
LinearLabTools Python Install Instructions

LinearLabTools Step-by-step installation for Python users. Updated August, 2020

Currently LinearLabTools supports Demo Circuits for legacy LTC parts only. For other Analog

Devices parts similar functionality can be achieved in ACE if it supports the part.

Demo-board Setup

• Follow the instructions in the Demo Manual or Evaluation Kit Manual for the demo-

board.

o This will include downloading software such as PScope or LTDACGen

depending on the part.

▪ If the instructions mention QuikEval or some other software, it is unlikely

that it is supported by LinearLabTools.

o It will also include proper hardware setup including clock and power connections.

• Once the Hardware is setup properly, the software will be able to collect or generate data

as shown in the example below (from PScope).

https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-development-platforms/ace-software.html

• NOTE: If you are having errors in PScope due to hardware issues, you will get similar

errors in Linear Lab Tools.

• Once the hardware is working properly and communicating with the host computer, quit

the software before proceeding to avoid communication conflicts with LinearLabTools

programs.

Installing Python

• LinearLabTools still requires Python 2.7. We recommend the Anaconda distribution.

o If you don't use anaconda you will have to install some packages such as NumPy

and MatPlotLib

• For 32-bit systems, download the 32-bit installer. For 64-bit systems, the 32-bit or the 64-

bit

installer can be used.

• It can be tricky to get to Python 2.7, here is how I did it.

o Install Anaconda

o Start typing "anaconda" in the search bar and click "Anaconda Prompt (Anaconda

3)"

o In the console window enter the following commands:

▪ conda create --name py2 python=2.7

▪ conda activate py2

▪ conda install spyder

Installing LinearLabTools

• Note that both 32-bit and 64-bit installers are provided.

o The 32-bit installer is only for 32-bit systems.

o The 64-bit installer includes everything needed to use LinearLabTools with 64-bit

Python, as well as 32-bit Python on 64-bit computers.

• Run the installer and follow the directions.

• Pay attention to where it gets installed, usually that is under Analog Devices in your

Documents folder.

Preparing The Environment

• The Anaconda distribution includes a few Integrated Development Environments (IDEs)

and editors. We will be using the Spyder IDE.

• Run Spyder, which will be in the Anaconda program group.

o If you installed Python 2.7 using conda as described above, you will have 2

Spyder installs, you want "Spyder (py2)"

• It’s a big program, this takes a bit of time.

https://www.anaconda.com/products/individual
http://swdownloads.analog.com/linearlabtools/install_linear_lab_tools.msi
http://swdownloads.analog.com/linearlabtools/install_linear_lab_tools64.msi

• Once Spyder is open, click Tools → PYTHONPATH Manager. The following dialog will

appear:

• Click “Add path”, and navigate to the folder where you installed LinearLabTools, and

select the

python subdirectory. Click Close.

Communicating with the Hardware

• The figure below shows the organization of LinearLabTools:

• To run the example Python script for your demo-board, open the desired demo-board

script and hit run:

o e.g. Open llt → demo_board_examples → ltc23xx → ltc2378 →

ltc2378_20_dc2135a And run the script.

• The script will go through the basic operations of capturing data from the board, then

display time and frequency domain plots.

• Exact operations may vary from board to board. You should see plots similar to those

below:

• When run as above, each demo-board example makes a time domain plot and a

frequency domain plot for each channel and writes the data to a text file.

• You can also call the function directly passing it several parameters and returning the

data for each channel.

o For example:

Calling collect function from Python

from llt.demo_board_examples.ltc23xx.ltc2378.ltc2378_20_dc2135a

import ltc2378_20_dc2135a

data = ltc2378_20_dc2135a(num_samples=16*1024, spi_registers=[],

is_verbose=false,

do_plot=true, do_write_to_file=false);

• Most functions have a signature similar to the one above. See the code for

additional information.

• Many parts do not have SPI configuration, for these pass [] for the SPI registers.

• For other parts, look at the code for an example of correct SPI register format.

• For parts with multiple channels replace data with something like ch0, ch1, … chn for the

function output.

• At this point, data from the demo board is stored in an array.

o You can extend the functionality of the script as required for your evaluation.

▪ Incorporate other test hardware such as signal generators, etc.

o You can also call the function from your existing Python code. (Just remember to

add the imports.)

