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1. Introduction

This application note describes the design of a 3-phase 

Permanent Magnet Synchronous Motor (PMSM) vector 

control drive with 3-shunt current sensing and resolver 

position sensing. The design is targeted for automotive 

motor control (MC) applications. 

This design serves as an example of motor control design 

using NXP family of automotive motor control MCUs 

based on a 32-bit Power Architecture technology 

optimized for a full range of automotive applications. 

Following are the supported features: 

• 3-phase PMSM speed Field Oriented Control.

• Current sensing with three shunt resistors.

• Application control user interface using

FreeMASTER debugging tool.

• Motor Control Application Tuning (MCAT) tool.

• Rotor position and speed measurement using

resolver transducer
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2. System concept

The system is designed to drive a 3-phase PM synchronous motor. The application meets the following 

performance specifications:  

• Targeted at the MPC5775E-EVB Evaluation Board (refer to dedicated user manual for

MPC5775E-EVB available at www.nxp.com). See References for more information

• S32 Design Studio (see References)

• MC33937 MOSFETs pre-driver with extensive set of functions and condition monitoring (see

References)

• Control technique incorporating:

o Field Oriented Control of 3-phase PM synchronous motor with resolver position sensor

o Closed-loop speed control with action period 1 ms

o Closed-loop current control with action period 100 µs

o Bi-directional rotation

o Flux and torque independent control

o Field weakening control extending speed range of the PMSM beyond the base speed

o Position and speed are computed by Enhanced Time Processing Unit eTPU

o Sensing of three-phase motor currents

o FOC state variables sampled with 100 μs period

• Automotive Math and Motor Control Library (AMMCLIB) - FOC algorithm built on blocks of

precompiled SW library (see section References)

• Use of eTPU Motor control function set to offload CPU

• FreeMASTER

o FreeMASTER software control interface (motor start/stop, speed setup)

o FreeMASTER software monitor

o FreeMASTER embedded Motor Control Application Tuning (MCAT) tool (motor

parameters, current loop, speed loop) (see section References)

o FreeMASTER software MCAT graphical control page (required speed, actual motor

speed, start/stop status, DC-Bus voltage level, motor current, system status)

o FreeMASTER software speed scope (observes actual and desired speeds, DC-Bus

voltage and motor current)

o FreeMASTER software high-speed recorder (reconstructed motor currents, vector control

algorithm quantities)

• DC-Bus over-voltage and under-voltage, over-current, overload and start-up fail protection

http://www.nxp.com/
https://www.nxp.com/design/development-boards/automotive-motor-control-solutions/mpc5xxx-solutions-/mpc5775e-development-kit-for-3-phase-pmsm-motor-control-targeting-iso-26262-asil-d:MCSPTR2A5775E?utm_medium=AN-2021
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Figure 1 MCSPTR2A5775E 3-phase PMSM Development Kit with MPC5775E 

3. PMSM field-oriented control 

3.1. Fundamental principle of PMSM FOC 

High-performance motor control is characterized by smooth rotation over the entire speed range of the 

motor, full torque control at zero speed, and fast acceleration/deceleration. To achieve such control, 

Field Oriented Control is used for PM synchronous motors.  

The FOC concept is based on an efficient torque control requirement, which is essential for achieving a 

high control dynamic. Analogous to standard DC machines, AC machines develop maximal torque 

when the armature current vector is perpendicular to the flux linkage vector. Thus, if only the 

fundamental harmonic of stator magnetomotive force is considered, the torque Te developed by an AC 

machine, in vector notation, is given by the following equation: 

𝑇𝑒 =
3

2
𝑝𝑝 𝜓̅𝑆 × 𝑖𝑆̅ 

Equation 1 

where pp is the number of motor pole-pairs, is is stator current vector and ψs represents vector of the 

stator flux. Constant 3/2 indicates a non-power invariant transformation form.  
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In instances of DC machines, the requirement to have the rotor flux vector perpendicular to the stator 

current vector is satisfied by the mechanical commutator. Because there is no such mechanical 

commutator in AC Permanent Magnet Synchronous Machines (PMSM), the functionality of the 

commutator has to be substituted electrically by enhanced current control. This reveal that stator current 

vector should be oriented in such a way that component necessary for magnetizing of the machine (flux 

component) shall be isolated from the torque producing component. 

This can be accomplished by decomposing the current vector into two components projected in the 

reference frame, often called the dq frame that rotates synchronously with the rotor. It has become a 

standard to position the dq reference frame such that the d-axis is aligned with the position of the rotor 

flux vector, so that the current in the d-axis will alter the amplitude of the rotor flux linkage vector. The 

reference frame position must be updated so that the d-axis should be always aligned with the rotor flux 

axis. 

Because the rotor flux axis is locked to the rotor position, when using PMSM machines, a mechanical 

position transducer or position observer can be utilized to measure the rotor position and the position of 

the rotor flux axis. When the reference frame phase is set such that the d-axis is aligned with the rotor 

flux axis, the current in the q-axis represents solely the torque producing current component. 

What further resulted from setting the reference frame speed to be synchronous with the rotor flux axis 

speed is that both d and q axis current components are DC values. This implies utilization of simple 

current controllers to control the demanded torque and magnetizing flux of the machine, thus 

simplifying the control structure design. 

Figure 2 shows the basic structure of the vector control algorithm for the PM synchronous motor. To 

perform vector control, it is necessary to take following four steps: 

1. Measure the motor quantities (DC link voltage and currents, rotor position/speed). 

2. Transform measured currents into the two-phase orthogonal system (α, β) using a Clarke 

transformation. After that transform the currents in α, β coordinates into the d, q reference frame 

using a Park transformation. 

3. The stator current torque (isq) and flux (isd) producing components are separately controlled in d, 

q rotating frame. 

4. The output of the control is stator voltage space vector and it is transformed by an inverse Park 

transformation back from the d, q reference frame into the two-phase orthogonal system fixed 

with the stator. The output three-phase voltage is generated using a space vector modulation. 

Clarke/Park transformations discussed above are part of the Automotive Math and Motor Control 

Library set (see section References).  

To be able to decompose currents into torque and flux producing components (isd, isq), position of the 

motor-magnetizing flux has to be known. This requires knowledge of the accurate rotor position as 

being strictly fixed with magnetic flux. This application note deals with the sensor based FOC control 

where the position and velocity are obtained by position/velocity estimator executed by eTPU. Position 

and speed are processed by eTPU co-processor that runs independently on system core. 
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Figure 2 Field oriented control transformations 

3.2. PMSM model in quadrature phase synchronous reference frame  

Quadrature phase model in synchronous reference frame is very popular for field-oriented control 

structures, because both controllable quantities, current and voltage, are DC values. This allows to 

employ only simple controllers to force the machine currents into the defined states. Furthermore, full 

decoupling of the machine flux and torque can be achieved, which allows dynamic torque, speed and 

position control. 

The equations describing voltages in the three phase windings of a permanent magnet synchronous 

machine can be written in matrix form as follows: 

[

𝑢𝑎

𝑢𝑏

𝑢𝑐

] = 𝑅𝑠 [
𝑖𝑎
𝑖𝑏
𝑖𝑐

] +
𝑑

𝑑𝑡
[

𝜓𝑎

𝜓𝑏

𝜓𝑐

] 

Equation 2 

where the total linkage flux in each phase is given as: 

[

𝜓𝑎

𝜓𝑏

𝜓𝑐

] = [
𝐿𝑎𝑎 𝐿𝑎𝑏 𝐿𝑎𝑐

𝐿𝑏𝑎 𝐿𝑏𝑏 𝐿𝑏𝑐

𝐿𝑐𝑎 𝐿𝑐𝑏 𝐿𝑐𝑐

] [
𝑖𝑎
𝑖𝑏
𝑖𝑐

] + Ψ𝑃𝑀

[
 
 
 
 

cos (𝜃𝑒)

cos (𝜃𝑒 −
2𝜋

3
)

cos (𝜃𝑒 +
2𝜋

3
)
]
 
 
 
 

 

Equation 3 

where Laa, Lbb, Lcc, are stator phase self-inductances and Lab=Lba, Lbc=Lcb, Lca=Lac are mutual 

inductances between respective stator phases. The term ΨPM represents the magnetic flux generated by 

the rotor permanent magnets, and θe is electrical rotor angle. 
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Figure 3 Orientation of stator (stationary) and rotor (rotational) reference frames, with current 

components transformed into both frames 

The voltage equation of the quadrature phase synchronous reference frame model can be obtained by 

transforming the three phase voltage equations (Equation 2) and flux equations (Equation 3) into a two 

phase rotational frame which is aligned and rotates synchronously with the rotor as shown in Figure 3. 

Such transformation, after some mathematical corrections, yields the following set of equations: 

[
𝑢𝑑

𝑢𝑞
] = 𝑅𝑠 [

𝑖𝑑
𝑖𝑞

] + [
𝐿𝑑 0
0 𝐿𝑞

]
𝑑

𝑑𝑡
[
𝑖𝑑
𝑖𝑞

] + 𝜔𝑒 [
0 −𝐿𝑞

𝐿𝑑 0
] [

𝑖𝑑
𝑖𝑞

] + 𝜔𝑒Ψ𝑃𝑀 [
0
1
] 

Equation 4 

where ωe is electrical rotor speed. It can be seen that Equation 4 

represents a non-linear cross dependent system with cross-coupling terms in both d and q axis and back-

EMF voltage component in the q-axis. When FOC concept is employed, both cross-coupling terms shall 

be compensated in order to allow independent control of current d and q components. Design of the 

controllers is then governed by following pair of equations, derived from Equation 4 after 

compensation: 

𝑢𝑑 = 𝑅𝑠𝑖𝑑 + 𝐿𝑑

𝑑𝑖𝑑
𝑑𝑡

 

Equation 5 

𝑢𝑞 = 𝑅𝑠𝑖𝑞 + 𝐿𝑞

𝑑𝑖𝑞

𝑑𝑡
 

Equation 6 

Those equations describe the model of the plant for d and q current loop. Both equations are structurally 

identical, therefore the same approach of controller design can be adopted for both d and q controllers. 

The only difference is in values of d and q axis inductances, which results in different gains of the 

controllers. Considering closed loop feedback control of a plant model as in either equation, using 

α

β

d

q

ωe

αβ frame – stator coordinates
dq frame – rotor coordinates

θe

iS

iSd

iSq

iSα

iSβ

torque 
component

flux 
component

PM
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standard PI controllers, then the controller proportional and integral gains can be derived, using a pole-

placement method, as follows: 

𝐾𝑝 = 2𝜉𝜔0𝐿 − 𝑅 

Equation 7 

 
𝐾𝑖 = 𝜔0

2𝐿 

Equation 8 

where ω0 represents the system natural frequency [rad/sec] and ξ is the Damping factor [-] of the current 

control loop.  

 
Figure 4 FOC Control Structure 

3.3. Output voltage actuation and phase current measurement 

The 3-phase voltage source inverter shown in Figure 5 uses three shunt resistors (R38, R39, R40) placed 

in three legs of the inverter as phase current sensors. Stator phase current which flows through the shunt 

resistor produces a voltage drop which is interfaced to the AD converter of microcontroller through 

conditional circuitry (refer to MCSPTR2A5775E Schematic available at nxp.com). 
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Figure 5 Three-phase DC/AC inverter with shunt resistors for current measurement 

Figure 6 shows a gain setup and input signal filtering circuit for operational amplifier which provides the 

conditional circuitry and adjusts voltages to fit into the ADC input voltage range. 

 
Figure 6 Phase current measurement conditional circuitry 

The phase current sampling technique is a challenging task for detection of phase current differences 

and for acquiring full three phase information of stator current by its reconstruction. Phase currents 

flowing through shunt resistors produces a voltage drops which need to be appropriately sampled by the 

AD converter when low-side transistors are switched on. The currents cannot be measured by the shunt 

resistors at an arbitrary moment. This is because the current only flows through the shunt resistor when 

the bottom transistor of the respective inverter leg is switched on. Therefore, considering Figure 5, phase 

A current is measured using the R38 shunt resistor and can only be sampled when the low side transistor 

Q4 is switched on. Correspondingly, the current in phase B has to be measured when the low side 

transistor Q5 is switched on, and the current in phase C can only be measured if the low side transistor 

Q6 is switched on. To get an actual instant of current sensing, voltage waveform analysis has to be 

performed. 

Generated duty cycles (phase A, phase B, phase C) for two consecutive PWM periods are shown in 

Figure 7. These phase voltage waveforms correspond to a center-aligned PWM with sine-wave 

modulation. As shown in the following figure, (PWM period I), the best sampling instant of phase 
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current is in the middle of the PWM period, where all bottom transistors are switched on. However, not 

all three currents can be measured at an arbitrary voltage shape. PWM period II in the following figure 

shows the case when the bottom transistor of phase A is ON for a very short time. If the ON time is 

shorter than a certain critical time (depends on hardware design), the current cannot be correctly 

measured. 

 
Figure 7 Generated phase duty cycles in different PWM periods 

In standard motor operation, where the supplied voltage is generated using the space vector modulation, 

the sampling instant of phase current takes place in the middle of the PWM period in which all bottom 

transistors are switched on. If the duty cycle goes to 100%, there is an instant when one of the bottom 

transistors is switched on for a very short time period. Therefore, only two currents are measured and the 

third one is calculated from equation: 

𝑖𝐴 + 𝑖𝐵 + 𝑖𝐶 = 0 

Equation 9 

NOTE 

MPC5775-EVB is using eTPU timer for generation the PWMs signals. 

The default limit of the PWM duty cycle is 98% which allows in whole 

range of duty cycle measure all three currents. This default setting and 

also type of motor control modulation can be changed. Refer to eTPU 

PWMM: Center-aligned PWM mode 

3.4. Rotor position/speed estimation 

Different sensor type might require different approach to evaluate the speed and position of the motor. 

The NXP approach for resolver systems utilizes an Angle Tracking Observer (ATO), see Figure 8 which 

is based on the Phase Lock Loop technique. The ATO input is a position error between the position 

given by the sensor and estimated ATO position. The PI controller in the ATO loop minimizes the input 

error by adjustment of a control variable, in this case the control variable is equivalent to a motor speed. 

Integration of the speed leads to the estimated position.  
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Figure 8 ATO for Resolver systems 

The ATO for resolver system is characterized by the position error calculation. The observer error 

corresponds to the following formula: 

 

 
Equation 10 

The coefficients of ATO PI controller, Integrator and filter can be tuned by MCAT tool. The ATO 

function is a member of the motor control SW library (see References) and is available as 
AMCLIB_TrackObsrv. 

The alignment algorithm applies DC voltage to d-axis resulting full DC voltage applied to phase A and 

negative half of the DC voltage applied to phase B, C for a certain period. This will cause the rotor to 

move to "align" position, where stator and rotor fluxes are aligned. The rotor position in which the rotor 

stabilizes after applying DC voltage is set as zero position. Motor is ready to produce full startup torque 

once the rotor is properly aligned. 

NOTE 

MPC5775E-EVB is using eTPU for resolver feedback signal 

demodulation. eTPU based resolver o digital converter is described in 

chapter Software implementation on the MPC5777E. 

3.5. Field weakening 

Field weakening is an advanced control approach that extends standard FOC to allow electric motor 

operation beyond a base speed. The back electromotive force (EMF) is proportional to the rotor speed 

and counteracts the motor supply voltage. If a given speed is to be reached, the terminal voltage must be 

increased to match the increased stator back-EMF. A sufficient voltage is available from the inverter in 

the operation up to the base speed. Beyond the base speed, motor voltages ud and uq are limited and 

cannot be increased because of the ceiling voltage given by inverter. Base speed defines the rotor speed 

at which the back-EMF reaches maximal value and motor still produces the maximal torque. 

As the difference between the induced back-EMF and the supply voltage decreases, the phase current 

flow is limited, hence the currents id and iq cannot be controlled sufficiently. Further increase of speed 

would eventually result in back-EMF voltage equal to the limited stator voltage, which means a 

complete loss of current control. The only way to retain the current control even beyond the base speed 

is to lower the generated back-EMF by weakening the flux that links the stator winding. Base speed 

𝜃𝑒𝑟𝑟 =  𝜃𝑓𝑏𝑐𝑘 − 𝜃𝑒𝑇𝑃𝑈 
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splits the whole speed motor operation into two regions: constant torque and constant power, see the 

following figure.  

 
Figure 9 Constant torque/power operating regions 

Operation in constant torque region means that maximal torque can be constantly developed while the 

output power increases with the rotor speed. The phase voltage increases linearly with the speed and the 

current is controlled towards its reference. The operation in constant power region is characterized by a 

rapid decrease in developed torque while the output power remains constant. The phase voltage is at its 

limit while the stator flux decreases proportionally with the rotor speed, see the following figure. 

 
Figure 10 Constant flux/voltage operational regions 

FOC splits phase currents into the q-axis torque component and d-axis flux component. The flux current 

component Id is used to weaken the stator magnetic flux linkage ΨS. Reduced stator flux ΨS yields to 

lower Back-EMF and condition of Field Weakening is met. More details can be seen from the following 

phasor diagrams of the PMSM motor operated exposing FOC control without (left) and with FW (right), 

Figure 11. 
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Figure 11 Steady-state phasor diagram of PMSM operation up to base speed (left) and above speed (right) 

FOC without FW is operated demanding d-axis current component to be zero (Id=0) to excite electric 

machine just by permanent magnets mounted on the rotor. This is an operation within constant torque 

region (see Figure 9), since whole amount of the stator current consists of the torque producing 

component Iq only (see Figure 11, left). Stator magnetic flux linkage ΨS1 is composed of rotor magnetic 

flux linkage ΨPM, which represents the major contribution and small amount of the magnetic flux 

linkage in q-axis LqIq produced by q-axis current component Iq. Based on the Faraday’s law, rotor 

magnetic flux linkage ΨPM and stator magnetic flux linkage ΨS1 produce back-EMF voltage 

EPM1=ωe1ΨPM perpendicularly oriented to rotor magnetic flux ΨPM in q-axis and back EMF voltage 

ES1=ωe1ΨS1 perpendicularly oriented to stator magnetic flux ΨS1, respectively (see Figure 11, left). Both 

voltages are directly proportional to the rotor speed ωe1. If the rotor speed exceeds the base speed, the 

back-EMF voltage ES1=ωe1ΨS1 approaches the limit given by VSI and Iq current cannot be controlled. 

Hence, field weakening has to take place. 

In FW operation, Id current is controlled to negative values to “weaken” stator flux linkage ΨS2 by -LdId 

component as shown in Figure 11, right. Thanks to this field weakening approach, back-EMF voltage 

induced in the stator windings ES2 is reduced below the VSI voltage capability even though EPM2 

exceeds it. Iq current can be controlled again to develop torque as demanded. Unlike the previous case, 

this is an operation within constant power region (see Figure 9) where Iq current is limited due to Is 

current vector size limitation (see Figure 11, right). In FW operation, stator magnetic flux linkage ΨS 

consists of three components now: rotor magnetic flux linkage ΨPM, magnetic flux linkage in q-axis Ψq= 

LqIq produced by q-axis current component Iq and magnetic flux linkage in d-axis Ψd= -LdId produced by 

negative d-axis Id current component that counteracts to ΨPM. 

There are some limiting factors that must be taken into account when operating FOC control with field 

weakening: 

• Voltage amplitude u_max is limited by power as shown in Figure 12, left 

• Phase current amplitude i_max is limited by capabilities of power devices and motor thermal 

design as shown in Figure 12, right 

• Flux linkage in d-axis is limited to prevent demagnetization of the permanent magnets 

q- axis

d- axis

IS = Iq

EPM1 = e1PM

VS1

S1

RS IS
jXSIS

q- axis

d- axis

IS Iq

Id

VS2

S2

RS IS

jXSIS

-Ld Id

IMAX IMAX

ES2 = e2S2
ES1 = e1S1

Lq Iq
Lq Iq

VSI voltage capability VSI voltage capability

EPM2 = e2PM

PMPM

e1 < e2

EPM1 < EPM2
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Figure 12 Voltage (left) and current (right) limits for PMSM drive operation 

NXP’s Automotive Math and Motor Control library offers a software solution for the FOC with field 

weakening respecting all limitations discussed above. This library-based function is discussed in section 

AMMCLIB integration. 

4. Software implementation on the MPC5777E 

4.1. eTPU  

The Enhanced Time Processing Unit (eTPU) is a programmable I/O controller with its own core and 

memory system, allowing it to perform complex timing and I/O management independently of the CPU. 

The eTPU is used as a co-processor, specialized for advanced timing functions, such as handle complex 

engine control, motor control, and communication tasks independently of the CPU. 

A new complex library of eTPU functions enabling the eTPU to drive motor control applications was 

developed. This library represents a step forward compared to its predecessor – the motor control 

function sets (set3 and set4). The new Motor Control eTPU Library benefits from NXP eTPU 

development tools from CodeWarrior. The eTPU(2) Development Suite is based on Eclipse IDE and 

includes the C and assembly compiler, simulator and debugger. 

4.1.1. eTPU PWMM: 

The Motor Control PWM eTPU function (PWMM) uses either three eTPU channels to generate three 

PWM output signals, or six eTPU channels to generate three complementary PWM output signal pairs, 

used to drive a 3-phase electrical motor. One extra channel PWMM Master is used to synchronize all the 

outputs and is responsible for all the necessary calculation. Master channel does not generate any 

PWMM output, but the output is used for debugging and visualization of PWMM function processing. 

An example of eTPU PWMM function can be seen on Figure 13.  
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Figure 13 Center aligned 3 phase PWM output with complementary channels and one Master channel 
(PWMM). 

Features: 

• Generates three phases of PWM signals to drive an electrical motor. 

• Based on the selected phase type, either single PWM outputs or complementary PWM pairs with 

dead-time are generated for each motor phase. 

• The PWM polarity can be separately configured for the base and the complementary PWM 

outputs. 

• The synchronous update of all PWM phases can happen either once or twice per PWM period: 

o Frame update 

o Frame and Center update (half-cycle update) 

• The PWMM inputs are transformed into PWM output duty-cycles by a selected modulation. It 

can be one of: 

o Unsigned voltages 

o Signed voltages 

o Standard Space Vector Modulation 

o Space Vector Modulation With O000 Nulls 

o Space Vector Modulation With O111 Nulls 

o Inverse Clark Transformation 

o Sine Table Modulation 

• There are four PWM modes supported. Switching between the PWM modes in run-time is also 

supported: 

o Left-aligned 

o Right-aligned 

o Center-aligned 

o Inverted center-aligned 

• The PWM period can be changed in run-time. The new period value is always applied at frame 

update only, not at the center update. 



Software implementation on the MPC5777E 

MCSPTR2A5775E 3-phase PMSM Motor Control Kit with MPC5775E, Rev. 0, 10/2020 

NXP Semiconductors  15 

  

• Generation of short pulses can be limited by a minimum pulse width – a threshold for pulse 

deletion. 

4.1.2. eTPU based Resolver to digital converter (RDC) 

The Resolver Digital Interface eTPU function (RESOLVER) uses one eTPU channel to generate a 50% 

duty-cycle PWM output signal to be passed through an external low-pass filter and used as a resolver 

excitation signal. In the resolver position sensor, this excitation signal is modulated by sine and cosine of 

the actual motor angle. The feedback Sine and Cosine signals are sampled by an on-chip ADC and the 

conversion results can be transferred to eTPU DATA RAM by eDMA. Then, the eTPU function 

RESOLVER can process the digital samples of resolver output signals. Motor angular position, angular 

speed, a revolution counter, and diagnostics are results of the Sine and Cosine feedback signal 

processing (see the following figure). 

 
Figure 14 eTPU Resolver Digital Interface block diagram 

 

Processing of the feedback signals is executed on a separate channel. Another channel is used to perform 

linear extrapolation of the last updated position from ATO to any other time. This is important feature 

since ATO updates come with a certain period (~50 µs) which most likely is not aligned with control 

loop frequency. 

 Optionally, another eTPU channel can be used to process diagnostics either on the same eTPU engine 

after the feedback signal processing is finished or on the other eTPU engine in parallel to the motor 

angle and speed calculation. This enables the CPU application to read the new motor angle and, at the 

same time, check the diagnostic results to ensure the motor angle is correct.  

The Sine and Cosine analogue feedback signals need to be converted to a digital representation and 

transferred to eTPU data RAM. This should be done independently of the CPU using an on-chip ADC 

and eDMA. Although any of the ADC modules can be used, the described configuration adopts the 

Sigma-Delta ADC (SDADC).  
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Two SDADC modules are used to continuously sample the Sine and Cosine signals in parallel (Figure 

15). They are configured to obtain 32 samples of each signal per period instead of one sample at the 

presumed peak as it is implemented in most of the SW resolver applications. This oversampling method 

together with demodulation and filtration brings more robustness towards the induced noise. 

Furthermore, the position is evaluated twice per resolver excitation period.  

 
Figure 15 Oversampling and demodulation of Resolver feedback signals 

4.1.3. eTPU Analog Sensing function (AS) 

The Analog Sensing eTPU function (AS) uses one eTPU channel to generate adjustable ADC trigger 

pulses. On the selected eTPU channels the trigger signal generated by the AS function can be internally 

routed to an ADC module. Using eDMA, the A/D conversion results can be moved back to the eTPU 

data RAM for further processing by the AS eTPU function. Those pre-processed analog samples are 

then available for consequential processing by e.g. an eTPU function handling the closed loop motor 

control. It can run either independently with a given period (periodic mode) or it can be synchronized 

with any other eTPU function (synchronized mode). 

Features: 

• Generates one or two adjustable trigger pulses per period: 

o Frame pulse 

o Center pulse 

• Generates interrupts, DMA requests and eTPU links at none, one, or more of selected time-

positions: 

o Frame pulse start 

o Frame pulse end 
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o Center pulse start 

o Center pulse end 

• Pre-process a defined number of analog signals (ADC conversion results) using: 

o Gain 

o DC-offset 

o Forgetting factor (low-pass EWMA filter). 

• Supports processing phase currents – calculation of one phase current value using the other two-

phase current values, based on a SVM sector value. 

• When working with eQADC (MPC5777C/MPC5775E), supports CPU-independent modification 

of command queues. 

4.2. MPC5777E – Key modules for PMSM FOC control 

The key module for motor control on MPC5775E device is Enhanced Time Processing Unit (eTPU). 

Using the eTPU Motor control library function set this programmable timer co-processor is capable of 

generation 3 phase PWM complementary output, analog signal measurement triggering and 

synchronization signal as well as Resolver feedback signal processing. To enable full eTPU Resolver 

functionality it is crucial to utilize sigma-delta Analog to digital converters together with Enhanced 

Direct Memory Access module. For phase current sensing the Enhanced Queued Analog to Digital 

Converters are used. 

Figure 16 shows module interconnection for a typical PMSM FOC application working in sensor-based 

mode using shunt current sensing with eTPU Motor Control Library functions involvement.  

 
Figure 16 MPC5775E module interconnection block diagram  
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4.2.1. MPC5777E and FETs pre-driver interconnection 

Excitation of power FETs is ensured by NXP MC33937 pre-driver. This analog device is equipped with 

charge pump that ensures external FETs drive at low power supply voltages. Moreover, three external 

bootstrap capacitors provide gate charge to the high-side FETs (see section References).  

Configuration of MC33937 pre-driver is realized via SPI module. The MC33937 allows different 

operating modes to be set and locked by SPI commands. SPI commands also report condition of the 

MC33937 based on the internal monitoring circuits and fault detection logic. MPC5775E detects fault 

state of the MC33937 by means of fault signal  MC33937 pins. Integrated current sensing amplifier with 

analog comparator allow to measure DC bus current and detect overcurrent. Interconnection between 

MC33937 and MPC5775E is briefly depicted in Figure 16. 

4.2.2. Module involvement in PMSM FOC control 

This section will discuss timing and modules synchronization to accomplish PMSM FOC on the 

MPC5775E and the internal hardware features. 

The time diagram of the automatic synchronization between PWM and ADC in the PMSM application 

is shown in Figure 17. 

 
Figure 17 Time Diagram of PWM and ADC Synchronization 

The PMSM FOC control with shunt current measurement is based on static timing; meaning the trigger 

point instances of the ADC conversions are located at same place within one control loop cycle. 
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Each control cycle starts at beginning of the PWM cycle as shown in Figure 17. PWMM function runs 

with a certain period that corresponds to control loop frequency. AS function is configured to run in 

sync with PWMM and generates trigger pulse at the beginning of the PWMM period. This pulse rising 

edge triggers eQADCs to sample phase currents and DC bus voltage. Phase currents are measured 

simultaneously when bottom transistors of both inverter legs are closed, and currents flow through shunt 

resistors. The rising edge of the pulse triggers also Resolver position sampling. The pulse width is 

configurable and is configured for 4 µs. The falling edge of the AS pulse triggers an IRQ where the FOC 

is calculated. Result of the FOC calculation is new duty cycles that has to be applied for next period. In 

order to apply the new updated duty cycles for the next period the update (new duty cycle inputs) has to 

come before so called “update time”. This is the time configured in PWMM function that is needed for 

applying duty cycles by eTPU PWMM function for the next period, see Figure 18. If new inputs come 

after the “update time” happens, then new inputs are not applied for next period and will be applied in 

second next period. In that case PWMM function does not stop outputting the PWM signal and 

continues with the last duty cycle values configured. Missing update IRQ is generated from eTPU 

PWMM Master channel in case no new input comes before update time threshold.  

 
Figure 18 PWMM update input values for frame update 

4.3. MPC5775E Device initialization 

To simplify and accelerate application development, embedded part of the PMSM motor control 

application has been created. Peripherals are initialized at beginning of the main() function. For each 

MPC5775E module there is a specific configuration function: 

• mcu_mode_clock_init() – MCU clock configuration  

• xcptn_xmpl() – MCU interrupt routine initialization  

• my_interrupt_init() – custom application interrupt initialization 

• esci_init() – eSCI initialization for UART 

• SIU_init() – PINs and PORT modules configuration 

• my_system_etpu_init() – eTPU initialization 

• edma_init() – eDMA initialization 

• sdadc_init() – SDADC initialization 
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• eqadc_init() – eQADC initialization 

• dspi_init() – DSPI initialization 

4.3.1. Clock configuration 

The clock architecture of MPC5775E device contains two clock domains coming from separate PLLs. 

The first one is the system clock for the cores, cross-bar switch, peripheral bridges, memories, debug 

logic and memory mapped portion of peripherals. The second one feeds the state machines and protocol 

engines of communication and timer peripheral modules. These two clock domains can be configured to 

be completely asynchronous between each other. 

PLL0 module is supplied from 40 MHz external Crystal oscillator (XOSC). PLL0 circuit multiplies the 

input XOSC frequency by 10 and divides by 2 for PHI output to be 200 MHz further used as eTPU 

clock, SDADC clock and further divided by 2 used as peripheral clock. Second output of PLL0 PHI1 is 

divided by 4 to be 50 MHz, further used as input clock for PLL1 module. 

PLL1 module is used to generate 260 MHz system clock and 130 MHz platform clock. Clocking 

configuration within this application is listed in Table 1. 

Table 1 MCP5775E clocking configuration 

clock frequency 

core_clk 260 MHz 

plat_clk 130 MHz 

etpu_clk 200 MHz 

per_clk 100 MHz 

 

The configuration of overall system clock is performed within function call mcu_mode_clock_init(), see 

the code example below. 

void mcu_mode_clock_init(void) 
{    
    /* 0 The crystal oscillator (XOSC) is the clock source for PLL0    */ 
    /* 1 The internal RC oscillator (IRC) is the clock source for PLL0 */ 
     
    SIU.SYSDIV.B.PLL0SEL        = 0; 
    /* Configure PLL0 Dividers from 40Mhx XOSC */ 
    /* phi   = 200 MHz                         */ 
    /* phi1  = 50 MHz                          */ 
    PLLDIG.PLL0DV.B.RFDPHI1     = 4; 
    PLLDIG.PLL0DV.B.RFDPHI      = 2; 
    PLLDIG.PLL0DV.B.PREDIV      = 1; 
    PLLDIG.PLL0DV.B.MFD         = 10; 
    /* Check whether crystal is 40MHz, if not forever loop here TODO:implement error reporting */ 
    while (!(SIU.RSR.B.XOSCHIGH)){}; 
    /* Ensure SIU_RSR[XOSC] is 1 to confirm that XOSC is stable. */ 
    while (!(SIU.RSR.B.XOSC)){}; 
    PLLDIG.PLL0CR.B.CLKCFG      = 3;    /* Enable PLL0 by putting PLL into Normal mode   */ 
    while (!PLLDIG.PLL0SR.B.LOCK){};    /* Test PLL0 lock                                */ 
    /* Select the source clock for PLL1                             */ 
    /* 0 The crystal oscillator (XOSC) is the clock source for PLL1 */ 
    /* 1 The PHI1 output of PLL0 is the clock source for PLL1       */ 
    SIU.SYSDIV.B.PLL1SEL        = 0; 
    /* Configure PLL1 Dividers - 260MHz from 40Mhx XOSC */ 
    PLLDIG.PLL1DV.B.RFDPHI      = 2; 
    PLLDIG.PLL1DV.B.MFD         = 26; 
    PLLDIG.PLL1CR.B.CLKCFG      = 3;    /* Enable PLL1 by putting PLL into Normal mode   */ 
    while (!PLLDIG.PLL1SR.B.LOCK){};    /* Test PLL1 lock                                */ 
   … 
} 
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4.3.2. eSCI configuration 

Enhanced Serial Communication Interface (eSCI) module is used for communication between the 

MPC5775E MCU and FREEMASTER runtime debugging and visualization tool. Function esci_init() 

configures module A for UART functionality with baud rate 115200. See the following code example. 

 /* Initialize eSCI for UART */ 
esci_init(ESCIA_MODULE,MODE_SCI); 
 
void esci_init(uint8_t module, uint8_t mode) 
{ 
 switch(module){ 
 case ESCIA_MODULE: 
    eSCI_A.LCR1.B.LIN = mode;          /* Select between LIN or SCI functionality     */ 
    eSCI_A.CR2.R = 0x2000;             /* Enable ESCI and set all bits to reset value */ 
    eSCI_A.CR1.B.TE = 1;               /* Transmitter enable                          */ 
    eSCI_A.CR1.B.RE = 1;               /* Receiver enable                             */ 
    eSCI_A.CR1.B.PT = 0;               /* Parity is even                              */ 
    eSCI_A.CR1.B.PE = 0;               /* Parity control disable                      */ 
    eSCI_A.BRR.B.SBR = 54;             /* Baud rate = 115200:  
                                                            MCLK = (200MHz/2), Txclk = MCLK/(16*SBR) */ 

break; 

… 

} 

} 

4.3.3. eTPU configuration 

eTPU function configuration is performed within so called GCT files (etpu_gct.c/.h). First there is 

performed general eTPU engine configuration for both engine A and B, then eTPU functions are 

assigned to selected channels and those channels are configured for that particular eTPU functionality. 

The parameters for eTPU engine configuration are held in my_etpu_config structure, see part of the 

structure in the following example.  

/** @brief   Structure handling configuration of all global settings */ 
struct etpu_config_t my_etpu_config = 
{ 
 /* etpu_config.mcr - Module Configuration Register */ 
 FS_ETPU_GLOBAL_TIMEBASE_DISABLE  /* keep time-bases stopped during intialization (GTBE=0) */ 
 | FS_ETPU_MISC_DISABLE, /* SCM operation disabled (SCMMISEN=0) */ 
 
 /* etpu_config.misc - MISC Compare Register*/ 
 FS_ETPU_MISC, /* MISC compare value from etpu_set.h */ 
 /* etpu_config.ecr_a - Engine A Configuration Register */ 
 FS_ETPU_ENTRY_TABLE_ADDR /* entry table base address = shifted FS_ETPU_ENTRY_TABLE from etpu_set.h */ 
 | FS_ETPU_CHAN_FILTER_2SAMPLE /* channel filter mode = three-sample mode (CDFC=0) */ 
 | FS_ETPU_FCSS_DIV2 /* filter clock source selection = div 2 (FSCC=0) */ 
 | FS_ETPU_FILTER_CLOCK_DIV2 /* filter prescaler clock control = div 2 (FPSCK=0) */ 
 | FS_ETPU_PRIORITY_PASSING_ENABLE /* scheduler priority passing is enabled (SPPDIS=0) */ 
        | FS_ETPU_ENGINE_ENABLE, /* engine is enabled (MDIS=0) */ 

… 

} 

The entire eTPU initialization and function configuration is then performed in my_system_etpu_init() 

function call. See the following example code. 

int32_t my_system_etpu_init(void) 
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{ 
  int32_t err_code; 
  /* Initialization of eTPU DATA RAM */ 
  fs_memset32((uint32_t*)fs_etpu_data_ram_start, 0, fs_etpu_data_ram_end - fs_etpu_data_ram_start); 
  /* Initialization of eTPU global settings */ 
  err_code = fs_etpu_init( 
    my_etpu_config, 
    (uint32_t *)etpu_code, sizeof(etpu_code), 
    (uint32_t *)etpu_globals, sizeof(etpu_globals)); 
  if(err_code != 0) return(err_code); 
 
#ifdef FS_ETPU_ARCHITECTURE 
 #if FS_ETPU_ARCHITECTURE == ETPU2 
  /* Initialization of additional eTPU2-only global settings */ 
  err_code = fs_etpu2_init( 
    my_etpu_config, 
  #ifdef FS_ETPU_ENGINE_MEM_SIZE 
    FS_ETPU_ENGINE_MEM_SIZE); 
  #else 
    0); 
  #endif 
  if(err_code != FS_ETPU_ERROR_NONE) return(err_code); 
 #endif 
#endif 
 
  /* Initialization of eTPU channel settings */ 
  err_code = fs_etpu_pwmm_init(&pwmm_instance, &pwmm_config); 
  if(err_code != FS_ETPU_ERROR_NONE) return(err_code + (ETPU_PWMM_MASTER_CH<<16)); 
 
  err_code = fs_etpu_as_init(&as_instance, &pwmm_instance, &as_config); 
  if(err_code != FS_ETPU_ERROR_NONE) return(err_code + (ETPU_AS_CH<<16)); 
 
  err_code = fs_etpu_resolver_init(&resolver_instance, &resolver_config); 
  if(err_code != FS_ETPU_ERROR_NONE) return(err_code + (ETPU_RESOLVER_EXC_CHAN<<16)); 
 
  return(0); 

} 

4.3.3.1. eTPU PWMM: Center-aligned PWM mode 

The Motor Control PWM eTPU function (PWMM) uses either three eTPU channels to generate three 

PWM output signals, or six eTPU channels to generate three complementary PWM output signal pairs, 

used to drive a 3-phase electrical motor. 

 In this application complementary pairs of PWM are used with center aligned configuration, frame 

update only (parameters are updated once per PWM period, on a frame) and signed voltage modulation. 

Period is configured for 100 µs, dead-time configuration is 1 µs as well as minimum pulse width. 

Update time is configured for 7 µs which ensures enough time to perform update of all the three phases 

for next period.  

PWMM function configuration is performed within etpu_gct.c file. Part of the configuration is held in 

pwmm_instance where PWMM channels are assigned, complementary channel mode, function priority 

and polarity of the PWM outputs are configured. Other parameters, those that can be changed during 

runtime, are held in pwmm_config structure and can be changed using fs_etpu_pwmm_config() function 

call. Parameters are applied in upcoming PWMM update. The change of parameters is then visible in 

next period after the PWMM update. See the timing of the updates illustrated on Figure 18. 

struct pwmm_config_t pwmm_config = 
{ 
  FS_ETPU_PWMM_FM1_FRAME_UPDATE_ONLY, /**< selection of PWM update position. */ 
  FS_ETPU_PWMM_MODULATION_SIGNED,     /**< Selection of modulation */ 
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  FS_ETPU_PWMM_MODE_CENTER_ALIGNED,   /**< PWM Mode selection */ 
  NSEC2TCR1(100000),                  /**< PWM period as a number of TCR1 cycles. */ 
  USEC2TCR1(1),                       /**< PWM dead-time as a number of TCR1 cycles.*/ 
  USEC2TCR1(1),                       /**< Minimum pulse width as number of TCR1 cycles. */ 
  USEC2TCR1(7)                        /**< A time period (number of TCR1 cycles) that is needed to 
                                                         perform an update of all PWM phases. */ 

}; 

 

NOTE 

Use predefined macros to configure intended functionality. All the 

possible options are listed in etpu_pwmm.h in comments and described in 

PWMM-doxydoc.chm file.  Note that parameters in pwmm_instance can be 

configured only once at the eTPU initialization and cannot be changed 

during runtime.  

4.3.3.2. eTPU Resolver configuration 

Resolver function is designed so it cooperates closely with SDADC modules. SDADCs are configured 

to provide 32 per one period of resolver feedback signal. Having considered the resolver excitation 

frequency to be 10 kHz it means 320 kHz output data rate is required for SDADC. With a given 

limitations of SDADC clocking and oversampling rate configurations the closest possible output data 

rate that can be configured is 320.512 kHz (see Table 2). This determines the resolver excitation 

frequency to be 10.016 kHz, 99.84 µs period respectively. Resolver bandwidth configuration can be 

changed modifying ATO P and I gains. Current configuration of ATO is for 1 kHz bandwidth. 

Excitation P and I gains are tuned for balanced phase-shift reaction, thus it is recommended to use this 

configuration. For more information about eTPU Resolver implementation and its configuration please 

refer to eTPU RDC and RDC Checker User Guide (References). 

struct resolver_config_t resolver_config = 
{ 
  FS_ETPU_RESOLVER_SEMAPHORE_0, 
  FS_ETPU_RESOLVER_OPTIONS_CALCULATION_ON + 
  FS_ETPU_RESOLVER_OPTIONS_DIAG_MEASURES_ON + 
  FS_ETPU_RESOLVER_OPTIONS_EXC_ADAPTATION_ON + 
  FS_ETPU_RESOLVER_OPTIONS_EXC_GENERATION_ON, /* Resolver function options */ 
  NSEC2TCR1(99840),                           /* Excitation signal period */ 
  SFRACT24(0.070597541),                      /* ATO P-gain */ 
  SFRACT24(0.002492006),                      /* ATO I-gain */ 
  SFRACT24(0.00000),                          /* Excitation  P-gain */ 
  SFRACT24(0.00012),                          /* Excitation  I-gain */ 
  SFRACT24(0.9)                               /* Speed EWMA filter coefficient */ 

}; 

4.3.3.3. eTPU AS: triggering output pulse  

AS function is capable of generation periodical trigger pulses, one or two per period: Frame and Center 

pulse. The position of the pulses (relative to AS period frame time and center time) is configurable as 

well as the length.  

In this application AS function is configured to work in synchronization mode adopting the period of 

PWMM function. In that case AS period is configured to zero and pointer to the PWMM period is 

provided in etpu_as.c file. The polarity of the AS signal is configured as high for the pulse. Those 
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configurations are held in as_instace structure (defined similarly like PWMM in etpu_gct.c) and are not 

a subject of change during the runtime. AS is configured to output one Frame pulse at the beginning of 

the PWMM period (on a Frame time) and length is configured to be 4 µs which is enough for all the 

feedback sampling and DMA transfer to eTPU data RAM. The AS pulse is internally gated to eQADC 

to trigger conversion. AS pulse is also used to trigger Resolver Extrapolation. For this purpose there 

need to be  a HW connection between the eTPU AS channel output and eTPU Resolver Sample channel 

input. If fulfilled rising edge of the AS pulse triggers extrapolation of the position - in other words 

sampling the position and speed at the same time point as the feedback current measurement.  IQR is 

generated at the falling edge of the trigger pulse eTPU_AS_Isr() where all the feedback values are 

processed and state machine is executed. 

Also, configuration for measured signals triggered by AS function is present in etpu_gct.c in structure 

called as_signal_config. This structure holds one sub-configuration structure per signal, number of the 

signals to be processed by AS is defined in as_instance at the AS function initialization. The signal 

configuration structure holds parameters like gain, DC offset and filter factor. The processing of the 

signals may and may not be used. Within this application the processing of feedback signals is 

performed by CPU, not eTPU AS function.  

The following example code with AS configuration and AS signal configuration structures. 

/** A structure to represent a single AS signal processing configuration. 
 *  It includes both static and dynamic values. */ 
struct as_signal_config_t as_signal_config[4] = 
{ 
 { 
  0,          /* Result queue offset of the signal */ 
  1,          /* Gain bit */ 
  0x2000,     /* DC offset */ 
  SFRACT24(0) /* Forget factor of the EWMA filter */ 
 }, 
 … 
}; 
 
/** A structure to represent a configuration of AS. 
 *  It includes AS configuration items which can mostly be changed in 
 *  run-time. */ 
struct as_config_t as_config = 
{ 
 0,                               /* Start offset */ 
 0,                               /* Period */ 
     USEC2TCR1(4),                    /* Pulse width */ 
 FS_ETPU_AS_FM0_FRAME_PULSE_ON,   /* Pulse selection */ 
    0,                               /* Frame pulse adjustment */ 
    0,                               /* Center pulse adjustment */ 
 FS_ETPU_AS_IRQ_FRAME_PULSE_END,  /* IRQ and DMA options */ 
 0,          /* Link options */ 
 0,         /* Link channels numbers at frame pulse start */ 
    0,                                                  /* Link channels numbers at frame pulse end */ 
    0,                                                  /* Link channels numbers at center pulse start */ 
     0,                                                  /* Link channels numbers at center pulse end */ 
     (uint32_t *)(0xC3FC8000 + 0x1000),      /* Pointer to eTPU data RAM where signals from ADC are stored */ 
      &as_signal_config[0],                   /* Pointer to a signal configuration structure */ 
     0xF,                                    /* Mask determining signals to be processed at frame pulse end */ 
     0x0,                                    /* Mask determining signals to be processed at center pulse end */ 
 FS_ETPU_AS_PHASE_CURRENTS_OFF,          /* Phase current processing option */ 
     0,    /* Phase A current index in result queue */ 
     1,    /* Phase B current index in result queue */ 
     2,    /* Phase C current index in result queue */ 
    … 

}; 



Software implementation on the MPC5777E 

MCSPTR2A5775E 3-phase PMSM Motor Control Kit with MPC5775E, Rev. 0, 10/2020 

NXP Semiconductors  25 

  

4.3.4. SDADC configuration 

The Sine and Cosine analog feedback signals need to be converted to a digital representation and 

transferred to eTPU data RAM for Resolver function processing. This should be done independently of 

the CPU using an on-chip ADC and eDMA. Although any of the ADC modules can be used, the 

described configuration adopts the Sigma-Delta ADC (SDADC).  

Two SDADC modules are used to continuously sample the Sine and Cosine signals in parallel. They are 

configured to obtain 32 samples of each signal per period. The following table details the configuration 

for a 10 kHz excitation signal and a 320 kHz sampling frequency. 

Table 2 SDADC configuration for Resolver 

Configuration Item Value 

SDADC clock 200 MHz / 13 = 15.38 MHz (available range 4 – 16 MHz) 

ADC decimation rate 24 

Resulting output data rate 200 MHz / 13 / (2 * 24) = 320,512.8 Hz 

Input mode Single-ended 

High-pass filter enabled 

FIFO size 16 words 

FIFO threshold 8 words 

DMA request on FIFO full selected and enabled 

NOTE 

In this application single-ended mode is configured for SDADC to sense 

resolver feedback signals (sine and cosine). This results from the Low 

voltage power stage circuitry allowing single ended measurement for 

position feedback. However, it is recommended to use differential 

configuration for SDADC (and of course corresponding circuitry) when 

using SDADCs for eTPU Resolver signal digitization. This brings the 

advantage of noise rejection. 

Using the function call sdadc_init() two instances of SDADC, namely SDADC1 and SDADC4 are 

configured for continuous sampling with a given output data rate as listed in Table 2. 

 SDADC1 is started by software. SDADC1 trigger output is selected as a HW trigger to start SDADC4. 

This configuration enables to start both modules of SDADC synchronously. Both SDADC modules are 

configured so they generate DMA request as soon as FIFO sample count reaches the value 8. It means 

that quarter of sine wave is moved by DMA from SDADC result FIFO to eTPU data RAM at once, four 

times per period. See the following code example. 

/* SDADC init*/ 

sdadc_init(OSR_24, GAIN_1, FTHLD_8, SINGLE); 

void sdadc_init(uint8_t pdr, uint8_t gain, uint8_t fifo_thld, uint8_t inp_mode) 
{ 
 
 /* SD ADC 1 CONFIGURATION */ 
 SDADC_1.SFR.R = 0x1B;           /* Clear all the status flags */ 
 SDADC_1.FCR.B.FRST = 1;           /* Generate reset to flush FIFO */ 
 SDADC_1.FCR.B.FTHLD = fifo_thld;  /* FIFO threshold - overcome generates FIFO full event flag */ 
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 SDADC_1.FCR.B.FSIZE = 3;          /* FIFO size: 0 - 1 word, 1 - 4 words, 2 - 8 words, 3 - 16 words */ 
 SDADC_1.FCR.B.FOWEN = 0;          /* Disable FIFO overwrite */ 
 SDADC_1.FCR.B.FE = 1;          /* Enable FIFO */ 
 SDADC_1.RSER.B.DFFDIRS = 1;  /* DMA request on data FIFO full */ 
 SDADC_1.RSER.B.DFFDIRE = 1;       /* Data FIFO full request enable */  
 SDADC_1.MCR.B.MODE = inp_mode;  /* Input mode: 0 - differential, 1 - single-ended */ 
 SDADC_1.MCR.B.PDR = pdr;          /* Over sampling rate */ 
 SDADC_1.MCR.B.PGAN = gain;  /* Digital gain */ 
 SDADC_1.MCR.B.HPFEN = 1;          /* High-pass filter enabled */ 
 SDADC_1.MCR.B.EN = 1;          /* Internal SDADC modulator enabled */ 
 SDADC_1.OSDR.B.OSD = 1;          /* Set the output settling delay */ 
 SDADC_1.CSR.B.ANCHSEL = 0;  /* Analog input channel AN[x] selection */ 
 SDADC_1.MCR.B.TRIGEN = 1;  /* Enable HW trigger */ 

 … 

 SDADC_4.MCR.B.TRIGSEL = 0;        /* SDADC_1 trigger output selected as an input trigger for SDADC4 */ 
 SDADC_4.MCR.B.TRIGEDSEL = 1;  /* Rising edge of trigger input selected */ 
 SDADC_4.MCR.B.TRIGEN = 1;  /* Enable HW trigger */ 

} 

void sdadc_start(void) 
{ 
 /* start the SDADC_1 by SW trigger */ 
 SDADC_1.STKR.R = 0xFFFF; 

} 

4.3.5. eQADC configuration 

MPC5775E features two instances of Enhanced Queued ADCs (eQADC), each module having two 

independent ADCs, total four independent on-chip ADC modules. The eQADC transfers commands 

from multiple Command FIFOs (CFIFOs) to the on-chip ADCs. The multiple Result FIFOs (RFIFOs) 

can receive data from the on-chip ADCs or from an on-chip DSP module. The eQADC supports 

software and external hardware triggers from other blocks to initiate transfers of commands from the 

CFIFOs to the on-chip ADCs. It also monitors the fullness of CFIFOs and RFIFOs, and accordingly 

generates DMA or interrupt requests to control data movement between the FIFOs and the system 

memory, which is external to the EQADC. 

In this application all the four on-chip ADCs are utilized to sample simultaneously Phase A, Phase B 

and Phase C currents and DC bus voltage. This is achieved by utilizing of four command FIFOs, one per 

ADC channel. External HW trigger is configured to trigger CFIFOs, namely eTPUA_28 channel is 

selected as a trigger input for all CFIFOs. This eTPU channel is assigned to AS function. ADCs are 

configured for single scan mode. Results are stored in Result FIFOs, one RFIFO per ADC channel.  

FIFO Drain DMA requests are enabled for all the CFIFOs as well as RFIFOs. On a CFIFO Drain DMA 

request respective eQADC command is transferred from system memory to CFIFO. Commands for all 

the channels have the end Of Queue bit (EOQ) configured. This results in repeated write of a single 

command to the CFIFO after CFIFO is triggered. Result FIFO drain DMA request evokes respective 

DMA channel that performs transfer from RFIFO to eTPU data RAM. See the configuration of the 

DMA channels in Table 5 and Table 6. See the following code example of the EQADC initialization. 

void eqadc_init(void) 
{ 
   uint32_t tmp; 
 
 /* AN24 - Phase A current 
  * AN25 - Phase B current 
  * AN26 - Phase C current 
  * AN28 - DC bus voltage */ 
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 /* SIU config of CFIFO trigger source selection: 
  * eTPU28_A selected to trigger all the FIFOs at one time */ 
 
 SIU.ISEL5.B.CTSEL0_A = 0xC; /* eTPU28_A selected as trigger for eQADC_A Command FIFO 0 */ 
 SIU.ISEL5.B.CTSEL1_A = 0xC; /* eTPU28_A selected as trigger for eQADC_A Command FIFO 1 */ 
 SIU.ISEL7.B.CTSEL0_B = 0xC; /* eTPU28_A selected as trigger for eQADC_B Command FIFO 0 */ 
 SIU.ISEL7.B.CTSEL1_B = 0xC; /* eTPU28_A selected as trigger for eQADC_B Command FIFO 1 */ 
 
 /* Enable EQADC_A ADC0 and ADC1 and set ADC clock prescaler, via commands */ 
 EQADC_A.CFCR0.B.CFINV0 = 1; /* invalidate CFIFO */ 
 EQADC_A.CFCR0.B.CFINV1 = 1; /* invalidate CFIFO */ 
 EQADC_A.CFPR[0].R = 0x80800301 + (0 << 25); /* push ADC0_CR configuration command to CFIFO_0 */ 
 EQADC_A.CFPR[1].R = 0x80800301 + (1 << 25); /* push ADC1_CR configuration command to CFIFO_1 */ 
 EQADC_A.CFCR0.R = 0x04100410; /* set software triggered single scan mode and enable single scan for both 
                                         ADC0 and ADC1 */ 
 while (EQADC_A.FISR[0].B.EOQFX != 1) {} /* wait for end-of-queue flag */ 
 while (EQADC_A.FISR[1].B.EOQFX != 1) {} /* wait for end-of-queue flag */ 
 EQADC_A.FISR[0].R = ~0UL; /* clear all flags */ 
        EQADC_A.FISR[1].R = ~0UL; /* clear all flags */ 
 
} 

4.3.6. DSPI configuration 

DSPI module is used as a communication interface between MPC5775E MCU and FET pre-driver 

MC33937. DSPI B module is configured for that purpose within this application using function call 

dspi_init(). DSPI is configured as master mode SPI interface with 6.25 MHz frequency derived from 

100 MHz PER_CLK. See the following configuration code. 

/* DSPI initialization */ 
dspi_init(DSPI_B_MODULE, DSPI_MASTER, DSPI_SPI, CTAR0); 
 
void dspi_init(uint8_t module, uint8_t mode, uint8_t com_mode, uint8_t ctar) 
{ 
switch(module){ 

… 
 case DSPI_B_MODULE: 
  DSPI_B.MCR.B.HALT           =  0x1;     /* Module is set to HALT mode to perform initialization */ 
  DSPI_B.MCR.B.MDIS           =  0x1;     /* Module is disabled during initialization */ 
  DSPI_B.MCR.B.MSTR           =  mode;    /* Select module mode: MASTER or SLAVE */ 
  DSPI_B.MCR.B.PCSIS          = 0x3F;     /* The chip select inactive state is high */ 
  DSPI_B.MCR.B.DIS_RXF        =  0x1;     /* RX FIFO disabled */ 
  DSPI_B.MCR.B.DIS_TXF        =  0x1;     /* TX FIFO disabled */ 
  DSPI_B.MCR.B.CLR_TXF        =  0x1;     /* Clear the TX FIFO counter */ 
  DSPI_B.MCR.B.CLR_RXF        =  0x1;     /* Clear the RX FIFO counter */ 
 
  DSPI_B.MODE.CTAR[ctar].B.FMSZ  =  0x7;  /* Frame size is FRMSZ + 1 = 8bit per frame */ 
  DSPI_B.MODE.CTAR[ctar].B.DBR   =  0x0;  /* Duty cycle of the SCK is 50/50 */ 
  DSPI_B.MODE.CTAR[ctar].B.CPOL  =  0x0;  /* Clock polarity: inactive state value of SCK is low */ 
  DSPI_B.MODE.CTAR[ctar].B.CPHA  =  0x1;  /* Clock phase: Data is changed on leading edge of SCK */ 
  DSPI_B.MODE.CTAR[ctar].B.LSBFE =  0x0;  /* LSB first: Data is transferred MSB first */ 
  DSPI_B.MODE.CTAR[ctar].B.CSSCK =  0x3;  /* PCS to SCK Delay Scaler set to 16 */ 
  DSPI_B.MODE.CTAR[ctar].B.ASC   =  0x3;  /* After SCK Delay Scaler set to 16 */ 
  DSPI_B.MODE.CTAR[ctar].B.DT    =  0x7;  /* Delay After Transfer Scaler set to 128 */ 
  DSPI_B.MODE.CTAR[ctar].B.BR    =  0x3;  /* Baud rate scaler is set to be 8, resultant DSPI clock    

is 100 MHZ/(2x8) = 6.25 MHz */ 
  DSPI_B.RSER.R               =  0x0;     /* No interrupts or DMA transfers enabled */ 

break; 

… 

} 

} 
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DSPI routines are used within MC33937.c/.h driver. Also PIT timer is utilized here for timing. With all 

of this MC33937 driver provides access to all features of MC33937 FET driver chip such as 

reading/writing status registers, dead-time configuration and fault handling. See the following example 

code. 

tBool MC33937_configure( MC33937_T *ptr) 
{ 
    volatile uint8_t        cnt; 
    uint8_t                 empty_data; 
    uint16_t          command; 
    volatile tBool      statusPass; 
 
    statusPass = TRUE; 
 
    statusPass &= ClearRESET(); 
    statusPass &= ClearEN(); 
    statusPass &= SetRESET(); 
    /* start the PIT to count 2 ms */ 
    pit_start_wait_ns(2000000); 
    while(!pit_read_flag()); 
    pit_stop(); 
    /* initiate the DSPI */ 
    statusPass &= dspi_start(); 
    /* Clear all faults */ 
    statusPass &= MC33937_clear_faults(ptr); 
    /* Initialize MASK register 0 */ 
    command     = (uint16_t)ptr->data.mc33937mask0; 
    statusPass  &= dspi_master_data_tx(SINGLE_CS,CS3,CTAR0, command, &empty_data);  
… 
} 

4.3.7. DMA transfer configuration 

Within this application eleven DMA channels are utilized to speed up the control loop operation and 

offload the CPU. DMA is used to transfer: 

• Samples of Resolver feedback sine and cosine signals from SDADC to eTPU data RAM 

• eQADC commands to command FIFO for phase current and DC bus voltage measurement 

• eQADC measurement from result FIFO to eTPU data RAM 

All the channels used in this application are listed in the following table together with respective DMA 

request sources. 

Table 3 eDMA channel usage in application 

Module DMA chan.  Requesting source Description 

eDMA A 0 EQADC_A_FISR0[CFFF0] EQADC_A Command FIFO 0 Fill Flag (Phase A current 

measurement commands) 

1 EQADC_A_FISR0[RFDF0] EQADC_A Receive FIFO 0 Drain Flag (Phase A current values) 

2 EQADC_A_FISR1[CFFF1] EQADC_A Command FIFO 1 Fill Flag (Phase B current 

measurement commands) 

3 EQADC_A_FISR1[RFDF1] EQADC_A Receive FIFO 1 Drain Flag (Phase B current values) 

eDMA B 0 EQADC_B_FISR0[CFFF0] EQADC_B Command FIFO 0 Fill Flag (Phase C current 

measurement commands) 

1 EQADC_B_FISR0[RFDF0] EQADC_B Receive FIFO 0 Drain Flag (Phase C current values) 

2 EQADC_B_FISR1[CFFF1] EQADC_B Command FIFO 1 Fill Flag (DC bus voltage 

measurement commands) 

3 EQADC_B_FISR1[RFDF1] EQADC_B Receive FIFO 1 Drain Flag (DC bus voltage values) 

36 SDADC0 SDADC_0 result ready (sine positive resolver feedback signal) 
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Module DMA chan.  Requesting source Description 

39 SDADC3 SDADC_3 result ready (cosine positive resolver feedback signal) 

48 - This channel is linked by eDMA B 36 

NOTE 

The numbering of SDADC instances differs in MPC5775E Reference 

manual in various chapters. SDADC instances are numbered 1-4 whereas 

the source signals from SDADCs to trigger eDMA operation are 

numbered 0-3. Note that eDMA trigger signal SDADC_0 result ready 

originates in SDADC1 module and similarly SDADC_3 result ready 

originates in SDADC4 module. 

For the purpose of eTPU Resolver function operation three eDMA channels are used to ensure Resolver 

feedback signals are delivered to eTPU data RAM and to trigger eTPU processing once all the data are 

transferred. Two eDMA B channels 36 and 39 are configured to transfer SDADC results after SDADC 

result FIFO count reaches 8. Channel 36 is configured to link another eDMA B channel (channel 48) on 

major loop completion (after all the results are transferred into eTPU data RAM) which causes a 

subsequent transfer of constants into eTPU Resolver ATO channel HSR register. The array of the 

constants defined in edma.c source file and is as follows: 

const uint32_t link_cnst[] = {0, 
                              FS_ETPU_RESOLVER_HSR_UPDATE_1ST, 
                              0, 
                              FS_ETPU_RESOLVER_HSR_UPDATE_2ND}; 

It means that after first quarter of sine wave samples is transferred into eTPU data RAM zero is written 

into Resolver ATO eTPU channel HSR register. Writing a zero does not initiate any eTPU operation. On 

the second quarter transfer end the FS_ETPU_RESOLVER_HSR_UPDATE_1ST constant is written to HSR register. This 

write initiates eTPU service request for processing first half period of the sampled sine and cosine wave. 

Similar applies for the second half period with FS_ETPU_RESOLVER_HSR_UPDATE_2ND that evokes processing of the 

second half period. Detailed configuration for DMA channels used by eTPU Resolver function can be 

found in Table 4. 

Table 4 DMA configuration for eTPU Resolver 

Configuration Item Sine ADC FIFO DMA 

channel 

Cosine ADC FIFO DMA 

channel 

Linked HSR DMA channel 

Source address &SDADC_x.CDR.R &SDADC_y.CDR.R &link_const[0] 

Destination address resolver_instance. 

.signals_pba 

resolver_instance. 

.signals_pba + 64 

&ETPU.CHAN[resolver_instanc

e.chan_num_exc].HSRR.R 

Source transfer size / modulo 32-bits / 0 bytes 32-bits / 0 bytes 32-bits / 0 bytes 

Destination transfer size / 

modulo 

32-bits / 0 bytes 32-bits / 0 bytes 32-bits / 0 bytes 

Source address offset 0 bytes 0 bytes 4 bytes 

Destination address offset 4 bytes 4 bytes 0 bytes 

Minor loop byte count 32 bytes 32 bytes 4 bytes 

Major loop iteration count 4 4 4 

Last source address adjustment 0 bytes 0 bytes -16 bytes 
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Configuration Item Sine ADC FIFO DMA 

channel 

Cosine ADC FIFO DMA 

channel 

Linked HSR DMA channel 

Source address &SDADC_x.CDR.R &SDADC_y.CDR.R &link_const[0] 

Destination address resolver_instance. 

.signals_pba 

resolver_instance. 

.signals_pba + 64 

&ETPU.CHAN[resolver_instanc

e.chan_num_exc].HSRR.R 

Source transfer size / modulo 32-bits / 0 bytes 32-bits / 0 bytes 32-bits / 0 bytes 

Destination transfer size / 

modulo 

32-bits / 0 bytes 32-bits / 0 bytes 32-bits / 0 bytes 

Source address offset 0 bytes 0 bytes 4 bytes 

Last destination address 

adjustment 

-128 bytes -128 bytes 0 bytes 

Channel to channel linking enabled disabled disabled 

Linked channel HSR DMA channel - - 

See the code example below where the configuration of DMA_B channel 36 for transferring sine signal 

samples from SDADC1 to eTPU data RAM is shown, according to Table 4. 

void edma_init(void) 
{ 
 uint8_t hsr_ch = 48; 
 /* DMA B ch 36 - SDADC0 result ready 
    DMA B ch 39 - SDADC3 result ready */ 
 
 /* DMA settings for SDADC_0 request */ 
 DMA_B.TCD[36].SADDR.R = (uint32_t)&SDADC_1.CDR.R;/* Source address */ 
 DMA_B.TCD[36].ATTR.B.SMOD = 0;   /* Source address modulo*/ 
 DMA_B.TCD[36].ATTR.B.SSIZE = 2;    /* Source data size: 32bit */ 
 DMA_B.TCD[36].ATTR.B.DMOD = 0;   /* Destination address modulo */ 
 DMA_B.TCD[36].ATTR.B.DSIZE = 2;   /* Destination data size: 32bit */ 
 DMA_B.TCD[36].SOFF.R = 0;   /* Source address signed offset */ 
 DMA_B.TCD[36].NBYTES.MLNO.R = 32;  /* Inner "minor" byte count (8*4) */ 
 DMA_B.TCD[36].SLAST.R = 0;   /* TCD Last Source Address Adjustment */ 
 DMA_B.TCD[36].DADDR.R = (vuint32_t)resolver_instance.signals_pba; /* Destination address */ 
 DMA_B.TCD[36].CITER.ELINKYES.B.ELINK = 1; /* Enable chan-to-chan linking on minor-loop complete */ 
 DMA_B.TCD[36].CITER.ELINKYES.B.LINKCH = hsr_ch; /* Minor Loop Link Channel Number */ 
 DMA_B.TCD[36].CITER.ELINKYES.B.CITER = 4; /* Current major iteration count */ 
 DMA_B.TCD[36].DOFF.R = 4;   /* Signed destination address offset */ 
 DMA_B.TCD[36].DLASTSGA.R = -128;   /* Last destination address adjustment /scatter gather 
                                                            address */ 
 DMA_B.TCD[36].BITER.ELINKYES.B.ELINK = 1; /* Enable chan-to-chan linking on minor loop complete */ 
 DMA_B.TCD[36].BITER.ELINKYES.B.LINKCH = hsr_ch; /* Minor Loop Link Channel Number */ 
 DMA_B.TCD[36].BITER.ELINKYES.B.BITER = 4; /* Beginning major iteration count */ 
 DMA_B.TCD[36].CSR.B.MAJORELINK = 1;  /* Enable chan-to-chan linking on major loop complete */ 
        DMA_B.TCD[36].CSR.B.MAJORLINKCH = hsr_ch;  /* Major Loop Link Channel Number */ 
… 
} 

Another four eDMA channels are used to transfer eQADC commands from system memory to eQADC 

command FIFO. The DMA transfer is requested when the command FIFO is empty.  eQADC 

commands can be seen below.  

const uint32_t eqadc_commands[] = 
{ 
  0x80001800, /* Phase A: EQADC_A ADC 0, channel 24, EOQ */ 
  0x82101900, /* Phase B: EQADC_A ADC 1, channel 25, EOQ */ 
  0x80001A00, /* Phase C: EQADC_B ADC 0, channel 26, EOQ */ 
  0x82101C00, /* DCB   : EQADC_B ADC 1, channel 28, EOQ */ 

}; 
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Detailed configuration for DMA channels used by eQADC can be found in the following table. 

 
Table 5 eDMA configuration for eQADC command FIFO 

Configuration Item EQADC_A Command 

FIFO 0 DMA channel 

EQADC_A Command 

FIFO 1 DMA channel 

EQADC_B Command 

FIFO 0 DMA channel 

EQADC_B Command 

FIFO 1 DMA channel 

Source address &eqadc_commands[0] &eqadc_commands[1] &eqadc_commands[2] &eqadc_commands[3] 

Destination address &EQADC_A.CFPR[0].R &EQADC_A.CFPR[1].R &EQADC_B.CFPR[0].R &EQADC_B.CFPR[1].R 

Source transfer size / 

modulo 

32-bits / 0 bytes 32-bits / 0 bytes 32-bits / 0 bytes 32-bits / 0 bytes 

Destination transfer size / 

modulo 

32-bits / 0 bytes 32-bits / 0 bytes 32-bits / 0 bytes 32-bits / 0 bytes 

Source address offset 0 bytes 0 bytes 0 bytes 0 bytes 

Destination address 

offset 

0 bytes 0 bytes 0 bytes 0 bytes 

Minor loop byte count 4 bytes 4 bytes 4 bytes 4 bytes 

Major loop iteration count 1 1 1 1 

Last source address 

adjustment 

0 bytes 0 bytes 0 bytes 0 bytes 

Last destination address 

adjustment 

0 bytes 0 bytes 0 bytes 0 bytes 

Channel to channel 

linking 

disabled disabled disabled disabled 

Linked channel - - - - 

 

See the code example below where the configuration of DMA_A channel 0 for transferring eQADC 

commands to measure Phase A current by eQADC are transferred from system memory to eQADC 

command FIFO is shown, according to Table 5. 

 
/* DMA settings for eQADC command FIFO */ 
/* phaseA - DMA_A source: 0 EQADC_A Command FIFO 0 Fill Flag */ 
/* phaseB - DMA_A source: 2 EQADC_A Command FIFO 1 Fill Flag */ 
/* phaseC - DMA_B source: 0 EQADC_B Command FIFO 0 Fill Flag */ 
/* DCB Voltage - DMA_B source: 2 EQADC_B Command FIFO 1 Fill Flag */ 
DMA_A.TCD[0].SADDR.R = (uint32_t)&eqadc_commands[0];/* Source address */ 
DMA_A.TCD[0].ATTR.B.SMOD = 0;      /* Source address modulo */ 
DMA_A.TCD[0].ATTR.B.SSIZE = 2;       /* Source data size: 32bit */ 
DMA_A.TCD[0].ATTR.B.DMOD = 0;      /* Destination address modulo */ 
DMA_A.TCD[0].ATTR.B.DSIZE = 2;      /* Destination data size: 32bit */ 
DMA_A.TCD[0].SOFF.R = 0;       /* Source address signed offset */ 
DMA_A.TCD[0].NBYTES.MLNO.R = 4;      /* Inner "minor" byte count */ 
DMA_A.TCD[0].SLAST.R = 0;      /* TCD Last Source Address Adjustment */ 
DMA_A.TCD[0].DADDR.R = (uint32_t)&EQADC_A.CFPR[0].R;/* Destination address CFIFO */ 
DMA_A.TCD[0].CITER.ELINKNO.B.ELINK = 0;     /* Disable chan-to-chan linking on minor-loop complete */ 
DMA_A.TCD[0].CITER.ELINKNO.B.CITER = 1;     /* Current major iteration count */ 
DMA_A.TCD[0].DOFF.R = 0;       /* Signed destination address offset */ 
DMA_A.TCD[0].DLASTSGA.R = 0;       /* Last destination address adjustment /scatter gather  
                                                       address */ 
DMA_A.TCD[0].BITER.ELINKNO.B.ELINK = 0;     /* Disable chan-to-chan linking on minor loop complete */ 
DMA_A.TCD[0].BITER.ELINKNO.B.BITER = 1;     /* Beginning major iteration count */ 
DMA_A.TCD[0].CSR.B.MAJORELINK = 0;     /* Disable chan-to-chan linking on major loop complete */ 
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Last set of four eDMA channels are used to transfer results from eQADC Result FIFO to eTPU data 

RAM for further processing. Detailed configuration for DMA channels used by eQADC result FIFO is 

shown in Table 6. 

Table 6 eDMA channel configuration for eQADC Result FIFO 

Configuration Item EQADC_A Receive 

FIFO 0 DMA channel 

EQADC_A Receive 

FIFO 1 DMA channel 

EQADC_B Receive 

FIFO 0 DMA channel 

EQADC_B Receive 

FIFO 1 DMA channel 

Source address &EQADC_A.RFPR[0].R &EQADC_A.RFPR[1].R &EQADC_B.RFPR[0].R &EQADC_B.RFPR[1].R 

Destination address 0xC3FC9000 

(free eTPU data RAM 

space) 

0xC3FC9004 

(free eTPU data RAM 

space) 

0xC3FC9008 

(free eTPU data RAM 

space) 

0xC3FC900C 

(free eTPU data RAM 

space) 

Source transfer size / 

modulo 

32-bits / 0 bytes 32-bits / 0 bytes 32-bits / 0 bytes 32-bits / 0 bytes 

Destination transfer size / 

modulo 

32-bits / 0 bytes 32-bits / 0 bytes 32-bits / 0 bytes 32-bits / 0 bytes 

Source address offset 0 bytes 0 bytes 0 bytes 0 bytes 

Destination address 

offset 

0 bytes 0 bytes 0 bytes 0 bytes 

Minor loop byte count 4 bytes 4 bytes 4 bytes 4 bytes 

Major loop iteration count 1 1 1 1 

Last source address 

adjustment 

0 bytes 0 bytes 0 bytes 0 bytes 

Last destination address 

adjustment 

0 bytes 0 bytes 0 bytes 0 bytes 

Channel to channel 

linking 

disabled disabled disabled disabled 

Linked channel - - - - 

  

See the code example below where the configuration of DMA_A channel 1 for transferring Phase A 

current samples from eQADC to eTPU data RAM is shown, according to Table 6. 

/* DMA settings for eQADC result FIFO */ 
/* phaseA - DMA_A source: 1 EQADC_A Receive FIFO 0 Drain Flag*/ 
/* phaseB - DMA_A source: 3 EQADC_A Receive FIFO 1 Drain Flag */ 
/* phaseC - DMA_B source: 1 EQADC_B Receive FIFO 0 Drain Flag */ 
/* DCB Voltage - DMA_B source: 3 EQADC_B Receive FIFO 1 Drain Flag */ 
DMA_A.TCD[1].SADDR.R = (uint32_t)&EQADC_A.RFPR[0].R; /* Source address */ 
DMA_A.TCD[1].ATTR.B.SMOD = 0;   /* Source address modulo*/ 
DMA_A.TCD[1].ATTR.B.SSIZE = 2;    /* Source data size: 32bit */ 
DMA_A.TCD[1].ATTR.B.DMOD = 0;   /* Destination address modulo */ 
DMA_A.TCD[1].ATTR.B.DSIZE = 2;   /* Destination data size: 32bit */ 
DMA_A.TCD[1].SOFF.R = 0;    /* Source address signed offset */ 
DMA_A.TCD[1].NBYTES.MLNO.R = 4;   /* Inner "minor" byte count */ 
DMA_A.TCD[1].SLAST.R = 0;   /* TCD Last Source Address Adjustment */ 
DMA_A.TCD[1].DADDR.R = 0xC3FC8000 + 0x1000; /* Destination address eTPU AS signals array */ 
DMA_A.TCD[1].CITER.ELINKNO.B.ELINK = 0;  /* Disable channel-to-channel linking on minor-loop complete */ 
DMA_A.TCD[1].CITER.ELINKNO.B.CITER = 1;  /* Current major iteration count */ 
DMA_A.TCD[1].DOFF.R = 0;    /* Signed destination address offset */ 
DMA_A.TCD[1].DLASTSGA.R = 0;    /* Last destination address adjustment /scatter gather address */ 
DMA_A.TCD[1].BITER.ELINKNO.B.ELINK = 0;  /* Disable channel-to-channel linking on minor loop complete */ 
DMA_A.TCD[1].BITER.ELINKNO.B.BITER = 1;  /* Beginning major iteration count */ 
DMA_A.TCD[1].CSR.B.MAJORELINK = 0;  /* Disable channel-to-channel linking on major loop complete */ 
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4.3.8. Port control and pin multiplexing 

PMSM FOC motor control application requires following on chip pins assignment, see Table 7. 

Table 7 Pins assignment for MPC5775E PMSM FOC control 

Module Signal name  Pin name / Functionality Description 

eQADC A 
M_AN24 ANA24/ANB24 Phase A curent 

M_AN25 ANA25/ANB25 Phase B curent 

eQADC B M_AN26 ANA26/ANB26 Phase C curent 

M_AN28 ANA28/ANB28 DC Bus Voltage 

SDADC 1 
M_ANA0_SDA0 ANA0/SDA0 Sine positive resolver feedback signal 

(single ended) 

SDADC 4 
M_ANB0_SDD0 ANB0/SDD0 Cosine positive resolver feedback signal 

(single ended) 

eSCI A 
TXDA TXDA/GPIO89 UART transmit data (FreeMASTER) 

RXDA RXDA/GPIO90 UART receive data (FreeMASTER) 

DSPI B 

DSPI_SCKB SCKB/GPIO102 DSPI B Clock Output 

DSPI_SINB SINB/GPIO103 DSPI B Serial Data Input 
DSPI_SOUTB SOUTB/GPIO104 DSPI B Serial Data Output 

DSPI_CSB3 PCSB3/GPIO108 DSPI B Chip select 3 Output signal for 

MC33937 

eTPU A 

M_eTPUA0 ETPUA0 /GPIO114 PWMM Master channel 

M_eTPUA6 ETPUA6 /GPIO120 Resolver Excitation output 

M_eTPUA16 ETPUA16 /GPIO130 PWMM Phase A Base channel (high-side 

driver)  

M_eTPUA17 ETPUA17 /GPIO131 PWMM Phase A Complementary channel 

(low-side driver)  

M_eTPUA18 ETPUA18 /GPIO132 PWMM Phase B Base channel (high-side 

driver)  

M_eTPUA19 ETPUA19 /GPIO133 PWMM Phase B Complementary channel 

(low-side driver) 

M_eTPUA20 ETPUA20 /GPIO134 PWMM Phase C Base channel (high-side 

driver)  

M_eTPUA21 ETPUA21 /GPIO135 PWMM Phase C Complementary channel 

(low-side driver) 

eTPUA27 ETPUA27 /GPIO141 Resolver Sample (Extrapolation) input  

M_eTPUA28 ETPUA28 /GPIO142 Analog Sensing trigger output 

eTPU B eTPUB8 ETPUB8 /GPIO155 Resolver ATO channel (no input/output) 

GPIO 

M_eTPUA12 ETPUA12/GPIO126 Enable signal for MC33937 

M_eTPUA13 ETPUA13/GPIO127 Reset signal for MC33937 

M_IRQ12 IRQ12/GPIO138 Interrupt signal indicating MC33937 fault 

M_IRQ3 IRQ3/GPIO453 Application control UP button  

M_IRQ4 IRQ4/GPIO454 Application control DOWN button  

M_IRQ11 IRQ11/GPIO137 Application switch 

M_eTPUA15 GPIO129 Connecting / disconnecting braking resistor 

Pin configuration listed in Table 7 is performed within SIU_init() function call.  

NOTE 

Pins with PWM functionality are first configured as GPIO outputs within 

SIU_init() function call and outputs are configured for high side and low 

side initial setup. This is needed for MC33937 configuration. After the 

MC33937 configuration is finished within MCAT_Init() function call the 
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SIU_PWM_pin_config() routine is called that configures pins with 

intended PWM functionality for respective eTPU PWMM channels. See 

the code below. 

void SIU_init(void) 

{ 

… 
    /* configure GPIO functionality for HS and LS toggle on PWM pins */ 
    SIU.PCR[130].B.PA   = 0;   /* GPIO[130] - PWM PHA base */ 
    SIU.PCR[130].B.OBE  = 1;   /* Output buffer enable */ 
    SIU.PCR[131].B.PA   = 0;   /* GPIO[131] - PWM PHA complementary */ 
    SIU.PCR[131].B.OBE  = 1;   /* Output buffer enable */ 
    SIU.PCR[132].B.PA   = 0;   /* GPIO[132]  - PWM PHB base */ 
    SIU.PCR[132].B.OBE  = 1;   /* Output buffer enable */ 
    SIU.PCR[133].B.PA   = 0;   /* GPIO[133]  - PWM PHB complementary */ 
    SIU.PCR[133].B.OBE  = 1;   /* Output buffer enable */ 
    SIU.PCR[134].B.PA   = 0;   /* GPIO[134]  - PWM PHC base */ 
    SIU.PCR[134].B.OBE  = 1;   /* Output buffer enable */ 
    SIU.PCR[135].B.PA   = 0;   /* GPIO[135]  - PWM PHC complementary */ 
    SIU.PCR[135].B.OBE  = 1;   /* Output buffer enable */ 
 
    /* High side initial setup */ 
    SIU.GPDO[130].R     = 0; 
    SIU.GPDO[132].R     = 0; 
    SIU.GPDO[134].R     = 0; 
    /* Low side initial setup */ 
    SIU.GPDO[131].R     = 1; 
    SIU.GPDO[133].R     = 1; 
    SIU.GPDO[135].R     = 1; 
… 
} 
 
void SIU_PWM_pin_config(void) 
{ 
 /* Configure pins for eTPU functionality */ 
    SIU.PCR[130].B.PA   = 1;   /* eTPUA16 - PWM PHA base */ 
    SIU.PCR[130].B.OBE  = 1;   /* Output buffer enable */ 
    SIU.PCR[131].B.PA   = 1;   /* eTPUA17 - PWM PHA complementary */ 
    SIU.PCR[131].B.OBE  = 1;   /* Output buffer enable */ 
    SIU.PCR[132].B.PA   = 1;   /* eTPUA18 - PWM PHB base */ 
    SIU.PCR[132].B.OBE  = 1;   /* Output buffer enable */ 
    SIU.PCR[133].B.PA   = 1;   /* eTPUA19 - PWM PHB complementary */ 
    SIU.PCR[133].B.OBE  = 1;   /* Output buffer enable */ 
    SIU.PCR[134].B.PA   = 1;   /* eTPUA20 - PWM PHC base */ 
    SIU.PCR[134].B.OBE  = 1;   /* Output buffer enable */ 
    SIU.PCR[135].B.PA   = 1;   /* eTPUA21 - PWM PHC complementary */ 
    SIU.PCR[135].B.OBE  = 1;   /* Output buffer enable */ 
} 

4.4. Software architecture  

4.4.1. Introduction 

This section describes the software design of the PMSM Field Oriented Control framework application. 

The application overview and description of software implementation are provided. The aim of this 

chapter is to help in understanding of the designed software. 
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4.4.2. Application data flow overview 

The application software is interrupt driven running in real time. There is one periodic interrupt 

service routine associated with the eTPU analog sensing  interrupt, executing all motor control tasks. 

This includes both fast current and slow speed loop control. All tasks are performed in an order 

described by the application state machine shown in Figure 21, and application flowcharts shown in 

Figure 19 and Figure 20. 

 

 

Figure 19 Flow chart diagram of main function with background loop 

To achieve precise and deterministic sampling of analog quantities and to execute all necessary motor 

control calculations, the state machine functions are called within a periodic interrupt service routine. 

Hence, in order to call state machine functions, the peripheral causing this periodic interrupt must be 

properly configured and the interrupt enabled. As described in section MPC5775E Device initialization, 

all peripherals are initially configured and all interrupts are enabled after a RESET of the device. As 

soon as interrupts are enabled and all MPC5775E peripherals are correctly configured, the state machine 

functions are called from the eTPU analog sensing  interrupt service routine. The background loop 

handles non-critical timing tasks, such as the FreeMASTER communication polling. 
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Figure 20 Flow chart diagram of periodic interrupt service routine. 

4.4.3. State machine 

The application state machine is implemented using a two-dimensional array of pointers to the functions 

using variable called StateTable[Event][State](). The first parameter describes the current application 

event, and the second parameter describes the actual application state. These two parameters select a 

particular pointer to state machine function, which causes a function call whenever 

StateTable[Event][State]() is called. 
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Figure 21 Application state machine 

The application state machine consists of following six states, which are selected using variable state 

defined as: 

AppStates: 

• INIT - state = 0 

• FAULT - state = 1 

• READY - state = 2 

• CALIB - state = 3 

• ALIGN - state = 4 

• RUN - state = 5  
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To signalize/initiate a change of state, eleven events are defined, and are selected using variable event 

defined as: 

AppEvents: 

• e_fault - event = 0 

• e_fault_clear - event = 1 

• e_init - event = 2 

• e_init_done - event = 3 

• e_ready - event = 4 

• e_app_on - event = 5 

• e_app_off - event = 11 

• e_calib - event = 6 

• e_calib_done - event = 7 

• e_align - event = 8 

• e_align_done - event = 9 

• e_run - event = 10 

4.4.3.1. State – FAULT 

 

The application goes immediately to this state when a fault is detected. The system allows all states to 

pass into the FAULT state by setting cntrState.event = e_fault. State FAULT is a state that transitions 

back to itself if the fault is still present in the system and the user does not request clearing of fault flags. 

There are two different variables to signal fault occurrence in the application. The warning register 

tempFaults represents the current state of the fault pin/variable to warn the user that the system is getting 

close to its critical operation. And the fault register permFaults represents a fault flag, which is set and 

put the application immediately to fault state. Even if fault source disappears, the fault remains set until 

manually cleared by the user. Such mechanisms allow for stopping the application and analyzing the 

cause of failure, even if the fault was caused by a short glitch on monitored pins/variables. State FAULT 

can only be left when application variable switchFaultClear is manually set to true (using 

FreeMASTER) or by simultaneously pressing the user buttons (BTN0 and BTN1) on the  

MCSPTR2A5775E inverter board. That is, the user has acknowledged that the fault source has been 

removed and the application can be restarted. When the user sets switchFaultClear = true; the following 

sequence is automatically executed, see the following code. 

FAULT

e_fault

e_fault_clear

e_fault

Figure 22 FAULT state with transitions 
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if (cntrState.usrControl.switchFaultClear) 
{ 
 
// Clear permanent and temporary SW faults 
permFaults.mcu.R            = 0;      // Clear mcu faults 
permFaults.motor.R     = 0;    // Clear motor faults 
permFaults.stateMachine.R   = 0;    // Clear state machine faults 
MC33937Status.B.MC33937ClearErr = true;   // Clear MC33937 faults 
 
// When all Faults cleared prepare for transition to next state. 
 
cntrState.usrControl.readFault             = true; 
cntrState.usrControl.switchFaultClear      = false; 
cntrState.event                            = e_fault_clear; 

} 

Setting event to cntrState.event = e_fault_clear while in FAULT state represents a new request to 

proceed to INIT state. This request is purely user action and does not depend on actual fault status. In 

other words, it is up to the user to decide when to set switchFaultClear true. However, according to the 

interrupt data flow diagram shown in Figure 20, function faultDetection() is called before state machine 

function state_table[event][state](). Therefore, all faults will be checked again and if there is any fault 

condition remaining in the system, the respective bits in permFaults and tempFaults variables will be 

set. As a consequence of permFaults not equal to zero, function faultDetection() will modify the 

application event from e_fault_clear back to e_fault, which means jump to fault state when state 

machine function state_table[event][state]() is called. Hence, INIT state will not be entered even though 

the user tried to clear the fault flags using switchFaultClear. When the next state (INIT) is entered, all 

fault bits are cleared, which means no fault is detected (permFaults = 0x0) and application variable 

switchFaultClear is manually set to true. 

The application is scanning for following system warnings and errors: 

• DC bus over voltage 

• DC bus under voltage 

• DC bus over current 

• Phase A and phase B over current  

The thresholds for fault detection can be modified in INIT state. Please see chapter MCAT settings and 

tuning for further information on how to set these thresholds using the MCAT. In addition, fault state is 

entered if following errors are detected: 
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• PDB Errors (PDB Sequence error) 

• MC33937 pre-driver errors (overtemperature, desaturation fault, low supply voltage, DC bus 

overcurrent, phase error, framing error, write error after block, existing reset). See section 

References.  

• FOC Error (irrelevant event call in state machine or Back-EMF failure) 

4.4.3.2. State – INIT 

 
Figure 23 INIT state with transitions 

State INIT is "one pass" state/function, and can be entered from all states except for READY state, 

provided there are no faults detected. All application state variables are initialized in state INIT. After 

the execution of INIT state, the application event is automatically set to cntrState.event=e_init_done, 

and state READY is selected as the next state to enter. 

 
Figure 24 Flow chart of state INIT 

4.4.3.3. State – READY 

 
Figure 25 READY state with transitions 

In READY state, application is waiting for user command to start the motor. The application is released 

from waiting mode by pressing the on board button BTN0 or BTN1 or by FreeMASTER interface 

setting the variable switchAppOnOff = true (see flow chart in Figure 26). 

 

INIT

e_init

e_init_done e_app_off

READY 

e_init_done

e_app_one_ready
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Figure 26 Flow chart of state READY 

4.4.3.4. State – CALIB 

 
Figure 27 CALIB state with transitions 

Once the state machine enters CALIB state, all PWM outputs are enabled. State calib is reserved for 

ADC modules calibration. MCSPTR2A5775E provides eTPU based motor control. All analogue 

quantitnies are sampled and post processed by eTPU. Calibration, offset calibration and filtering are part 

of analog sensing function from eTPU function selector. 

State CALIB is a state that allows transition back to itself, provided no faults are present, the user does 

not request stop of the application (by switchAppOnOff=true), and the calibration process has not 

finished. When application event is automatically set to cntrState.event=e_calib_done, state machine 

can proceed to state ALIGN. 

A transition to FAULT state is performed automatically when a fault occurs. A transition to INIT state is 

performed by setting the event to cntrState.event=e_app_off, which is done automatically on falling 

edge of switchAppOnOff=false using FreeMASTER. 

CALIB 

e_app_on

e_app_off

e_calib_done
e_calib
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4.4.3.5. State – ALIGN 

 
Figure 28 ALIGN state with transitions 

This state shows alignment of the rotor and stator flux vectors to mark zero position. When using a 

model-based approach for position estimation, the zero position is not known. The zero position is 

obtained at ALIGN state, where a DC voltage is applied to d-axis voltage for a certain period. This will 

cause the rotor to rotate to "align" position, where stator and rotor fluxes are aligned. The rotor position 

in which the rotor stabilizes after applying this DC voltage is set as zero position. In order to wait for 

rotor to stabilize in an aligned position, a certain time period is selected during which the DC voltage is 

constantly applied. The period of time and the amplitude of DC voltage can be modified in INIT state. 

Timing is implemented using a software counter that counts from a pre-defined value down to zero. 

During this time, the event remains set to cntrState.event=e_align. When the counter reaches zero, the 

counter is reset back to the pre-defined value, and event is automatically set to 

cntrState.event=e_align_done. This enables a transition to RUN state see flow chart in Figure 29. 

 

  

ALIGN 

e_app_off

e_align_done

e_calib_done

e_align



Software implementation on the MPC5777E 

MCSPTR2A5775E 3-phase PMSM Motor Control Kit with MPC5775E, Rev. 0, 10/2020 

NXP Semiconductors  43 

  

 
Figure 29 Flow chart of state ALIGN 

 
 

A transition to FAULT state is performed automatically when a fault occurs. Transition to INIT state is 

performed by setting the event to cntrState.event=e_app_off, which is done automatically on falling 

edge of switchAppOnOff=false using FreeMASTER or using the switch. 
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4.4.3.6. State – RUN 

 
Figure 30 RUN state with transitions 

In this state, the FOC algorithm is calculated, as described in section PMSM field-oriented control.  

Figure 31 shows module interconnection and used functions. Figure 32, shows implementation of FOC 

algorithm and used functions and variables. As can be seen from the diagram. Rotor position and speed 

are estimated by ATO observer. This is a default rotor position and speed feedback for FOC.  

A transition from RUN state to FAULT state is performed automatically when a fault occurs. A 

transition to INIT state is performed by setting the event to cntrState.event=e_app_off, which is done 

automatically on falling edge of switchAppOnOff=false using FreeMASTER or keeping user buttons 

BTN0 and BTN1 pressed. 

 
Figure 31 Module interconnection 

4.4.4. AMMCLIB integration 

Application software of the FOC control with resolver position sensing and field weakening is built 

using NXP’s Automotive Math and Motor Control Library set (AMMCLIB), a precompiled, highly 

RUN

e_app_off

e_align_done

e_run
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speed-optimized off-the-shelf software library designed for motor control applications. The most 

essential blocks of the FOC structure are presented in Figure 32. AMMCLIB supports all available data 

type implementations: 32-bit fixed-point, 16-bit fixed-point and single precision floating-point. In order 

to achieve high performance of the MPC5775E core, floating point arithmetic is used as a reference for 

this motor control application. 

 
Figure 32 Variables/function name convention of implemented Sensor-based FOC with FW on MPC5775E 

 

Current Loop function AMCLIB_CurrentLoop unites and optimizes most inner loop of the FOC cascade 

structure on Figure 33. It consists of two PI controllers and basic mathematical operations which 

calculate errors between required and feedback currents and limits for PI controllers based on the actual 

value of the DC bus voltage. All functions and data structures are presented in the following figure. 

 

Figure 33 Functions and data structures in AMCLIB_CurrentLoop 

 

AMCLIB_CurrentLoop
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Required d- and q-axis stator currents can be either manually modified or generated by outer loop of the 

cascade structure consisting of: Speed Loop and Field Weakening (FW) as shown in the following 

figure. To achieve highly optimized level, AMCLIB_FWSpeedLoop merges two functions of the 

AMMCLIB, namely speed control loop AMCLIB_SpeedLoop and field weakening control 

AMCLIB_FW, Figure 34. AMCLIB_SpeedLoop consists of speed PI controller 

GFLIB_ControllerPIpAW, speed ramp GFLIB_Ramp placed in feedforward path and exponential 

moving average filter GFLIB_FilterMA placed in the speed feedback. AMCLIB_FW function is NXP’s 

patented algorithm (US Patent No. US 2011/0050152 A1) that extends the speed range of PMSM 

beyond the base speed by reducing the stator magnetic flux linkage as discussed in section 3.5. All 

functions and data structures used in AMCLIB_FW function are shown in Figure 34. 

 

Figure 34 Functions and data structures in AMCLIB_FWSpeedLoop 

AMCLIB_FW key advantages: 

• Fully utilize the drive capabilities (speed range, load torque) 

• Reduces stator linkage flux only when necessary 

• Supports four quadrant operations 

• The algorithm is very robust - as a result, the PMSM behaves as a separately excited wound field 

synchronous motor drive 

• Allows maximum torque optimal control 

Angle tracking observer AMCLIB_TrackObsrv constitute important blocks in this application, ATO 

estimate rotor position and speed based on the inputs from eTPU.  

AMCLIB_TrackObsrv is an adopted phase-locked-loop algorithm that estimates rotor speed and 

position keeping θerr = 0. This is ensured by a loop compensator that is PI controller. While PI controller 

generates estimated rotor speed, integrator used in this phase-locked-loop algorithm serves estimated 

rotor position.  

 

AMCLIB_FW

AMCLIB_SpeedLoop

AMCLIB_FWSpeedLoop
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Figure 35 Structure of the AMCLIB_TrackObsrver 

More details related to AMMCLIB FOC functions can be found in MPC5775E AMMCLIB User’s 

manual (see section References). Parameters of the PI controllers placed in the speed control loop, 

current control loop, Angle tracking observer can be tuned by using NXP’s Motor Control Application 

Tuning tool (MCAT). Detailed instructions on how to tune parameters of the FOC structure by MCAT 

are presented in AN4912, AN4642 (see section References). 

4.4.5. MCAT integration 

MCAT (Motor Control Application Tuning) is a graphical tool dedicated to motor control developers 

and the operators of modern electrical drives. The main feature of proposed approach is automatic 

calculation and real-time tuning of selected control structure parameters. Connecting and tuning new 

electric drive setup becomes easier because the MCAT tool offers a possibility to split the control 

structure and consequently to control the motor at various levels of cascade control structure. 

The MCAT tool runs under FreeMASTER online monitor, which allows the real-time tuning of the 

motor control application. Respecting the parameters of the controlled drive, the correct values of 

control structure parameters are calculated, which can be directly updated to the application or stored in 

an application static configuration file. The electrical subsystems are modeled using physical laws and 

parameters of the PI controllers are determined using Pole-placement method. FreeMASTER MCAT 

control and tuning is described in FreeMASTER and MCAT user interface. 

The MCAT tool generates a set of constants to the dedicated header file (for example “{Project 

Location}\src\Config\PMSM_appconfig.h”). The names of the constants can be redefined within the 

MCAT configuration file “Header_file_constant_list.xml” (“{Project Location}\FreeMASTER_control\ 

MCAT\src\xml_files\”). The PMSM_appconfig.h contains application scales, fault triggers, control 

loops parameters, speed sensor and/or observer settings and FreeMASTER scales. The 

PMSM_appconfig.h should be linked to the project and the constants should be used for the variables 

initialization. 

The FreeMASTER enables an online tuning of the control variables using MCAT control and tuning 

view. However, the FreeMASTER must be aware of the used control-loop variables. A set of the names 

is stored in “FM_params_list.xml” (“{Project Location}\FreeMASTER_control\MCAT\src\xml_files\”). 

5. FreeMASTER and MCAT user interface 

The FreeMASTER debugging tool is used to control the application and monitor variables during run 

time. Communication with the host PC passes via USB. However, because FreeMASTER supports 

RS232 communication, there must be a driver for the physical USB interface, OpenSDA, installed on 
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the host PC that creates a virtual COM port from the USB. The driver shall be installed automatically 

plugging MPC5775E-EVB to USB port. Alternatively, it can be downloaded from 

www.pemicro.com/opensda/. The application configures the eSCI module of the MPC5775E for a 

communication speed of 115200bps. Therefore, the FreeMASTER user interface also needs to be 

configured respectively. 

 

 
Figure 36 FreeMASTER and Motor Control Application Tuning Tool 

5.1. MCAT settings and tuning 

5.1.1. Application configuration and tuning 

FreeMASTER and MCAT interface (Figure 36) enables online application tuning and control. The 

MCAT tuning shall be used before the very first run of the drive to generate the configuration header file 

(PMSM_appconfig.h). Most of the variables are accessible via MCAT online tuning (thus can be 

updated anytime), but some of them (especially the fault limit thresholds) must be set using the 

http://www.pemicro.com/opensda/
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configuration header file generation, which can be done on the “Output File” panel by clicking the 

“Generate Configuration File” (see Figure 37). 

 
Figure 37 Output File panel and “Generate Configuration File” button 

Parameters runtime update is done using the “Update Target” button. Changes can be also saved using 

“Store Data” button or reloaded to previously saved configuration using “Reload Data” button. 

Any change of parameters highlights the cells that have not been saved using “Store data”. Changes can 

be reverted using “Reload Data” to previously saved configuration. This button is disabled if no change 

has been made. 

NOTE 

MCAT tool can be configured using hidden mouse-over “Settings” button 

Figure 36, where a set of advanced settings, for example PI controller 

types, speed sensors and other blocks of the control structure can be 

changed. However, it is not recommended to change these settings since it 

will force the MCAT to look for a different variables names and to 

generate different set of constants than the application is designed for. See 

MCAT tool documentation available at nxp.com. 

The application tuning is provided by a set of MCAT pages dedicated to every part of the control 

structure. An example of the Application Parameters Tuning page is in Figure 38. Following list of 

settings pages is based on the PMSM sensor-based application. 

 

 

 

 

Generate 
Configuration File 

button 

http://www.nxp.com/
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• Parameters 

o Motor Parameters 

o Hardware Scales 

o SW Fault Triggers 

o Application Scales 

o Alignment 

• Current Loop 

o Loop Parameters 

o D axis PI Controller 

o Q axis PI Controller 

o Current PI Controller Limits 

o DC-bus voltage IIR filter settings 

• Speed Loop 

o Loop Parameters 

o Speed PI Controller Constants 

o Speed Ramp 

o Speed Ramp Constants 

o Actual Speed Filter 

o Speed PI Controller Limits 

Changes can be tested using MCAT “Control Struc” page Figure 39, where the following control 

structures can be enabled: 

• Scalar Control 

• Voltage FOC (Position & Speed Feedback is enabled automatically) 

• Current FOC (Position & Speed Feedback is enabled automatically) 

• Speed FOC (Position & Speed Feedback is enabled automatically) 

 
Figure 38 MCAT input application parameters page 
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Figure 39 MCAT application control structure page 

5.2. MCAT application Control 

All application state machine variables can be seen on the FreeMASTER MCAT App control page as 

shown in Figure 40. Warnings and faults are signaled by a highlighted red color bar with name of the 

fault source. The warnings are signaled by a round LED-like indicator, which is placed next to the bar 

with the name of the fault source. The status of any fault is signaled by highlighting respective 

indicators. In Figure 40, for example, there is pending fault flag and one warning indicated ("Udcb LO" - 

DC bus voltage is close to its under voltage conditions). That means that the measured voltage on the 

DC bus exceeds the limit set in the MCAT_Init function. The warning indicator is still on if the voltage 

is higher than the warning limit set in INIT state. In this case, the application state FAULT is selected, 

which is shown by a frame indicator hovering above FAULT state. After all actual fault sources have 

been removed, no warning indicators are highlighted, but the fault indicators will remain highlighted. 

The pending faults can now be cleared by pressing the "FAULT" button. This will clear all pending 

faults and will enable transition of the state machine into INIT and then READY state. After the 

application faults have been cleared and the application is in READY state, all variables should be set to 

their default values. The application can be started by selecting APP_ON on application On/Off switch. 

Successful selection is indicated by highlighting the On/Off button in green. 

MCSPTR2A5775E 3-phase PMSM Motor Control Kit with MPC5775E, Rev. 0, 10/2020 
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Figure 40 FreeMASTER MCAT Control Page for controlling the application 

6. Conclusion

Design described in this application note shows the simplicity and efficiency in using the MPC5775E 

microcontroller for PMSM motor control and introduces it as an appropriate candidate for various 

applications in the automotive area. MCAT tool provides interactive online tool which makes the 

PMSM drive application tuning friendly and intuitive. 
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