

Adafruit 1.54" eInk Display Breakouts

Created by Melissa LeBlanc-Williams

https://learn.adafruit.com/adafruit-1-54-eink-display-breakouts

Last updated on 2022-12-01 03:17:22 PM EST

©Adafruit Industries Page 1 of 50

5

7

10

13

15

15

16

20

22

29

31

48

Table of Contents

Overview

• We have multiple 1.54" EPD displays:

Pinouts

• Power Pins

• Data Control Pins

Assembly

• Assembly

• Add the E-Ink Display

• And Solder!

Wiring

• Breakout Wiring

• Python Wiring

Usage & Expectations

Arduino Setup

Arduino Usage

• 1.54" Monochrome 200x200 Pixel Display

• 1.54" Tri-Color 152x152 OR 200x200 Pixel Display

• Configure Pins

• Configure Display Type & Size

• Upload Sketch

Arduino Bitmaps

CircuitPython Usage

• CircuitPython eInk displayio Library Installation

• Image File

• Monochrome Display Usage

• Tri-Color Display Usage

Python Setup

• Python Installation of EPD Library

• Download font5x8.bin

• DejaVu TTF Font

• Pillow Library

Python Usage

• Monochrome Example

• Tri-Color Example

• Bitmap Example

• Full Example Code

• Image Drawing with Pillow

• Drawing Shapes and Text with Pillow

Downloads

• Files

©Adafruit Industries Page 2 of 50

• Display shape/outline:

• Schematic

• Fabrication Print

©Adafruit Industries Page 3 of 50

©Adafruit Industries Page 4 of 50

Overview

Easy e-paper finally comes to microcontrollers, with these breakouts, shields and

friends that are designed to make it a breeze to add a tri-color eInk display. Chances

are you've seen one of those new-fangled 'e-readers' like the Kindle or Nook. They

have gigantic electronic paper 'static' displays - that means the image stays on the

display even when power is completely disconnected. The image is also high contrast

and very daylight readable. It really does look just like printed paper!

We've liked these displays for a long time, but they were never designed for makers

to use. Finally, we decided to make our own!

©Adafruit Industries Page 5 of 50

We have multiple 1.54" EPD displays:

The tri-color have black and red ink pixels and a white-ish background. We have

a 152x152 Tri-Color display (older, lower res screen) () and a 200x200 Tri-Color

display (newer higher res screen) ()

The monochrome (black and white) display has 200x200 black pixels () on a

white-ish background. The monochrome displays take a lot less time to update,

only a couple seconds instead of 15 seconds!

•

•

©Adafruit Industries Page 6 of 50

https://www.adafruit.com/product/3625
https://www.adafruit.com/product/3625
https://www.adafruit.com/product/3625
https://www.adafruit.com/product/4868
https://www.adafruit.com/product/4868
https://www.adafruit.com/product/4868
https://www.adafruit.com/product/4196
https://www.adafruit.com/product/4196

Using our Arduino library, you can create a 'frame buffer' with what pixels you want to

have activated and then write that out to the display. Most simple breakouts leave it at

that. But if you do the math, using even the smallest 1.54" display: 152 x 152 pixels x 2

colors = 5.7 KBytes. Which won't fit into many microcontroller memories. Heck, even if

you do have 32KB of RAM, why waste 6KB?

So we did you a favor and tossed a small SRAM chip on the back. This chip shares the

SPI port the eInk display uses, so you only need one extra pin. And, no more frame-

buffering! You can use the SRAM to set up whatever you want to display, then shuffle

data from SRAM to eInk when you're ready. The library we wrote does all the work for

you (), you can just interface with it as if it were an Adafruit_GFX compatible display ().

For ultra-low power usages, the onboard 3.3V regulator has the Enable pin brought

out so you can shut down the power to the SRAM, MicroSD and display.

We even added on a MicroSD socket so you can store images, text files, whatever

you like to display. Everything is 3 or 5V logic safe so you can use it with any and all

microcontrollers.

Pinouts

Even though we have multiple 1.54" EPD displays, the pinouts and dimensions

are the same for all of them!

©Adafruit Industries Page 7 of 50

https://github.com/adafruit/Adafruit_EPD
https://github.com/adafruit/Adafruit_EPD
https://github.com/adafruit/Adafruit_EPD

This e-Paper display uses SPI to receive image data. Since the display is SPI, it was

easy to add two more SPI devices to share the bus - an SPI SRAM chip and SPI-driven

SD card holder. There's quite a few pins and a variety of possible combinations for

control depending on your needs.

Power Pins

3-5V / Vin - this is the power pin, connect to 3-5VDC - it has reverse polarity

protection but try to wire it right!

3.3V out - this is the 3.3V output from the onboard regulator, you can 'borrow'

about 100mA if you need to power some other 3.3V logic devices

GND - this is the power and signal ground pin

ENAble - This pin is all the way on the right. It is connected to the enable pin on

the onboard regulator that powers everything. If you want to really have the

lowest possible power draw, pull this pin low! Note that if you do so you will cut

power to the eInk display but also the SPI RAM (thus erasing it) and the SD card

(which means you'll have to re-initialize it when you re-power

•

•

•

•

©Adafruit Industries Page 8 of 50

Data Control Pins

SCK - this is the SPI clock input pin, required for e-Ink, SRAM and SD card

MISO - this is the SPI Microcontroller In Serial Out pin, its used for the SD card

and SRAM. It isn't used for the e-Ink display which is write-only, however you'll

likely be using the SRAM to buffer the display so connect this one too!

MOSI - this is the SPI Microcontroller Out Serial In pin, it is used to send data

from the microcontroller to the SD card, SRAM and e-Ink display

ECS - this is the E-Ink Chip Select, required for controlling the display

D/C - this is the e-Ink Data/Command pin, required for controlling the display

SRCS - this is the SRAM Chip Select, required for communicating with the

onboard RAM chip.

SDCS - this is the SD card Chip Select, required for communicating with the

onboard SD card holder. You can leave this disconnected if you aren't going to

access SD cards

RST - this is the E-Ink ReSeT pin, you may be able to share this with your

microcontroller reset pin but if you can, connect it to a digital pin.

BUSY - this is the e-Ink busy detect pin, and is optional if you don't want to

connect the pin (in which case the code will just wait an approximate number of

seconds)

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 9 of 50

Assembly

Assembly

Cut the header down to length if necessary. It will be easier to solder if you insert it

into a breadboard - long pins down

©Adafruit Industries Page 10 of 50

Add the E-Ink Display

Place the board over the pins so that the

short pins poke through the top of the

breakout pads

©Adafruit Industries Page 11 of 50

https://learn.adafruit.com//assets/71152
https://learn.adafruit.com//assets/71152

And Solder!

Be sure to solder all pins for reliable

electrical contact.

(For tips on soldering, be sure to check out

the Guide to Excellent Soldering ()).

OK, you're done!

©Adafruit Industries Page 12 of 50

https://learn.adafruit.com//assets/71153
https://learn.adafruit.com//assets/71153
https://learn.adafruit.com//assets/71154
https://learn.adafruit.com//assets/71154
https://learn.adafruit.com//assets/71156
https://learn.adafruit.com//assets/71156
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering

Wiring

Breakout Wiring

Though it looks like a lot of connections, wiring up an eInk breakout is pretty

straightforward! Below shows using hardware SPI to connect it to an Adafruit Metro

M4.

Vin connects to the microcontroller board's 5V or 3.3V power supply pin

GND connects to ground

CLK connects to SPI clock. It's easiest to connect it to pin 3 of the ICSP header.

MOSI connects to SPI MOSI. It's easiest to connect it to pin 4 of the ICSP header.

MISO connects to SPI MISO. It's easiest to connect it to pin 1 of the ICSP header.

ECS connects to our e-Ink Chip Select pin. We'll be using Digital 9

D/C connects to our e-Ink data/command select pin. We'll be using Digital 10.

SRCS connects to our SRAM Chip Select pin. We'll be using Digital 6

RST connects to our e-Ink reset pin. We'll be using Digital 8.

BUSY connects to our e-Ink busy pin. We'll be using Digital 7.

SDCS connects to our SD Card Chip Select pin. We'll be using Digital 5

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 13 of 50

Python Wiring

Raspberry Pi 3.3 to display VIN

Raspberry Pi GND to display GND

Raspberry Pi SCLK to display SCK

Raspberry Pi MOSI to display MOSI

Raspberry Pi GPIO CE0 to display ECS

Raspberry Pi GPIO 22 to display D/C

Raspberry Pi GPIO 27 to display RST

Raspberry Pi GPIO 17 to display BUSY

•

•

•

•

•

•

•

•

©Adafruit Industries Page 14 of 50

Usage & Expectations

One thing to remember with these small e-Ink screens is that its very slow compared

to OLEDs, TFTs, or even 'memory displays'. It will take may seconds to fully erase and

replace an image

There's also a recommended limit on refeshing - you shouldn't refresh or change the

display more than every 3 minutes (180 seconds).

You don't have to refresh often, but with tri-color displays, the larger red ink dots will

slowly rise, turning the display pinkish instead of white background. To keep the

background color clear and pale, refresh once a day

Arduino Setup

To use the display, you will need to install the Adafruit_EPD library (code on our

github repository) (). It is available from the Arduino library manager so we

recommend using that.

From the IDE open up the library manager...

Do not update more than once every 180 seconds or you may permanently

damage the display

©Adafruit Industries Page 15 of 50

https://github.com/adafruit/Adafruit_EPD
https://github.com/adafruit/Adafruit_EPD

And type in adafruit EPD to locate the library. Click Install

If you would like to draw bitmaps, do the same with adafruit ImageReader, click Install

Do the same to install the latest adafruit GFX library, click Install

If using an earlier version of the Arduino IDE (pre-1.8.10), locate and install Adafruit_Bu

sIO (newer versions handle this prerequisite automatically).

Arduino Usage

Here is where the differences in the tri-color/monochrome and chipset/

dimensions start mattering. Check carefully to make sure you are running the

right example and creating the matching ThinkInk type for your display or you

wont see anything happen on the EPD (or the image may be really weird looking)

©Adafruit Industries Page 16 of 50

1.54" Monochrome 200x200 Pixel Display

For the 200 x 200 monochrome display () we will run a monochrome demo.

Adafruit 1.54" Monochrome eInk / ePaper

Display with SRAM

Easy e-paper finally comes to

microcontrollers, with this breakout that's

designed to make it a breeze to add an

eInk display. Chances are you've seen

one of those new-fangled...

https://www.adafruit.com/product/4196

Open up File→Examples→Adafruit_EPD→ThinkInk_mono

1.54" Tri-Color 152x152 OR 200x200 Pixel Display

For the 152x152 OR 200x200 Tri-Color display, we will run the tricolor demo.

©Adafruit Industries Page 17 of 50

https://www.adafruit.com/product/4196
https://www.adafruit.com/product/4196
https://www.adafruit.com/product/4196
https://www.adafruit.com/product/4196

Adafruit 1.54" 152x152 Tri-Color eInk /

ePaper Display with SRAM

Easy e-paper finally comes to

microcontrollers, with this breakout that's

designed to make it a breeze to add a tri-

color eInk display. Chances are you've

seen one of those...

https://www.adafruit.com/product/3625

Adafruit 1.54" Tri-Color eInk / ePaper

200x200 Display with SRAM

Easy e-paper finally comes to

microcontrollers, with this breakout that's

designed to make it a breeze to add a tri-

color eInk display. Chances are you've

seen one of those...

https://www.adafruit.com/product/4868

Open up File→Examples→Adafruit_EPD→ThinkInk_tricolor

Configure Pins

No matter what display you have, you will need to verify that your pins match your

wiring. At the top of the sketch find the lines that look like:

#define EPD_DC 10

#define EPD_CS 9

©Adafruit Industries Page 18 of 50

https://www.adafruit.com/product/3625
https://www.adafruit.com/product/3625
https://www.adafruit.com/product/3625
https://www.adafruit.com/product/4868
https://www.adafruit.com/product/4868
https://www.adafruit.com/product/4868

#define SRAM_CS 6

#define EPD_RESET 8 // can set to -1 and share with microcontroller Reset!

#define EPD_BUSY 7 // can set to -1 to not use a pin (will wait a fixed delay)

If you wired the display differently than on the wiring page, adjust the pin numbers

accordingly.

Configure Display Type & Size

Find the part of the script where you can pick which display is going to be used. The

eInk displays are made up a combination of a Chipset and a Film in different sizes. We

have narrowed it down to just a few choices between the size of the display, chipset,

and film based on available combinations. In the sketch, we have sorted it by size, so

it's easy to find your display.

You will need to uncomment the appropriate initializer and and leave any other type

commented.

For the 1.54" 200x200 Monochrome breakout () you will use ThinkInk_154_Mono_D2

7 display initializer.

For the 1.54" 152x152 Tri-Color breakout (), you will use the

ThinkInk_154_Tricolor_Z17 display initializer.

For the 1.54" 200x200 Tri-Color breakout (), you will use the ThinkInk_154_Tricolo

r_Z90 display initializer.

For example, for the monochrome 200x200, uncomment this line, and comment any

other line that is creating a ThinkInk display object

// 1.54" Monochrome displays with 200x200 pixels and SSD1608 chipset

ThinkInk_154_Mono_D27 display(EPD_DC, EPD_RESET, EPD_CS, SRAM_CS, EPD_BUSY);

Upload Sketch

Go ahead and upload the sketch to your board. Once it is done uploading, open the S

erial Monitor.

The display should start running a series of monochrome tests

©Adafruit Industries Page 19 of 50

https://www.adafruit.com/product/4196
https://www.adafruit.com/product/4196
https://www.adafruit.com/product/3625
https://www.adafruit.com/product/3625
https://www.adafruit.com/product/4868
https://www.adafruit.com/product/4868

Arduino Bitmaps

Not only can you draw shapes but you can also load images from the SD card, perfect

for static images!

The 1.54" Monochrome display can show a max of 200x200 pixels and the Standard 1.

54" Tri-Color display can show a max of 152x152 pixels and the HD Tri-Color version

©Adafruit Industries Page 20 of 50

can show a max of 200x200 pixels. Let's use this Blinka bitmap for our demo. Select

the one that is the correct size:

Download Monochrome blinka.bmp

Download Tri-Color blinka.bmp

Download HD Tri-Color blinka.bmp

Download the blinka.bmp file and place it into the base directory of a microSD card

and insert it into the microSD socket in the breakout.

Plug the MicroSD card into the display. You may want to try the SD library examples

before continuing, especially one that lists all the files on the SD card

Open the file→examples→Adafruit_ImageReader→ThinkInkDisplays example

Upload to your board and you should see an image of Blinka appear.

©Adafruit Industries Page 21 of 50

https://github.com/adafruit/Adafruit_ImageReader/raw/master/images/E-Ink%201.54/blinka_mono.bmp
https://raw.githubusercontent.com/adafruit/Adafruit_ImageReader/master/images/E-Ink%201.54/blinka.bmp
https://github.com/adafruit/Adafruit_ImageReader/raw/master/images/E-Ink%201.54/blinka_hd.bmp

If you want to later use your own image, use an image editing tool and crop your

image to no larger than 152 pixels wide and 152 pixels high on the standard display

and no larger than 200 pixels wide and 200 pixels high on the HD display. Save it as

a 24-bit color BMP file - it must be 24-bit color format to work, even if it was originally

a 16-bit color image - because of the way BMPs are stored and displayed!

CircuitPython Usage

CircuitPython eInk displayio Library Installation

To use displayio, you will need to install the appropriate library for your display.

First make sure you are running the latest version of Adafruit CircuitPython () for your

board. You will need the latest version of CircuitPython.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(). Our introduction guide has a great page on how to install the library bundle () for

both express and non-express boards.

Here is where the differences in the tri-color/monochrome and chipset/

dimensions start mattering. Check carefully to make sure you are running the

right example and creating the matching library type for your display or you wont

see anything happen on the EPD (or the image may be really weird looking)

©Adafruit Industries Page 22 of 50

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

You will need to copy the appropriate displayio driver from the bundle lib folder to a li

b folder on your CIRCUITPY drive. The displayio driver contains the initialization

codes specific to your display that are needed to for it to work. Since there is more

than one driver, you will need to copy the correct file over. Here is a list of each of the

displays and the correct driver for that display.

Adafruit_CircuitPython_SSD1608

The 200x200 monochrome display with SSD1608 driver () uses the Adafruit_CircuitPy

thon_SSD1608 library. Copy the adafruit_ssd1608.mpy file from the bundle to the l

ib folder on your CIRCUITPY drive.

Adafruit 1.54" Monochrome eInk / ePaper

Display with SRAM

Easy e-paper finally comes to

microcontrollers, with this breakout that's

designed to make it a breeze to add an

eInk display. Chances are you've seen

one of those new-fangled...

https://www.adafruit.com/product/4196

Adafruit_CircuitPython_IL0373

The 152x152 Tri-Color display with IL0373 () uses the Adafruit_CircuitPython_ILI0373

library. Copy the adafruit_il0373.mpy file from the bundle to the lib folder on your

CIRCUITPY drive.

To use the eInk displays with displayio, you will need to use the latest version of

CircuitPython and a board that can fit `displayio`. See the Support Matrix to

determine if `displayio` is available on a given board: https://

circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html

©Adafruit Industries Page 23 of 50

https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html
https://www.adafruit.com/product/4196
https://www.adafruit.com/product/4196
https://www.adafruit.com/product/4196
https://www.adafruit.com/product/4196
https://www.adafruit.com/product/3625

Adafruit 1.54" 152x152 Tri-Color eInk /

ePaper Display with SRAM

Easy e-paper finally comes to

microcontrollers, with this breakout that's

designed to make it a breeze to add a tri-

color eInk display. Chances are you've

seen one of those...

https://www.adafruit.com/product/3625

Adafruit_CircuitPython_SSD1681

The 200x200 Tri-Color display with SSD1681 driver () uses the Adafruit_CircuitPython

_SSD1681 library. Copy the adafruit_ssd1681.mpy file from the bundle to the lib

folder on your CIRCUITPY drive.

Adafruit 1.54" Tri-Color eInk / ePaper

200x200 Display with SRAM

Easy e-paper finally comes to

microcontrollers, with this breakout that's

designed to make it a breeze to add a tri-

color eInk display. Chances are you've

seen one of those...

https://www.adafruit.com/product/4868

Image File

To show you how to use the eInk with displayio, we'll show you how to draw a bitmap

onto it. First start by downloading display-ruler.bmp

Download display-ruler.bmp

Copy display-ruler.bmp into the root directory of your CIRCUITPY drive.

©Adafruit Industries Page 24 of 50

https://www.adafruit.com/product/3625
https://www.adafruit.com/product/3625
https://www.adafruit.com/product/3625
https://www.adafruit.com/product/4868
https://www.adafruit.com/product/4868
https://www.adafruit.com/product/4868
https://www.adafruit.com/product/4868
https://github.com/adafruit/Adafruit_CircuitPython_IL0373/raw/main/examples/display-ruler.bmp

Monochrome Display Usage

In the examples folder for your SSD1608 displayio driver, there should be a test for

your display which we have listed here:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""Simple test script for 1.54" 200x200 monochrome display.

Supported products:

 * Adafruit 1.54" Monochrome ePaper Display Breakout

 * https://www.adafruit.com/product/4196

 """

import time

import board

import displayio

import adafruit_ssd1608

displayio.release_displays()

This pinout works on a Feather M4 and may need to be altered for other boards.

spi = board.SPI() # Uses SCK and MOSI

epd_cs = board.D9

epd_dc = board.D10

epd_reset = board.D5

epd_busy = board.D6

display_bus = displayio.FourWire(

 spi, command=epd_dc, chip_select=epd_cs, reset=epd_reset, baudrate=1000000

)

time.sleep(1)

display = adafruit_ssd1608.SSD1608(

 display_bus, width=200, height=200, busy_pin=epd_busy, rotation=180

)

g = displayio.Group()

with open("/display-ruler.bmp", "rb") as f:

 pic = displayio.OnDiskBitmap(f)

 # CircuitPython 6 & 7 compatible

 t = displayio.TileGrid(

 pic, pixel_shader=getattr(pic, "pixel_shader", displayio.ColorConverter())

)

 # CircuitPython 7 compatible only

 # t = displayio.TileGrid(pic, pixel_shader=pic.pixel_shader)

 g.append(t)

 display.show(g)

 display.refresh()

 print("refreshed")

 time.sleep(120)

©Adafruit Industries Page 25 of 50

Configure and Upload

You will want to change the epd_reset and epd_busy to the correct values. If you

wired it up as shown on the Wiring page, you will want to change it to these values:

epd_reset = board.D8

epd_busy = board.D7

Save it to your CIRCUITPY drive as code.py and it should automatically run. Your

display will look something like this:

Tri-Color Display Usage

HD Tri-Color Display

In the examples folder for your SSD1681 displayio driver, there should be a test for

your display which we have listed here:

SPDX-FileCopyrightText: 2017 Scott Shawcroft, written for Adafruit Industries

SPDX-FileCopyrightText: Copyright (c) 2021 Melissa LeBlanc-Williams for Adafruit

Industries

#

SPDX-License-Identifier: Unlicense

"""Simple test script for 1.54" 200x200 tri-color display.

Supported products:

 * Adafruit 1.54" Tri-Color Display Breakout

 * https://www.adafruit.com/product/4868

 """

©Adafruit Industries Page 26 of 50

import time

import board

import displayio

import adafruit_ssd1681

displayio.release_displays()

This pinout works on a Feather M4 and may need to be altered for other boards.

spi = board.SPI() # Uses SCK and MOSI

epd_cs = board.D9

epd_dc = board.D10

epd_reset = board.D5

epd_busy = board.D6

display_bus = displayio.FourWire(

 spi, command=epd_dc, chip_select=epd_cs, reset=epd_reset, baudrate=1000000

)

time.sleep(1)

display = adafruit_ssd1681.SSD1681(

 display_bus,

 width=200,

 height=200,

 busy_pin=epd_busy,

 highlight_color=0xFF0000,

 rotation=180,

)

g = displayio.Group()

with open("/display-ruler.bmp", "rb") as f:

 pic = displayio.OnDiskBitmap(f)

 # CircuitPython 6 & 7 compatible

 t = displayio.TileGrid(

 pic, pixel_shader=getattr(pic, "pixel_shader", displayio.ColorConverter())

)

 # CircuitPython 7 compatible only

 # t = displayio.TileGrid(pic, pixel_shader=pic.pixel_shader)

 g.append(t)

 display.show(g)

 display.refresh()

 print("refreshed")

 time.sleep(120)

Standard Tri-Color Display

In the examples folder for your ILI0373 displayio driver, there should be a test for your

display which we have listed here:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""Simple test script for 1.54" 152x152 tri-color display.

Supported products:

 * Adafruit 1.54" Tri-Color Display Breakout

 * https://www.adafruit.com/product/3625

 """

import time

©Adafruit Industries Page 27 of 50

import board

import displayio

import adafruit_il0373

displayio.release_displays()

This pinout works on a Feather M4 and may need to be altered for other boards.

spi = board.SPI() # Uses SCK and MOSI

epd_cs = board.D9

epd_dc = board.D10

epd_reset = board.D5

epd_busy = board.D6

display_bus = displayio.FourWire(

 spi, command=epd_dc, chip_select=epd_cs, reset=epd_reset, baudrate=1000000

)

time.sleep(1)

display = adafruit_il0373.IL0373(

 display_bus,

 width=152,

 height=152,

 busy_pin=epd_busy,

 highlight_color=0xFF0000,

 rotation=180,

)

g = displayio.Group()

with open("/display-ruler.bmp", "rb") as f:

 pic = displayio.OnDiskBitmap(f)

 # CircuitPython 6 & 7 compatible

 t = displayio.TileGrid(

 pic, pixel_shader=getattr(pic, "pixel_shader", displayio.ColorConverter())

)

 # CircuitPython 7 compatible only

 # t = displayio.TileGrid(pic, pixel_shader=pic.pixel_shader)

 g.append(t)

 display.show(g)

 display.refresh()

 print("refreshed")

 time.sleep(120)

Configure and Upload

For either display, you will want to change the epd_reset and epd_busy to the

correct values. If you wired it up as shown on the Wiring page, you will want to

change it to these values:

epd_reset = board.D8

epd_busy = board.D7

Save it to your CIRCUITPY drive as code.py and it should automatically run. Your

display will look something like this:

©Adafruit Industries Page 28 of 50

Python Setup

It's easy to use eInk breakouts with Python and the Adafruit CircuitPython EPD () librar

y. This library allows you to easily write Python code to control the display.

Since there are dozens of Linux computers/boards you can use, we will show wiring

for Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux

to see whether your platform is supported ().

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling SPI on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Note this is not a kernel driver that will let you have the console appear on the

eInk. However, this is handy when you want to use the eInk display purely from

'user Python' code!

You can only use this technique with Linux/computer devices that have hardware

SPI support, and not all single board computers have an SPI device, so check

before continuing

©Adafruit Industries Page 29 of 50

https://github.com/adafruit/Adafruit_CircuitPython_EPD
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Python Installation of EPD Library

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-epd

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

Download font5x8.bin

This library also requires a font file to run! You can download it below. Before

continuing, make sure the folder you are running scripts from contains the font5x8.bin

file.

Download font5x8.bin

Alternatively, you can use wget to directly download the file to your pi:

wget https://github.com/adafruit/Adafruit_CircuitPython_framebuf/raw/main/examples/

font5x8.bin

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't,

you can run the following to install it:

sudo apt-get install fonts-dejavu

This package was previously calls ttf-dejavu, so if you are running an older version of

Raspberry Pi OS, it may be called that.

©Adafruit Industries Page 30 of 50

https://github.com/adafruit/Adafruit_CircuitPython_framebuf/raw/main/examples/font5x8.bin

Pillow Library

Some of the examples also use PIL, the Python Imaging Library, to allow graphics and

using text with custom fonts. There are several system libraries that PIL relies on, so

installing via a package manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

That's it. You should be ready to go.

Python Usage

To demonstrate the usage of the display, we'll initialize it and draw some lines from

the Python REPL.

Run the following code to import the necessary modules and set up the pin

assignments. We set the SRAM CS pin to None because the Raspberry Pi has lots of

RAM, so we don't really need it.

import digitalio

import busio

import board

from adafruit_epd.epd import Adafruit_EPD

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

ecs = digitalio.DigitalInOut(board.CE0)

dc = digitalio.DigitalInOut(board.D22)

rst = digitalio.DigitalInOut(board.D27)

busy = digitalio.DigitalInOut(board.D17)

srcs = None

Note this is not a kernel driver that will let you have the console appear on the

eInk. However, this is handy when you want to use the eInk display purely from

'user Python' code!

You can only use this technique with Linux/computer devices that have hardware

SPI support, and not all single board computers have an SPI device, so check

before continuing

Depending on the exact E-Ink display you're using, the driver and object

initialization will differ a bit because we have to tell Python what the chip driver

is, and what the size of the display is!

©Adafruit Industries Page 31 of 50

Run the following code to initialize the Monochrome display:

Adafruit 1.54" Monochrome eInk / ePaper

Display with SRAM

Easy e-paper finally comes to

microcontrollers, with this breakout that's

designed to make it a breeze to add an

eInk display. Chances are you've seen

one of those new-fangled...

https://www.adafruit.com/product/4196

from adafruit_epd.ssd1608 import Adafruit_SSD1608

display = Adafruit_SSD1608(200, 200, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs,

rst_pin=rst, busy_pin=busy)

Run the following code to initialize the lower-res Tri-Color display:

Adafruit 1.54" 152x152 Tri-Color eInk /

ePaper Display with SRAM

Easy e-paper finally comes to

microcontrollers, with this breakout that's

designed to make it a breeze to add a tri-

color eInk display. Chances are you've

seen one of those...

https://www.adafruit.com/product/3625

from adafruit_epd.il0373 import Adafruit_IL0373

display = Adafruit_IL0373(152, 152, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs,

rst_pin=rst, busy_pin=busy)

Run the following code to initialize the newer high-res Tri-Color display:

©Adafruit Industries Page 32 of 50

https://www.adafruit.com/product/4196
https://www.adafruit.com/product/4196
https://www.adafruit.com/product/4196
https://www.adafruit.com/product/3625
https://www.adafruit.com/product/3625
https://www.adafruit.com/product/3625

Adafruit 1.54" Tri-Color eInk / ePaper

200x200 Display with SRAM

Easy e-paper finally comes to

microcontrollers, with this breakout that's

designed to make it a breeze to add a tri-

color eInk display. Chances are you've

seen one of those...

https://www.adafruit.com/product/4868

from adafruit_epd.ssd1681 import Adafruit_SSD1681

display = Adafruit_SSD1681(200, 200, spi, cs_pin=ecs, dc_pin=dc, sramcs_pin=srcs,

rst_pin=rst, busy_pin=busy)

Monochrome Example

Now we can clear the screens buffer and draw some shapes. Once we're done

drawing, we need to tell the screen to update using the display() method.

display.rotation = 2

display.fill(Adafruit_EPD.WHITE)

display.fill_rect(20, 20, 50, 60, Adafruit_EPD.BLACK)

display.hline(80, 30, 60, Adafruit_EPD.BLACK)

display.vline(80, 30, 60, Adafruit_EPD.BLACK)

display.display()

Tri-Color Example

The Tri-Color example is almost the same as the monochrome example, except we

added another color in. Once we're done drawing, we need to tell the screen to

update using the display() method.

display.rotation = 2

display.fill(Adafruit_EPD.WHITE)

display.fill_rect(20, 20, 50, 60, Adafruit_EPD.RED)

display.hline(80, 30, 60, Adafruit_EPD.BLACK)

display.vline(80, 30, 60, Adafruit_EPD.BLACK)

display.display()

Your display will look something like this:

©Adafruit Industries Page 33 of 50

https://www.adafruit.com/product/4868
https://www.adafruit.com/product/4868
https://www.adafruit.com/product/4868

That's all there is to drawing simple shapes with eInk displays and CircuitPython!

Bitmap Example

Here's a complete example of how to display a bitmap image on your display. Note

that any .bmp image you want to display must be exactly the size of your display. We

will be using the image below on the 1.54" display. Click the button below to

download the image and save it as blinka.bmp on your Raspberry Pi. We will be using

a Tri-Color bitmap, but it should still work on a monochrome display.

Click here to download blinka for

the 1.54" Low Res Tri-Color display

Click here to download blinka for

the 1.54" High Res Tri-Color and

Mono displays

Save the following code to your Raspberry Pi as epd_bitmap.py.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import digitalio

import busio

import board

from adafruit_epd.epd import Adafruit_EPD

from adafruit_epd.il0373 import Adafruit_IL0373

from adafruit_epd.il91874 import Adafruit_IL91874 # pylint: disable=unused-import

from adafruit_epd.il0398 import Adafruit_IL0398 # pylint: disable=unused-import

©Adafruit Industries Page 34 of 50

https://github.com/adafruit/Adafruit_ImageReader/raw/master/images/E-Ink%201.54/blinka.bmp
https://github.com/adafruit/Adafruit_ImageReader/raw/master/images/E-Ink%201.54/blinka_hd.bmp

from adafruit_epd.ssd1608 import Adafruit_SSD1608 # pylint: disable=unused-import

from adafruit_epd.ssd1675 import Adafruit_SSD1675 # pylint: disable=unused-import

from adafruit_epd.ssd1680 import Adafruit_SSD1680 # pylint: disable=unused-import

from adafruit_epd.ssd1681 import Adafruit_SSD1681 # pylint: disable=unused-import

from adafruit_epd.uc8151d import Adafruit_UC8151D # pylint: disable=unused-import

create the spi device and pins we will need

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

ecs = digitalio.DigitalInOut(board.D10)

dc = digitalio.DigitalInOut(board.D9)

srcs = digitalio.DigitalInOut(board.D7) # can be None to use internal memory

rst = digitalio.DigitalInOut(board.D11) # can be None to not use this pin

busy = digitalio.DigitalInOut(board.D12) # can be None to not use this pin

give them all to our driver

print("Creating display")

display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display

display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display

display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color display

display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display

display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display

display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display

display = Adafruit_UC8151D(128, 296, # 2.9" mono flexible display

display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display

display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display

display = Adafruit_IL0373(

 104,

 212, # 2.13" Tri-color display

 spi,

 cs_pin=ecs,

 dc_pin=dc,

 sramcs_pin=srcs,

 rst_pin=rst,

 busy_pin=busy,

)

IF YOU HAVE A 2.13" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, False)

display.set_color_buffer(1, False)

IF YOU HAVE A 2.9" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, True)

display.set_color_buffer(1, True)

display.rotation = 0

FILENAME = "blinka.bmp"

def read_le(s):

 # as of this writting, int.from_bytes does not have LE support, DIY!

 result = 0

 shift = 0

 for byte in bytearray(s):

 result += byte << shift

 shift += 8

 return result

class BMPError(Exception):

 pass

def display_bitmap(epd, filename): # pylint: disable=too-many-locals, too-many-

branches

 try:

 f = open(filename, "rb") # pylint: disable=consider-using-with

 except OSError:

©Adafruit Industries Page 35 of 50

 print("Couldn't open file")

 return

 print("File opened")

 try:

 if f.read(2) != b"BM": # check signature

 raise BMPError("Not BitMap file")

 bmpFileSize = read_le(f.read(4))

 f.read(4) # Read & ignore creator bytes

 bmpImageoffset = read_le(f.read(4)) # Start of image data

 headerSize = read_le(f.read(4))

 bmpWidth = read_le(f.read(4))

 bmpHeight = read_le(f.read(4))

 flip = True

 print(

 "Size: %d\nImage offset: %d\nHeader size: %d"

 % (bmpFileSize, bmpImageoffset, headerSize)

)

 print("Width: %d\nHeight: %d" % (bmpWidth, bmpHeight))

 if read_le(f.read(2)) != 1:

 raise BMPError("Not singleplane")

 bmpDepth = read_le(f.read(2)) # bits per pixel

 print("Bit depth: %d" % (bmpDepth))

 if bmpDepth != 24:

 raise BMPError("Not 24-bit")

 if read_le(f.read(2)) != 0:

 raise BMPError("Compressed file")

 print("Image OK! Drawing...")

 rowSize = (bmpWidth * 3 + 3) & ~3 # 32-bit line boundary

 for row in range(bmpHeight): # For each scanline...

 if flip: # Bitmap is stored bottom-to-top order (normal BMP)

 pos = bmpImageoffset + (bmpHeight - 1 - row) * rowSize

 else: # Bitmap is stored top-to-bottom

 pos = bmpImageoffset + row * rowSize

 # print ("seek to %d" % pos)

 f.seek(pos)

 rowdata = f.read(3 * bmpWidth)

 for col in range(bmpWidth):

 b, g, r = rowdata[3 * col : 3 * col + 3] # BMP files store RGB in

BGR

 if r < 0x80 and g < 0x80 and b < 0x80:

 epd.pixel(col, row, Adafruit_EPD.BLACK)

 elif r >= 0x80 and g >= 0x80 and b >= 0x80:

 pass # epd.pixel(row, col, Adafruit_EPD.WHITE)

 elif r >= 0x80:

 epd.pixel(col, row, Adafruit_EPD.RED)

 except OSError:

 print("Couldn't read file")

 except BMPError as e:

 print("Failed to parse BMP: " + e.args[0])

 finally:

 f.close()

 print("Finished drawing")

clear the buffer

display.fill(Adafruit_EPD.WHITE)

display_bitmap(display, FILENAME)

display.display()

©Adafruit Industries Page 36 of 50

Before running it, we need to change a few pin definitions though. Find the section of

code that looks like this:

ecs = digitalio.DigitalInOut(board.D10)

dc = digitalio.DigitalInOut(board.D9)

srcs = digitalio.DigitalInOut(board.D7) # can be None to use internal memory

rst = digitalio.DigitalInOut(board.D11) # can be None to not use this pin

busy = digitalio.DigitalInOut(board.D12) # can be None to not use this pin

Change the pins to the following to match the wiring on the Raspberry Pi:

ecs = digitalio.DigitalInOut(board.CE0)

dc = digitalio.DigitalInOut(board.D22)

srcs = None

rst = digitalio.DigitalInOut(board.D27)

busy = digitalio.DigitalInOut(board.D17)

Next, find the section that looks like this:

display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display

display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display

display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display

display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display

display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display

display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display

display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display

display = Adafruit_IL0373(

 104,

 212,

 spi, # 2.13" Tri-color display

 cs_pin=ecs,

 dc_pin=dc,

 sramcs_pin=srcs,

 rst_pin=rst,

 busy_pin=busy,

)

Comment out these lines:

display = Adafruit_IL0373(

 104,

 212, # 2.13" Tri-color display

and uncomment the line that corresponds with your display.

Next we tell the display the rotation setting we want to use. This can be a value

between 0-3 . For the 1.54" displays, a value of 2 seems to work well.

display.rotation = 2

©Adafruit Industries Page 37 of 50

Now go to the command prompt on your Raspberry Pi and run the script with the

following command:

python3 epd_bitmap.py

After a few seconds, your display should show an image like this:

Full Example Code

Here is the full example code.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import digitalio

import busio

import board

from adafruit_epd.epd import Adafruit_EPD

from adafruit_epd.il0373 import Adafruit_IL0373

from adafruit_epd.il91874 import Adafruit_IL91874 # pylint: disable=unused-import

from adafruit_epd.il0398 import Adafruit_IL0398 # pylint: disable=unused-import

from adafruit_epd.ssd1608 import Adafruit_SSD1608 # pylint: disable=unused-import

from adafruit_epd.ssd1675 import Adafruit_SSD1675 # pylint: disable=unused-import

from adafruit_epd.ssd1680 import Adafruit_SSD1680 # pylint: disable=unused-import

from adafruit_epd.ssd1681 import Adafruit_SSD1681 # pylint: disable=unused-import

from adafruit_epd.uc8151d import Adafruit_UC8151D # pylint: disable=unused-import

create the spi device and pins we will need

To run the code sample below, you will need to change the pins the same way as

you did in the Tri-color Bitmap Example.

©Adafruit Industries Page 38 of 50

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

ecs = digitalio.DigitalInOut(board.D12)

dc = digitalio.DigitalInOut(board.D11)

srcs = digitalio.DigitalInOut(board.D10) # can be None to use internal memory

rst = digitalio.DigitalInOut(board.D9) # can be None to not use this pin

busy = digitalio.DigitalInOut(board.D5) # can be None to not use this pin

give them all to our drivers

print("Creating display")

display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display

display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display

display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color display

display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display

display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display

display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display

display = Adafruit_UC8151D(128, 296, # 2.9" mono flexible display

display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display

display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display

display = Adafruit_IL0373(

 104,

 212, # 2.13" Tri-color display

 spi,

 cs_pin=ecs,

 dc_pin=dc,

 sramcs_pin=srcs,

 rst_pin=rst,

 busy_pin=busy,

)

IF YOU HAVE A 2.13" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, False)

display.set_color_buffer(1, False)

IF YOU HAVE A 2.9" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, True)

display.set_color_buffer(1, True)

display.rotation = 1

clear the buffer

print("Clear buffer")

display.fill(Adafruit_EPD.WHITE)

display.pixel(10, 100, Adafruit_EPD.BLACK)

print("Draw Rectangles")

display.fill_rect(5, 5, 10, 10, Adafruit_EPD.RED)

display.rect(0, 0, 20, 30, Adafruit_EPD.BLACK)

print("Draw lines")

display.line(0, 0, display.width - 1, display.height - 1, Adafruit_EPD.BLACK)

display.line(0, display.height - 1, display.width - 1, 0, Adafruit_EPD.RED)

print("Draw text")

display.text("hello world", 25, 10, Adafruit_EPD.BLACK)

display.display()

Image Drawing with Pillow

In this image, we will use Pillow to resize and crop the image automatically and draw

it the the ePaper Display. Pillow is really powerful and with it you can open and render

additional file formats such as PNG or JPG. Let's start with downloading a PNG of

blinka that has been adjusted down to 3 colors so it prints nicely on an ePaper

©Adafruit Industries Page 39 of 50

Display. We are using PNG for this because it is a lossless format and won't introduce

unexpected colors in.

Make sure you save it as blinka.png and place it in the same folder as your script.

Here's the code we'll be loading onto the Raspberry Pi. Go ahead and copy it onto

your Raspberry Pi and save it as epd_pillow_image.py. We'll go over the interesting

parts.

SPDX-FileCopyrightText: 2019 Melissa LeBlanc-Williams for Adafruit Industries

SPDX-License-Identifier: MIT

"""

Image resizing and drawing using the Pillow Library. For the image, check out the

associated Adafruit Learn guide at:

https://learn.adafruit.com/adafruit-eink-display-breakouts/python-code

"""

import digitalio

import busio

import board

from PIL import Image

from adafruit_epd.il0373 import Adafruit_IL0373

from adafruit_epd.il91874 import Adafruit_IL91874 # pylint: disable=unused-import

from adafruit_epd.il0398 import Adafruit_IL0398 # pylint: disable=unused-import

from adafruit_epd.ssd1608 import Adafruit_SSD1608 # pylint: disable=unused-import

from adafruit_epd.ssd1675 import Adafruit_SSD1675 # pylint: disable=unused-import

from adafruit_epd.ssd1680 import Adafruit_SSD1680 # pylint: disable=unused-import

from adafruit_epd.ssd1681 import Adafruit_SSD1681 # pylint: disable=unused-import

from adafruit_epd.uc8151d import Adafruit_UC8151D # pylint: disable=unused-import

create the spi device and pins we will need

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

ecs = digitalio.DigitalInOut(board.CE0)

dc = digitalio.DigitalInOut(board.D22)

srcs = None

rst = digitalio.DigitalInOut(board.D27)

busy = digitalio.DigitalInOut(board.D17)

give them all to our driver

©Adafruit Industries Page 40 of 50

display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display

display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display

display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color or mono display

display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display

display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display

display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display

display = Adafruit_UC8151D(128, 296, # 2.9" mono flexible display

display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display

display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display

display = Adafruit_IL0373(

 104,

 212, # 2.13" Tri-color display

 spi,

 cs_pin=ecs,

 dc_pin=dc,

 sramcs_pin=srcs,

 rst_pin=rst,

 busy_pin=busy,

)

IF YOU HAVE A 2.13" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, False)

display.set_color_buffer(1, False)

IF YOU HAVE A 2.9" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, True)

display.set_color_buffer(1, True)

display.rotation = 1

image = Image.open("blinka.png")

Scale the image to the smaller screen dimension

image_ratio = image.width / image.height

screen_ratio = display.width / display.height

if screen_ratio < image_ratio:

 scaled_width = image.width * display.height // image.height

 scaled_height = display.height

else:

 scaled_width = display.width

 scaled_height = image.height * display.width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Crop and center the image

x = scaled_width // 2 - display.width // 2

y = scaled_height // 2 - display.height // 2

image = image.crop((x, y, x + display.width, y + display.height)).convert("RGB")

Convert to Monochrome and Add dithering

image = image.convert("1").convert("L")

Display image.

display.image(image)

display.display()

So we start with our usual imports including a couple of Pillow modules and the

ePaper display drivers.

import digitalio

import busio

import board

from PIL import Image, ImageDraw

from adafruit_epd.il0373 import Adafruit_IL0373

from adafruit_epd.il91874 import Adafruit_IL91874

from adafruit_epd.il0398 import Adafruit_IL0398

from adafruit_epd.ssd1608 import Adafruit_SSD1608

©Adafruit Industries Page 41 of 50

from adafruit_epd.ssd1675 import Adafruit_SSD1675

from adafruit_epd.ssd1681 import Adafruit_SSD1681

That is followed by initializing the SPI bus and defining a few pins here. The reason

we chose these is because they allow you to use the same code with the EPD

bonnets if you chose to do so.

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

ecs = digitalio.DigitalInOut(board.CE0)

dc = digitalio.DigitalInOut(board.D22)

srcs = None

rst = digitalio.DigitalInOut(board.D27)

busy = digitalio.DigitalInOut(board.D17)

We wanted to make these examples work on as many displays as possible with very

few changes. The 2.13" Tri-color display is selected by default. For other displays, go

ahead and comment out the following lines:

display = Adafruit_IL0373(

 104,

 212, # 2.13" Tri-color display

and uncomment the line appropriate for your display.

#display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display

#display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display

#display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display

#display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display

#display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display

#display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display

#display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display

display = Adafruit_IL0373(

 104,

 212, # 2.13" Tri-color display

 spi,

 cs_pin=ecs,

 dc_pin=dc,

 sramcs_pin=srcs,

 rst_pin=rst,

 busy_pin=busy

)

Next change the rotation setting to 2 .

display.rotation = 2

Next we open the Blinka image, which we've named blinka.png, which assumes it is in

the same directory that you are running the script from. Feel free to change it if it

doesn't match your configuration.

©Adafruit Industries Page 42 of 50

image = Image.open("blinka.png")

Here's where it starts to get interesting. We want to scale the image so that it matches

either the width or height of the display, depending on which is smaller, so that we

have some of the image to chop off when we crop it. So we start by calculating the

width to height ration of both the display and the image. If the height is the closer of

the dimensions, we want to match the image height to the display height and let it be

a bit wider than the display. Otherwise, we want to do the opposite.

Once we've figured out how we're going to scale it, we pass in the new dimensions

and using a Bicubic rescaling method, we reassign the newly rescaled image back

to image . Pillow has quite a few different methods to choose from, but Bicubic does

a great job and is reasonably fast.

Nearest actually gives a little better result with the Tri-color eInks, but loses detail with

displaying a color image on the monochrome display, so we decided to go with the

best balance.

image_ratio = image.width / image.height

screen_ratio = display.width / display.height

if screen_ratio < image_ratio:

 scaled_width = image.width * display.height // image.height

 scaled_height = display.height

else:

 scaled_width = display.width

 scaled_height = image.height * display.width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Next we want to figure the starting x and y points of the image where we want to

begin cropping it so that it ends up centered. We do that by using a standard

centering function, which is basically requesting the difference of the center of the

display and the center of the image. Just like with scaling, we replace the image vari

able with the newly cropped image.

x = scaled_width // 2 - display.width // 2

y = scaled_height // 2 - display.height // 2

image = image.crop((x, y, x + display.width, y + display.height))

Finally, we take our image , draw it to the frame buffer and display it. At this point,

the image should have the exact same dimensions at the display and fill it completely.

display.image(image)

display.display()

©Adafruit Industries Page 43 of 50

Now go to the command prompt on your Raspberry Pi and run the script with the

following command:

python3 epd_pillow_image.py

After a few seconds, your display should show this image:

Drawing Shapes and Text with Pillow

In the next example, we'll take a look at drawing shapes and text. This is very similar

to the displayio example, but it uses Pillow instead. Go ahead and copy it onto your

Raspberry Pi and save it as epd_pillow_demo.py. Here's the code for that.

SPDX-FileCopyrightText: 2019 Melissa LeBlanc-Williams for Adafruit Industries

SPDX-License-Identifier: MIT

"""

ePaper Display Shapes and Text demo using the Pillow Library.

"""

import digitalio

import busio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit_epd.il0373 import Adafruit_IL0373

from adafruit_epd.il91874 import Adafruit_IL91874 # pylint: disable=unused-import

from adafruit_epd.il0398 import Adafruit_IL0398 # pylint: disable=unused-import

from adafruit_epd.ssd1608 import Adafruit_SSD1608 # pylint: disable=unused-import

from adafruit_epd.ssd1675 import Adafruit_SSD1675 # pylint: disable=unused-import

from adafruit_epd.ssd1680 import Adafruit_SSD1680 # pylint: disable=unused-import

from adafruit_epd.ssd1681 import Adafruit_SSD1681 # pylint: disable=unused-import

from adafruit_epd.uc8151d import Adafruit_UC8151D # pylint: disable=unused-import

©Adafruit Industries Page 44 of 50

First define some color constants

WHITE = (0xFF, 0xFF, 0xFF)

BLACK = (0x00, 0x00, 0x00)

RED = (0xFF, 0x00, 0x00)

Next define some constants to allow easy resizing of shapes and colors

BORDER = 20

FONTSIZE = 24

BACKGROUND_COLOR = BLACK

FOREGROUND_COLOR = WHITE

TEXT_COLOR = RED

create the spi device and pins we will need

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

ecs = digitalio.DigitalInOut(board.CE0)

dc = digitalio.DigitalInOut(board.D22)

srcs = None

rst = digitalio.DigitalInOut(board.D27)

busy = digitalio.DigitalInOut(board.D17)

give them all to our driver

display = Adafruit_SSD1608(200, 200, # 1.54" HD mono display

display = Adafruit_SSD1675(122, 250, # 2.13" HD mono display

display = Adafruit_SSD1680(122, 250, # 2.13" HD Tri-color or mono display

display = Adafruit_SSD1681(200, 200, # 1.54" HD Tri-color display

display = Adafruit_IL91874(176, 264, # 2.7" Tri-color display

display = Adafruit_IL0373(152, 152, # 1.54" Tri-color display

display = Adafruit_UC8151D(128, 296, # 2.9" mono flexible display

display = Adafruit_IL0373(128, 296, # 2.9" Tri-color display

display = Adafruit_IL0398(400, 300, # 4.2" Tri-color display

display = Adafruit_IL0373(

 104,

 212, # 2.13" Tri-color display

 spi,

 cs_pin=ecs,

 dc_pin=dc,

 sramcs_pin=srcs,

 rst_pin=rst,

 busy_pin=busy,

)

IF YOU HAVE A 2.13" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, False)

display.set_color_buffer(1, False)

IF YOU HAVE A 2.9" FLEXIBLE DISPLAY uncomment these lines!

display.set_black_buffer(1, True)

display.set_color_buffer(1, True)

display.rotation = 1

image = Image.new("RGB", (display.width, display.height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a filled box as the background

draw.rectangle((0, 0, display.width - 1, display.height - 1), fill=BACKGROUND_COLOR)

Draw a smaller inner foreground rectangle

draw.rectangle(

 (BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER - 1),

 fill=FOREGROUND_COLOR,

)

Load a TTF Font

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",

FONTSIZE)

©Adafruit Industries Page 45 of 50

Draw Some Text

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

draw.text(

 (display.width // 2 - font_width // 2, display.height // 2 - font_height // 2),

 text,

 font=font,

 fill=TEXT_COLOR,

)

Display image.

display.image(image)

display.display()

Just like in the last example, we'll do our imports, but this time we're including the

ImageDraw and ImageFont Pillow modules because we'll be drawing some text this

time.

import digitalio

import busio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit_epd.il0373 import Adafruit_IL0373

from adafruit_epd.il91874 import Adafruit_IL91874

from adafruit_epd.il0398 import Adafruit_IL0398

from adafruit_epd.ssd1608 import Adafruit_SSD1608

from adafruit_epd.ssd1675 import Adafruit_SSD1675

from adafruit_epd.ssd1681 import Adafruit_SSD1681

Next we define some colors that can be used with Pillow.

WHITE = (0xFF, 0xFF, 0xFF)

BLACK = (0x00, 0x00, 0x00)

RED = (0xFF, 0x00, 0x00)

After that, we create some parameters that are easy to change. If you had a smaller

display for instance, you could reduce the FONTSIZE and BORDER parameters.

The BORDER will be the size in pixels of the green border between the edge of the

display and the inner purple rectangle. The FONTSIZE will be the size of the font in

points so that we can adjust it easily for different displays. You could play around with

the colors as well. One thing to note is that on monochrome displays, the RED will

show up as BLACK .

For the 1.54" display, a BORDER value of 10 and a FONTSIZE value of 20 looks good.

BORDER = 10

FONTSIZE = 20

BACKGROUND_COLOR = BLACK

FOREGROUND_COLOR = WHITE

TEXT_COLOR = RED

©Adafruit Industries Page 46 of 50

After that, the initializer and rotation sections are exactly the same as in the previous

example. If you have are using a different display than the 2.13" Tri-color, go ahead

and adjust your initializer as explained in the previous example. After that, we will

create an image with our dimensions and use that to create

a draw object. The draw object will have all of our drawing functions.

image = Image.new('RGB', (display.width, display.height))

draw = ImageDraw.Draw(image)

Next we clear whatever is on the screen by drawing a rectangle using the BACKGROUN

D_COLOR that takes up the full screen.

draw.rectangle((0, 0, display.width, display.height), fill=BACKGROUND_COLOR)

Next we will draw an inner rectangle using the FOREGROUND_COLOR . We use

the BORDER parameter to calculate the size and position that we want to draw the

rectangle.

draw.rectangle((BORDER, BORDER, display.width - BORDER - 1, display.height - BORDER

- 1),

 fill=FOREGROUND_COLOR)

Next we'll load a TTF font. The DejaVuSans.ttf font should come preloaded on

your Pi in the location in the code. We also make use of the FONTSIZE parameter

that we discussed earlier.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf',

FONTSIZE)

Now we draw the text Hello World onto the center of the display. You may recognize

the centering calculation was the same one we used to center crop the image in the

previous example. In this example though, we get the font size values using the gets

ize() function of the font object.

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

draw.text((display.width//2 - font_width//2, display.height//2 - font_height//2),

 text, font=font, fill=TEXT_COLOR)

Finally, just like before, we display the image.

display.image(image)

display.display()

©Adafruit Industries Page 47 of 50

Now go to the command prompt on your Raspberry Pi and run the script with the

following command:

python3 epd_pillow_demo.py

After a few seconds, your display should show this image:

Downloads

Files

Fritzing object in Adafruit Fritzing Library ()

IL0376F E-Ink interface chip datasheet ()

SSD1608 E-Ink interface chip datasheet ()

SSD1681 Datasheet ()

PCB Files on GitHub ()

•

•

•

•

•

©Adafruit Industries Page 48 of 50

https://github.com/adafruit/Fritzing-Library
https://cdn-learn.adafruit.com/assets/assets/000/057/648/original/IL0376F.pdf
https://cdn-learn.adafruit.com/assets/assets/000/099/574/original/SSD1608.pdf
https://cdn-learn.adafruit.com/assets/assets/000/099/573/original/SSD1681.pdf
https://github.com/adafruit/Adafruit-E-Paper-Display-Breakout-PCBs

Display shape/outline:

Schematic

©Adafruit Industries Page 49 of 50

Fabrication Print

©Adafruit Industries Page 50 of 50

	Adafruit 1.54" eInk Display Breakouts
	Table of Contents
	Overview
	Pinouts
	Assembly
	Wiring
	Usage & Expectations
	Arduino Setup
	Arduino Usage
	Arduino Bitmaps
	CircuitPython Usage
	Python Setup
	Python Usage
	Downloads

	Overview
	We have multiple 1.54" EPD displays:

	Pinouts
	Power Pins
	Data Control Pins
	Assembly
	Assembly
	Add the E-Ink Display
	And Solder!

	Wiring
	Breakout Wiring
	Python Wiring

	Usage & Expectations
	Arduino Setup
	Arduino Usage
	1.54" Monochrome 200x200 Pixel Display
	1.54" Tri-Color 152x152 OR 200x200 Pixel Display

	Configure Pins
	Configure Display Type & Size
	Upload Sketch
	Arduino Bitmaps
	CircuitPython Usage
	CircuitPython eInk displayio Library Installation
	Adafruit_CircuitPython_SSD1608
	Adafruit_CircuitPython_IL0373
	Adafruit_CircuitPython_SSD1681

	Image File
	Monochrome Display Usage
	Configure and Upload

	Tri-Color Display Usage
	HD Tri-Color Display
	Standard Tri-Color Display
	Configure and Upload

	Python Setup
	Python Installation of EPD Library
	Download font5x8.bin
	DejaVu TTF Font
	Pillow Library

	Python Usage
	Monochrome Example
	Tri-Color Example

	Bitmap Example
	Full Example Code
	Image Drawing with Pillow
	Drawing Shapes and Text with Pillow
	Downloads
	Files
	Display shape/outline:
	Schematic
	Fabrication Print

