INERTIAL MEASUREMENT UNIT.

Installation and Environmental Manual

TABLE OF CONTENTS

3 Overview

- 4 Pin Outs/Power/Signal List
- 5 Data Ready Signal Description
- 6 Data and Baud Selection
- 7 Interleave Table

8 Using Honeywell Data

- 8 Controlling (Messages 0xA1 or 0xAC)
- 8 Navigation (Messages 0xA3 & 0xAE)
- 8 Interleaved (Multiple Messages & CAN)

9 Asynchronous Message Example

- 10 Status and Checksum Descriptions
- 11 Asynchronous Messages Abbreviated
- 12 CAN Messages Abbreviated
- 13 CAN ID's

14 HGUIDE Data Reader/Integration

- 15 Environmental/Compliance
- 16 EMC Test Conditions
- 17 Mounting/Installation
- 18 Alignment and Orthogonality

All technology that leaves the United States is subject to export regulations. This manual contains technology that has an Export Commodity Classification of ECCN 7E994 with associated country chart control code of AT1. This technology generally will not require a license to be exported or re-exported. However, if you plan to export this item to an embargoed or sanctioned country, to a party of concern, or in support of a prohibited end-use, you may be required to obtain a license.

The HGuide i300 is a high performance Micro-Electro-Mechanical System (MEMS) based Inertial Measurement Unit (IMU) designed to meet the needs of applications across various markets including agriculture, AUVs, industrial equipment, robotics, survey/mapping, stabilized platforms, transportation, UAVs, and UGVs. With industry standard communication interfaces and a wide input voltage range the HGuide i300 is easily integrated into a variety of architectures. The extremely small size, lightweight, and low power make the HGuide i300 ideal for many applications.

The HGuide i300 includes MEMS gyroscopes and accelerometers. In addition, the HGuide i300 employs an internal environmental isolation system to attenuate unwanted inputs commonly encountered in real world applications. The internal isolation and other proprietary design features ensure the HGuide i300 is rugged enough to meet the needs of the most demanding users.

The HGuide i300 is both hardware and software compatible with the HG4930 IMU. It is also software compatible with the HG1120 IMU with their message descriptions contained in those device manuals.

The HGuide i300 is not ITAR controlled. Its Export Control Classification Number (ECCN) is 7A994.

For more information, email hguide.sales@honeywell.com or contact us on our website aerospace.honeywell.com/I300

PIN OUTS/POWER SIGNAL LIST

Typical power draw is 500 mW. The i300 will work with most PC USB ports; however, Honeywell recommends a non-PC power supply for permanent installations.

This device has been designed to meet stringent EMI and EMC requirements, and as such, the user should shield the I/O cabling and provide chassis ground connection to the IMU housing.

	i300 14 PIN CONNECTOR						
Pin#	Signal Name	Input/Output & Signal type	Signal Function				
1	Ground	NA	NA				
2	Power	NA	+4.75 to 36 VDC				
3	No Connection						
4	COM2 TX	Output, +5 Volt TTL	Asynchronous Board Level Signal.				
5	COM2 RX	Input - +3.3 to 5.5 VDC	Adequate Protection Must Be Provided.				
6	RESET	Input - +3.3 to 5.5 VDC	Device reset input discrete. CMOS Compatible. Device will remain in reset while at logic 0.				
7	Reserved	No Connect	No Connect				
8	DATA_RDY	Output - 5 Volt BiCMOS	Data Ready on Rising Edge to 5 VDC. Rise and Fall Time < 50 Nanoseconds.				
9	COM1_TX_H	Output DS 422	Asynchronous High				
10	COM1_TX_L	Output RS-422	Asynchronous Low				
11	CAN_H	Bi-directional ISO 11898-2	Asynchronous High				
12	CAN_L	No Termination Resistor	Asynchronous Low				
13	COM1_RX_H	Input DC //22	Asynchronous High				
14	COM1_RX_L	Input RS-422	Asynchronous Low				

Use SAMTECH part numbers FLE-112-01-G-DV or CLP-112-02-F-D or equivalent. Honeywell evaluation boards available for purchase with connectors. Asynchronous Communications are 8 Bits, One Start Bit, One Stop Bit.

DATA READY SIGNAL DESCRIPTION

This devices samples and processes sensor data at $3600\,\mathrm{Hz}$. Data is transmitted at message specific frame rates between $100\,\mathrm{Hz}$ and $1800\,\mathrm{Hz}$. Data transmission will continue across additional $3600\,\mathrm{Hz}$ frames with length dependent upon customer selected bit rate. The "Data TX Start" (shown in the diagram) will not occur at $3600\,\mathrm{Hz}$ but rather at the message specific frame rates.

The Data Ready has two primary purposes. The falling edge can be used to provide a time mark to a data recording system which will provide time of validity for recorded IMU data. This is often GPS time. Secondly – some customers need to know when Honeywell data transmission starts so that the data can be immediately processed or manage a data bus.

DATA AND BAUD SELECTION

USE THE HGUIDE DATA READER TO SELECT MESSAGES AND BAUD RATES											
Allowed Messages	N	1essage	Informa	ition	Data Rates (Hz)**		Available KBaud Rates				
	Control	Mag	Nav	Device	Control	Nav	115.2	230.4	460.8	921.6	1000
CAN	Х	Χ	Х	ALL	600	100		Х	Х	Χ	Х
0x01	X			HG4930	600	NA			Χ	X	Χ
0x01 & 0x02 Interleaved	Χ		X	HG4930	600	100			Χ	X	Χ
0x04	Χ			HG1120	1800	NA			Χ	X	Χ
0x04 & 0x05 Interleaved	Χ		X	HG1120	1800	300			Χ	X	Χ
0x0C	X			HG1120	600	NA			Χ	X	Χ
0x0C & 0x0D Interleaved	X		X	HG1120	600	100				X	Χ
	X				600				Χ	X	Χ
0xA1				i300	1200	NA			Χ	X	Χ
					1800				Χ	X	Χ
	Χ		X		600	100			Χ	X	Χ
0x0C & 0x0D Interleaved				i300	1200	200				Х	Χ
meneavea					1800	300				Default	Χ
			X			100	Χ		Χ	X	Χ
0xA3				i300	NA	200	Х		X	Χ	Χ
						300			Χ	Х	Χ
	X	X			600				Χ	X	Χ
OxAC				i300	1200	NA			Χ	X	Χ
					1800					X	Χ
	X	X	X		600	100			Χ	X	Χ
0xAC & 0xAD Interleaved				i300	1200	200				X	Χ
IIICIICaveu					1800	300				X	Χ
		Χ	Х			100	Х		Х	X	Χ
OxAE				i300	NA	200	Χ		Χ	X	Χ
						300	Х		Х	Χ	Χ

For Legacy HG1120 and HG4930 messages, consult their respective manuals for message definitions.

Use the HGuide data reader to configure messages and baud rates.

INTERLEAVE TABLE

INTERLEAVE TABLE. TRANSMISSION SEQUENCE IS AT THE CONTROL RATE												
Allowed Messages	Message Information		Data Rates (Hz)		Interleave Transmission Sequence @Control Rate							
	Control	Mag	Nav	Device	Control	Nav	1	2	3	4	5	6
CAN	Х	Х	Х	ALL	600	100	C1 C2 M1 I1 I2 I3	C1 C2 M1	C1 C2 M1	C1 C2 M1	C1 C2 M1	C1 C2 M1
0x01 & 0x02 Interleaved	Х		Х	HG4930	600	100	0x02	0x01	0x01	0x01	0x01	0x01
0x04 & 0x05 Interleaved	Х		Х	HG1120	1800	300	0x05	0x04	0x04	0x04	0x04	0x04
OxOC & OxOD Interleaved	X		Х	HG1120	600	100	0x0D	0x0C	0x0C	0x0C	0x0C	0x0C
					600	100						
0xA1 & 0xA2 Interleaved	Χ		Х	i300	1200	200	0xA2	0xA1	0xA1	0xA1	0xA1	0xA1
					1800	300						
					600	100						
OxAC & OxAD Interleaved	Х	X	Х	i300	1200	200	OxAD	OxAC	OxAC	OxAC	OxAC	OxAC
					1800	300						

USING HONEYWELL DATA

Controlling (Messages 0xA1 or 0xAC)

Honeywell provides high bandwidth ($400 \, \text{Hz}$ information) at $1800 \, \text{Hz}$. General "rule of thumb" is that sensor control bandwidth should be 5 times the structure being controlled – allowing control of an $80 \, \text{Hz}$ device. If you are controlling lower frequency platforms (like a car) – filter the $1800 \, \text{Hz}$ data to the desired bandwidth.

Navigation (Messages 0xA3 & 0xAE)

Navigating requires that single integration of angular rates to attitude and the double integration of acceleration into position. This navigation format provides data relative to the prior frame and often referred to as Delta Velocity / Theta or Incremental Velocity / Angles. The data is directly integrable in that the data is not "per second" but rather per the length of the navigation frame (100 Hz, 200 Hz or 300 Hz).

Interleaved (Multiple Messages & CAN)

Get both Control and Navigation data by selecting a message which sends out data on multiple frame rates. This is the default data for the i300 because it demonstrates all sensor types. If you are one of the few who need this – study carefully the right columns on the Interleave table. For the rest – use the Honeywell HGuide Data Reader to send out just Control or Navigation data.

ASYNCHRONOUSMESSAGE EXAMPLE

ASYNCHRONOUS MESSAGE

Message Detail Template OxAD Control, Mag, Status & Delta Data Apply the LSB, Byte, and Units information to all other message ID's

Apply the LSB, Byte, and Units Information to all other message ID's								
Position	Parameter	Description	Bytes	LSB Weight	Units/LSB			
1	Address	0x0E	1	NA				
2	Message ID	OxAD	1	NA				
3		Angular Rate X	2					
4		Angular Rate Y	2	2-11	rad/sec			
5	Control	Angular Rate Z	2					
6	Control	Linear Acceleration X	2					
7		Linear Acceleration Y	2	0.3048*2 ⁻⁵	m/sec²			
8		Linear Acceleration Z	2					
9		Mag Field X	2					
10	Mag	Mag Field Y	2	0.438404	Milli-Gauss			
11		Mag Field Z	2					
12	Status	Status Word 1	2	See Table	See Table			
13	Status	Status Word 2	2	NA	Reserved			
14		Delta Angle X	4		radians			
15		Delta Angle Y	4	2-33	or equivalently, radians/second/Hz			
16	Navigation	Delta Angle Z	4		1 4 4 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2			
17	Ivavigation	Delta Velocity X	4		m/sec			
18		Delta Velocity Y	4	2-27	or equivalently, m/sec²/Hz			
19		Delta Velocity Z	4		111/560 /112			
20	Checksum	Checksum	2	NA	Total of 50 Bytes			

OxAD Control, Mag, Status & Delta Data.

Apply the LSB, Byte, and Units information to all other message ID's.

LS byte first and LS 16-bit word first.

STATUS AND CHECKSUM DESCRIPTIONS

i30	i300 STATUS WORD - USED IN ALL i300 MESSAGES						
Bit	Definition	Values					
0–3	4-bit Counter	0-15					
4–7		O (No Active Output)					
	Control Data Output	1 (600 Hz)					
	Control Data Output	2 (1200 Hz)					
		3 (1800 Hz)					
8–11		O (No Active Output)					
	Navigation Data Output	1 (100 Hz)					
	Navigation Data Output	2 (200 Hz)					
		3 (300 Hz)					
12-15	BIT (Gyro/Accel/Mag/Summary)	0xAC					

The Checksum is the sum of all message data (positions 1 ... 19 of example message), taken as 16 bit words, and summed without regard for rollover.

```
This pseudo code illustrates the checksum algorithm:

u16sum = 0;

for (i=0; i<9; i++) // (20-2)/2=9

{ u16sum += u16_msg_array[i]; }

Checksum = u16_msg_array[9];

if (Checksum!= u16sum) {checksum error}
```

The HGuide Data Reader with its associated software development tools provide real time examples of checksum calculations.

ASYNCHRONOUS MESSAGES ABBREVIATED

OXA1 CONTROL DATA					
Position	Parameter Description	Bytes			
1	IMU Address - 0x0E	1			
2	Message ID - 0xA1	1			
3-8	Control Data	12			
9-10	Status	4			
11	Checksum	2			
	Total Bytes	20			

OXAC CONTROL & MAG DATA					
Position	Parameter Description	Bytes			
1	IMU Address - 0x0E	1			
2	Message ID - 0xAC	1			
3-8	Control Data	12			
9-11	Mag Data	6			
12-13	Status	4			
14	Checksum	2			
	Total Bytes	26			

OXAC CONTROL & MAG DATA					
Position	Parameter Description	Bytes			
1	IMU Address - 0x0E	1			
2	Message ID - 0xAc	1			
3-8	Control Data	12			
9-10	Status	4			
11-16	Navigation Data	24			
17	Checksum	2			
	Total Bytes	44			

OXAD CONTROL, NAVIGATION & MAG DATA					
Position	Parameter Description	Bytes			
1	IMU Address - 0x0E	1			
2	Message ID - 0xAD	1			
3-8	Control Data	12			
9-11	Mag Data	6			
12-13	Status Word	4			
14-19	Navigation Data	24			
20	Checksum	2			
	Total Bytes	50			

OXA3 NAVIGATION DATA					
Position	Parameter Description	Bytes			
1	IMU Address - 0x0E	1			
2	Message ID - 0xA3	1			
3-8	Navigation Data	24			
9-10	Status	4			
11	Checksum	2			
	Total Bytes	32			

OXAE NAVIGATION & MAG DATA				
Position	Parameter Description	Bytes		
1	IMU Address - 0x0E	1		
2	Message ID - 0xAE	1		
3-8	Navigation Data	24		
9-11	Mag Data	6		
12-13	Status	4		
14	Checksum	2		
	Total Bytes	38		

See OxAD Combined Control & Inertial for detailed contents.

CAN MESSAGES ABBREVIATED

	C1 CONTROL DATA				
#	Parameter	Bytes			
NA	Arbitration ID	NA			
1	Angular Rate X	2			
2	Angular Rate Y	2			
3	Angular Rate Z	2			
4	Status Word	2			

C2 CONTROL DATA		
#	Parameter	Bytes
NA	Arbitration ID	NA
1	Linear Acceleration X	2
2	Linear Acceleration Y	2
3	Linear Acceleration Z	2
4	Reserved	2

C3 MAGNETIC DATA		
#	Parameter	Bytes
NA	Arbitration ID	NA
1	Mag X	2
2	Mag Y	2
3	Mag Z	2

I1 NAVIGATION DATA		
#	Parameter	Bytes
NA	Arbitration ID	NA
1	Delta Angle X	4
2	Delta Velocity X	4

I2 NAVIGATION DATA		
#	Parameter	Bytes
NA	Arbitration ID	NA
1	Delta Angle Y	4
2	Delta Velocity Y	4

13 NAVIGATION DATA		
#	Parameter	Bytes
NA	Arbitration ID	NA
1	Delta Angle Z	4
2	Delta Velocity Z	4

See 0xAD Combined Control & Inertial for LSB weights and units.

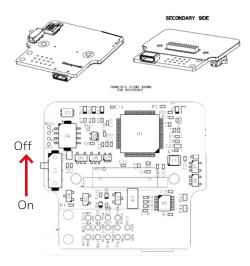
CAN ID TABLE			
(0xC, 0xD, 0xA1, 0xA2)			
Message	Packet	CAN-11	CAN-29
0xC	C1	0x121	0x04924921
0xC	C2	0x122	0x04924922
0xC	C3	0x126	0x04924926
0xD	I1	0x123	0x04924923
0xD	12	0x124	0x04924924
0xD	13	0x125	0x04924925
0xA1	C1	0x141	0x04924941
0xA1	C2	0x142	0x04924942
0xA1	C3	0x146	0x04924946
0xA2	I1	0x143	0x04924943
0xA2	12	0x144	0x04924944
0xA2	13	0x145	0x04924945

CAN ID TABLE (0x01,0x02,0xAC,0xAD)			
	(UXUI,UXUZ,	UXAC,UXAD)	
0x01	C1	0x131	0x04924931
0x01	C2	0x132	0x04924932
0x02	I1	0x133	0x04924933
0x02	12	0x134	0x04924934
0x02	13	0x135	0x04924935
0xAC	C1	0x151	0x04924951
0xAC	C1	0x152	0x04924952
0xAC	C3	0x156	0x04924956
0xAD	I1	0x153	0x04924953
OxAD	12	0x154	0x04924954
OxAD	13	0x155	0x04924955

Use CAN ID's to design DBC Files.

HGUIDE DATA READER/INTEGRATION

The Honeywell HGUIDE DATA READER is a web deployed software integration tool which can configure the i300 for message types and baud rate. The software tool also provides real time and "Off Device" integration support.


The software integration tool will display and record data, generates supporting message documentation, and includes an example Windows executable which will parse and log data. The program will also export data to CSV format for easy plotting.

The Honeywell HGuide Data reader provides a software development kit (SDK) including C/C++ source code, header files, DLL, and essential functions. See "Bit Stream" window to produce the SDK.

An evaluation kit is also available for separate purchase. Connect the evaluation board to the IMU being careful to align the pins to the connector.

Connect a micro-USB cable. Make sure the switch is on. Verify that both green LEDs power on. Once data transmission starts orange LED should flash. Data can be monitored using any terminal program or the data reader program. The Windows Device Manager should show a new port.

If using the Honeywell Data reader, be sure to press the "scan/hunt" button on the introductory screen. The program will automatically do an initial search but will time out if device not connected.

An evaluation kit is also available for separate purchase.

ENVIRONMENTAL/ COMPLIANCE

	ENVIRONMENTAL AND CO	MPLIANCE INFORMATION	
Item	Operating	Non-Operating	Units
Temperature	-54 to +85 -40 to +85 (Full Performance)	-55 to +95	°C
Temperature Shock	±3 Operating ±0.8 Full Performance	-40 to + 85 in 15 Minutes Measure on Top of Device with Thermocouple	°C/minute
Random Vibration	5 g's RMS	12 g's RMS	NA
Shock	15 g bump half-sine, 6 ms duration, both polarities, each axis, per IEC 60068-2-27	40 g Shock at 11 msec duration per MIL-STD-810G Method 516.7 Procedure I 500 g's 0.5 mSec, Half Sine	NA
Static Acceleration	> 250 g's of static acceleration in all directions and recover within 25 milliseconds		NA
Altitude	0 to 12000, Mean Sea Level		Meters
Magnetic Field	±10	No Known Sensitivity	Gauss
Acoustic Rectification	147 dB, SPL, 20 - 8000 Hz	No Known Sensitivity	NA
Regulatory*	CE, ICED, FCC*		NA
Materials	RoHS Compliant and RoHS Process Compatible		NA
WEEE Compliance	Classified as electrical and electronic equipment. Must be sent to separate collection facilities for recovery and recycling.		X

^{*}Regulatory Tests were not Completed at Time of Publication.

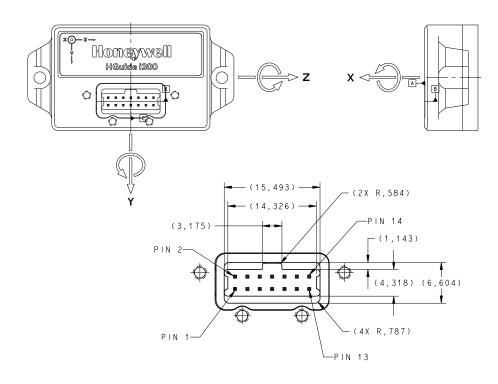
EMCTEST CONDITIONS

i300 COMPLIANT TO LISTED EMC TEST CONDITIONS			
Environment	Test Method Standard	Test Parameters	
Radiated Emissions	ISO 13309:2010	30 MHz to 1000 MHz	
	ISO 13766:2006	BB and NB Scans	
	ISO 14982:1998	Ambient Baseline Before & After	
Bulk Current Injection (BCI)	ISO 11452-4:2011	20 MHz to 400 MHz	
		100 mA, 80% AM at 1kHz	
Radiated Immunity	100 11 (52 2 200 (400 MHz to 2000 MHz	
	ISO 11452-2:2004	100 V/m, 80% AM at 1kHz and PM	
Conducted Transients	ISO 7637-2:2011	Pulses 1, 2a, 2b, 3a, 3b at Test Level IV	
	ISO 7637-2:2004	Pulse 4 at Test Level IV	

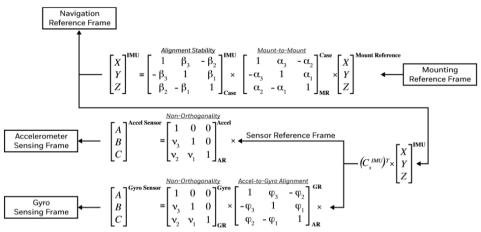
MOUNTING/ INSTALLATION

Do not place this device in an environment with Helium concentrations greater than the normal atmosphere. The helium will permeate the housing and affect sensors. The housing seal allows Helium to enter/leave so that helium does not accumulate. The IMU should not be subjected to contact with any fuels, lubricants, solvents, or their vapors.

The accelerometer and gyro sensors are mounted in a normally aligned, right-handed axis configuration that is nominally aligned with the IMU axes as shown in the figure below. If the X axis is pointed up away from the Earth's surface, the accelerometer reading will be positive.


The i300 nominally weighs 35 grams. The packaging is compliant to IP68; however, do not intentionally submerse device under water.

Recommended mating connectors are SAMTECH part numbers FLE-112-01-G-DV or CLP-112-02-F-D or equivalent.


The center of gravity and center of navigation are located at the approximate geometric center. A CAD compatible STP file is available from Honeywell upon request.

ATTENTION:

IMUs are precision instruments which measure angular rate and linear acceleration across a broad temperature range. Because of their precision, users often interpret real motion (both angular and linear) as sensor noise. This noise can often be coupled mechanically through the mounting plate. Installation on a thin structure is generally not desirable. Placement at anti-nodes will minimize angular rotation and maximize linear displacement. Placement at nodes will maximize angular rotation and minimize linear displacement.

ALIGNMENT AND ORTHOGONALITY

AR Accel/Sensor Reference Frame (Orthogonal)

GR Gyro Reference Frame (Orthogonal)

C_s^{IMU} Gyro Reference Frame (Orthogonal)

ALIGNMENT AND ORTHOGONALITY			
Parameter	Requirement	Units	
Mount to Mount with Pins	7000	µrad max	
Alignment Stability	1800	μrad 1σ	
Accelerometer Non-orthogonality	600	μrad 1σ	
Accelerometer to Gyro Alignment	1000	μrad 1σ	
Gyro Non-Orthogonality	800	μrad 1σ	

Alignment / Orthogonality Note

Honeywell navigation system equations implement alignment / orthogonality as shown. These equations are provided to customers for understanding of the parameters provided. Customers may optionally choose to implement these equations into their own navigation equations.

All technology that leaves the United States is subject to export regulations. This manual contains technology that has an Export Commodity Classification of ECCN 7E994 with associated country chart control code of AT1. This technology generally will not require a license to be exported or re-exported. However, if you plan to export this item to an embargoed or sanctioned country, to a party of concern, or in support of a prohibited end-use, you may be required to obtain a license.

THE FUTURE IS WHAT WE MAKE IT

1944 East Sky Harbor Circle Phoenix, AZ 85034 aerospace.honeywell.com

