C

111

https://github.com/raspberrypi/pico-examples/blob/master/i2c/mcp9808_i2c/mcp9808_i2c.c

Raspberry Pi Pico C/C++ SDK
]

44 }

45 if ((upper_byte & 0x20) == 0x20) { //TA < TLOWER

46 printf("Temperature is below the lower temperature limit.\n");

47 }

48 if ((upper_byte & 0x80) == 0x80) { //TA > TCRIT

49 printf("Temperature is above the critical temperature limit.\n");
50 }

51 }

52

53 float mcp9808_convert_temp(uint8_t upper_byte, uint8_t lower_byte) {

54

55 float temperature;

56

57

58 //Check if TA <= 0°C and convert to denary accordingly

59 if ((upper_byte & 0x10) == 0x10) {

60 upper_byte = upper_byte & Ox0F;

61 temperature = 256 - (((float) upper_byte * 16) + ((float) lower_byte / 16));
62 } else {

63 temperature = (((float) upper_byte * 16) + ((float) lower_byte / 16));
64

65 }

66 return temperature;

67 }

68

69 #ifdef i2c_default
70 void mcp9808_set_limits() {

71

72 //Set an upper limit of 30°C for the temperature
73 uint8_t upper_temp_msb = 0x01;

74 uint8_t upper_temp_lsb = OxE®;

75

76 //Set a lower 1imit of 20°C for the temperature

77 uint8_t lower_temp_msb = 0x01;

78 uint8_t lower_temp_lsb = 0x40;

79

80 //Set a critical limit of 46°C for the temperature
81 uint8_t crit_temp_msb = 0x02;

82 uint8_t crit_temp_1lsb = 0x80;

83

84 uint8_t buf[3];

85 buf[@] = REG_TEMP_UPPER:

86 buf[1] = upper_temp_msb;

87 buf[2] = upper_temp_lsb;

88 i2c_write_blocking(i2c_default, ADDRESS, buf, 3, false);
89

90 buf[@] = REG_TEMP_LOWER;

91 buf[1] = lower_temp_msb;

92 buf[2] = lower_temp_lsb;

93 i2c_write_blocking(i2c_default, ADDRESS, buf, 3, false);
94

95 buf[@] = REG_TEMP_CRIT;

96 buf[1] = crit_temp_msb;

97 buf[2] = crit_temp_1sb;;

98 i2c_write_blocking(i2c_default, ADDRESS, buf, 3, false);
99 }

100 #endif

101

102 int main() {

103

104 stdio_init_all();

105

106 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||

]
Attaching a MCP9808 digital temperature sensor via I12C 112

Raspberry Pi Pico C/C++ SDK
]

!defined(PICO_DEFAULT_I2C_SCL_PIN)
107 #warning i2c/mcp9808_i2c example requires a board with I2C pins

108 puts("Default I2C pins were not defined");
109 #else
110 printf("Hello, MCP98068! Reading raw data from registers...\n");
111
112 // This example will use I2C@ on the default SDA and SCL pins (4, 5 on a Pico)
113 i2c_init(i2c_default, 400 * 1000);
114 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
115 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
116 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
117 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
118 // Make the I2C pins available to picotool
119 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
GPIO_FUNC_I2C));
120
121 mcp9808_set_limits();
122
123 uint8_t buf[2];
124 uint16_t upper_byte;
125 uint16_t lower_byte;
126
127 float temperature;
128
129 while (1) {
130 // Start reading ambient temperature register for 2 bytes
131 i2c_write_blocking(i2c_default, ADDRESS, ®_TEMP_AMB, 1, true);
132 i2c_read_blocking(i2c_default, ADDRESS, buf, 2, false);
133
134 upper_byte = buf[0];
135 lower_byte = buf[1];
136
137 //isolates limit flags in upper byte
138 mcp9808_check_limits(upper_byte & OxEQ);
139
140 //clears flag bits in upper byte
141 temperature = mcp9808_convert_temp(upper_byte & Ox1F, lower_byte);
142 printf("Ambient temperature: %.4f°C\n", temperature);
143
144 sleep_ms(1000) ;
145 }
146 #endif
147 }
Bill of Materials
r:aabt{:rilz fezfl;rz; for ltem Quantity Details
the example Breadboard 1 generic part
Raspberry Pi Pico 1 https://www.raspberrypi.com/
products/raspberry-pi-pico/
MCP9808 board 1 https://www.adafruit.com/product/
1782
M/M Jumper wires 4 generic part

]
Attaching a MCP9808 digital temperature sensor via I12C 113

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.adafruit.com/product/1782
https://www.adafruit.com/product/1782

Raspberry Pi Pico C/C++ SDK

Attaching a MMA8451 3-axis digital accelerometer via 12C

This example code shows how to interface the Raspberry Pi Pico to the MMAB8451 digital accelerometer sensor board.

This example reads and displays the acceleration values of the board in the 3 axis. It also allows the user to set the
trade-off between the range and precision based on the values they require. Values often have an offset which can be
accounted for by writing to the offset correction registers. The datasheet for the sensor can be found at https://cdn-
shop.adafruit.com/datasheets/MMA8451Q-1.pdf for additional information.

Wiring information

Wiring up the device requires 4 jumpers, to connect VIN, GND, SDA and SCL. The example here uses 12C port 0, which is
assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the VSYS pin.

Figure 22. Wiring e o 0 0 0 o o 0 0 0 o o 0 0 @ e o o 0o @ e o o o @
Diagram for e o 0 0 0 o o 0 0 0 e o o 0 @ e o o 0o @ e o o o @
MMA8451.

fritzing

List of Files

CMakelLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/mma84571_i2c/CMakeLists.txt

add_executable(mma8451_i2c
mma8451_i2c.c

)

1
2
8
4 # pull in common dependencies and additional i2c hardware support
5 target_link_libraries(mma8451_i2c pico_stdlib hardware_i2c)

6

7

8

create map/bin/hex file etc.
pico_add_extra_outputs(mma8451_i2c)
9
10 # add url via pico_set_program_url
11 example_auto_set_url(mma8451_i2c)

mma8451_i2c.c

The example code.

Attaching a MMAB8451 3-axis digital accelerometer via 12C 114

https://cdn-shop.adafruit.com/datasheets/MMA8451Q-1.pdf
https://cdn-shop.adafruit.com/datasheets/MMA8451Q-1.pdf
https://github.com/raspberrypi/pico-examples/blob/master/i2c/mma8451_i2c/CMakeLists.txt

Raspberry Pi Pico C/C++ SDK
]

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/mma8451_i2c/mma8451_i2c.c

1 /**

2 * Copyright (c) 2626 Raspberry Pi (Trading) Ltd.

3 *

4 * SPDX-License-Identifier: BSD-3-Clause

5 #*/

6

7 #include <stdio.h>

8 #include <string.h>

9 #include "pico/stdlib.h"

10 #include "pico/binary_info.h"

11 #include "hardware/i2c.h”

12

13 /* Example code to talk to a MMA8451 triple-axis accelerometer.
14

15 This reads and writes to registers on the board.

16

17 Connections on Raspberry Pi Pico board, other boards may vary.
18

19 GPIO PICO_DEFAULT_I2C_SDA_PIN (On Pico this is GP4 (physical pin 6)) -> SDA on MMA8451

board
20 GPIO PICO_DEFAULT_I2C_SCK_PIN (On Pico this is GP5 (physcial pin 7)) -> SCL on MMA8451
board

21 VSYS (physical pin 39) -> VDD on MMA8451 board
22 GND (physical pin 38) -> GND on MMA8451 board
23

24 */

25

26 const uint8_t ADDRESS = 0x1D;

27

28 //hardware registers

29

30 const uint8_t REG_X_MSB = 0x01;

31 const uint8_t REG_X_LSB = 0x02;

32 const uint8_t REG_Y_MSB = 0x03;

33 const uint8_t REG_Y_LSB = 0x04;

34 const uint8_t REG_Z_MSB = 0x05;

35 const uint8_t REG_Z_LSB = 0x06;

36 const uint8_t REG_DATA_CFG = OXOE;

37 const uint8_t REG_CTRL_REGT = Ox2A;

38

39 // Set the range and precision for the data

40 const uint8_t range_config = @x@1; // 6x00 for #2g, 0x01 for +4g, 0x62 for +8g
41 const float count = 2048; // 4096 for +2g, 2048 for *4g, 1024 for +8g

42

43 uint8_t buf[2];

44

45 float mma8451_convert_accel(uint16_t raw_accel) {

46 float acceleration;

47 // Acceleration is read as a multiple of g (gravitational acceleration on the Earth's
surface)

48 // Check if acceleration < @ and convert to decimal accordingly

49 if ((raw_accel & 0x2000) == 0x2000) {

50 raw_accel &= Ox1FFF;

51 acceleration = (-8192 + (float) raw_accel) / count;

52 } else {

53 acceleration = (float) raw_accel / count;

54 }

55 acceleration *= 9.81f;

56 return acceleration;

57 }

58

]
Attaching a MMAB8451 3-axis digital accelerometer via 12C 115

https://github.com/raspberrypi/pico-examples/blob/master/i2c/mma8451_i2c/mma8451_i2c.c

Raspberry Pi Pico C/C++ SDK
]

59 #ifdef i2c_default
60 void mma8451_set_state(uint8_t state) {

61 buf[@] = REG_CTRL_REG1;

62 buf[1] = state; // Set RST bit to 1

63 i2c_write_blocking(i2c_default, ADDRESS, buf, 2, false);
64 }

65 #endif

66

67 int main() {

68 stdio_init_all();

69

70 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
!'defined(PICO_DEFAULT_I2C_SCL_PIN)
71 #warning i2c/mma84571_i2c example requires a board with I2C pins

72 puts("Default I2C pins were not defined");

73 #else

74 printf("Hello, MMA8451! Reading raw data from registers...\n");

75

76 // This example will use I2CO on the default SDA and SCL pins (4, 5 on a Pico)
77 i2c_init(i2c_default, 400 * 1000);

78 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);

79 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);

80 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);

81 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);

82 // Make the I2C pins available to picotool

83 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,

GPIO_FUNC_I2C));

84

85 float x_acceleration;

86 float y_acceleration;

87 float z_acceleration;

88

89 // Enable standby mode

90 mma8451_set_state(0x00) ;

91

92 // Edit configuration while in standby mode

93 buf[@] = REG_DATA_CFG;

94 buf[1] = range_config;

95 i2c_write_blocking(i2c_default, ADDRESS, buf, 2, false);

96

97 // Enable active mode

98 mma8451_set_state(0x01);

99

100 while (1) {

101

102 // Start reading acceleration registers for 2 bytes

103 i2c_write_blocking(i2c_default, ADDRESS, ®_X_MSB, 1, true);

104 i2c_read_blocking(i2c_default, ADDRESS, buf, 2, false);

105 x_acceleration = mma8451_convert_accel(buf[B8] << 6 | buf[1] >> 2);
106

107 i2c_write_blocking(i2c_default, ADDRESS, ®_Y_MSB, 1, true);
108 i2c_read_blocking(i2c_default, ADDRESS, buf, 2, false);
109 y_acceleration = mma8451_convert_accel(buf[0] << 6 | buf[1] >> 2);
110
111 i2c_write_blocking(i2c_default, ADDRESS, ®_Z_MSB, 1, true);
112 i2c_read_blocking(i2c_default, ADDRESS, buf, 2, false);
113 z_acceleration = mma8451_convert_accel(buf[@8] << 6 | buf[1] >> 2);
114
115 // Display acceleration values
116 printf("ACCELERATION VALUES: \n");
117 printf ("X acceleration: %.6fmsA-2\n", x_acceleration);
118 printf("Y acceleration: %.6fmsA-2\n", y_acceleration);
119 printf("Z acceleration: %.6fms*-2\n", z_acceleration);

]
Attaching a MMAB8451 3-axis digital accelerometer via 12C 116

Raspberry Pi Pico C/C++ SDK
]

120

121 sleep_ms(500);

122

123 // Clear terminal

124 printf("\e[1;1H\e[2J");
125 }

126

127 #endif

128 }

Bill of Materials

Table 20. A list of

materials required for ltem Quantlty Details
the example Breadboard 1 generic part
Raspberry Pi Pico 1 https://www.raspberrypi.com/

products/raspberry-pi-pico/

MMA8451 board 1 https://www.adafruit.com/product/
2019
M/M Jumper wires 4 generic part

Attaching an MPL3115A2 altimeter via 12C

This example code shows how to interface the Raspberry Pi Pico to an MPL3115A2 altimeter via 12C. The MPL3115A2
has onboard pressure and temperature sensors which are used to estimate the altitude. In comparison to the BMP-
family of pressure and temperature sensors, the MPL3115A2 has two interrupt pins for ultra low power operation and
takes care of the sensor reading compensation on the board! It also has multiple modes of operation and impressive
operating conditions.

The board used in this example comes from Adafruit, but any MPL3115A2 breakouts should work similarly.

The MPL3115A2 makes available two ways of reading its temperature and pressure data. The first is known as polling,
where the Pico will continuously read data out of a set of auto-incrementing registers which are refreshed with new data
every so often. The second, which this example will demonstrate, uses a 160-byte first-in-first-out (FIFO) queue and
configurable interrupts to tell the Pico when to read data. More information regarding when the interrupts can be
triggered available in the datasheet. This example waits for the 32 sample FIFO to overflow, detects this via an interrupt
pin, and then averages the 32 samples taken. The sensor is configured to take a sample every second.

Bit math is used to convert the temperature and altitude data from the raw bits collected in the registers. Take the
temperature calculation as an example: it is a 12-bit signed number with 8 integer bits and 4 fractional bits. First, we
read the 2 8-bit registers and store them in a buffer. Then, we concatenate them into one unsigned 16-bit integer
starting with the OUT_T_MSB register, thus making sure that the last bit of this register is aligned with the MSB in our 16
bit unsigned integer so it is correctly interpreted as the signed bit when we later cast this to a signed 16-bit integer.
Finally, the entire number is converted to a float implicitly when we multiply it by 1/28 to shift it 8 bits to the right of the
decimal point. Though only the last 4 bits of the OUT_T_LSB register hold data, this does not matter as the remaining 4
are held at zero and "disappear’ when we shift the decimal point left by 8. Similar logic is applied to the altitude
calculation.

]
Attaching an MPL3115A2 altimeter via 12C 117

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.adafruit.com/product/2019
https://www.adafruit.com/product/2019
https://www.adafruit.com/product/1893
https://www.nxp.com/docs/en/data-sheet/MPL3115A2.pdf

Raspberry Pi Pico C/C++ SDK

@ TP

Choosing the right sensor for your project among so many choices can be hard! There are multiple factors you may
have to consider in addition to any constraints imposed on you. Cost, operating temperature, sensor resolution,
power consumption, ease of use, communication protocols and supply voltage are all but a few factors that can play
arole in sensor choice. For most hobbyist purposes though, the majority of sensors out there will do just fine!

Wiring information

Wiring up the device requires 5 jumpers, to connect VCC (3.3v), GND, INT1, SDA and SCL. The example here uses 12C
port 0, which is assigned to GPIO 4 (SDA) and GPIO 5 (SCL) by default. Power is supplied from the 3.3V pin.

O NoTE

The MPL3115A2 has a 1.6-3.6V voltage supply range. This means it can work with the Pico’s 3.3v pins out of the box

but our Adafruit breakout has an onboard voltage regulator for good measure. This may not always be true of other
sensors, though.

Altimeter

MPL3LL5A2

Figure 23. Wiring
Diagram for
MPL3115A2 altimeter.

fritzing
List of Files
CMakelLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/mpl3115a2_i2c/CMakeLists. txt

add_executable(mpl3115a2_i2c
mpl3115a2_i2c.c
)

pull in common dependencies and additional i2c hardware support
target_link_libraries(mpl3115a2_i2c pico_stdlib hardware_i2c)

create map/bin/hex file etc.
pico_add_extra_outputs(mpl3115a2_i2c)

O 0 N O g A~ WN =2

Attaching an MPL3115A2 altimeter via 12C 118

https://github.com/raspberrypi/pico-examples/blob/master/i2c/mpl3115a2_i2c/CMakeLists.txt

Raspberry Pi Pico C/C++ SDK
]

10
11 # add url via pico_set_program_url
12 example_auto_set_url(mpl3115a2_i2c)

mpl3115a2_i2c.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/mpl3115a2_i2c/mpl3115a2_i2c.c

/**
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
=/

#include <stdio.h>

#include "pico/stdlib.h"
#include "pico/binary_info.h"
#include "hardware/gpio.h"
#include "hardware/i2c.h"

0 N O g WN 2

|
W N =2 ® v

/* Example code to talk to an MPL3115A2 altimeter sensor via I2C

_
(S0

See accompanying documentation in README.adoc or the C++ SDK booklet.

a
N o

Connections on Raspberry Pi Pico board, other boards may vary.

-
O

GPIO PICO_DEFAULT_I2C_SDA_PIN (On Pico this is 4 (pin 6)) -> SDA on MPL3115A2 board
GPIO PICO_DEFAULT_I2C_SCK_PIN (On Pico this is 5 (pin 7)) -> SCL on MPL3115A2 board
GPIO 16 -> INT1 on MPL3115A2 board
3.3v (pin 36) -> VCC on MPL3115A2 board
GND (pin 38) -> GND on MPL3115A2 board

7

N NN DNNDNDN
o g b~ WN 2O

// 7-bit address
#define ADDR 0x66
#define INTT_PIN _u(16)

W N NN
® © o

// following definitions only valid for F_MODE > 6 (ie. if FIFO enabled)
#define MPL3115A2_F_DATA _u(6x861)
#define MPL3115A2_F_STATUS _u(6x00)
#define MPL3115A2_F_SETUP _u(0x6F)
#define MPL3115A2_INT_SOURCE _u(6x12)
#define MPL3115A2_CTRLREGT _u(6x26)
#define MPL3115A2_CTRLREG2 _u(6x27)
#define MPL3115A2_CTRLREG3 _u(6x28)
#define MPL3115A2_CTRLREG4 _u(6x29)
#define MPL3115A2_CTRLREG5 _u(6x2A)
#define MPL3115A2_PT_DATA_CFG _u(6x13)
#define MPL3115A2_OFF_P _u(6x2B)
#define MPL3115A2_OFF_T _u(6x2C)
#define MPL3115A2_OFF_H _u(6x2D)

A DD DD OO®WWWW W W w
ah WN 2 ® 0 oo N0 b N =2

#define MPL3115A2_FIFO_DISABLED _u(6x60)
#define MPL3115A2_FIFO_STOP_ON_OVERFLOW _u(©0x86)
#define MPL3115A2_FIFO_SIZE 32

#define MPL3115A2_DATA_BATCH_SIZE 5

#define MPL3115A2_ALTITUDE_NUM_REGS 3

#define MPL3115A2_ALTITUDE_INT_SIZE 20

#define MPL3115A2_TEMPERATURE_INT_SIZE 12
#define MPL3115A2_NUM_FRAC_BITS 4

SIS IS I N NN
N 2 ® © © N O

]
Attaching an MPL3115A2 altimeter via 12C 119

https://github.com/raspberrypi/pico-examples/blob/master/i2c/mpl3115a2_i2c/mpl3115a2_i2c.c

Raspberry Pi Pico C/C++ SDK
]

53

54 #define PARAM_ASSERTIONS_ENABLE_I2C 1

55

56 volatile uint8_t fifo_data[MPL3115A2_FIFO_SIZE * MPL3115A2_DATA_BATCH_SIZE];
57 volatile bool has_new_data = false;

58

59 struct mpl3115a2_data_t {

60 // Q8.4 fixed point

61 float temperature;

62 // Q16.4 fixed-point

63 float altitude;

64 };

65

66 void copy_to_vbuf(uint8_t buf1[], volatile uint8_t buf2[], int buflen) {

67 for (size_t i = @; i < buflen; i++) {

68 buf2[i] = buf1[i];

69 }

70 }

71

72 #ifdef i2c_default

73

74 void mpl3115a2_read_fifo(volatile uint8_t fifo_buf[]) {

75 // drains the 160 byte FIFO

76 uint8_t reg = MPL3115A2_F_DATA;

77 uint8_t buf[MPL3115A2_FIFO_SIZE * MPL3115A2_DATA_BATCH_SIZE];

78 i2c_write_blocking(i2c_default, ADDR, ®, 1, true);

79 // burst read 160 bytes from fifo

80 i2c_read_blocking(i2c_default, ADDR, buf, MPL3115A2_FIFO_SIZE *
MPL3115A2_DATA_BATCH_SIZE, false);

81 copy_to_vbuf(buf, fifo_buf, MPL3115A2_FIFO_SIZE * MPL3115A2_DATA_BATCH_SIZE);

82 }

83

84 uint8_t mpl3115a2_read_reg(uint8_t reg) {

85 uint8_t read;

86 i2c_write_blocking(i2c_default, ADDR, ®, 1, true); // keep control of bus

87 i2c_read_blocking(i2c_default, ADDR, &read, 1, false);

88 return read;

89 }

90

91 void mpl3115a2_init() {

92 // set as altimeter with oversampling ratio of 128

93 uint8_t buf[] = {MPL3115A2_CTRLREG1, ©xB8};

94 i2c_write_blocking(i2c_default, ADDR, buf, 2, false);

95

96 // set data refresh every 2 seconds, @ next bits as we're not using those interrupts

97 buf[@] = MPL3115A2_CTRLREG2, buf[1] = 0x00;

98 i2c_write_blocking(i2c_default, ADDR, buf, 2, false);

99

100 // set both interrupts pins to active low and enable internal pullups

101 buf[@] = MPL3115A2_CTRLREG3, buf[1] = 0x01;

102 i2c_write_blocking(i2c_default, ADDR, buf, 2, false);

103

104 // enable FIFO interrupt

105 buf[@] = MPL3115A2_CTRLREG4, buf[1] = ©6x48;

106 i2c_write_blocking(i2c_default, ADDR, buf, 2, false);

107

108 // tie FIFO interrupt to pin INTT

109 buf[@] = MPL3115A2_CTRLREG5, buf[1] = 0x40;

110 i2c_write_blocking(i2c_default, ADDR, buf, 2, false);

111

112 // set p, t and h offsets here if needed

113 // eg. 2's complement number: OxFF subtracts 1 meter

114 //buf[@] = MPL3115A2_0OFF_H, buf[1] = OxFF;

]
Attaching an MPL3115A2 altimeter via 12C 120

Raspberry Pi Pico C/C++ SDK
]

115
116
117
118
119
120
121
122
123
124 }
125

//i2c_write_blocking(i2c_default, ADDR, buf, 2, false);

// do not accept more data on FIFO overflow
buf[@] = MPL3115A2_F_SETUP, buf[1] = MPL3115A2_FIFO_STOP_ON_OVERFLOW;
i2c_write_blocking(i2c_default, ADDR, buf, 2, false);

// set device active
buf[@] = MPL3115A2_CTRLREG1, buf[1] = ©xB9;
i2c_write_blocking(i2c_default, ADDR, buf, 2, false);

126 void gpio_callback(uint gpio, uint32_t events) {

127 // if we had enabled more than 2 interrupts on same pin, then we should read
128 // INT_SOURCE reg to find out which interrupt triggered

129

130 // we can filter by which GPIO was triggered

131 if (gpio == INT1_PIN) {

132 // FIFO overflow interrupt

133 // watermark bits set to @ in F_SETUP reg, so only possible event is an overflow
134 // otherwise, we would read F_STATUS to confirm it was an overflow

135 printf("FIFO overflow!\n");

136 // drain the fifo

137 mpl3115a2_read_fifo(fifo_data);

138 // read status register to clear interrupt bit

139 mpl3115a2_read_reg(MPL3115A2_F_STATUS) ;

140 has_new_data = true;

141 }

142 }

143

144 #endif

145

146 void mpl3115a2_convert_fifo_batch(uint8_t start, volatile uint8_t buf[], struct
mpl3115a2_data_t *data) {

147
148
149
150

// convert a batch of fifo data into temperature and altitude data

// 3 altitude registers: MSB (8 bits), CSB (8 bits) and LSB (4 bits, starting from MSB)
// first two are integer bits (2's complement) and LSB is fractional bits -> makes 20 bit

signed integer

151

int32_t h = (int32_t) ((uint32_t) buf[start] << 24 | buf[start + 1] << 16 | buf[start +

2] << 8);

152
153
154
155
156
157
158 }
159

data->altitude = ((float)h) / 65536.f;

// 2 temperature registers: MSB (8 bits) and LSB (4 bits, starting from MSB)

// first 8 are integer bits with sign and LSB is fractional bits -> 12 bit signed integer
int16_t t = (int16_t) (((uint16_t) buf[start + 3]) << 8 | buf[start + 4]);
data->temperature = ((float)t) / 256.f;

160 int main() {

161

stdio_init_all();

162 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
I'defined(PICO_DEFAULT_I2C_SCL_PIN)
163 #warning i2c / mpl31715a2_i2c example requires a board with I2C pins

164 puts("Default I2C pins were not defined");

165 #else

166 printf("Hello, MPL3115A2. Waiting for something to interrupt me!...\n");
167

168 // use default I2CO at 400kHz, I2C is active low

169 i2c_init(i2c_default, 400 * 1000);

170 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);

171 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);

172 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);

173 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);

]
Attaching an MPL3115A2 altimeter via 12C 121

Raspberry Pi Pico C/C++ SDK
]

174
175 gpio_init(INT1_PIN);
176 gpio_pull_up(INT1_PIN); // pull it up even more!
177
178 // add program information for picotool
179 bi_decl(bi_program_name("Example in the pico-examples library for the MPL3115A2
altimeter"));
180 bi_decl(bi_1pin_with_name(16, "Interrupt pin 1"));
181 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
GPIO_FUNC_I2C));
182
183 mpl3115a2_init();
184
185 gpio_set_irq_enabled_with_callback (INT1_PIN, GPIO_IRQ_LEVEL_LOW, true, &gpio_callback);
186
187 while (1) {
188 // as interrupt data comes in, let's print the 32 sample average
189 if (has_new_data) {
190 float tsum = @, hsum = 0;
191 struct mpl3115a2_data_t data;
192 for (int i = @; i < MPL3115A2_FIFO_SIZE; i++) {
193 mpl3115a2_convert_fifo_batch(i * MPL3115A2_DATA_BATCH_SIZE, fifo_data,
&data) ;
194 tsum += data.temperature;
195 hsum += data.altitude;
196 }
197 printf("%d sample average -> t: %.4f C, h: %.4f m\n", MPL3115A2_FIFO_SIZE, tsum
/ MPL3115A2_FIFO_SIZE,
198 hsum / MPL3115A2_FIFO_SIZE);
199 has_new_data = false;
200 }
201 sleep_ms(10);
202 b
203
204 #endif
205 return 9;
206 }
Bill of Materials
:ail;:\; feztslir‘;tfj for Item Quantity Details
the example Breadboard 1 generic part
Raspberry Pi Pico 1 https://www.raspberrypi.com/
products/raspberry-pi-pico/
MPL3115A2 altimeter 1 Adafruit
M/M Jumper wires 5 generic part

Attaching an OLED display via I12C

This example code shows how to interface the Raspberry Pi Pico with an 128x32 OLED display board based on the
SSD1306 display driver, datasheet here.

The code displays a series of small demo graphics; tiny raspberries that scroll horizontally, some text, and some line
drawing, in the process showing you how to initialize the display, write to the entire display, write to only a portion of the

Attaching an OLED display

via I2C

122

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.adafruit.com/product/1893
https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf

Raspberry Pi Pico C/C++ SDK
]

display, configure scrolling, invert the display etc.

The SSD1306 is operated via a list of versatile commands (see datasheet) that allows the user to access all the
capabilities of the driver. After sending a slave address, the data that follows can be either a command, flags to follow
up a command or data to be written directly into the display’s RAM. A control byte is required for each write after the
slave address so that the driver knows what type of data is being sent.

The example code supports displays of 32 pixel or 64 pixels high by 128 pixels wide by changing a define at the top of
the code.

In the 32 vertical pixels case, the display is partitioned into 4 pages, each 8 pixels in height. In RAM, this looks roughly
like:

| COL® | COL1
PAGE 0 | |
PAGE 1 | |
PAGE 2 | |
PAGE 3 | |

© NoTE

There is a difference between columns in RAM and the actual segment pads that connect the driver to the display.
The RAM addresses COLO - COL127 are mapped to these segment pins SEGO - SEG127 by default. The distinction
between these two is important as we can for example, easily mirror contents of RAM without rewriting a buffer.

The driver has 3 modes of transferring the pixels in RAM to the display (provided that the driver is set to use its RAM
content to drive the display, ie. command 0xA4 is sent). We choose horizontal addressing mode which, after setting the
column address and page address registers to our desired start positions, will increment the column address register
until the OLED display width is reached (127 in our case) after which the column address register will reset to its
starting value and the page address is incremented. Once the page register reaches the end, it will wrap around as well.
Effectively, this scans across the display from top to bottom, left to right in blocks that are 8 pixels high. When a byte is
sent to be written into RAM, it sets all the rows for the current position of the column address register. So, if we send
10101010, and we are on PAGE 0 and COL1, COMQO is set to 1, COM1 is set to 0, COM2 is set to 1, and so on. Effectively,
the byte is "transposed" to fill a single page’s column. The datasheet has further information on this and the two other
modes.

Horizontal addressing mode has the key advantage that we can keep one single 512 byte buffer (128 columns x 4
pages and each byte fills a page’s rows) and write this in one go to the RAM (column address auto increments on writes
as well as reads) instead of working with 2D matrices of pixels and adding more overhead.

Wiring information

Wiring up the device requires 4 jumpers, to connect VCC (3.3v), GND, SDA and SCL and optionally a 5th jumper for the
driver RESET pin. The example here uses the default 12C port 0, which is assigned to GPIO 4 (SDA) and 5 (SCL) in
software. Power is supplied from the 3.3V pin from the Pico.

Attaching an OLED display via I12C 123

Raspberry Pi Pico C/C++ SDK

Figure 24. Wiring

l2éx32 I2C OLED

Diagram for oled
display via 12C.

128x32 OLED

List of Files

CMakelLists.txt

fritzing

CMake file to incorporate the example into the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/ssd1306_i2c/CMakeLists.txt

add_executable(ssd1306_1i2c
ssd1306_i2c.c

)

target_link_libraries(ssd1306_i2c pico_stdlib hardware_i2c)

1
2
8
4
5 # pull in common dependencies and additional i2c hardware support
6
7
8

create map/bin/hex file etc.
9 pico_add_extra_outputs(ssd1306_i2c)

11 # add url via pico_set_program_url
12 example_auto_set_url(ssd1306_i2c)

ssd1306_i2c.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/ssd1306_i2c/ssd1306_i2c.c

/**

*

o b~ W N =

&7

6

7 #include
8 #include
9 #include
10 #include

* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.

* SPDX-License-Identifier: BSD-3-Clause

<stdio.h>
<string.h>
<stdlib.h>
<ctype.h>

]
Attaching an OLED display via I12C 124

https://github.com/raspberrypi/pico-examples/blob/master/i2c/ssd1306_i2c/CMakeLists.txt
https://github.com/raspberrypi/pico-examples/blob/master/i2c/ssd1306_i2c/ssd1306_i2c.c

Raspberry Pi Pico C/C++ SDK
]

11 #include "pico/stdlib.h"

12 #include "pico/binary_info.h"
13 #include "hardware/i2c.h”

14 #include "raspberry26x32.h"
15 #include "ssd1366_font.h"

16

17 /* Example code to talk to an SSD1306-based OLED display

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

The SSD1366 is an OLED/PLED driver chip, capable of driving displays up to
128x64 pixels.
NOTE: Ensure the device is capable of being driven at 3.3v NOT 5v. The Pico
GPIO (and therefore I2C) cannot be used at 5v.
You will need to use a level shifter on the I2C lines if you want to run the
board at 5v.
Connections on Raspberry Pi Pico board, other boards may vary.
GPIO PICO_DEFAULT_I2C_SDA_PIN (on Pico this is GP4 (pin 6)) -> SDA on display
board
GPIO PICO_DEFAULT_I2C_SCL_PIN (on Pico this is GP5 (pin 7)) -> SCL on
display board
3.3v (pin 36) -> VCC on display board
GND (pin 38) -> GND on display board
&/
// Define the size of the display we have attached. This can vary, make sure you
// have the right size defined or the output will look rather odd!
// Code has been tested on 128x32 and 128x64 OLED displays
#define SSD1306_HEIGHT 32
#define SSD1306_WIDTH 128
#define SSD1306_I2C_ADDR _u(ex3c)
// 460 is usual, but often these can be overclocked to improve display response.
// Tested at 1000 on both 32 and 84 pixel height devices and it worked.
#define SSD1306_I2C_CLK 400
//#define SSD1306_I2C_CLK 1600
// commands (see datasheet)
#define SSD1306_SET_MEM_MODE _u(6x20)
#define SSD1306_SET_COL_ADDR _u(ex21)
#define SSD1306_SET_PAGE_ADDR _u(ex22)
#define SSD1306_SET_HORIZ_SCROLL _u(6x26)
#define SSD1306_SET_SCROLL _u(6x2E)
#define SSD1306_SET_DISP_START_LINE _u(6x40)

#define SSD1306_SET_CONTRAST _u(ex81)
#define SSD1306_SET_CHARGE_PUMP _u(ex8D)
#define SSD1306_SET_SEG_REMAP _u(0xA8)
#define SSD1306_SET_ENTIRE_ON _u(0xA4)
#define SSD1306_SET_ALL_ON _u(@xA5)
#define SSD1366_SET_NORM_DISP _u(0xA6)
#define SSD1306_SET_INV_DISP _u(0xA7)
#define SSD1306_SET_MUX_RATIO _u(@xA8)
#define SSD1306_SET_DISP _u(@xAE)
#define SSD1366_SET_COM_OUT_DIR _u(exce)
#define SSD1306_SET_COM_OUT_DIR_FLIP _u(@xCO)

]
Attaching an OLED display via I12C

125

Raspberry Pi Pico C/C++ SDK
]

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

131
132
133

#define SSD1306_SET_DISP_OFFSET _u(exD3)

#define SSD1306_SET_DISP_CLK_DIV _u(exb5)

#define SSD1306_SET_PRECHARGE _u(6exD9)

#define SSD1306_SET_COM_PIN_CFG _u(6xDA)

#define SSD1306_SET_VCOM_DESEL _u(exbB)

#define SSD1306_PAGE_HEIGHT _u(8)

#define SSD1306_NUM_PAGES (SSD1366_HEIGHT / SSD1306_PAGE_HEIGHT)
#define SSD1306_BUF_LEN (SSD1366_NUM_PAGES * SSD1306_WIDTH)
#define SSD1306_WRITE_MODE _Uu(OxFE)

#define SSD1306_READ_MODE _u(6xFF)

struct render_area {

uint8_t start_col;
uint8_t end_col;
uint8_t start_page;
uint8_t end_page;

int buflen;
b

void calc_render_area_buflen(struct render_area *area) {
// calculate how long the flattened buffer will be for a render area
area->buflen = (area->end_col - area->start_col + 1) * (area->end_page - area-
>start_page + 1);
}

#ifdef i2c_default

void SSD1306_send_cmd(uint8_t cmd) {

// I2C write process expects a control byte followed by data

// this "data" can be a command or data to follow up a command

// Co = 1, D/C = @ => the driver expects a command

uint8_t buf[2] = {0x80, cmd};

i2c_write_blocking(i2c_default, (SSD1306_I2C_ADDR & SSD1386_WRITE_MODE), buf, 2,
false);
}

void SSD13086_send_cmd_list(uint8_t *buf, int num) {
for (int i=0;i<num;i++)
SSD13086_send_cmd (buf[i]);

void SSD13086_send_buf(uint8_t buf[], int buflen) {
// in horizontal addressing mode, the column address pointer auto-increments
// and then wraps around to the next page, so we can send the entire frame
// buffer in one goo00000!

// copy our frame buffer into a new buffer because we need to add the control byte
// to the beginning

uint8_t *temp_buf = malloc(buflen + 1);

temp_buf[@] = 0x40;
memcpy (temp_buf+1, buf, buflen);

i2c_write_blocking(i2c_default, (SSD1306_I2C_ADDR & SSD1306_WRITE_MODE), temp_buf,
buflen + 1, false);

free(temp_buf);

]
Attaching an OLED display via I12C 126

Raspberry Pi Pico C/C++ SDK
]

134
135
136
137
138
139
140
141
142
143
144

145
146
147
148

149
150
151

152
153
154

155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

178
179
180
181
182
183
184
185
186
187
188
189
190

void SSD1306_init() {
// Some of these commands are not strictly necessary as the reset
// process defaults to some of these but they are shown here
// to demonstrate what the initialization sequence looks like
// Some configuration values are recommended by the board manufacturer

uint8_t cmds[] = {

SSD1306_SET_DISP, // set display off

/* memory mapping */

SSD1306_SET_MEM_MODE, // set memory address mode @ = horizontal, 1 =
vertical, 2 = page

0x00, // horizontal addressing mode

/* resolution and layout */

SSD1306_SET_DISP_START_LINE, // set display start line to @

SSD1306_SET_SEG_REMAP | ©0x01, // set segment re-map, column address 127 is mapped
to SEGO

SSD1366_SET_MUX_RATIO, // set multiplex ratio

SSD1306_HEIGHT - 1, // Display height - 1

SSD1366_SET_COM_OUT_DIR | ©x@88, // set COM (common) output scan direction. Scan from
bottom up, COM[N-1] to COM@

SSD13066_SET_DISP_OFFSET, // set display offset
0x00, // no offset
SSD1366_SET_COM_PIN_CFG, // set COM (common) pins hardware configuration.

Board specific magic number.

// 0x02 Works for 128x32, 0x12 Possibly works for
128x64. Other options 6x22, 6x32
#if ((SSD1306_WIDTH == 128) && (SSD1306_HEIGHT == 32))

0x02,
#elif ((SSD1306_WIDTH == 128) && (SSD1366_HEIGHT == 64))
0x12,
#else
0x02,
#endif
/* timing and driving scheme */
SSD1306_SET_DISP_CLK_DIV, // set display clock divide ratio
0x80, // div ratio of 1, standard freq
SSD1306 _SET_PRECHARGE, // set pre-charge period
OxF1, // Vecc internally generated on our board
SSD1306_SET_VCOM_DESEL, // set VCOMH deselect level
0x30, // 6.83xVcc
/* display */
SSD1306_SET_CONTRAST, // set contrast control
OxFF,
SSD1306_SET_ENTIRE_ON, // set entire display on to follow RAM content
SSD13066 _SET_NORM_DISP, // set normal (not inverted) display
SSD1306_SET_CHARGE _PUMP, // set charge pump
ox14, // Vecc internally generated on our board
SSD1306_SET_SCROLL | ©xee, // deactivate horizontal scrolling if set. This is

necessary as memory writes will corrupt if scrolling was enabled
SSD1366_SET_DISP | 0x@1, // turn display on
b5

SSD13086_send_cmd_list(cmds, count_of(cmds));

void SSD13086_scroll(bool on) {
// configure horizontal scrolling
uint8_t cmds[] = {
SSD1306_SET_HORIZ_SCROLL | 0x60,
0x00, // dummy byte
0x00, // start page @
0x00, // time interval

]
Attaching an OLED display via I12C

127

Raspberry Pi Pico C/C++ SDK
]

191
192
193
194
195
196
197
198 }
199

0x03, // end page 3 SSD1366_NUM_PAGES ??

0x00, // dummy byte

OxFF, // dummy byte

SSD1366_SET_SCROLL | (on ? @x@1 : @) // Start/stop scrolling
b

SSD13086_send_cmd_list(cmds, count_of(cmds));

200 void render(uint8_t *buf, struct render_area *area) {

201
202
203
204
205
206
207
208
209
210
211
212
213 }
214

// update a portion of the display with a render area
uint8_t cmds[] = {

SSD1306_SET_COL _ADDR,

area->start_col,

area->end_col,

SSD13066_SET_PAGE_ADDR,

area->start_page,

area->end_page

B

SSD13086_send_cmd_list(cmds, count_of(cmds));
SSD1306_send_buf (buf, area->buflen);

215 static void SetPixel(uint8_t *buf, int x,int y, bool on) {

216
217
218
219
220
221
222

assert(x >= @ & & x < SSD1366_WIDTH && y >=0 && y < SSD1306_HEIGHT) ;

// The calculation to determine the correct bit to set depends on which address
// mode we are in. This code assumes horizontal

// The video ram on the SSD1306 is split up in to 8 rows, one bit per pixel.
// Each row is 128 long by 8 pixels high, each byte vertically arranged, so byte 0 is

x=0, y=0->7,

223
224
225
226
227
228

// byte 1 is x = 1, y=0->7 etc

// This code could be optimised, but is like this for clarity. The compiler
// should do a half decent job optimising it anyway.

const int BytesPerRow = SSD1306_WIDTH ; // x pixels, Tbpp, but each row is 8 pixel high,

so (x / 8) *8

229
230
231
232
233
234
235
236
237
238
239 }

int byte_idx = (y / 8) * BytesPerRow + Xx;
uint8_t byte = buf[byte_idx];

if (on)

byte |= 1 << (y % 8);
else

byte &= ~(1 << (y % 8));

buf[byte_idx] = byte;

240 // Basic Bresenhams.
241 static void DrawLine(uint8_t *buf, int x@, int y@, int x1, int y1, bool on) {

242
243
244
245
246
247
248
249
250
251

int dx = abs(x1-x8);
int sx = x0<x1 ?2 1 : -1;
int dy = -abs(y1-y@);

int sy = yO<y1l ? 1 : -1;
int err = dx+dy;
int e2;

while (true) {
SetPixel(buf, x@, y@, on);

]
Attaching an OLED display via I12C 128

Raspberry Pi Pico C/C++ SDK
]

252 if (x@ == x1 && yB == y1)

253 break;

254 e2 = 2*err;

255

256 if (e2 >= dy) {

257 err += dy;

258 X0 += sX;

259 }

260 if (e2 <= dx) {

261 err += dx;

262 y0 += sy;

263 }

264 }

265 }

266

267 static inline int GetFontIndex(uint8_t ch) {

268 if (ch >= 'A" & ch <='7") {

269 return ch - "A'" + 1;

270 }

271 else if (ch >= '@' && ch <='9") {

272 return ch - '0' + 27;

273 }

274 else return ©; // Not got that char so space.

275 }

276

277 static uint8_t reversed[sizeof(font)] = {0};

278

279 static uint8_t reverse(uint8_t b) {

280 b= (b & 0xFO) >> 4 | (b & OxOF) << 4;

281 b = (b & BxCC) >> 2 | (b & 6x33) << 2;

282 b = (b & 8xAA) >> 1 | (b & Bx55) << 1;

283 return b;

284 }

285 static void FillReversedCache() {

286 // calculate and cache a reversed version of fhe font, because I defined it upside
down. ..doh!

287 for (int i=0;i<sizeof(font);i++)

288 reversed[i] = reverse(font[i]);

289 }

290

291 static void WriteChar(uint8_t *buf, int16_t x, int16_t y, uint8_t ch) {

292 if (reversed[B8] == 0)

293 FillReversedCache();

294

295 if (x > SSD13@6_WIDTH - 8 || y > SSD1386_HEIGHT - 8)

296 return;

297

298 // For the moment, only write on Y row boundaries (every 8 vertical pixels)

299 y =Yy/8;

300

301 ch = toupper(ch);

302 int idx = GetFontIndex(ch);

303 int fb_idx = y * 128 + x;

304

305 for (int i=0;i<8;i++) {

306 buf[fb_idx++] = reversed[idx * 8 + i];

307 }

308 }

309

310 static void WriteString(uint8_t *buf, int16_t x, int16_t y, char *str) {

311 // Cull out any string off the screen

312 if (x > SSD13@6_WIDTH - 8 || y > SSD1386_HEIGHT - 8)

BilS return;

]
Attaching an OLED display via I12C 129

Raspberry Pi Pico C/C++ SDK
]

314

315 while (*str) {

316 WriteChar (buf, x, y, *str++);

317 X+=8;

318 }

319 }

320

321

322

323 #endif

324

325 int main() {

326 stdio_init_all();

327

328 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
Idefined(PICO_DEFAULT_I2C_SCL_PIN)

329 #warning i2c / SSD1306_i2d example requires a board with I2C pins

330 puts("Default I2C pins were not defined");

331 #else

332 // useful information for picotool

333 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
GPIO_FUNC_I2C));

334 bi_decl(bi_program_description("“SSD1306 OLED driver I2C example for the Raspberry Pi
Pico"));

B35)

336 printf("Hello, SSD1366 OLED display! Look at my raspberries..\n");

337

338 // I2C is "open drain", pull ups to keep signal high when no data is being

339 // sent

340 i2c_init(i2c_default, SSD1306_I2C_CLK * 1000);

341 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);

342 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);

343 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);

344 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);

345

346 // run through the complete initialization process

347 SSD1306_1init();

348

349 // Initialize render area for entire frame (SSD1306_WIDTH pixels by SSD1306_NUM_PAGES
pages)

350 struct render_area frame_area = {

351 start_col: 0,

352 end_col : SSD1306_WIDTH - 1,

353 start_page : 0,

354 end_page : SSD1306_NUM_PAGES - 1

355 %

356

357 calc_render_area_buflen(&frame_area);

358

359 // zero the entire display

360 uint8_t buf[SSD1306_BUF_LEN];

361 memset(buf, @, SSD1366_BUF_LEN);

362 render (buf, &frame_area);

363

364 // intro sequence: flash the screen 3 times

365 for (int i = 0; i < 3; i++) {

366 SSD1306_send_cmd (SSD1306_SET_ALL_ON) ; // Set all pixels on

367 sleep_ms(500);

368 SSD1306_send_cmd (SSD1306_SET_ENTIRE_ON); // go back to following RAM for pixel state

369 sleep_ms(500);

370 }

371

372 // render 3 cute little raspberries

]
Attaching an OLED display via I12C 130

Raspberry Pi Pico C/C++ SDK
]

373 struct render_area area = {

374 start_page : 0,

375 end_page : (IMG_HEIGHT / SSD1306_PAGE_HEIGHT) - 1
376 I

377

378 restart:

379

380 area.start_col = 0;

381 area.end_col = IMG_WIDTH - 1;

382

383 calc_render_area_buflen(&area);

384

385 uint8_t offset = 5 + IMG_WIDTH; // 5px padding
386

387 for (int i = @; i < 3; i++) {

388 render (raspberry26x32, &area);

389 area.start_col += offset;

390 area.end_col += offset;

391 }

392

393 SSD13066_scroll(true);

394 sleep_ms(5000) ;

395 SSD1306_scroll(false);

396

397 char *text[] = {

398 "A long time ago",

399 " on an OLED ",

400 " display"”,

401 " far far away",

402 "Lived a small",

403 "red raspberry"”,

404 "by the name of",

405 " PICO"

406 };

407

408 inty = 0;

409 for (int i = @ ;i < count_of(text); i++) {
410 WriteString(buf, 5, y, text[i]);

411 y+=8;

412 }

413 render (buf, &frame_area);

414

415 // Test the display invert function

416 sleep_ms(3000) ;

417 SSD1366_send_cmd (SSD1366_SET_INV_DISP);
418 sleep_ms(3000);

419 SSD13086_send_cmd (SSD1306_SET_NORM_DISP) ;
420

421 bool pix = true;

422 for (int i = 0; i < 2;i++) {

423 for (int x = @;x < SSD13B6_WIDTH;x++) {
424 DrawLine(buf, x, @, SSD1386_WIDTH - 1 - x, SSD1306_HEIGHT - 1, pix);
425 render (buf, &frame_area);

426 }

427

428 for (int y = SSD1306_HEIGHT-1; y >= 0 ;y--) {
429 DrawLine(buf, @, y, SSD1306_WIDTH - 1, SSD1306_HEIGHT - 1 - y, pix);
430 render (buf, &frame_area);

431 }

432 pix = false;

433 }

434

435 goto restart;

]
Attaching an OLED display via I12C 131

Raspberry Pi Pico C/C++ SDK
]

436

437 #endif

438 return 90;
439 }

ssd1306_font.h

A simple font used in the example.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/ssd1306_i2c/ssd1306_font.h

1 /**

2 * Copyright (c) 2622 Raspberry Pi (Trading) Ltd.

3 *

4 * SPDX-License-Identifier: BSD-3-Clause

584/

6

7 // Vertical bitmaps, A-Z, 0-9. Each is 8 pixels high and wide
8 // Theses are defined vertically to make them quick to copy to FB
9

10 static uint8_t font[] = {

11 Ox00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Nothing
12 Ox1e, Ox28, Ox48, Ox88, 0Ox48, 0x28, Oxle, 0x00, //A
13 oxfe, 0x92, 0x92, 0x92, 0x92, 0x92, Oxfe, 0x00, //B
14 @x7e, 0x82, 0x82, 0x82, 0x82, Ox82, 0x82, 0x00, //C
15 @xfe, Ox82, Ox82, Ox82, Ox82, 0Ox82, Ox7e, 0x00, //D
16 @xfe, 0x92, 0x92, 0x92, 0x92, 0x92, 0x92, 0x00, //E
17 oxfe, 0x90, 0x90, 0x90, 0x90, 0x80, 0x80, 0x00, //F
18 Oxfe, Ox82, Ox82, Ox82, Ox8a, Ox8a, Oxce, 0x00, //G
19 oxfe, 0x10, O6x10, Ox10, Ox10, 0x10, Oxfe, 0x00, //H
20 0x00, Ox00, 0Ox00, Oxfe, Ox00, 0x00, 0x00, 0x00, //I
21 @x84, 06x82, 0Ox82, Oxfc, 0x80, 0x80, 0x80, 0x00, //J
22 0x00, oxfe, 0x10, 0x10, 0x28, 0x44, 0x82, 0x00, //K
23 oxfe, 0Ox02, Bx02, 0Ox02, 0x02, 0x02, 0x02, 0x00, //L
24 oxfe, 0x40, 0x20, Ox10, 0x20, 0x40, oOxfe, 0x00, //M
25 oxfe, 0x40, 0x20, 0x10, 0x08, 0x04, oxfe, 0x00, //N
26 Ox7c, Ox82, Ox82, 0x82, 0x82, 0x82, Ox7c, 0x00, //0
27 oxfe, 6x88, 0Ox88, 0Ox88, 0x88, 0x88, 0x70, 0x00, //P
28 Ox7c, 0x82, 0x82, 0x92, Ox8a, Ox86, Ox7e, 0x00, //Q
29 oxfe, 0x88, 0x88, 0x88, Ox8c, Ox8a, 0x70, 0x00, //R
30 Ox62, Ox92, Ox92, 0x92, 0x92, 0x0Cc, 0x00, 0x00, //S
31 Ox80, 0Ox80, 0Ox80, Oxfe, 0x80, 0x80, 0x80, 0x00, //T
32 oxfc, 0x02, 0x02, 0x02, 0x02, 0x02, Oxfc, 6xee, //U
33 oxfo@, 0x08, Ox04, 0x02, 0x04, 0x08, 0xfO, OX%00, //V
34 oxfe, Ox04, Ox08, Ox10, 0Ox08, 0x04, Oxfe, 0x00, //W
35 0x00, 0x82, 0Ox44, 0x28, 0x28, 0x44, 0x82, 0x00, //X
36 Ox80, Ox40, Ox20, Oxle, 0x20, 0x40, 0x80, 0x00, //Y
37 0x82, 0x86, Ox9%9a, Oxa2, Oxc2, 0x82, 0x00, 0x00, //Z
38 @x7c, Ox82, Ox82, 0x92, 0x82, 0x82, Ox7c, 0x00, //0
39 0x00, 0x00, Ox42, Oxfe, 0x02, 0x00, 0x00, 0x00, //1
40 0x0c, 0x92, 0x92, 0x92, 0x92, Ox62, 0x00, 0x00, //2
41 8x92, ©6x92, ©6x92, 0x92, 0x92, 0x92, Ox6Cc, 0x00, //3
42 oxfc, 0x04, 0x04, Oxle, 0x04, 0x04, 0x00, 0x00, //4
43 Oxf2, Ox92, O6x92, 0x92, 0x92, 0x0c, 0x00, 0x00, //5
44 oxfc, Ox12, Ox12, Ox12, Ox12, Ox12, Ox0c, Ox00, //6
45 0x80, Ox80, 0Ox80, 0x86, Ox8c, Oxbo, 0OxcH, Ox00, //7
46 Ox6c, Ox92, 0x92, 0x92, 0x92, 0x92, Ox6C, Ox00, //8
47 Ox60, 0x90, 0x90, 0x908, 0x90, 0x90, oxfe, ox00, //9
48 };

]
Attaching an OLED display via I12C 132

https://github.com/raspberrypi/pico-examples/blob/master/i2c/ssd1306_i2c/ssd1306_font.h

Raspberry Pi Pico C/C++ SDK
]

img_to_array.py

A helper to convert an image file to an array that can be used in the example.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/ssd1306_i2c/img_to_array.py

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

#!/usr/bin/env python3

Converts a grayscale image into a format able to be
displayed by the SSD1366 driver in horizontal addressing mode

usage: python3 img_to_array.py <logo.bmp>

depends on the Pillow library
“python3 -m pip install --upgrade Pillow"

from PIL import Image
import sys
from pathlib import Path

OLED_HEIGHT = 32
OLED_WIDTH = 128
OLED_PAGE_HEIGHT = 8

if len(sys.argv) < 2:
print("No image path provided.")
sys.exit()

img_path = sys.argv[1]

try:
im = Image.open(img_path)
except OSError:
raise Exception("Oops! The image could not be opened.")

img_width = im.size[0]
img_height = im.size[1]

if img_width > OLED_WIDTH or img_height > OLED_HEIGHT:
print(f'Your image is f{img_width} pixels wide and {img_height} pixels high, but...")
raise Exception(f"OLED display only {OLED_WIDTH} pixels wide and {OLED_HEIGHT} pixels
high!")

if not (im.mode == "1" or im.mode == "L"):
raise Exception("Image must be grayscale only")
black or white

out = im.convert("1")

img_name = Path(im.filename).stem

"pixels’ is a flattened array with the top left pixel at index @
and bottom right pixel at the width*height-1
pixels = list(out.getdata())

swap white for black and swap (255, @) for (1, 0)
pixels = [0 if x == 255 else 1 for x in pixels]

our goal is to divide the image into 8-pixel high pages
and turn a pixel column into one byte, eg for one page:
#0160

#1080

111

]
Attaching an OLED display via I12C 133

https://github.com/raspberrypi/pico-examples/blob/master/i2c/ssd1306_i2c/img_to_array.py

Raspberry Pi Pico C/C++ SDK
]

Table 22. A list of
materials required for
the example

57 #0061

58 #1180

59 #0186

60 # 1 11

61 #6001
62

63 # we get Ox6A, OxAE, 06x33 ...

and so on

64 # as ‘pixels’ is flattened, each bit in a column is IMG_WIDTH apart from the next

65
66 buffer = []

67 for i in range(img_height // OLED_PAGE_HEIGHT):

68 start_index = i*img_width*OLED_PAGE_HEIGHT
69 for j in range(img_width):
70 out_byte = 0
71 for k in range(OLED_PAGE_HEIGHT) :
72 out_byte |= pixels[k*img_width + start_index + j] << k
73 buffer.append(f'{out_byte:#04x}")
74
75 buffer = ", ".join(buffer)
76 buffer_hex = f'static uint8_t {img_name}[] = {{{buffer}}}\n'
77
78 with open(f'{img_name}.h', 'wt') as file:
79 file.write(f'#define IMG_WIDTH {img_width}\n"')
80 file.write(f'#define IMG_HEIGHT {img_height}\n\n")
81 file.write(buffer_hex)
raspberry26x32.bmp

Example image file of a Raspberry.

raspberry26x32.h

The example image file converted to an C array.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/ssd1306_i2c/raspberry26x32.h

1 #define IMG_WIDTH 26
2 #define IMG_HEIGHT 32
S

4 static uint8_t raspberry26x32[] = { 0x8, 0x8, @xe, Ox7e, Oxfe, Oxff, Oxff, oxff, oxff, oOxff,
oxfe, Oxfe, Oxfc, 0xf8, Oxfc, Oxfe, Oxfe, oOxff, oxff, oxff, oxff, oxff, oxfe, Ox7e, 0Oxle,
Ox0, Ox0, 0x0, 0x80, 0xed, 0xf8, oxfd, oxff, oxff, oxff, oxff, oxff, oxff, oxff, oxff, oxff,

oxff, oxfd, Oxf8, Oxed, Ox80, Ox0, 0x0, Oxle, Ox7f, Oxff, oxff,

oxff, oxff, oxff, oxff, oxff, oxff, oxff, oxff, oxff, oxff,

Ox1e, 0x0, 0x0, Ox0, 0x3, 0x7, oxf, ox1f, ox1f, ox3f, ox3f,

ox7f, ox7f, ox3f, ox3f, ox1f, ox1f, Oxf, Ox7, Ox3, 0x0, 0x0};

oxff, oxff, oxff, oxff,
oxff, oxff, oxff, oxff,
oxff, oxff, oxff, oxff,
ox7f, oxff, oxff, oxff,

Bill of Materials

oxff,
oxff,
ox7f,
oxff,

Item Quantity Details

Breadboard 1 generic part

Raspberry Pi Pico 1 https://www.raspberrypi.com/
products/raspberry-pi-pico/

SSD1306-based OLED display 1 Adafruit part

M/M Jumper wires 4 generic part

]
Attaching an OLED display via I12C

134

https://github.com/raspberrypi/pico-examples/blob/master/i2c/ssd1306_i2c/raspberry26x32.h
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.adafruit.com/product/4440

Raspberry Pi Pico C/C++ SDK

Attaching a PA1010D Mini GPS module via I12C

This example code shows how to interface the Raspberry Pi Pico to the PA1010D Mini GPS module

This allows you to read basic location and time data from the Recommended Minimum Specific GNSS Sentence
(GNRMC protocol) and displays it in a user-friendly format. The datasheet for the module can be found on https://cdn-
learn.adafruit.com/assets/assets/000/084/295/original/CD_PA1010D_Datasheet_v.03.pdf?1573833002. The output
sentence is read and parsed to split the data fields into a 2D character array, which are then individually printed out. The
commands to use different protocols and change settings are found on https://www.sparkfun.com/datasheets/GPS/
Modules/PMTK_Protocol.pdf. Additional protocols can be used by editing the init_command array.

© NoTE

Each command requires a checksum after the asterisk. The checksum can be calculated for your command using
the following website: https://nmeachecksum.eqth.net/.

The GPS needs to be used outdoors in open skies and requires about 15 seconds to acquire a satellite signal in
order to display valid data. When the signal is detected, the device will blink a green LED at 1 Hz.

Wiring information

Wiring up the device requires 4 jumpers, to connect VDD, GND, SDA and SCL. The example here uses 12C port 0, which is
assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the 3V pin.

Figure 25. Wiring
Diagram for PAT070D.

fritzing
List of Files

CMakelLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/pa1010d_i2c/CMakeLists.txt

1 add_executable(pa1010d_i2c

2 paleled_i2c.c
3)
4

5 # pull in common dependencies and additional i2c hardware support
6 target_link_libraries(pa1@10d_i2c pico_stdlib hardware_i2c)

Attaching a PA1010D Mini GPS module via 12C 135

https://cdn-learn.adafruit.com/assets/assets/000/084/295/original/CD_PA1010D_Datasheet_v.03.pdf?1573833002
https://cdn-learn.adafruit.com/assets/assets/000/084/295/original/CD_PA1010D_Datasheet_v.03.pdf?1573833002
https://www.sparkfun.com/datasheets/GPS/Modules/PMTK_Protocol.pdf
https://www.sparkfun.com/datasheets/GPS/Modules/PMTK_Protocol.pdf
https://nmeachecksum.eqth.net/
https://github.com/raspberrypi/pico-examples/blob/master/i2c/pa1010d_i2c/CMakeLists.txt

Raspberry Pi Pico C/C++ SDK
]

7

8 # create map/bin/hex file etc.
9 pico_add_extra_outputs(pa1010d_i2c)

10

11 # add url via pico_set_program_url
12 example_auto_set_url(pa1010d_i2c)

pa1010d_i2c.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/pa1010d_i2c/pa1070d_i2c.c

1
2
8
4

® N o »

el

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

/**
* Copyright (c) 2620 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
Y

#include <stdio.h>

#include <string.h>

#include "pico/stdlib.h"
#include "pico/binary_info.h"
#include "hardware/i2c.h"
#include "string.h"

/* Example code to talk to a PA1016D Mini GPS module.

This example reads the Recommended Minimum Specific GNSS Sentence, which includes basic
Jocation and time data, each second, formats and displays it.

Connections on Raspberry Pi Pico board, other boards may vary.

GPIO PICO_DEFAULT_I2C_SDA_PIN (On Pico this is 4 (physical pin 6)) -> SDA on PA1016D board
GPIO PICO_DEFAULT_I2C_SCK_PIN (On Pico this is 5 (physical pin 7)) -> SCL on PA1016D board
3.3v (physical pin 36) -> VCC on PA1616D board
GND (physical pin 38) -> GND on PA1016D board

&

const int addr = 0x10;
const int max_read = 250;

#ifdef i2c_default

void pal@10d_write_command(const char command[], int com_length) {
// Convert character array to bytes for writing
uint8_t int_command[com_length];

for (int i = @; i < com_length; ++i) {
int_command[i] = command[i];
i2c_write_blocking(i2c_default, addr, &int_command[i], 1, true);

void pal1016d_parse_string(char output[], char protocol[]) {
// Finds location of protocol message in output
char *com_index = strstr(output, protocol);
int p = com_index - output;

// Splits components of output sentence into array
int no_of_fields = 14;
int max_len = 15;

]
Attaching a PA1010D Mini GPS module via 12C

136

https://github.com/raspberrypi/pico-examples/blob/master/i2c/pa1010d_i2c/pa1010d_i2c.c

Raspberry Pi Pico C/C++ SDK
]

49

50 int n = 0;

il int m = 0;

52

53 char gps_data[no_of_fields][max_len];

54 memset(gps_data, @, sizeof(gps_data));

55

56 bool complete = false;

57 while (output[p] !'= '$' & & n < max_len && complete == false) {

58 if (output[p] == ',' || output[p] == '*') {

59 n+=1;

60 m=0;

61 } else {

62 gps_data[n][m] = output[p];

63 // Checks if sentence is complete

64 if (m < no_of_fields) {

65 m++;

66 } else {

67 complete = true;

68 }

69 +

70 pt+;

71 }

72

73 // Displays GNRMC data

74 // Similarly, additional if statements can be used to add more protocols

75 if (strcmp(protocol, "GNRMC") == 0) {

76 printf("Protcol:%s\n", gps_data[@]);

77 printf("UTC Time: %s\n", gps_data[1]);

78 printf("Status: %s\n", gps_data[2][@] == 'V' ? "Data invalid. GPS fix not found."
"Data Valid");

79 printf(“Latitude: %s\n", gps_data[3]);

80 printf("N/S indicator: %s\n", gps_datal[4]);

81 printf("Longitude: %s\n", gps_data[5]);

82 printf("E/W indicator: %s\n", gps_data[6]);

83 printf("Speed over ground: %s\n", gps_data[7]);

84 printf("Course over ground: %s\n", gps_data[8]);

85 printf("Date: %c%c/%c%c/%c%c\n", gps_data[9][0], gps_data[9][1], gps_data[9][2],
gps_data[9][3], gps_data[9][4],

86 gps_data[9][5]);

87 printf(“Magnetic Variation: %s\n", gps_data[1@]);

88 printf("E/W degree indicator: %s\n", gps_data[11]);

89 printf("Mode: %s\n", gps_data[12]);

920 printf("Checksum: %c%c\n", gps_data[13][@], gps_data[13][1]);

91 }

92 }

93

94 void pal1010d_read_raw(char numcommand[]) {

95 uint8_t buffer[max_read];

96

97 int i = 9;

98 bool complete = false;

99

100 i2c_read_blocking(i2c_default, addr, buffer, max_read, false);

101

102 // Convert bytes to characters

103 while (i < max_read && complete == false) {

104 numcommand[i] = buffer[i];

105 // Stop converting at end of message

106 if (buffer[i] == 10 && buffer[i + 1] == 10) {

107 complete = true;

108 }

109 i++;

]
Attaching a PA1010D Mini GPS module via 12C 137

Raspberry Pi Pico C/C++ SDK
]

110 }

111 }

112

113 #endif

114

115 int main() {

116 stdio_init_all();

117 #if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
!defined(PICO_DEFAULT_I2C_SCL_PIN)
118 #warning i2c/mpu66560_i2c example requires a board with I2C pins

119 puts("Default I2C pins were not defined");

120 #else

121

122 char numcommand[max_read] ;

123

124 // Decide which protocols you would like to retrieve data from

125 char init_command[] = "$PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0%29\r\n";

126

127 // This example will use I2CO on the default SDA and SCL pins (4, 5 on a Pico)

128 i2c_init(i2c_default, 400 * 1000);

129 gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);

130 gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);

131 gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);

132 gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);

133

134 // Make the I2C pins available to picotool

135 bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,
GPIO_FUNC_I2C));

136

137 printf("Hello, PA1818D! Reading raw data from module...\n");

138

139 pa10108d_write_command(init_command, sizeof(init_command));

140

141 while (1) {

142 // Clear array

143 memset (numcommand, @, max_read);

144 // Read and re-format

145 pa108108d_read_raw(numcommand) ;

146 pal1@108d_parse_string(numcommand, "GNRMC");

147

148 // Wait for data to refresh

149 sleep_ms(1000) ;

150

151 // Clear terminal

152 printf("\e[1;1H\e[2J");

153 }

154 #endif

155 return 0;

156 }

Bill of Materials

Table 23. A list of . .
materials required for ltem Quantlty Details
h I !
the example Breadboard 1 generic part
Raspberry Pi Pico 1 https://www.raspberrypi.com/
products/raspberry-pi-pico/

]
Attaching a PA1010D Mini GPS module via 12C 138

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/

Raspberry Pi Pico C/C++ SDK
]

PA1010D board 1 https://shop.pimoroni.com/products/
pa1010d-gps-breakout

M/M Jumper wires 4 generic part

Attaching a PCF8523 Real Time Clock via 12C

This example code shows how to interface the Raspberry Pi Pico to the PCF8523 Real Time Clock

This example allows you to initialise the current time and date and then displays it every half-second. Additionally it lets
you set an alarm for a particular time and date and raises an alert accordingly. More information about the module is
available at https://learn.adafruit.com/adafruit-pcf8523-real-time-clock.

Wiring information

Wiring up the device requires 4 jumpers, to connect VDD, GND, SDA and SCL. The example here uses 12C port 0, which is
assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the 5V pin.

Figure 26. Wiring
Diagram for PCF8523.

ORaspberry Pi Pico

@

fritzing

List of Files

CMakelLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/pcf8523_i2c/CMakeLists. txt

add_executable(pcf8523_i2c
pcf8523_i2c.c
)

pull in common dependencies and additional i2c hardware support
target_link_libraries(pcf8523_i2c pico_stdlib hardware_i2c)

create map/bin/hex file etc.
pico_add_extra_outputs(pcf8523_i2c)

® O 0 N O b WN =

]
Attaching a PCF8523 Real Time Clock via I2C 139

https://shop.pimoroni.com/products/pa1010d-gps-breakout
https://shop.pimoroni.com/products/pa1010d-gps-breakout
https://learn.adafruit.com/adafruit-pcf8523-real-time-clock
https://github.com/raspberrypi/pico-examples/blob/master/i2c/pcf8523_i2c/CMakeLists.txt

Raspberry Pi Pico C/C++ SDK
]

11 # add url via pico_set_program_url
12 example_auto_set_url(pcf8523_i2c)

pcf8523_i2c.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/blob/master/i2c/pcf8523_i2c/pcf8523_i2c.c

U e
2 * Copyright (c) 2620 Raspberry Pi (Trading) Ltd.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 &/
6
7 #include <stdio.h>
8 #include <string.h>
9 #include "pico/stdlib.h"
10 #include "pico/binary_info.h"
11 #include "hardware/i2c.h”
12
13 /* Example code to talk to a PCF8520 Real Time Clock module
14
15 Connections on Raspberry Pi Pico board, other boards may vary.
16
17 GPIO PICO_DEFAULT_I2C_SDA_PIN (On Pico this is 4 (physical pin 6)) -> SDA on PCF8526 board
18 GPIO PICO_DEFAULT_I2C_SCK_PIN (On Pico this is 5 (physical pin 7)) -> SCL on PCF8526 board
19 5V (physical pin 48) -> VCC on PCF8526 board
20 GND (physical pin 38) -> GND on PCF8526 board
2187
22
23 #ifdef i2c_default
24
25 // By default these devices are on bus address 0x68
26 static int addr = @x68;
27
28 static void pcf8520_reset() {
29 // Two byte reset. First byte register, second byte data
30 // There are a load more options to set up the device in different ways that could be
added here
31 uint8_t buf[] = {@x00, Bx58};
32 i2c_write_blocking(i2c_default, addr, buf, 2, false);
33 }
34
35 static void pcf8208_write_current_time() {
36 // buf[@] is the register to write to
37 // buf[1] is the value that will be written to the register
38 uint8_t buf[2];
39
40 //Write values for the current time in the array
41 //index @ -> second: bits 4-6 are responsible for the ten's digit and bits 6-3 for the
unit's digit
42 //index 1 -> minute: bits 4-6 are responsible for the ten's digit and bits 6-3 for the
unit's digit
43 //index 2 -> hour: bits 4-5 are responsible for the ten's digit and bits 6-3 for the
unit's digit
44 //index 3 -> day of the month: bits 4-5 are responsible for the ten's digit and bits 0-3
for the unit's digit
45 //index 4 -> day of the week: where Sunday = 0x00, Monday = 6x01, Tuesday... ...Saturday
= 0x06
46 //index 5 -> month: bit 4 is responsible for the ten's digit and bits 6-3 for the unit's
digit

]
Attaching a PCF8523 Real Time Clock via I2C 140

https://github.com/raspberrypi/pico-examples/blob/master/i2c/pcf8523_i2c/pcf8523_i2c.c

Raspberry Pi Pico C/C++ SDK
]

47

48
49

50
51
52
53
54
55
56
57
58
59

//index 6 -> year: bits 4-7 are responsible for the ten's digit and bits 6-3 for the

unit's digit

//NOTE: if the value in the year register is a multiple for 4, it will be considered a

leap year and hence will include the 29th of February

}

uint8_t current_val[7] = {0x00, 0x00, 0x00, 0x00, Ox00, Ox00, 0Ox00};

for (int i = 3; i < 10; ++i) {
buf[0] i;
buf[1] = current_val[i - 3];
i2c_write_blocking(i2c_default, addr, buf, 2, false);

60 static void pcf8520_read_raw(uint8_t *buffer) {

61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
77
78
79

80

81

82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

98
99
100
101

bus

// For this particular device, we send the device the register we want to read
// first, then subsequently read from the device. The register is auto incrementing
// so we don't need to keep sending the register we want, just the first.

// Start reading acceleration registers from register 0x3B for 6 bytes
uint8_t val = 0x@3;

i2c_write_blocking(i2c_default, addr, &val, 1, true); // true to keep master control of

i2c_read_blocking(i2c_default, addr, buffer, 7, false);

void pcf8520_set_alarm() {

// buf[@] is the register to write to
// buf[1] is the value that will be written to the register
uint8_t buf[2];

// Default value of alarm register is 0x80
// Set bit 8 of values to @ to activate that particular alarm
// Index @ -> minute: bits 4-5 are responsible for the ten's digit and bits 0-3 for the

unit's digit

// Index 1 -> hour: bits 4-6 are responsible for the ten's digit and bits 0-3 for the

unit's digit

// Index 2 -> day of the month: bits 4-5 are responsible for the ten's digit and bits 6-3

for the unit's digit
// Index 3 -> day of the week: where Sunday = 0x08, Monday = 0x01, Tuesday... ...Saturday
= 0x06

uint8_t alarm_val[4] = {0xB81, 0Ox80, 0Ox80, 0Ox80};

// Write alarm values to registers

for (int i = 10; i < 14; ++1i) {
buf[e] (uint8_t) 1i;
buf[1] = alarm_val[i - 10];
i2c_write_blocking(i2c_default, addr, buf, 2, false);

void pcf8520_check_alarm() {

bus

// Check bit 3 of control register 2 for alarm flags

uint8_t status[1];

uint8_t val = 0x01;

i2c_write_blocking(i2c_default, addr, &val, 1, true); // true to keep master control of

i2c_read_blocking(i2c_default, addr, status, 1, false);

if ((status[@] & 0x08) == Bx08) {
printf("ALARM RINGING");

]
Attaching a PCF8523 Real Time Clock via I2C 141

Raspberry Pi Pico C/C++ SDK
]

102
183
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

123
124
125
126
127
128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143
144
145

146
147
148
149
150
151
152
153

154
155
156
157
158
159
160

} else {
printf("Alarm not triggered yet");

void pcf8520_convert_time(int conv_time[7], const uint8_t raw_time[7]) {

}

// Convert raw data into time
conv_time[B] = (10 * (int) ((raw_time[0] & B8x70) >> 4)

*) ((int) (raw_time[0]
conv_time[1] = (18 * (int) ((raw_time[1] & @x78) >> 4))
*)
)

&)

((int) (raw_time[1] & OxOF));

conv_time[2] = (10 * (int) ((raw_time[2] & Ox30) >> 4) &))

conv_time[3] = (10 * (int) ((raw_time[3] & ©8x30) >> 4) &))
conv_time[4] = (int) (raw_time[4] & 0x07);

conv_time[5] = (10 * (int) ((raw_time[5] & B8x18) >> 4))

conv_time[6] = (10 * (int) ((raw_time[6] & BxF@) >> 4))

((int) (raw_time[2]
((int) (raw_time[3]

4

((int) (raw_time[5] & OxOF));
((int) (raw_time[6] & BxOF));

+

#endif

int main() {

stdio_init_all();

#if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) ||
!defined(PICO_DEFAULT_I2C_SCL_PIN)
#warning i2c/pcf8520_i2c example requires a board with I2C pins

puts("Default I2C pins were not defined");

#else

printf("Hello, PCF8520! Reading raw data from registers...\n");

// This example will use I2CO on the default SDA and SCL pins (4, 5 on a Pico)
i2c_init(i2c_default, 400 * 1000);

gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);

// Make the I2C pins available to picotool
bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN,

GPIO_FUNC_I2C));

pcf8520_reset();

pcf8208_write_current_time();
pcf8520_set_alarm();
pcf8520_check_alarm();

uint8_t raw_time[7];
int real_time[7];
char days_of_week[7][12] = {"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",

"Friday", "Saturday"};

while (1) {

pcf8520_read_raw(raw_time) ;
pcf8520_convert_time(real_time, raw_time);

printf("Time: %02d : %02d : %02d\n", real_time[2], real_time[1], real_time[0]);
printf("Date: %s %02d / %02d / %02d\n", days_of_week[real_time[4]], real_time[3],

real_time[5], real_time[6]);

pcf8520_check_alarm();

sleep_ms(560) ;

// Clear terminal
printf("\e[1;1H\e[2J");

]
Attaching a PCF8523 Real Time Clock via I2C 142

Raspberry Pi Pico C/C++ SDK

161 #endif
162 return 0;
163 }

Bill of Materials

Table 24. A list of . .
materials required for ltem Quantlty Details
the example Breadboard 1 generic part
Raspberry Pi Pico 1 https://www.raspberrypi.com/
products/raspberry-pi-pico/
PCF8523 board 1 https://www.adafruit.com/product/
3295
M/M Jumper wires 4 generic part

Attaching a PCF8523 Real Time Clock via I12C

143

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.adafruit.com/product/3295
https://www.adafruit.com/product/3295

Raspberry Pi Pico C/C++ SDK

Appendix B: SDK configuration

SDK configuration is the process of customising the SDK code for your particular build/application. As the parts of the
SDK that you use are recompiled as part of your build, configuration options can be chosen at compile time resulting in
smaller and more efficient customized versions of the code.

This chapter will show what configuration parameters are available, and how they can be changed.

SDK configuration parameters are passed as C preprocessor definitions to the build. The most common way to override
them is to specify them in your CMakeLists.txt when you define your executable or library:

e.g.

add_executable(my_program main.c)

target_compile_definitions(my_program PRIVATE
PICO_STACK_SIZE=4096

or if you are creating a library, and you want to add compile definitions whenever your library is included:

add_library(my_library INTERFACE)

target_compile_definitions(my_library INTERFACE
PICO_STDIO_DEFAULT_CRLF=0
PICO_DEFAULT_UART=1

The definitions can also be overridden in header files, as is commonly done for board configuration (see Appendix D).

For example,. the Pimoroni Tiny2040 board header configures the following to specify appropriate board settings for the
default I12C channel exposed on that board.

1) === 120 ===

#ifndef PICO_DEFAULT_I2C

#define PICO_DEFAULT_I2C 1

#endif

#ifndef PICO_DEFAULT_I2C_SDA_PIN
#define PICO_DEFAULT_I2C_SDA_PIN 2
#endif

#ifndef PICO_DEFAULT_I2C_SCL_PIN
#define PICO_DEFAULT_I2C_SCL_PIN 3
#endif

O NOTE

The #ifdef allows these values to still be overridden by the build (i.e. in CMakeLists.txt)

If you would rather set values in your own header file rather than via CMake, then you must make sure the header is
included by all compilation (including the SDK sources). Using a custom PIC0_BOARD header is one way of doing this, but
a more advanced way is to have the SDK include your header via pico/config.h which itself is included by every SDK
source file.

]
Appendix B: SDK configuration 144

Raspberry Pi Pico C/C++ SDK
]

Table 25. SDK and
Board Configuration
Parameters

list(APPEND PICO_CONFIG_HEADER_FILES path/to/your/header.h)

Configuration Parameters

This can be done by adding the following before the pico_sdk_init() in your CMakeLists.txt:

Parameter name

Defined in

Default

Description

CYW43_TASK_PRIORITY

arch_freertos.h

tskIDLE_PRIORITY
+4

Priority for the CYW43 FreeRTOS task

CYW43_TASK_STACK_SIZE

arch_freertos.h

1024

Stack size for the CYW43 FreeRTOS
task in 4-byte words

GPIO_IRQ_CALLBACK_ORDER_PRIORI | gpio.h PICO_SHARED_IR | the irq priority order of the default IRQ
TY Q_HANDLER_LOW | callback

EST_ORDER_PRIO

RITY
GPIO_RAW_IRQ_HANDLER_DEFAULT_ | gpio.h PICO_SHARED_IR | the irq priority order of raw IRQ
ORDER_PRIORITY Q_HANDLER_DEF | handlers if the priortiy is not specified

AULT_ORDER_PRI

ORITY
PARAM_ASSERTIONS_DISABLE_ALL |assert.h 0 Global assert disable
PARAM_ASSERTIONS_ENABLED_ADC | adc.h 0 Enable/disable assertions in the ADC

module
PARAM_ASSERTIONS_ENABLED_ADD | address_mapped. |0 Enable/disable assertions in memory
RESS_ALIAS h address aliasing macros
PARAM_ASSERTIONS_ENABLED_CLO | clocks.h 0 Enable/disable assertions in the
CKS clocks module
PARAM_ASSERTIONS_ENABLED_CY |cyw43_arch.h 0 Enable/disable assertions in the
W43_ARCH pico_cyw43_arch module
PARAM_ASSERTIONS_ENABLED_DM | dma.h 0 Enable/disable DMA assertions
A
PARAM_ASSERTIONS_ENABLED_EXC | exception.h 0 Enable/disable assertions in the
EPTION exception module
PARAM_ASSERTIONS_ENABLED_FLA | flash.h 0 Enable/disable assertions in the flash
SH module
PARAM_ASSERTIONS_ENABLED_GPI | gpio.h 0 Enable/disable assertions in the GPIO
o] module
PARAM_ASSERTIONS_ENABLED_I2C |i2c.h 0 Enable/disable assertions in the I12C
module

PARAM_ASSERTIONS_ENABLED_INT |interp.h 0 Enable/disable assertions in the
ERP interpolation module
PARAM_ASSERTIONS_ENABLED_IRQ |irg.h 0 Enable/disable assertions in the IRQ

module

]
Configuration Parameters

145

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_cyw43_arch/include/pico/cyw43_arch/arch_freertos.h#L15
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_cyw43_arch/include/pico/cyw43_arch/arch_freertos.h#L10
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L383
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L388
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_base/include/pico/assert.h#L22
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_adc/include/hardware/adc.h#L47
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_base/include/hardware/address_mapped.h#L58
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_base/include/hardware/address_mapped.h#L58
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/include/hardware/clocks.h#L92
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_cyw43_arch/include/pico/cyw43_arch.h#L133
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_dma/include/hardware/dma.h#L44
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_exception/include/hardware/exception.h#L27
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_flash/include/hardware/flash.h#L37
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L20
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_i2c/include/hardware/i2c.h#L15
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_interp/include/hardware/interp.h#L14
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_irq/include/hardware/irq.h#L114

Raspberry Pi Pico C/C++ SDK
]

Parameter name Defined in Default Description
PARAM_ASSERTIONS_ENABLED_LOC | lock_core.h 0 Enable/disable assertions in the lock
K_CORE core
PARAM_ASSERTIONS_ENABLED_PHE | pheap.h 0 Enable/disable assertions in the
AP pheap module
PARAM_ASSERTIONS_ENABLED_PIO | pio.h 0 Enable/disable assertions in the PIO
module
PARAM_ASSERTIONS_ENABLED_PIO_ | pio_instructions.h |0 Enable/disable assertions in the PIO
INSTRUCTIONS instructions
PARAM_ASSERTIONS_ENABLED_PW | pwm.h 0 Enable/disable assertions in the PWM
M module
PARAM_ASSERTIONS_ENABLED_SPI | spi.h 0 Enable/disable assertions in the SPI
module
PARAM_ASSERTIONS_ENABLED_SYN | sync.h 0 Enable/disable assertions in the HW
C sync module
PARAM_ASSERTIONS_ENABLED_TIM | time.h 0 Enable/disable assertions in the time
E module
PARAM_ASSERTIONS_ENABLED_TIM | timer.h 0 Enable/disable assertions in the timer
ER module
PARAM_ASSERTIONS_ENABLED_UAR | uart.h 0 Enable/disable assertions in the UART
T module
PARAM_ASSERTIONS_ENABLE_ALL | assert.h 0 Global assert enable
PICO_BOOTSEL_VIA_DOUBLE_RESET_ | pico_bootsel_via_ Optionally define a pin to use as
ACTIVITY_LED double_reset.c bootloader activity LED when
BOOTSEL mode is entered via reset
double tap
PICO_BOOTSEL_VIA_DOUBLE_RESET_ | pico_bootsel_via_ | 0 Optionally disable either the mass
INTERFACE_DISABLE_MASK double_reset.c storage interface (bit 0) or the
PICOBOOT interface (bit 1) when
entering BOOTSEL mode via double
reset
PICO_BOOTSEL_VIA_DOUBLE_RESET_ | pico_bootsel_via_ | 200 Window of opportunity for a second
TIMEOUT_MS double_reset.c press of a reset button to enter
BOOTSEL mode (milliseconds)
PICO_BOOT_STAGE2_CHOOSE_AT25 | config.h 0 Select boot2_at25sf128a as the boot
SF128A stage 2 when no boot stage 2
selection is made by the CMake build
PICO_BOOT_STAGE2_CHOOSE_GENE | config.h 1 Select boot2_generic_03h as the boot
RIC_03H stage 2 when no boot stage 2
selection is made by the CMake build
PICO_BOOT_STAGE2_CHOOSE_IS25L | config.h 0 Select boot2_is25Ip080 as the boot
P080 stage 2 when no boot stage 2
selection is made by the CMake build
PICO_BOOT_STAGE2_CHOOSE_W25Q | config.h 0 Select boot2_w25q080 as the boot

080

stage 2 when no boot stage 2
selection is made by the CMake build

]
Configuration Parameters

146

https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_sync/include/pico/lock_core.h#L41
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_util/include/pico/util/pheap.h#L16
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_pio/include/hardware/pio.h#L17
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_pio/include/hardware/pio_instructions.h#L23
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_pwm/include/hardware/pwm.h#L18
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_spi/include/hardware/spi.h#L14
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_sync/include/hardware/sync.h#L48
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_time/include/pico/time.h#L32
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_timer/include/hardware/timer.h#L48
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_uart/include/hardware/uart.h#L14
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_base/include/pico/assert.h#L21
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_bootsel_via_double_reset/pico_bootsel_via_double_reset.c#L17
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_bootsel_via_double_reset/pico_bootsel_via_double_reset.c#L17
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_bootsel_via_double_reset/pico_bootsel_via_double_reset.c#L19
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_bootsel_via_double_reset/pico_bootsel_via_double_reset.c#L19
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_bootsel_via_double_reset/pico_bootsel_via_double_reset.c#L12
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_bootsel_via_double_reset/pico_bootsel_via_double_reset.c#L12
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/boot_stage2/include/boot_stage2/config.h#L47
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/boot_stage2/include/boot_stage2/config.h#L57
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/boot_stage2/include/boot_stage2/config.h#L20
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/boot_stage2/include/boot_stage2/config.h#L29

Raspberry Pi Pico C/C++ SDK
]

Parameter name Defined in Default Description
PICO_BOOT_STAGE2_CHOOSE_W25X | config.h 0 Select boot2_w25x10cl as the boot
10CL stage 2 when no boot stage 2
selection is made by the CMake build
PICO_BUILD_BOOT_STAGE2_NAME | config.h The name of the boot stage 2 if

selected by the build

PICO_CMSIS_RENAME_EXCEPTIONS

rename_exception
s.h

—_

Whether to rename SDK exceptions
such as isr_nmi to their CMSIS
equivalent i.e. NMI_Handler

PICO_CONFIG_HEADER

pico.h

unquoted path to header include in
place of the default pico/config.h
which may be desirable for build
systems which can't easily generate
the config_autogen header

PICO_CONFIG_RTOS_ADAPTER_HEAD
ER

config.h

unquoted path to header include in the
default pico/config.h for RTOS
integration defines that must be
included in all sources

PICO_CORE1_STACK_SIZE

multicore.h

PICO_STACK_SIZ
E (0x800)

Stack size for core 1

PICO_CYW43_ARCH_DEBUG_ENABLE
D

cyw43_arch.h

1 in debug builds

Enable/disable some debugging
output in the pico_cyw43_arch module

PICO_CYW43_ARCH_DEFAULT_COUN

cyw43_arch.h

CYW43_COUNTR

Default country code for the cyw43

TRY_CODE Y_WORLDWIDE wireless driver
PICO_DEBUG_MALLOC malloc.h 0 Enable/disable debug printf from
malloc
PICO_DEBUG_MALLOC_LOW_WATER | malloc.h 0 Define the lower bound for allocation
addresses to be printed by
PICO_DEBUG_MALLOC
PICO_DEBUG_PIN_BASE gpio.h 19 First pin to use for debug output (if
enabled)
PICO_DEBUG_PIN_COUNT gpio.h 3 Number of pins to use for debug
output (if enabled)
PICO_DEFAULT_I2C i2c.h Define the default 12C for a board
PICO_DEFAULT_I2C_SCL_PIN i2c.h Define the default 12C SCL pin
PICO_DEFAULT_I2C_SDA_PIN i2c.h Define the default 12C SDA pin
PICO_DEFAULT_IRQ_PRIORITY irg.h 0x80 Define the default IRQ priority
PICO_DEFAULT_LED_PIN stdlib.h Optionally define a pin that drives a
regular LED on the board
PICO_DEFAULT_LED_PIN_INVERTED | stdlib.h 0 1if LED is inverted or 0 if not
PICO_DEFAULT_SPI spi.h Define the default SPI for a board
PICO_DEFAULT_SPI_CSN_PIN spi.h Define the default SPI CSN pin
PICO_DEFAULT_SPI_RX_PIN spi.h Define the default SPI RX pin
PICO_DEFAULT_SPI_SCK_PIN spi.h Define the default SPI SCK pin

]
Configuration Parameters

147

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/boot_stage2/include/boot_stage2/config.h#L38
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/boot_stage2/include/boot_stage2/config.h#L14
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/cmsis/include/cmsis/rename_exceptions.h#L11
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/cmsis/include/cmsis/rename_exceptions.h#L11
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_base/include/pico.h#L27
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_base/include/pico/config.h#L21
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_multicore/include/pico/multicore.h#L27
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_cyw43_arch/include/pico/cyw43_arch.h#L138
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_cyw43_arch/include/pico/cyw43_arch.h#L147
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_malloc/include/pico/malloc.h#L28
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_malloc/include/pico/malloc.h#L33
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L865
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L870
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_i2c/include/hardware/i2c.h#L54
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_i2c/include/hardware/i2c.h#L56
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_i2c/include/hardware/i2c.h#L55
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_irq/include/hardware/irq.h#L98
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_stdlib/include/pico/stdlib.h#L59
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_stdlib/include/pico/stdlib.h#L61
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_spi/include/hardware/spi.h#L38
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_spi/include/hardware/spi.h#L42
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_spi/include/hardware/spi.h#L41
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_spi/include/hardware/spi.h#L39

Raspberry Pi Pico C/C++ SDK
]

Parameter name Defined in Default Description
PICO_DEFAULT_SPI_TX_PIN spi.h Define the default SPI TX pin
PICO_DEFAULT_UART uart.h Define the default UART used for
printf etc
PICO_DEFAULT_UART_BAUD_RATE uart.h 115200 Define the default UART baudrate
PICO_DEFAULT_UART_RX_PIN uart.h Define the default UART RX pin
PICO_DEFAULT_UART_TX_PIN uart.h Define the default UART TX pin
PICO_DEFAULT_WS2812_PIN stdlib.h Optionally define a pin that controls
data to a WS2812 compatible LED on
the board
PICO_DEFAULT_WS2812_POWER_PIN | stdlib.h Optionally define a pin that controls

power to a WS2812 compatible LED
on the board

PICO_DISABLE_SHARED_IRQ_HANDL |irg.h 0 Disable shared IRQ handlers

ERS

PICO_DOUBLE_SUPPORT_ROM_V1 platform.h 1 Include double support code for
RP2040 BO when that chip revision is
supported

PICO_FLASH_BANK_STORAGE_OFFSE | btstack_flash_ban | PICO_FLASH_SIZ | Offset in flash of the Bluetooth flash
T k.h E_BYTES - storage

PICO_FLASH_BAN
K_TOTAL_SIZE

PICO_FLASH_BANK_TOTAL_SIZE btstack_flash_ban | FLASH_SECTOR_ | Total size of the Bluetooth flash
k.h SIZE* 2 storage. Must be an even multiple of
FLASH_SECTOR_SIZE

PICO_FLASH_SIZE_BYTES flash.h size of primary flash in bytes

PICO_FLOAT_SUPPORT_ROM_V1 platform.h 1 Include float support code for RP2040
B0 when that chip revision is
supported

PICO_HEAP_SIZE platform.h 0x800 Heap size to reserve

PICO_MALLOC_PANIC malloc.h 1 Enable/disable panic when an

allocation failure occurs

PICO_MAX_SHARED_IRQ_HANDLERS |irg.h 4 Maximum number of shared IRQ
handlers

PICO_NO_FPGA_CHECK platform.h 0 Remove the FPGA platform check for
small code size reduction

PICO_NO_RAM_VECTOR_TABLE platform.h 0 Enable/disable the RAM vector table

PICO_PANIC_FUNCTION runtime.c Name of a function to use in place of

the stock panic function or empty
string to simply breakpoint on panic

PICO_PHEAP_MAX_ENTRIES pheap.h 255 Maximum number of entries in the
pheap
PICO_PRINTF_ALWAYS_INCLUDED printf.h 1 in debug build 0 | Whether to always include printf code
otherwise even if only called weakly (by panic)

]
Configuration Parameters 148

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_spi/include/hardware/spi.h#L40
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_uart/include/hardware/uart.h#L33
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_uart/include/hardware/uart.h#L37
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_uart/include/hardware/uart.h#L35
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_uart/include/hardware/uart.h#L34
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_stdlib/include/pico/stdlib.h#L66
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_stdlib/include/pico/stdlib.h#L67
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_irq/include/hardware/irq.h#L16
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_platform/include/pico/platform.h#L51
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_btstack/include/pico/btstack_flash_bank.h#L22
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_btstack/include/pico/btstack_flash_bank.h#L22
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_btstack/include/pico/btstack_flash_bank.h#L17
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_btstack/include/pico/btstack_flash_bank.h#L17
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_flash/include/hardware/flash.h#L48
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_platform/include/pico/platform.h#L46
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_platform/include/pico/platform.h#L31
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_malloc/include/pico/malloc.h#L23
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_irq/include/hardware/irq.h#L11
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_platform/include/pico/platform.h#L323
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_platform/include/pico/platform.h#L36
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_runtime/runtime.c#L279
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_util/include/pico/util/pheap.h#L37
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_printf/include/pico/printf.h#L49

Raspberry Pi Pico C/C++ SDK
]

Parameter name Defined in Default Description
PICO_PRINTF_DEFAULT_FLOAT_PRE | printf.c 6 Define default floating point precision
CISION
PICO_PRINTF_FTOA_BUFFER_SIZE printf.c 32 Define printf ftoa buffer size
PICO_PRINTF_MAX_FLOAT printf.c 1e9 Define the largest float suitable to
print with %f
PICO_PRINTF_NTOA_BUFFER_SIZE printf.c 32 Define printf ntoa buffer size
PICO_PRINTF_SUPPORT_EXPONENTI | printf.c 1 Enable exponential floating point
AL printing
PICO_PRINTF_SUPPORT_FLOAT printf.c 1 Enable floating point printing
PICO_PRINTF_SUPPORT_LONG_LONG | printf.c 1 Enable support for long long types
(%llu or %p)
PICO_PRINTF_SUPPORT_PTRDIFF_T | printf.c 1 Enable support for the ptrdiff_t type
(%t)
PICO_QUEUE_MAX_LEVEL queue.h 0 Maintain a field for the highest level

that has been reached by a queue

PICO_RAND_BUS_PERF_COUNTER_EV
ENT

rand.h

arbiter_sram5_per
f_event_access

Bus performance counter event to use
for sourcing entropy

PICO_RAND_BUS_PERF_COUNTERLIN |rand.h Bus performance counter index to use
DEX for sourcing entropy
PICO_RAND_ENTROPY_SRC_BUS_PE |rand.h 1 Enable/disable use of a bus
RF_COUNTER performance counter as an entropy
source
PICO_RAND_ENTROPY_SRC_ROSC rand.h 1 Enable/disable use of ROSC as an
entropy source
PICO_RAND_ENTROPY_SRC_TIME rand.h 1 Enable/disable use of hardware
timestamp as an entropy source
PICO_RAND_MIN_ROSC_BIT_SAMPLE | rand.h 10 Define a default minimum time
_TIME_US between sampling the ROSC random
bit
PICO_RAND_RAM_HASH_END rand.h SRAM_END end of address in RAM (non-inclusive)
to hash during pico_rand seed
initialization
PICO_RAND_RAM_HASH_START rand.h PICO_RAND_RAM | start of address in RAM (inclusive) to

_HASH_END -
1024

hash during pico_rand seed
initialization

PICO_RAND_ROSC_BIT_SAMPLE_COU
NT

rand.h

1

Number of samples to take of the
ROSC random bit per random number
generation

PICO_RAND_SEED_ENTROPY_SRC_B
OARD_ID

rand.h

Enable/disable use of board id as part
of the random seed

PICO_RAND_SEED_ENTROPY_SRC_RA
M_HASH

rand.h

Enable/disable use of a RAM hash as
an entropy source for the random
seed

]
Configuration Parameters

149

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_printf/printf.c#L66
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_printf/printf.c#L47
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_printf/printf.c#L71
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_printf/printf.c#L40
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_printf/printf.c#L60
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_printf/printf.c#L54
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_printf/printf.c#L76
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_printf/printf.c#L81
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_util/include/pico/util/queue.h#L13
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_rand/include/pico/rand.h#L128
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_rand/include/pico/rand.h#L124
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_rand/include/pico/rand.h#L76
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_rand/include/pico/rand.h#L66
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_rand/include/pico/rand.h#L71
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_rand/include/pico/rand.h#L114
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_rand/include/pico/rand.h#L137
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_rand/include/pico/rand.h#L141
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_rand/include/pico/rand.h#L109
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_rand/include/pico/rand.h#L95
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_rand/include/pico/rand.h#L100

Raspberry Pi Pico C/C++ SDK
]

Parameter name Defined in Default Description
PICO_RAND_SEED_ENTROPY_SRC_R |rand.h 1 Enable/disable use of ROSC as an
0sc entropy source for the random seed
PICO_RAND_SEED_ENTROPY_SRC_TI |rand.h 1 Enable/disable use of hardware

ME timestamp as an entropy source for

the random seed

PICO_RP2040_B0_SUPPORTED platform.h 1 Whether to include any specific
software support for RP2040 BO
revision

PICO_RP2040_B1_SUPPORTED platform.h 1 Whether to include any specific
software support for RP2040 B1
revision

PICO_RP2040_B2_SUPPORTED platform.h 1 Whether to include any specific
software support for RP2040 B2
revision

PICO_SHARED_IRQ_HANDLER_DEFAU | irg.h 0x80 Set default shared IRQ order priority

LT_ORDER_PRIORITY

PICO_SPINLOCK_ID_CLAIM_FREE_FIR | sync.h 24 Lowest Spinlock ID in the ‘claim free'

ST range

PICO_SPINLOCK_ID_CLAIM_FREE_LA |sync.h 31 Highest Spinlock ID in the ‘claim free'

ST range

PICO_SPINLOCK_ID_HARDWARE_CLA | sync.h 11 Spinlock ID for Hardware claim

IM protection

PICO_SPINLOCK_ID_IRQ sync.h 9 Spinlock ID for IRQ protection

PICO_SPINLOCK_ID_0S1 sync.h 14 First Spinlock ID reserved for use by
low level OS style software

PICO_SPINLOCK_ID_0S2 sync.h 15 Second Spinlock ID reserved for use
by low level OS style software

PICO_SPINLOCK_ID_RAND sync.h 12 Spinlock ID for Random Number
Generator

PICO_SPINLOCK_ID_STRIPED_FIRST |sync.h 16 Lowest Spinlock ID in the 'striped’
range

PICO_SPINLOCK_ID_STRIPED_LAST |sync.h 23 Highest Spinlock ID in the 'striped'
range

PICO_SPINLOCK_ID_TIMER sync.h 10 Spinlock ID for Timer protection

PICO_STACK_SIZE platform.h 0x800 Stack Size

PICO_STDIO_DEADLOCK_TIMEOUT_M | stdio.h 1000 Time after which to assume stdio_usb

S is deadlocked by use in IRQ and give
up

PICO_STDIO_DEFAULT_CRLF stdio.h 1 Default for CR/LF conversion enabled

on all stdio outputs

PICO_STDIO_ENABLE_CRLF_SUPPOR | stdio.h 1 Enable/disable CR/LF output
T conversion support

PICO_STDIO_SEMIHOSTING_DEFAUL | stdio_semihosting | PICO_STDIO_DEF | Default state of CR/LF translation for
T_CRLF .h AULT_CRLF semihosting output

]
Configuration Parameters 150

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_rand/include/pico/rand.h#L85
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_rand/include/pico/rand.h#L90
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_platform/include/pico/platform.h#L41
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_platform/include/pico/platform.h#L57
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_platform/include/pico/platform.h#L62
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_irq/include/hardware/irq.h#L106
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_sync/include/hardware/sync.h#L98
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_sync/include/hardware/sync.h#L107
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_sync/include/hardware/sync.h#L68
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_sync/include/hardware/sync.h#L58
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_sync/include/hardware/sync.h#L78
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_sync/include/hardware/sync.h#L83
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_sync/include/hardware/sync.h#L73
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_sync/include/hardware/sync.h#L88
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_sync/include/hardware/sync.h#L93
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_sync/include/hardware/sync.h#L63
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_platform/include/pico/platform.h#L26
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio/include/pico/stdio.h#L39
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio/include/pico/stdio.h#L29
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio/include/pico/stdio.h#L24
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_semihosting/include/pico/stdio_semihosting.h#L20
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_semihosting/include/pico/stdio_semihosting.h#L20

Raspberry Pi Pico C/C++ SDK
]

Parameter name Defined in Default Description
PICO_STDIO_STACK_BUFFER_SIZE stdio.h 128 Define printf buffer size (on stack)...
this is just a working buffer not a max
output size
PICO_STDIO_UART_DEFAULT_CRLF | stdio_uart.h PICO_STDIO_DEF | Default state of CR/LF translation for
AULT_CRLF UART output
PICO_STDIO_UART_SUPPORT_CHARS | stdio_uart.h 1 Enable UART STDIO support for
_AVAILABLE_CALLBACK stdio_set_chars_available_callback.

Can be disabled to make use of the
uart elsewhere

PICO_STDIO_USB_CONNECTION_WIT | stdio_usb.h 0 Disable use of DTR for connection
HOUT_DTR checking meaning connection is
assumed to be valid

PICO_STDIO_USB_CONNECT_WAIT_TI| stdio_usb.h 0 Maximum number of milliseconds to
MEOUT_MS wait during initialization for a CDC
connection from the host (negative
means indefinite) during initialization

PICO_STDIO_USB_DEFAULT_CRLF stdio_usb.h PICO_STDIO_DEF | Default state of CR/LF translation for
AULT_CRLF USB output
PICO_STDIO_USB_DEVICE_SELF_POW | stdio_usb.h 0 Set USB device as self powered
ERED device
PICO_STDIO_USB_ENABLE_RESET_VI | stdio_usb.h 1 Enable/disable resetting into
A_BAUD_RATE BOOTSEL mode if the host sets the

baud rate to a magic value
(PICO_STDIO_USB_RESET_MAGIC_BA

UD_RATE)
PICO_STDIO_USB_ENABLE_RESET_VI | stdio_usb.h 1 Enable/disable resetting into
A_VENDOR_INTERFACE BOOTSEL mode via an additional

VENDOR USB interface - enables
picotool based reset

PICO_STDIO_USB_LOW_PRIORITY_IR | stdio_usb.h Explicit User IRQ number to claim for
Q tud_task() background execution
instead of letting the implementation
pick a free one dynamically

(deprecated)
PICO_STDIO_USB_POST_CONNECT_ | stdio_ush.h 50 Number of extra milliseconds to wait
WAIT_DELAY_MS when using

PICO_STDIO_USB_CONNECT_WAIT_TI
MEOUT_MS after a host CDC
connection is detected (some host
terminals seem to sometimes lose
transmissions sent right after
connection)

PICO_STDIO_USB_RESET_BOOTSEL_A | stdio_usb.h Optionally define a pin to use as
CTIVITY_LED bootloader activity LED when
BOOTSEL mode is entered via USB
(either VIA_BAUD_RATE or
VIA_VENDOR_INTERFACE)

]
Configuration Parameters 151

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio/include/pico/stdio.h#L34
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_uart/include/pico/stdio_uart.h#L21
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_uart/include/pico/stdio_uart.h#L26
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L100
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L57
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L26
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L105
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L47
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L80
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L42
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L62
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L67

Raspberry Pi Pico C/C++ SDK
]

Parameter name Defined in Default Description
PICO_STDIO_USB_RESET_BOOTSEL_F | stdio_usb.h 0 Whether the pin specified by
IXED_ACTIVITY_LED PICO_STDIO_USB_RESET_BOOTSEL_A

CTIVITY_LED is fixed or can be
modified by picotool over the VENDOR
USB interface

PICO_STDIO_USB_RESET_BOOTSEL_| | stdio_usb.h 0 Optionally disable either the mass
NTERFACE_DISABLE_MASK storage interface (bit 0) or the
PICOBOOT interface (bit 1) when
entering BOOTSEL mode via USB
(either VIA_LBAUD_RATE or
VIA_VENDOR_INTERFACE)

PICO_STDIO_USB_RESET_INTERFACE | stdio_usb.h 1 If vendor reset interface is included
_SUPPORT_RESET_TO_BOOTSEL allow rebooting to BOOTSEL mode
PICO_STDIO_USB_RESET_INTERFACE | stdio_usb.h 1 If vendor reset interface is included
_SUPPORT_RESET_TO_FLASH_BOOT allow rebooting with regular flash boot
PICO_STDIO_USB_RESET_MAGIC_BA | stdio_ush.h 1200 baud rate that if selected causes a
UD_RATE reset into BOOTSEL mode (if

PICO_STDIO_USB_ENABLE_RESET_VI
A_BAUD_RATE is set)

PICO_STDIO_USB_RESET_RESET_TO_ | stdio_usb.h 100 delays in ms before rebooting via
FLASH_DELAY_MS regular flash boot
PICO_STDIO_USB_STDOUT_TIMEOUT | stdio_usb.h 500000 Number of microseconds to be
_uUs blocked trying to write USB output

before assuming the host has
disappeared and discarding data

PICO_STDIO_USB_SUPPORT_CHARS_ | stdio_usb.h 1 Enable USB STDIO support for
AVAILABLE_CALLBACK stdio_set_chars_available_callback.
Can be disabled to make use of USB
CDC RX callback elsewhere

PICO_STDIO_USB_TASK_INTERVAL_U | stdio_usb.h 1000 Period of microseconds between
S calling tud_task in the background
PICO_STDOUT_MUTEX stdio.h 1 Enable/disable mutex around stdout
PICO_TIME_DEFAULT_ALARM_POOL_ | time.h 0 Disable the default alarm pool
DISABLED
PICO_TIME_DEFAULT_ALARM_POOL_ | time.h 3 Select which HW alarm is used for the
HARDWARE_ALARM_NUM default alarm pool
PICO_TIME_DEFAULT_ALARM_POOL_ | time.h 16 Selects the maximum number of
MAX_TIMERS concurrent timers in the default alarm
pool
PICO_TIME_SLEEP_OVERHEAD_ADJU | time.h 6 How many microseconds to wake up
ST_US early (and then busy_wait) to account

for timer overhead when sleeping in
low power mode

PICO_UART_DEFAULT_CRLF uart.h 0 Enable/disable CR/LF translation on
UART

]
Configuration Parameters 152

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L69
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L75
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L85
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L90
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L52
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L95
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L31
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L110
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L37
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdio/include/pico/stdio.h#L19
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_time/include/pico/time.h#L306
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_time/include/pico/time.h#L323
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_time/include/pico/time.h#L333
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_time/include/pico/time.h#L37
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_uart/include/hardware/uart.h#L28

Raspberry Pi Pico C/C++ SDK

Parameter name Defined in Default Description
PICO_UART_ENABLE_CRLF_SUPPORT | uart.h 1 Enable/disable CR/LF translation
support
PICO_USE_MALLOC_MUTEX malloc.h 1 with Whether to protect malloc etc with a
pico_multicore, 0 | mutex
otherwise
PICO_VTABLE_PER_CORE irg.h 0 user is using separate vector tables
per core
PICO_XOSC_STARTUP_DELAY_MULTI | xosc.h 1 Multiplier to lengthen xosc startup
PLIER delay to accommodate slow-starting
oscillators
USB_DPRAM_MAX usb.h 4096 Set amount of USB RAM used by USB
system
X0SC_MHZ platform_defs.h |12 The crystal oscillator frequency in
Mhz

Configuration Parameters 153

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_uart/include/hardware/uart.h#L23
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_malloc/include/pico/malloc.h#L18
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_irq/include/hardware/irq.h#L21
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_xosc/include/hardware/xosc.h#L16
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_structs/include/hardware/structs/usb.h#L57
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_regs/include/hardware/platform_defs.h#L40

Raspberry Pi Pico C/C++ SDK

Table 26. CMake
Configuration
Variables

Appendix C: CMake build
configuration

CMake configuration variables can be used to customize the way the SDK performs builds

Configuration Parameters

Parameter name Defined in Default Description
PICO_BARE_METAL CMakelists.txt 0 Flag to exclude anything except base
headers from the build
PICO_BOARD board_setup.cma | pico The board name being built for. This is
ke overridable from the user environment
PICO_BOARD_CMAKE_DIRS board_setup.cma |" Directories to look for
ke <PICO_BOARD>.cmake in. This is
overridable from the user environment
PICO_BOARD_HEADER_DIRS generic_board.cm " Directories to look for
ake <PICO_BOARD>.h in. This is
overridable from the user environment
PICO_CMAKE_RELOAD_PLATFORM_F | pico_pre_load_pla | none custom CMake file to use to set up
ILE tform.cmake the platform environment
PICO_COMPILER pico_pre_load_too | none Optionally specifies a different
Ichain.cmake compiler (other than
pico_arm_gcc.cmake) - this is not yet
fully supported
PICO_CONFIG_HEADER_FILES CMakelLists.txt List of extra header files to include
from pico/config.h for all platforms
PICO_CONFIG_HOST_HEADER_FILES | CMakelLists.txt List of extra header files to include
from pico/config.h for host platform
PICO_CONFIG_RP2040_HEADER_FILE | CMakeLists.txt List of extra header files to include
S from pico/config.h for rp2040
platform
PICO_CXX_ENABLE_CXA_ATEXIT CMakeLists.txt 0 Enabled cxa-atexit
PICO_CXX_ENABLE_EXCEPTIONS CMakelLists.txt 0 Enabled CXX exception handling
PICO_CXX_ENABLE_RTTI CMakelLists.txt 0 Enabled CXX rtti
PICO_DEFAULT_BOOT_STAGE2_FILE |CMakelists.txt Default stage? file to use unless
/boot2_w25q080. | overridden by pico_set_boot_stage2
S on the TARGET
PICO_NO_GC_SECTIONS CMakeLists.txt 0 Disable -ffunction-sections -fdata
-sections and --gc-sections
PICO_NO_HARDWARE rp2_common.cma | 1 for OPTION: Whether the build is not

ke

PICO_PLATFORM
host 0 otherwise

targeting an RP2040 device

]
Configuration Parameters

154

https://github.com/raspberrypi/pico-sdk/blob/master/src/common/CMakeLists.txt#L5
https://github.com/raspberrypi/pico-sdk/blob/master/src/board_setup.cmake#L1
https://github.com/raspberrypi/pico-sdk/blob/master/src/board_setup.cmake#L1
https://github.com/raspberrypi/pico-sdk/blob/master/src/board_setup.cmake#L15
https://github.com/raspberrypi/pico-sdk/blob/master/src/board_setup.cmake#L15
https://github.com/raspberrypi/pico-sdk/blob/master/src/boards/generic_board.cmake#L3
https://github.com/raspberrypi/pico-sdk/blob/master/src/boards/generic_board.cmake#L3
https://github.com/raspberrypi/pico-sdk/blob/master/cmake/pico_pre_load_platform.cmake#L16
https://github.com/raspberrypi/pico-sdk/blob/master/cmake/pico_pre_load_platform.cmake#L16
https://github.com/raspberrypi/pico-sdk/blob/master/cmake/pico_pre_load_toolchain.cmake#L20
https://github.com/raspberrypi/pico-sdk/blob/master/cmake/pico_pre_load_toolchain.cmake#L20
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_base/CMakeLists.txt#L14
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_base/CMakeLists.txt#L18
https://github.com/raspberrypi/pico-sdk/blob/master/src/common/pico_base/CMakeLists.txt#L17
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_cxx_options/CMakeLists.txt#L19
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_cxx_options/CMakeLists.txt#L4
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_cxx_options/CMakeLists.txt#L14
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/boot_stage2/CMakeLists.txt#L1
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_standard_link/CMakeLists.txt#L88
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common.cmake#L52
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common.cmake#L52

Raspberry Pi Pico C/C++ SDK

Parameter name Defined in Default Description
PICO_NO_TARGET_NAME rp2_common.cma | 0 Don't defined PICO_TARGET_NAME
ke
PICO_NO_UF2 rp2_common.cma | 0 Disable UF2 output
ke
PICO_ON_DEVICE rp2_common.cma | 0 for OPTION: Whether the build is
ke PICO_PLATFORM | targeting an RP2040 device
host 1 otherwise
PICO_PLATFORM pico_pre_load_pla |rp2040 or platform to build for e.g. rp2040/host
tform.cmake environment value
PICO_STDIO_SEMIHOSTING CMakelLists.txt 0 OPTION: Globally enable stdio
semihosting
PICO_STDIO_UART CMakelLists.txt 1 OPTION: Globally enable stdio UART
PICO_STDIO_USB CMakelists.txt 0 OPTION: Globally enable stdio USB
PICO_TOOLCHAIN_PATH pico_pre_load_too | none (i.e. search | Path to search for compiler
Ichain.cmake system paths)

Control of binary type produced (advanced)

These variables control how executables for RP2040 are laid out in memory. The default is for the code and data to be
entirely stored in flash with writable data (and some specifically marked) methods to copied into RAM at startup.

PICO_DEFAULT_BINARY_TYPE | default The default is flash binaries which are stored in and run from flash.

no_flash This option selects a RAM only binaries, that does not require any
flash. Note: this type of binary must be loaded on each device
reboot via a UF2 file or from the debugger.

copy_to_ram This option selects binaries which are stored in flash, but copy
themselves to RAM before executing.

blocked_ram
PICO_NO_FLASH* 0/1 Equivalent to PICO_DEFAULT_BINARY_TYPE=no_flash if 1
PICO_COPY_TO_RAM* 0/1 Equivalent to PICO_DEFAULT_BINARY_TYPE=copy_to_ram if 1
PICO_USE_BLOCKED_RAM* 0/1 Equivalent to PICO_DEFAULT_BINARY_TYPE=blocked_ram if 1

@ TP

The binary type can be set on a per executable target (as created by add_executable) basis by calling
pico_set_binary_type(target type) where type is the same as for PICO_DEFAULT_BINARY_TYPE

Configuration Parameters 155

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common.cmake#L25
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common.cmake#L25
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common.cmake#L43
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common.cmake#L43
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common.cmake#L55
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common.cmake#L55
https://github.com/raspberrypi/pico-sdk/blob/master/cmake/pico_pre_load_platform.cmake#L1
https://github.com/raspberrypi/pico-sdk/blob/master/cmake/pico_pre_load_platform.cmake#L1
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdlib/CMakeLists.txt#L5
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdlib/CMakeLists.txt#L1
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_stdlib/CMakeLists.txt#L3
https://github.com/raspberrypi/pico-sdk/blob/master/cmake/pico_pre_load_toolchain.cmake#L1
https://github.com/raspberrypi/pico-sdk/blob/master/cmake/pico_pre_load_toolchain.cmake#L1

Raspberry Pi Pico C/C++ SDK

Appendix D: Board configuration

Board Configuration

Board configuration is the process of customising the SDK to run on a specific board design. The SDK comes with
some predefined configurations for boards produced by Raspberry Pi and other manufacturers, the main (and default)
example being the Raspberry Pi Pico.

Configurations specify a number of parameters that could vary between hardware designs. For example, default UART
ports, on-board LED locations and flash capacities etc.

This chapter will go through where these configurations files are, how to make changes and set parameters, and how to
build your SDK using CMake with your customisations.

The Configuration files

Board specific configuration files are stored in the SDK source tree, at -:-/src/boards/include/boards/<boardname>.h. The
default configuration file is that for the Raspberry Pi Pico, and at the time of writing is:

<sdk_path>/src/boards/include/boards/pico.h

This relatively short file contains overrides from default of a small number of parameters used by the SDK when building
code.

SDK: https://github.com/raspberrypi/pico-sdk/blob/master/src/boards/include/boards/pico.h

/*
* Copyright (c) 2620 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
=/

0w N O O WN =

// NOTE: THIS HEADER IS ALSO INCLUDED BY ASSEMBLER SO
// SHOULD ONLY CONSIST OF PREPROCESSOR DIRECTIVES

R
N = ® ©
~
~

// This header may be included by other board headers as "boards/pico.h"

a A
B~ W

#ifndef _BOARDS_PICO_H
#define _BOARDS_PICO_H

R)
N o o

// For board detection
#define RASPBERRYPI_PICO

N 2 4
® ©O© ©

// --- UART ---

#ifndef PICO_DEFAULT_UART

#define PICO_DEFAULT_UART @
#endif

#ifndef PICO_DEFAULT_UART_TX_PIN
#define PICO_DEFAULT_UART_TX_PIN @
#endif

#ifndef PICO_DEFAULT_UART_RX_PIN
#define PICO_DEFAULT_UART_RX_PIN 1
#endif

W W NNDNNDNDNDNDNDNDN
= ® OV O N O g B~ WDN =2

// --- LED ---

]
Board Configuration 156

https://github.com/raspberrypi/pico-sdk/blob/master/src/boards/include/boards/pico.h

Raspberry Pi Pico C/C++ SDK
]

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
30
81
82
83
84

#ifndef PICO_DEFAULT_LED_PIN
#define PICO_DEFAULT_LED_PIN 25
#endif

// no PICO_DEFAULT_WS2812_PIN

// --- I2C ---

#ifndef PICO_DEFAULT_I2C

#define PICO_DEFAULT_I2C ©

#endif

#ifndef PICO_DEFAULT_I2C_SDA_PIN
#define PICO_DEFAULT_I2C_SDA_PIN 4
#endif

#ifndef PICO_DEFAULT_I2C_SCL_PIN
#define PICO_DEFAULT_I2C_SCL_PIN 5
#endif

// --- SPT ---

#ifndef PICO_DEFAULT_SPI

#define PICO_DEFAULT_SPI @

#endif

#ifndef PICO_DEFAULT_SPI_SCK_PIN
#define PICO_DEFAULT_SPI_SCK_PIN 18
#endif

#ifndef PICO_DEFAULT_SPI_TX_PIN
#define PICO_DEFAULT_SPI_TX_PIN 19
#endif

#ifndef PICO_DEFAULT_SPI_RX_PIN
#define PICO_DEFAULT_SPI_RX_PIN 16
#endif

#ifndef PICO_DEFAULT_SPI_CSN_PIN
#define PICO_DEFAULT_SPI_CSN_PIN 17
#endif

// --- FLASH ---
#define PICO_BOOT_STAGE2_CHOOSE_W25Q086 1
#ifndef PICO_FLASH_SPI_CLKDIV

#define PICO_FLASH_SPI_CLKDIV 2

#endif

#ifndef PICO_FLASH_SIZE_BYTES

#define PICO_FLASH_SIZE_BYTES (2 * 1024 * 1024)
#endif

// Drive high to force power supply into PWM mode (lower ripple on 3V3 at light loads)

#define PICO_SMPS_MODE_PIN 23
#ifndef PICO_RP2046_B6_SUPPORTED
#define PICO_RP2046_B6_SUPPORTED 1
#endif

#endif

As can be seen, it sets up the default UART to vart@, the GPIO pins to be used for that UART, the GPIO pin used for the
on-board LED, and the flash size.

To create your own configuration file, create a file in the board ../source/folder with the name of your board, for

example, myboard.h. Enter your board specific parameters in this file.

Board Configuration

157

Raspberry Pi Pico C/C++ SDK
]

Building applications with a custom board configuration

The CMake system is what specifies which board configuration is going to be used.

To create a new build based on a new board configuration (we will use the myboard example from the previous section)
first create a new build folder under your project folder. For our example we will use the pico-examples folder.

S cd pico-examples
S mkdir myboard_build
$ cd myboard_build

then run cmake as follows:

$ cmake -D"PICO_BOARD=myboard" ..

This will set up the system ready to build so you can simply type make in the myboard_build folder and the examples will be
built for your new board configuration.

Available configuration parameters

Table 25 lists all the available configuration parameters available within the SDK. You can set any configuration variable
in a board configuration header file, however the convention is to limit that to configuration items directly affected by
the board design (e.g. pins, clock frequencies etc.). Other configuration items should generally be overridden in the
CMake configuration (or another configuration header) for the application being built.

Board Configuration 158

Raspberry Pi Pico C/C++ SDK

Appendix E: Building the SDK API

documentation

The SDK documentation can be viewed online, but is also part of the SDK itself and can be built directly from the

command line. If you haven't already checked out the SDK repository you should do so,

cd ~/
mkdir pico
cd pico

cd pico-sdk

cd

R7 SR 72 75 S V- SV R 70 S Vo B Vo

git clone https://github.com/raspberrypi/pico-sdk.git --branch master

git submodule update --init

Install doxygen if you don't already have it,

$ sudo apt install doxygen

Then afterwards you can go ahead and build the documentation,

cd pico-sdk
mkdir build
cd build

oW v v v v

make docs

The API documentation will be built and can be found in the pico-sdk/build/docs/doxygen/html directory, see Figure 27.

API documentation € > C Y O File| /home/jamesh/projects/gitiab/pico_sdk/build/docs/doxygen/htmlfindexhtml v O W "on ° B
i Apps K Bookmarks G & 9 W M inbox @ § @ Docs Bm News Bm RFi B Shopping » | B Other bookmarks
Raspberry Pi Raspberry Pi Pico SDK
SDK Documentation The Raspberry Pi Pico SDK (Software D Kit), henceforth SDK, provides the headers, libraries and

Q search

Introduction

API Documentation
Examples

Additional Documentation +

Web +

‘ By Raspberry Pi (Trading) Ltd

cmake -DPICO_EXAMPLES_PATH=../../pico-examples

build system necessary to write programs for the RP2040 based devices such as the Raspberry Pi Pico in C,

C++ or assembly language. The SDK is designed to provide an API and programming environment that is
familiar both to nol o} pers and C pers alike.

A single program runs on the device at a time with a conventional main() method. Standard C/C++ libraries
are supported along with APIs for accessing the RP2040's hardware, including DMA, IRQs, and the wide
variety fixed function peripherals and PIO (Programmable 10)

Additionally the SDK provides higher level libraries for dealing with timers, USB, synchronization and multi-
core ing, along with iti high level ity built using P10 such as audio. The SDK can

be used to build anything from simple applications, full fledged runtime environments such as MicroPython,

to low level software such as the RP2040's on chip bootrom itself.

This documentation is generated from the SDK source tree using Doxygen. It provides basic information on
the APIs used for each library, but does not provide usage information. Please refer to the Databooks for
usage and more technical information.

SDK Design

The RP2040 is a powerful chip, however it is an embedded environment, so both RAM, and program space
are at premium. Additionally the trade offs between performance and other factors (e.g. edge case error
handling, runtime vs compile time configuration) are necessarily much more visible to the developer than
they might be on other higher level platforms.

git clone https://github.com/raspberrypi/pico-examples.git --branch master

Appendix E: Building the SDK API documentation

159

https://www.raspberrypi.com/documentation/pico-sdk/

Raspberry Pi Pico C/C++ SDK

Appendix F: SDK release history

Release 1.0.0 (20/Jan/2021)

Initial release

Release 1.0.1 (01/Feb/2021)

® add pico_get_unique_id method to return a unique identifier for a Pico board using the identifier of the external flash
® exposed all 4 pacing timers on the DMA peripheral (previously only 2 were exposed)
e fixed ninja build (i.e. cmake -G ninja .. ; ninja)

® minor other improvements and bug fixes

Boot Stage 2

Additionally, a low level change was made to the way flash binaries start executing after boot_stage2. This was at the
request of folks implementing other language runtimes. It is not generally of concern to end users, however it did
require a change to the linker scripts so if you have cloned those to make modifications then you need to port across
the relevant changes. If you are porting a different language runtime using the SDK boot_stage2 implementations then
you should be aware that you should now have a vector table (rather than executable code) - at 0x10000100.

Release 1.1.0 (05/Mar/2021)

® Added board headers for Adafruit, Pimoroni & SparkFun boards

o new values for PICO_BOARD are adafruit_feather_rp2040, adafruit_itsybitsy_rp2040, adafruit_qtpy_rp2040,
pimoroni_keybow2040, pimoroni_picosystem, pimoroni_tiny2040, sparkfun_micromod, sparkfun_promicro,
sparkfun_thingplus, in addition to the existing pico and vgaboard.

o Added additional definitions for a default SPI, 12C pins as well as the existing ones for UART

o Allow default pins to be undefined (not all boards have UART for example), and SDK will compile but warn as
needed in the absence of default.

o Added additional definition for a default WS2812 compatible pin (currently unused).
* New reset options
o Added pico_bootsel_via_double_reset library to allow reset to BOOTSEL mode via double press of a RESET button

o When using pico_stdio_usb i.e. stdio connected via USB CDC to host, setting baud rate to 1200 (by default) can
optionally be used to reset into BOOTSEL mode.

o When using pico-stdio_usb i.e. stdio connected via USB CDC to host, an additional interface may be added to
give picotool control over resetting the device.

® Build improvement for non-SDK or existing library builds
o Removed additional compiler warnings (register headers now use _u(x) macro for unsigned values though).
o Made build more clang friendly.

This release also contains many bug fixes, documentation updates and minor improvements.

]
Release 1.0.0 (20/Jan/2021) 160

Raspberry Pi Pico C/C++ SDK
]

Backwards incompatibility

There are some nominally backwards incompatible changes not worthy of a major version bump:
® PICO_DEFAULT_UART_ defines now default to undefined if there is no default rather than -1 previously

® The broken multicore_sleep_corel() API has been removed; multicore_reset_corel is already available to put core 1
into a deep sleep.

Release 1.1.1 (01/Apr/2021)

This fixes a number of bugs, and additionally adds support for a board configuration header to choose the boot_stage?

Release 1.1.2 (07/Apr/2021)

Fixes issues with boot_stage2 selection

Release 1.2.0 (03/Jun/2021)

This release contains numerous bug fixes and documentation improvements. Additionally it contains the following
improvements/notable changes:

A CAUTION

The 1ib/tinyusb submodule has been updated from 0.8.0 and now tracks upstream https://github.com/hathach/
tinyusb.git. It is worth making sure you do a

git submodule sync
git submodule update

to make sure you are correctly tracking upstream TinyUSB if you are not checking out a clean pico-sdk repository.

Moving from TinyUSB 0.8.0 to TinyUSB 0.10.1 may require some minor changes to your USB code.

New/improved Board headers

®* New board headers support for PICO_BOARDs arduino_nano_rp24@_connect, pimoroni_picolipo_4mb and
pimoroni_picolipo_16mb

® Missing/new #defines for default SPI and I2C pins have been added

Updated TinyUSB to 0.10.1

The 1ib/tinyusb submodule has been updated from 0.8.0 and now tracks upstream https://github.com/hathach/
tinyusb.git

Added CMSIS core headers

CMSIS core headers (e.g. core_cm@plus.h and RP2040.h) are made available via cmsis_core INTERFACE library. Additionally,
CMSIS standard exception naming is available via PICO_CMSIS_RENAME _EXCEPTIONS=1

Release 1.1.1 (01/Apr/2021) 161

https://github.com/hathach/tinyusb.git
https://github.com/hathach/tinyusb.git
https://github.com/hathach/tinyusb.git
https://github.com/hathach/tinyusb.git

Raspberry Pi Pico C/C++ SDK
]

APl improvements

pico_sync

® Added support for recursive mutexes via recursive_mutex_init() and auto_init_recursive_mutex()
® Added mutex_enter_timeout_us()
® Added critical_section_deinit()

® Added sem_acquire_timeout_ms() and sem_acquire_block_until()

hardware_adc

® Added adc_get_selected_input()

hardware_clocks

® clock_get_hz() now returns actual achieved frequency rather than desired frequency

hardware_dma

® Added dma_channel_is_claimed()

®* Added new methods for configuring/acknowledging DMA IRQs. dma_irgn_set_channel_enabled(),

dma_irqn_set_channel_mask_enabled(), dma_irqn_get_channel_status(), dna_irqn_acknowledge_channel() etc.

hardware_exception

New library for setting ARM exception handlers:

® Added exception_set_exclusive_handler(), exception_restore_handler(), exception_get_vtable_handler()

hardware_flash

® Exposed previously private function flash_do_cmd() for low level flash command execution

hardware_gpio

° Added gpio_set_input_hysteresis_enabled(), gpio_is_input_hysteresis_enabled(), gpio_set_slew_rate(),
gpio_get_slew_rate(), gpio_set_drive_strength(), gpio_get_drive_strength(), gpio_get_out_level(), gpio_set_irqover()

hardware_i2c

® Corrected a number of incorrect hardware register definitions

® A number of edge cases in the i2c code fixed

hardware_interp

® Added interp_lane_is_claimed(), interp_unclaim_lane_mask()

]
Release 1.2.0 (03/Jun/2021) 162

Raspberry Pi Pico C/C++ SDK

hardware_irq

* Notably fixed the PICO_LOWEST/HIGHEST_IRQ_PRIORITY values which were backwards!

hardware_pio

® Added new methods for configuring/acknowledging PIO interrupts

pio_set_irqn_source_mask_enabled(), pio_interrupt_get(), pio_interrupt_clear() etc.)

® Added pio_sm_is_claimed()

hardware_spi

® Added spi_get_baudrate()
® Changed spi_init() to return the set/achieved baud rate rather than void

® Changed spi_is_writable() to return bool not size_t (it was always 1/0)

hardware_sync

* Notable documentation improvements for spin lock functions

® Added spin_lock_is_claimed()

hardware_timer

® Added busy_wait_ms() to match busy_wait_us()

® Added hardware_alarm_is_claimed()

pico_float/pico_double

® Correctly save/restore divider state if floating point is used from interrupts

pico_int64_ops

(pio_set_irgn_source_enabled(),

® Added PICO_INT64_0PS_IN_RAM flag to move code into RAM to avoid veneers when calling code is in RAM

pico_runtime

® Added ability to override panic function by setting PICO_PANIC_FUNCTION=foo to then use foo as the implementation, or

setting PICO_PANIC_FUNCITON=to simply breakpoint, saving some code space

pico_unique_id

® Added pico_get_unique_board_id_string().

General code improvements

® Removed additional classes of compiler warnings

® Added some missing const to method parameters

Release 1.2.0 (03/Jun/2021)

163

Raspberry Pi Pico C/C++ SDK

SVD

® USB DPRAM for device mode is now included

pioasm

® Added #pragma once to C/C++ output

RTOS interoperability

Improvements designed to make porting RTOSes either based on the SDK or supporting SDK code easier.

® Added PICO_DIVIDER_DISABLE_INTERRUPTS flag to optionally configure all uses of the hardware divider to be guarded by
disabling interrupts, rather than requiring on the RTOS to save/restore the divider state on context switch

* Added new abstractions to pico/lock_core.h to allow an RTOS to inject replacement code for SDK based low level
wait, notify and sleep/timeouts used by synchronization primitives in pico_sync and for sleep_ methods. If an RTOS
implements these few simple methods, then all SDK semaphore, mutex, queue, sleep methods can be safely used
both within/to/from RTOS tasks, but also to communicate with non-RTOS task aware code, whether it be existing
libraries and IRQ handlers or code running perhaps (though not necessarily) on the other core

CMake build changes
Substantive changes have been made to the CMake build, so if you are using a hand crafted non-CMake build, you will

need to update your compile/link flags. Additionally changed some possibly confusing status messages from CMake
build generation to be debug only

Boot Stage 2

® New boot stage 2 for AT255F128A

Release 1.3.0 (02/Nov/2021)

This release contains numerous bug fixes and documentation improvements. Additionally, it contains the following
notable changes/improvements:

Updated TinyUSB to 0.12.0
® The lib/tinyusb submodule has been updated from 0.10.1 to 0.12.0. See https://github.com/hathach/tinyusb/
releases/tag/0.11.0 and https://github.com/hathach/tinyusb/releases/tag/0.12.0 for release notes.

* Improvements have been made for projects that include TinyUSB and also compile with enhanced warning levels
and -Werror. Warnings have been fixed in rp2040 specific TinyUSB code, and in TinyUSB headers, and a new cmake
function suppress_tinyusb_warnings() has been added, that you may call from your CMakelists.txt to suppress
warnings in other TinyUSB C files.

New Board Support

The following boards have been added and may be specified via PICO_BOARD:

® adafruit_trinkey_qt2040

Release 1.3.0 (02/Nov/2021) 164

https://github.com/hathach/tinyusb/releases/tag/0.11.0
https://github.com/hathach/tinyusb/releases/tag/0.11.0
https://github.com/hathach/tinyusb/releases/tag/0.12.0

Raspberry Pi Pico C/C++ SDK
]

melopero_shake_rp2040

® pimoroni_interstate75

pimoroni_plasma2040

pybstick26_rp2040

waveshare_rp2040_lcd_0.96

® waveshare_rp2040_plus_4mb

waveshare_rp2040_plus_16mb

waveshare_rp2040_zero

UpdatEd SVD, hardware_regs, hardware_structs

The RP2040 SVD has been updated, fixing some register access types and adding new documentation.
The hardware_regs headers have been updated accordingly.

The hardware_structs headers which were previously hand coded, are now generated from the SVD, and retain select
documentation from the SVD, including register descriptions and register bit-field tables.

e.g. what was once

typedef struct {
io_rw_32 ctrl;
io_ro_32 fstat;

becomes:

// Reference to datasheet: https://datasheets.raspberrypi.com/rp2046/rp2640-datasheet.pdf#tab-
registerlist_pio

//

// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using
the "Go to Definition" feature)

// _REG_(x) will link to the corresponding register in hardware/regs/pio.h.

//

// Bit-field descriptions are of the form:

// BITMASK [BITRANGE]: FIELDNAME (RESETVALUE): DESCRIPTION

typedef struct {

REG(PIO_CTRL_OFFSET) // PIO_CTRL

// PIO control register

// 0x00000f00 [11:8] : CLKDIV_RESTART (8): Restart a state machine's clock divider from an
initial phase of @

// 0x00000070 [7:4] : SM_RESTART (0): Write 1 to instantly clear internal SM state which
may be otherwise difficult...
// 6x0000000f [3:0] : SM_ENABLE (0): Enable/disable each of the four state machines by

writing 1/0 to each of these four bits
io_rw_32 ctrl;

REG(PIO_FSTAT_OFFSET) // PIO_FSTAT

// FIFO status register

// 0x0f000000 [27:24] : TXEMPTY (6xf): State machine TX FIFO is empty
// 0x00010000 [19:16] : TXFULL (8): State machine TX FIFO is full

// 0x00000f00 [11:8] : RXEMPTY (6xf): State machine RX FIFO is empty
// 0x0000000f [3:0] : RXFULL (@): State machine RX FIFO is full

]
Release 1.3.0 (02/Nov/2021) 165

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2040/hardware_regs/rp2040.svd

Raspberry Pi Pico C/C++ SDK
]

io_ro_32 fstat;

Behavioural Changes

There were some behavioural changes in this release:

pico_sync

SDK 1.2.0 previously added recursive mutex support using the existing (previously non-recursive) mutex_ functions. This
caused a performance regression, and the only clean way to fix the problem was to return the mutex_ functions to their
pre-SDK 1.2.0 behaviour, and split the recursive mutex functionality out into separate recursive_mutex_ functions with a
separate recursive_mutex_ type.

Code using the SDK 1.2.0 recursive mutex functionality will need to be changed to use the new type and functions,
however as a convenience, the pre-processor define PICO_MUTEX_ENABLE_SDK120_COMPATIBILITY may be set to 1 to retain the
SDK 1.2.0 behaviour at the cost of an additional performance penalty. The ability to use this pre-processor define will be
removed in a subsequent SDK version.

pico_platform

® pico.h and its dependencies have been slightly refactored so it can be included by assembler code as well as C/C
code. This ensures that assembler code and C/C code follow the same board configuration/override order and see
the same configuration defines. This should not break any existing code, but is notable enough to mention.

® pico/platform.his now fully documented.

pico_standard_link
-W1,max-page-size=4096 is now passed to the linker, which is beneficial to certain users and should have no discernible

impact on the rest.

Other Notable Improvements

hardware_base
® Added xip_noalloc_alias(addr), xip_nocache_alias(addr), xip_nocache_noalloc_alias(addr) macros for converting a
flash address between XIP aliases (similar to the hw_xxx_alias(addr) macros).
hardware_dma

® Added dma_timer_claim(), dma_timer_unclaim(), dma_claim_unused_timer() and dma_timer_is_claimed() to manage
ownership of DMA timers.

® Added dma_timer_set_fraction() and dma_get_timer_dreq() to facilitate pacing DMA transfers using DMA timers.
hardware_i2c

® Added i2c_get_dreq() function to facilitate configuring DMA transfers to/from an 12C instance.

]
Release 1.3.0 (02/Nov/2021) 166

Raspberry Pi Pico C/C++ SDK
]

hardware_irq

® Added irq_get_priority().

® Fixed implementation when PIC0_DISABLE_SHARED_IRQ_HANDLERS=1is specified, and allowed irq_add_shared_handler to be
used in this case (as long as there is only one handler - i.e. it behaves exactly like irq_set_exclusive_handler).

® Sped up IRQ priority initialization which was slowing down per core initialization.

hardware_pio

® pio_encode_ functions in hardware/pico_instructions.h are now documented.

hardware_pwm

® Added pum_get_dreq() function to facilitate configuring DMA transfers to a PWM slice.

hardware_spi

® Added spi_get_dreq() function to facilitate configuring DMA transfers to/from an SPI instance.

hardware_uart

® Added vart_get_dreq() function to facilitate configuring DMA transfers to/from a UART instance.

hardware_watchdog

® Added watchdog_enable_caused_reboot() to distinguish a watchdog reboot caused by a watchdog timeout after
calling watchdog_enable() from other watchdog reboots (e.g. that are performed when a UF2 is dragged onto a
device in BOOTSEL mode).

pico_bootrom
® Added new constants and function signature typedefs to pico/bootrom.h to facilitate calling bootrom functions
directly.

pico_multicore

® Improved documentation in pico/multicore.h; particularly, multicore_lockout_ functions are newly documented.

pico_platform

® PICO_RP2040 is now defined to 1 in PICO_PLATFORM=rp2040 (i.e. normal) builds.

pico_stdio

e Added puts_raw() and putchar_raw() to skip CR/LF translation if enabled.
® Added stdio_usb_connected() to detect CDC connection when using stdio_usb.

® Added PICO_STDIO_USB_CONNECT_WAIT_TIMEOUT_MS define that can be set to wait for a CDC connection to be established
during initialization of stdio_usb. Note: value -1 means indefinite. This can be used to prevent initial program output
being lost, at the cost of requiring an active CDC connection.

]
Release 1.3.0 (02/Nov/2021) 167

Raspberry Pi Pico C/C++ SDK
]

® Fixed semihosting_putc which was completely broken.

pico_usb_reset_interface

® This new library contains pico/usb_reset_interface.h split out from stdio_usb to facilitate inclusion in external
projects.

CMake build

® QUTPUT_NAME target property is now respected when generating supplemental files (.BIN, .HEX, .MAP, .UF2)

pioasm

® Operator precedence of *, /, -, + have been fixed

* Incorrect MicroPython output has been fixed.

elf2uf2

® A bug causing an error with binaries produced by certain other languages has been fixed.

Release 1.3.1 (18/May/2022)

This release contains numerous bug fixes and documentation improvements which are not all listed here; you can see
the full list of individual commits here.

New Board Support

The following boards have been added and may be specified via PIC0_BOARD:
® adafruit_kb2040
® adafruit_macropad_rp2040

® eetree_gamekit_rp2040

garatronic_pybstick26_rp2040 (renamed from pybstick26_rp2040)

pimoroni_badger2040

® pimoroni_motor2040

pimoroni_servo2040

pimoroni_tiny2040_2mb

® seeed_xiao_rp2040

solderparty_rp2040_stamp_carrier

solderparty_rp2040_stamp

wiznet_w5100s_evb_pico

]
Release 1.3.1 (18/May/2022) 168

https://github.com/raspberrypi/pico-sdk/pulls?q=is%3Apr+milestone%3A1.3.1++is%3Amerged

Raspberry Pi Pico C/C++ SDK
]

Notable Library Changes/Improvements

hardware_dma
* New documentation has been added to the dma_channel_abort() function describing errata RP2040-E13, and how to
work around it.
hardware_irq

® Fixed a bug related to removing and then re-adding shared IRQ handlers. It is now possible to add/remove handlers
as documented.

* Added new documentation clarifying the fact the shared IRQ handler ordering "priorities" have values that increase
with higher priority vs. Cortex MO+ IRQ priorites which have values that decrease with priority!

hardware_pwm

® Added a pwm_config_set_clkdiv_int_frac() method to complement pum_config_set_clkdiv_int() and
pwm_config_set_clkdiv().

hardware_pio

® Fixed the pio_set_irqn_source_mask_enabled() method which previously affected the wrong IRQ.

hardware_rtc

® Added clarification to rtc_set_datetime() documentation that the new value may not be visible to a
rtc_get_datetime() very soon after, due to crossing of clock domains.

pico_platform

® Added a busy_wait_at_least_cycles() method as a convenience method for a short tight-loop counter-based delay.

pico_stdio

* Fixed a bug related to removing stdio "drivers". stdio_set_driver_enabled() can now be used freely to dynamically
enable and disable drivers during runtime.

pico_time

® Added an is_at_the_end_of_time() method to check if a given time matches the SDK’s maximum time value.

Runtime

Abugin __ctzdi2() aka __builtin_ctz(uint64_t) was fixed.

Build

® Compilation with GCC 11 is now supported.

]
Release 1.3.1 (18/May/2022) 169

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e13

Raspberry Pi Pico C/C++ SDK
]

® PIOASM_EXTRA_SOURCE_FILES is now actually respected.

pioasm

* Input files with Windows (CRLF) line endings are now accepted.

® A bug in the python output was fixed.

elf2uf2

® Extra padding was added to the UF2 output of misaligned or non-contiguous binaries to work around errata
RP2040-E14.

O NoOTE

The 1.3.0 release of the SDK incorrectly squashed the history of the changes. A new merge commit has been added
to restore the full history, and the 1.3.0 tag has been updated

Release 1.4.0 (30/Jun/2022)

This release adds wireless support for the Raspberry Pi Pico W, adds support for other new boards, and contains
various bug fixes, documentation improvements, and minor improvements/added functionality. You can see the full list
of individual commits here.

New Board Support

The following boards have been added and may be specified via PICO_BOARD:
® pico_w
® datanoisetv_rp2040_dsp

® solderparty_rp2040_stamp_round_carrier

Wireless Support

® Support for the Raspberry Pi Pico W is now included with the SDK (P1C0_B0ARD=pico_w). The Pico W uses a driver for
the wireless chip called cyw43_driver which is included as a submodule of the SDK. You need to initialize this
submodule for Pico W wireless support to be available. Note that the LED on the Pico W board is only accessible
via the wireless chip, and can be accessed via cyw43_arch_gpio_put() and cyw43_arch_gpio_get() (part of the
pico_cyw43_arch library described below). As a result of the LED being on the wireless chip, there is no
PICO_DEFAULT_LED_PIN setting and the default LED based examples in pico-examples do not work with the Pico W.

IP support is provided by IwIP which is also included as a submodule which you should initialize if you want to use
it.

The following libraries exposing IwIP functionality are provided by the SDK:
o pico_lwip_core (included in pico_lwip)
o pico_lwip_core4 (included in pico_lwip)
o pico_lwip_core6 (included in pico_lwip)

o pico_lwip_netif (included in pico_lwip)

]
Release 1.4.0 (30/Jun/2022) 170

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e14
https://github.com/raspberrypi/pico-sdk/tree/1.3.0
https://github.com/raspberrypi/pico-sdk/pulls?q=is%3Apr+milestone%3A1.4.0++is%3Amerged
https://github.com/raspberrypi/pico-examples
https://savannah.nongnu.org/projects/lwip/lwIP

Raspberry Pi Pico C/C++ SDK
]

o pico_lwip_sixlowpan (included in pico_lwip)
o pico_lwip_ppp (included in pico_lwip)
o pico_lwip_api (this is a blocking API that may be used with FreeRTOS and is not included in pico_lwip)

As referenced above, the SDK provides a pico_lwip which aggregates all of the commonly needed IwIP
functionality. You are of course free to use the substituent libraries explicitly instead.

The following libraries are provided that contain the equivalent IwIP application support:

o pico_lwip_snmp

o pico_lwip_http

o pico_lwip_makefsdata
o pico_lwip_iperf

o pico_lwip_smtp

o pico_lwip_sntp

o pico_lwip_mdns

o pico_lwip_netbios

o pico_lwip_tftp

o pico_lwip_mbedtls

* Integration of the IP stack and the cyw43_driver network driver into the user’'s code is handled by pico_cyw43_arch.
Both the IP stack and the driver need to do work in response to network traffic, and pico_cyw43_arch provides a
variety of strategies for servicing that work. Four architecture variants are currently provided as libraries:

o pico_cyw43_arch_lwip_poll - For using the RAW IwIP API (N0_SYS=1 mode) with polling. With this architecture the
user code must periodically poll via cyw43_arch_pol1() to perform background work. This architecture matches
the common use of IwIP on microcontrollers, and provides no multicore safety

o pico_cyw43_arch_lwip_threadsafe_background - For using the RAW IwIP API (N0_SYS=1 mode) with multicore safety,
and automatic servicing of the cyw43_driver and IwlP in the background. User polling is not required with this
architecture, but care should be taken as IwlP callbacks happen in an IRQ context.

o pico_cyw43_arch_lwip_sys_freertos - For using the full IwIP API including blocking sockets in OS mode (
NO_SYS=0), along with multicore/task safety, and automatic servicing of the cyw43_driver and the IwlIP stack in a
separate task. This powerful architecture works with both SMP and non-SMP variants of the RP2040 port of
FreeRTOS-Kernel. Note you must set FREERTOS_KERNEL_PATH in your build to use this variant.

o pico_cyw43_arch_none - If you do not need the TCP/IP stack but wish to use the on-board LED or other wireless
chip connected GPIOs.

See the library documentation or the pico/cyw43_arch.h header for more details.

Notable Library Changes/Improvements

hardware_dma

® Added dma_unclaim_mask() function for un-claiming multiple DMA channels at once.

® Added channel_config_set_high_priority() function to set the channel priority via a channel config object.

hardware_gpio

* Improved the documentation for the pre-existing gpio IRQ functions which use the "one callback per core" callback

]
Release 1.4.0 (30/Jun/2022) 17

Raspberry Pi Pico C/C++ SDK

mechanism, and added a gpio_set_irq_callback() function to explicitly set the callback independently of enabling
per pin GPIO IRQs.

* Reduced the latency of calling the existing "one callback per core" GPIO IRQ callback.

* Added new support for the user to add their own shared GPIO IRQ handler independent of the pre-existing "one
callback per core" callback mechanism, allowing for independent usage of GPIO IRQs without having to share one
handler.

See the documentation in hardware/irq.h for full details of the functions added:
o gpio_add_raw_irq_handler()
o gpio_add_raw_irq_handler_masked()
o gpio_add_raw_irq_handler_with_order_priority()
o gpio_add_raw_irq_handler_with_order_priority_masked()
o gpio_remove_raw_irq_handler()
o gpio_remove_raw_irq_handler_masked()

® Added a gpio_get_irq_event_mask() utility function for use by the new "raw" IRQ handlers.

hardware_irq

® Added user_irq_claim(), user_irq_unclaim(), user_irq_claim_unused() and user_irq_is_claimed() functions for claiming
ownership of the user IRQs (the ones numbered 26-31 and not connected to any hardware). Uses of the user IRQs
have been updated to use these functions. For stdio_usb, the PICO_STDIO_USB_LOW_PRIORITY_IRQ define is still
respected if specified, but otherwise an unclaimed one is chosen.

® Added an irq_is_shared_handler () function to determine if a particular IRQ uses a shared handler.

pico_sync

® Added a sem_try_acquire() function, for non-blocking acquisition of a semaphore.

pico_stdio

® stderr is now supported and goes to the same destination as stdout.

® Zero timeouts for getchar_timeout_us() are now correctly honored (previously they were a 1us minimum).

stdio_usb

® The use of a Tms timer to handle background TinyUSB work has been replaced with use of a more interrupt driven
approach using a user IRQ for better performance. Note this new feature is disabled if shared IRQ handlers are
disabled via PICO_DISABLE_SHARED_IRQ_HANDLERS=1

Miscellaneous

® get_core_num() has been moved to pico/platform.h from hardware/sync.h.
® The C library function realloc() is now multicore safe too.

® The minimum PLL frequency has been increased from 400Mhz to 750Mhz to improve stability across operating
conditions. This should not affect the majority of users in any way, but may impact those trying to set particularly
low clock frequencies. If you do wish to return to the previous minimum, you can set PICO_PLL_VCO_MIN_FREQ_MHZ back
to 400. There is also a new PICO_PLL_VCO_MAX_FREQ_MHZ which defaults to 1600.

Release 1.4.0 (30/Jun/2022) 172

Raspberry Pi Pico C/C++ SDK

Build

® Compilation with GCC 12 is now supported.

Release 1.5.0 (11/Feb/2023)

This release contains new libraries and functionality, along with numerous bug fixes and documentation improvements.

Highlights are listed below, or you can see the full list of individual commits here, and the full list of resolved issues
here.

New Board Support

The following boards have been added and may be specified via PICO_BOARD:
® nullbits_bit_c_pro
® waveshare_rp2040_lcd_1.28

® waveshare_rp2040_one

Library Changes/Improvements

hardware_clocks

® clock_gpio_init() now takes a float for the clock divider value, rather than an int.

® Added clock_gpio_init_int_frac() function to allow initialization of integer and fractional part of the clock divider
value, without using float.

® Added --ref-min option to vcocalc.py to override the minimum reference frequency allowed.

® vcocale.py now additionally considers reference frequency dividers greater than 1.

hardware_divider

® Improved the performance of hw_divider_ functions.

hardware_dma

® Added dma_sniffer_set_output_invert_enabled() and dma_sniffer_set_output_reverse_enabled() functions to configure
the DMA sniffer.

® Added dma_sniffer_set_data_accumulator() and dma_sniffer_get_data_accumulator() functions to access the DMA
sniffer accumulator.

hardware_i2c

® Added i2c_get_instance() function for consistency with other hardware_ libraries.

® Added i2c_read_byte_raw(), i2c_write_byte_raw() functions to directly read and write the 12C data register for an 12C
instance.

]
Release 1.5.0 (11/Feb/2023) 173

https://github.com/raspberrypi/pico-sdk/pulls?q=is%3Apr+milestone%3A1.5.0+is%3Amerged
https://github.com/raspberrypi/pico-sdk/issues?q=is%3Aissue+milestone%3A1.5.0+is%3Aclosed

Raspberry Pi Pico C/C++ SDK
]

hardware_timer

® Added hardware_alarm_claim_unused() function to claim an unused hardware timer.

pico_cyw43_arch

Added cyw43_arch_wifi_connect_bssid_ variants of cyw43_arch wifi_connect_ functions to allow connection to a
specific access point.

Blocking cyw43_arch_wifi_connect_ functions now continue trying to connect rather than failing immediately if the
network is not found.

® cyw43_arch_wifi_connect_functions now return consistent return codes (PICO_OK, or PICO_ERROR_XXX).

The pico_cyw43_arch library has been completely rewritten on top of the new pico_async_context library that
generically abstracts the different types of asynchronous operation (poll, threadsafe_background and freertos)
previously handled in a bespoke fashion by pico_cyw43_arch. Many edge case bugs have been fixed as a result of
this. Note that this change should be entirely backwards compatible from the user point of view.

® cywd3_arch_init() and cywd3_arch_deinit() functions are now very thin layers which handle async_context life-cycles,
along with adding support for the cyw43_driver, IwlP, BTstack etc. to that async_context. Currently, these
mechanisms remain the preferred documented way to initialize Pico W networking, however you are free to do
similar initialization/de-initialization yourself.

® Added cyw43_arch_set_async_context() function to specify a custom async_context prior to calling cyw43_arch_init*()

Added cyw43_arch_async_context() function to get the async_context used by the CYW43 architecture support.

® Added cyw43_arch_init_default_async_context() function to return the async_context that cyw43_arch_init*() would
initialize if one has not been set by the user.

Added cyw43_arch_wait_for_work_until() function to block until there is networking work to be done. This is most
useful for poll style applications that have no other work to do and wish to sleep until cyw43_arch_pol1() needs to be
called again.

pico_cyw43_driver

® The functionality has been clarified into 3 separate libraries:
o cywd3_driver - the raw cyw43_driver code.
o cywd3_driver_picow - additional support for communication with the Wi-Fi chip over SPI on Pico W.
o pico_cyw43_driver - integration of the cyw43_driver with the pico-sdk via async_context

® Added CYW43_WIFI_NVRAM_INCLUDE_FILE define to allow user to override the NVRAM file.

pico_divider

® |Improved the performance of 64-bit divider functions.

pico_platform

® Add panic_compact() function that discards the message to save space in non-debug (NEBUG defined) builds.

pico_runtime

® Added proper implementation of certain missing newlib system APIs: _gettimeofday(), _times(), _isatty(), _getpid().

]
Release 1.5.0 (11/Feb/2023) 174

Raspberry Pi Pico C/C++ SDK
]

® The above changes enable certain additional C/C++ library functionality such as gettimeofday(), times() and

std::chrono.
® Added settimeofday() implementation such that gettimeofday() can be meaningfully used.

® Added default (return -1) implementations of the remaining newlib system APIs: _open(), _close(), _lseek(), _fstat(),
_isatty(), _kill(), to prevent warnings on GCC 12.

® Made all newlib system APl implementations weak so the user can override them.

pico_stdio

® pico_stdio allows for outputting from within an IRQ handler that creates the potential for deadlocks (especially with
pico_stdio_usb), and the intention is to not deadlock but instead discard output in any cases where a deadlock
would otherwise occur. The code has been revamped to avoid more deadlock cases, and a new define
PICO_STDIO_DEADLOCK_TIMEOUT_MS has been added to catch remaining cases that might be caused by user level
locking.

Added stdio_set_chars_available_callback() function to set a callback to be called when input is available. See also
the new PICO_STDIO_USB_SUPPORT_CHARS_AVAILABLE_CALLBACK and PICO_STDIO_UART_SUPPORT_CHARS_AVAILABLE_CALLBACK
defines which both default to 1 and control the availability of this new feature for USB and UART stdio respectively
(at the cost of a little more code).

Improved performance of stdio_semihosting.

Give the user more control over the USB descriptors of stdio_usb via USBD_VID, USBD_PID, USBD_PRODUCT,
PICO_STDIO_USB_CONNECTION_WITHOUT_DTR and PICO_STDIO_USB_DEVICE_SELF_POWERED
pico_sync

® Added critical_section_is_initialized() function to test if a critical section has been initialized.

® Added mutex_try_enter_block_until() function to wait only up to a certain time to acquire a mutex.

pico_time

® Added from_us_since_boot() function to convert a uint64_t timestamp to an absolute_time_t.

® Added absolute_time_min() function to return the earlier of two absolute_time_t values.

Added alarm_pool_create_with_unused_hardware_alarm() function to create an alarm pool using a hardware alarm
number claimed using hardware_alarm_claim().

® Added alarm_pool_core_num() function to determine what core an alarm pool runs on.

® Added alarm_pool_add_alarm_at_force_in_context() function to add an alarm, and have it always run in the IRQ
context even if the target time is in the past, or during the call. This may be simpler in some cases than dealing
with the fire_if_past parameters to existing functions, and avoids some callbacks happening from non-IRQ
context.

pico_lwip

® Added pico_lwip_mqtt library to expose the MQTT app functionality in IwlP.
® Added pico_lwip_mdns library to expose the MDNS app functionality in IwIP.

® Added pico_lwip_freertos library for NO_SYS=0 with FreeRTOS as a complement to pico_lwip_nosys for NO_SYS=1.

]
Release 1.5.0 (11/Feb/2023) 175

Raspberry Pi Pico C/C++ SDK
]

TinyUSB

® TinyUSB has upgraded from 0.12.0 to 0.15.0. See TinyUSB release notes here for details.
® Particularly host support should be massively improved.

® Defaulted new TinyUSB dcd_rp2040 driver's TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX variable to 1 as a workaround for
errata RP2040-E15. This fix is required for correctness, but comes at the cost of some performance, so
applications that won't ever be plugged into a Pi 4 or Pi 400 can optionally disable this by setting the value of
TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX to @ either via target_compile_definitions in their CMakelists.txt or in their
tusb_config.h.

New Libraries

pico_async_context

® Provides support for asynchronous events (timers/IRQ notifications) to be handled in a safe context without
concurrent execution (as required by many asynchronous 3rd party libraries).

® Provides implementations matching those previously implemented in pico_cyw43_arch:

o poll - Not thread-safe; the user must call async_context_pol1() periodically from their main loop, but can call
async_context_wait_for_work_until() to block until work is required.

o threadsafe_background - No polling is required; instead asynchronous work is performed in a low priority IRQ.
Locking is provided such that IRQ/non-IRQ or multiple cores can interact safely.

o freertos - Asynchronous work is performed in a separate FreeRTOS task.
® async_context guarantees all callbacks happen on a single core.

® async_context supports multiple instances for providing independent context which can execute concurrently with
respect to each other.

pico_i2c_slave

* A (slightly modified) pico_i2c_slave library from https://github.com/vmilea/pico_i2c_slave

® Adds a callback style event API for handling 12C slave requests.

pico_mbedtls

® Added pico_mbedtls library to provide MBed TLS support. You can depend on both pico_lwip_mbedtls and
pico_mbedtls to use MBed TLS and IwIP together. See the tls_client example in pico-examples for more details.

pico_rand

® Implements a new Random Number Generator API.

® pico_rand generates random numbers at runtime utilizing a number of possible entropy sources, and uses those
sources to modify the state of a 128-bit 'Pseudo Random Number Generator' implemented in software.

® Adds get_rand_32(), get_rand_64() and get_rand_128() functions to return largely unpredictable random numbers
(which should be different on each board/run for example).

]
Release 1.5.0 (11/Feb/2023) 176

https://github.com/hathach/tinyusb/releases
https://github.com/vmilea/pico_i2c_slave
https://github.com/raspberrypi/pico-examples/tree/master/pico_w/wifi/tls_client.c

Raspberry Pi Pico C/C++ SDK
]

Miscellaneous
® Added a new header hardware/structs/nvic.h with a struct for the Arm Cortex MO+ NVIC available via the nvic_hw
pointer.

® Added new PICO_CXX_DISABLE_ALLOCATION_OVERRIDES which can be set to 1 if you do not want pico_standard_link to
include non-exceptional overrides of std::new, std::new[], std::delete and std::delete[] when exceptions are
disabled.

® c1f2uf2 now correctly uses LMA instead of VMA of the entry point to determine binary type (flash/RAM). This is
required to support some exotic binaries correctly.

Build

The build will now check for a functional compiler via the standard CMake mechanism.

The build will pick up pre-installed e1f2uf2 and pioasm if found via an installed pico-sdk-tools CMake package. If it can
do so, then no native compiler is required for the build!

It is now possible to switch the board type PIC0_BOARD in an existing CMake build directory.

ARCHIVE_OUTPUT_DIRECTORY is now respected in build for UF2 output files.

® Spaces are now supported in the path to the pico-sdk

All libraries xxx in the pico-sdk now support a xxx_headers variant that just pulls in the libraries' headers. These
xxx_headers libraries correctly mirror the dependencies of the xxx libraries, so you can use xxx_headers instead of xxx
as your dependency if you do not want to pull in any implementation files (perhaps if you are making a STATIC
library). Actually the "all" is not quite true, non-code libraries such as pico_standard_link and pico_cxx_options are an
exception.

Bluetooth Support for Pico W (BETA)
The support is currently available as a beta. More details will be forthcoming with the actual release. In the meantime,
there are examples in pico-examples.
Key changes:
® The Bluetooth APl is provided by BTstack.
® The following new libraries are provided that expose core BTstack functionality:
o pico_btstack_ble - Adds Bluetooth Low Energy (LE) support.
o pico_btstack_classic - Adds Bluetooth Classic support.
o pico_btstack_sbc_encoder - Adds Bluetooth Sub Band Coding (SBC) encoder support.
o pico_btstack_sbc_decoder - Adds Bluetooth Sub Band Coding (SBC) decoder support.
o pico_btstack_bnep_lwip - Adds Bluetooth Network Encapsulation Protocol (BNEP) support using LwlIP.

o pico_btstack_bnep_lwip_sys_freertos - Adds Bluetooth Network Encapsulation Protocol (BNEP) support using
LwlIP with FreeRTOS for NO_SYS=0.

* The following integration libraries are also provided:

o pico_btstack_run_loop_async_context - provides a common async_context backed implementation of a BTstack
"run loop" that can be used for all BTstack use with the pico-sdk.

o pico_btstack_flash_bank - provides a sample implementation for storing required Bluetooth state in flash.
o pico_btstack_cyw43 - integrates BTstack with the CYW43 driver.

® Added CMake function pico_btstack_make_gatt_header that can be used to run the BTstack compile_gatt tool to make a

]
Release 1.5.0 (11/Feb/2023) 177

https://github.com/raspberrypi/pico-examples#pico-w-bluetooth
https://github.com/bluekitchen/btstack

Raspberry Pi Pico C/C++ SDK
]

GATT header file from a BTstack GATT file.
® Updated pico_cyw43_driver and cyw43_driver to support HCI communication for Bluetooth.
® Updated cyw43_driver_picow to support Pico W specific HC| communication for Bluetooth over SPI.

® Updated cyw43_arch_init() and cyw43_arch_deinit() to additionally handle Bluetooth support if CYW43_ENABLE_BLUETOOTH
is 1 (as it will be automatically if you depend on pico_btstack_cyw43).

]
Release 1.5.0 (11/Feb/2023) 178

Raspberry Pi Pico C/C++ SDK

Appendix G: Documentation release

history

Table 27.
Documentation

Release Date

Description

release history 1.0 21 Jan 2021

Initial release

1.1 26 Jan 2021

Minor corrections

Extra information about using DMA with ADC
Clarified M0+ and SIO CPUID registers

Added more discussion of Timers

Update Windows and macOS build instructions

Renamed books and optimised size of output PDFs

1.2 01 Feb 2021

Minor corrections

Small improvements to PIO documentation

Added missing TIMER2 and TIMERS3 registers to DMA
Explained how to get MicroPython REPL on UART

To accompany the V1.0.1 release of the C SDK

1.3 23 Feb 2021

Minor corrections

Changed font

Additional documentation on sink/source limits for RP2040
Major improvements to SWD documentation

Updated MicroPython build instructions

MicroPython UART example code

Updated Thonny instructions

Updated Project Generator instructions

Added a FAQ document

Added errata E7, E8 and E9

1.3.1 05 Mar 2021

Minor corrections
To accompany the V1.1.0 release of the C SDK
Improved MicroPython UART example

Improved Pinout diagram

1.4 07 Apr 2021

Minor corrections
Added errata E10
Note about how to update the C SDK from Github

To accompany the V1.1.2 release of the C SDK

Appendix G: Documentation release history

179

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e7
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e8
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e9
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e10

Raspberry Pi Pico C/C++ SDK

Release

Date

Description

1.41

13 Apr 2021

Minor corrections

Clarified that all source code in the documentation is under the
3-Clause BSD license.

1.5

07 Jun 2021

Minor updates and corrections
Updated FAQ
Added SDK release history

To accompany the V1.2.0 release of the C SDK

1.6

23 Jun 2021

Minor updates and corrections
ADC information updated

Added errata E11

1.6.1

30 Sep 2021

Minor updates and corrections
Information about B2 release

Updated errata for B2 release

1.7

03 Nov 2021

Minor updates and corrections

Fixed some register access types and descriptions
Added core 1 launch sequence info

Described SDK "panic" handling

Updated picotool documentation

Additional examples added to Appendix A: App Notes appendix
in the Raspberry Pi Pico C/C++ SDK book

To accompany the V1.3.0 release of the C SDK

1.7.1

04 Nov 2021

Minor updates and corrections
Better documentation of USB double buffering
Picoprobe branch changes

Updated links to documentation

1.8

17 Jun 2022

Minor updates and corrections

Updated setup instructions for Windows in Getting started with
Raspberry Pi Pico

Additional explanation of SDK configuration

RP2040 now qualified to -40°C, minimum operating temperature
changed from -20°C to -40°C

Increased PLL min VCO from 400MHz to 750MHz for improved
stability across operating conditions

Added reflow-soldering temperature profile
Added errata E12, E13 and E14

To accompany the V1.3.1 release of the C SDK

]
Appendix G: Documentation release history

180

https://opensource.org/licenses/BSD-3-Clause
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e11
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e12
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e13
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e14

Raspberry Pi Pico C/C++ SDK
]

Release Date Description

1.9 30 Jun 2022 ® Minor updates and corrections

® Update to VGA board hardware description for launch of
Raspberry Pi Pico W

® To accompany the V1.4.0 release of the C SDK

Pico and Pico W databooks combined into a unified release history

2.0 01 Dec 2022 ® Minor updates and corrections
* Added RP2040 availability information
* Added RP2040 storage conditions and thermal characteristics

® Replace SDK library documentation with links to the online
version

* Updated Picoprobe build and usage instructions

2.1 03 Mar 2023 ® A large number of minor updates and corrections

® SMT footprint of Pico W corrected

® Updated for the 1.5.0 release of the Raspberry Pi Pico C SDK
* Added errata E15

® Added documentation around the new Pico Windows Installer

® Added documentation around the Pico-W-Go extension for
Python development

* Added a wireless networking example to the Python
documentation

* Added package marking specifications
* Added RP2040 baseline power consumption figures

* Added antenna keep out diagram to Pico W datasheet

The latest release can be found at https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf.

]
Appendix G: Documentation release history 181

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e15
https://github.com/raspberrypi/pico-setup-windows
https://marketplace.visualstudio.com/items?itemName=paulober.pico-w-go
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf

@ Raspberry Pi

Raspberry Pi is a trademark of Raspberry Pi Ltd

Raspberry Pi Ltd

	Raspberry Pi Pico C/C++ SDK
	Colophon
	Legal disclaimer notice
	Table of contents

	Chapter 1. About the SDK
	1.1. Introduction
	1.2. Anatomy of a SDK Application

	Chapter 2. SDK architecture
	2.1. The Build System
	2.2. Every Library is an INTERFACE
	2.3. SDK Library Structure
	2.3.1. Higher-level Libraries
	2.3.2. Runtime Support (pico_runtime, pico_standard_link)
	2.3.3. Hardware Support Libraries
	2.3.4. Hardware Structs Library
	2.3.5. Hardware Registers Library
	2.3.6. TinyUSB Port

	2.4. Directory Structure
	2.4.1. Locations of Files

	2.5. Conventions for Library Functions
	2.5.1. Function Naming Conventions
	2.5.2. Return Codes and Error Handling
	2.5.3. Use of Inline Functions
	2.5.4. Builder Pattern for Hardware Configuration APIs

	2.6. Customisation and Configuration Using Preprocessor variables
	2.6.1. Preprocessor Variables via Board Configuration File
	2.6.2. Preprocessor Variables Per Binary or Library via CMake

	2.7. SDK Runtime
	2.7.1. Standard Input/Output (stdio) Support
	2.7.2. Floating-point Support
	2.7.3. Hardware Divider

	2.8. Multi-core support
	2.9. Using C++
	2.10. Next Steps

	Chapter 3. Using programmable I/O (PIO)
	3.1. What is Programmable I/O (PIO)?
	3.1.1. Background
	3.1.2. I/O Using dedicated hardware on your PC
	3.1.3. I/O Using dedicated hardware on your Raspberry Pi or microcontroller
	3.1.4. I/O Using software control of GPIOs ("bit-banging")
	3.1.5. Programmable I/O Hardware using FPGAs and CPLDs
	3.1.6. Programmable I/O Hardware using PIO

	3.2. Getting started with PIO
	3.2.1. A First PIO Application
	3.2.2. A Real Example: WS2812 LEDs
	3.2.3. PIO and DMA (A Logic Analyser)
	3.2.4. Further examples

	3.3. Using PIOASM, the PIO Assembler
	3.3.1. Usage
	3.3.2. Directives
	3.3.3. Values
	3.3.4. Expressions
	3.3.5. Comments
	3.3.6. Labels
	3.3.7. Instructions
	3.3.8. Pseudoinstructions
	3.3.9. Output pass through
	3.3.10. Language generators

	3.4. PIO Instruction Set Reference
	3.4.1. Summary
	3.4.2. JMP
	3.4.3. WAIT
	3.4.4. IN
	3.4.5. OUT
	3.4.6. PUSH
	3.4.7. PULL
	3.4.8. MOV
	3.4.9. IRQ
	3.4.10. SET

	Chapter 4. Library documentation
	Appendix A: App Notes
	Attaching a 7 segment LED via GPIO
	Wiring information
	List of Files
	Bill of Materials

	DHT-11, DHT-22, and AM2302 Sensors
	Wiring information
	List of Files
	Bill of Materials

	Attaching a 16x2 LCD via TTL
	Wiring information
	List of Files
	Bill of Materials

	Attaching a microphone using the ADC
	Wiring information
	List of Files
	Bill of Materials

	Attaching a BME280 temperature/humidity/pressure sensor via SPI
	Wiring information
	List of Files
	Bill of Materials

	Attaching a MPU9250 accelerometer/gyroscope via SPI
	Wiring information
	List of Files
	Bill of Materials

	Attaching a MPU6050 accelerometer/gyroscope via I2C
	Wiring information
	List of Files
	Bill of Materials

	Attaching a 16x2 LCD via I2C
	Wiring information
	List of Files
	Bill of Materials

	Attaching a BMP280 temp/pressure sensor via I2C
	Wiring information
	List of Files
	Bill of Materials

	Attaching a LIS3DH Nano Accelerometer via i2c.
	Wiring information
	List of Files
	Bill of Materials

	Attaching a MCP9808 digital temperature sensor via I2C
	Wiring information
	List of Files
	Bill of Materials

	Attaching a MMA8451 3-axis digital accelerometer via I2C
	Wiring information
	List of Files
	Bill of Materials

	Attaching an MPL3115A2 altimeter via I2C
	Wiring information
	List of Files
	Bill of Materials

	Attaching an OLED display via I2C
	Wiring information
	List of Files
	Bill of Materials

	Attaching a PA1010D Mini GPS module via I2C
	Wiring information
	List of Files
	Bill of Materials

	Attaching a PCF8523 Real Time Clock via I2C
	Wiring information
	List of Files
	Bill of Materials

	Appendix B: SDK configuration
	Configuration Parameters

	Appendix C: CMake build configuration
	Configuration Parameters
	Control of binary type produced (advanced)

	Appendix D: Board configuration
	Board Configuration
	The Configuration files
	Building applications with a custom board configuration
	Available configuration parameters

	Appendix E: Building the SDK API documentation
	Appendix F: SDK release history
	Release 1.0.0 (20/Jan/2021)
	Release 1.0.1 (01/Feb/2021)
	Boot Stage 2

	Release 1.1.0 (05/Mar/2021)
	Backwards incompatibility

	Release 1.1.1 (01/Apr/2021)
	Release 1.1.2 (07/Apr/2021)
	Release 1.2.0 (03/Jun/2021)
	New/improved Board headers
	Updated TinyUSB to 0.10.1
	Added CMSIS core headers
	API improvements
	General code improvements
	SVD
	pioasm
	RTOS interoperability
	CMake build changes
	Boot Stage 2

	Release 1.3.0 (02/Nov/2021)
	Updated TinyUSB to 0.12.0
	New Board Support
	Updated SVD, hardware_regs, hardware_structs
	Behavioural Changes
	Other Notable Improvements
	CMake build
	pioasm
	elf2uf2

	Release 1.3.1 (18/May/2022)
	New Board Support
	Notable Library Changes/Improvements
	Build
	pioasm
	elf2uf2

	Release 1.4.0 (30/Jun/2022)
	New Board Support
	Wireless Support
	Notable Library Changes/Improvements
	Build

	Release 1.5.0 (11/Feb/2023)
	New Board Support
	Library Changes/Improvements
	New Libraries
	Build
	Bluetooth Support for Pico W (BETA)

	Appendix G: Documentation release history

