ANALOG ADRV9026/ADRVI029 System Development User Guide
DEVICES UG-1727

One Technology Way « P.O. Box 9106 « Norwood, MA 02062-9106, U.S.A. « Tel: 781.329.4700 Fax: 781.461.3113 - www.analog.com

ADRV9026/ADRV9029 Integrated Quad RF Transceiver with Observation Path

SCOPE

This user guide is the main source of information for system engineers and software developers using the Analog Devices, Inc., ADRV902x
family of software defined radio transceivers. This family consists of the ADRV9026 integrated quad RF transceiver and the ADRV9029
integrated quad RF transceiver with digital predistortion (DPD) and crest factor reduction (CFR) capability. The content of the user guide
covers all functions that are common to both devices and some that are unique to the ADRV9029 device. Throughout the user guide, the
term transceiver is used with functions that are common to both devices. Functions that are unique to the ADRV9029 device use
ADRV9029 in the description. This user guide must be used in conjunction with the product data sheets to incorporate all necessary
specifications and descriptions when designing these devices into new equipment.

PLEASE SEE THE LAST PAGE FOR AN IMPORTANT
WARNING AND LEGAL TERMS AND CONDITIONS. Rev. 0| Page 1 of 336

http://www.analog.com/
https://www.analog.com/adrv9026
https://www.analog.com/adrv9029
https://www.analog.com/adrv9026
https://www.analog.com/adrv9029
https://www.analog.com

UG-1727 ADRV3026/ADRV93029

TABLE OF CONTENTS

SCOPE et 1
Revision HiStory ... 4
System OVEIVIEWccueicuvicuiisicc e 5
System Architecture Description........c..ccceeeeeecuncencencuneereueecnenn. 6
Software Architectureccccccuvcuncuriunirineincencreseseeeeeeeenes 6
API Folder Structure..........oeeeeeeeuerrercereeenemenensensessesessensenens 6
Private vs. Public AP functions..........eceeeeeecunernerneercuenersennes 7
Hardware Abstraction Layer.........ccucncinincincnnceneinennenn. 8
Software INtegration. ... 10
Software Integration Process Overview 10
Software Package Folder Structure Overviewcoceeeenee. 10
API Software ArchiteCturec.cveuveeeienereenienerneceeceseneneens 11
Implementing Hardware Abstraction Interface...................... 11
Developing the APplicationccceeveenceereneerererereeserenenes 11
Serial Peripheral Interface (SPI)ccocoveuvereeieeerneinceneeneeeeeiennes 20
SPI BUS SIGNALS ..ot nssssesseneenes 20
SPI Data Transfer Protocol.........covceevvieneemcruneunenenencuenennnes 20
SPI Configuration Using API Function 21
Timing Diagrams.........ccoocvcviiinicinicnicrieeceeens 22
System InitialiZationc.cceveecuecuncencininieieiccrcscseeeeeeeeenes 24
Initialization SEQUENCE.......coceuremeuremeurecireeirecirecirecrese e 24
Serializer/Deserializer (SERDES) Interfaceccceoevevevevennnnne. 25
JESD204B and JESD204C Standard .25
Differences Between JESD204B and JESD204C 26
Clock DiStribUtION.......cuucueeeecicrcicirercreeene s 26
Receiver (ADC) Datapathccccveveererneeeercrneeneeneencneenennens 26
Transmitter (DAC) Datapath......c.cccocecveeeerrcrnenenencneennennens 37
Supported Deframer Link Parameters 38
API Software Integration.........cccueeueviunernceniunerecnscesensenncns 48
Implementation Recommendationscccveeveereercereeeeennens 48
Link Initialization and Debugging.........ccccccceuveiviinininininnnnce 49
First Time System Bring Up—Checking Link Integrity........ 49
Sample Iron Python Code for PRBS Testingcccoceveveeeunee 49
PRBS EITOIS....coiiiiiiiiciiciiicees s 50
Static Phase Offset (SPO) TEST to Verify Eye Width 51
Checking JESD204C Link Status.........ceceeeecevcencuncurcrrececenees 58
Selecting the Optimal LMFC and LEMC Offset for a
DEframer........cvuiuiieiiciciiiee e sases 58

Synthesizer Configurationccceeeeeeerernereenersereeusersennns 69
OVEIVIEW ..ttt se e sessessassenes 69
Connections for External Reference Clock (DEVCLK)........ 69
External Reference Clock (DEVCLK) Requirements............ 70
Clock SYNthesizer ... 72
RF SYNthesizer ...t 72
Auxiliary Synthesizer ... 73
Setting the LO Frequencies...........cucueiveuncincencuneiniencineincnn. 73
RF PLL Phase Synchronization ... 76

ARM Processor and Device Calibrations 80
ARM State Machine OVerview..........cccveuveeeieneuneuecienensenenenes 80
System InitialiZation........ccocveueeeeecenernerneeneeeeerenernerseeseeeeenennes 80
Pre-MCS initialiZationceceeeeeeeeeerceneeneueeenenernernerseseeenennes 80
Post-MCS initializationcoeeeevecurecrrecrnenernencrneserneserseennes 81
Device Calibrations........ccecevecurecurecunecrnencinesernencrsesereeseseeenes 81
Initial Calibrationscccevceevveueeneueeneeeneeneeeneeneeseerseenene 82
System Considerations for Initial Calibrations...........c.cc....... 85
Tracking Calibrationsccccccvcuvcureeiemncencencncneneeecieenennas 89
Calibration Guidelines after PLL Frequency Changes.......... 93
Initialization Calibrations to Be Run after Device
INItIAliZAtION ...oueeeeeeici e 103
Tracking Calibration Timing.........cceveeeeevcneuneiversenennns 103
ARM Memory DUmPp ..o 103

Stream Processor and System Control .. 105
Slice Stream ProCessorseeweeeereureuremeeenenneeseeseesesesenens 105
System CONtrol ..o 105
USE CASES cececveriirrncncrriiiseneriesesesesensasesesese e sessssessaesessases 113

Transmitter Overview and Path Control..........cccccvceuveueuneunnce 120
APT COMMANGS ...vrrrrrerirenirereireneiremetsesetsesetsese e ssesesseseseene 120
DAC Full Scale Function (DAC BOOSt)coevvvereeererieenenne 125
adi_adrv9025_TxChannelCfg API Structure....................... 127

Transmitter Power Amplifier Protection 128
PA Protection Descriptionoceeeiceeicieennevcieecienenens 128

Receiver Gain Control and Gain Compensation...................... 135
OVEIVIEW ..ttt aenenene 135
Receiver DataPath ... 135
Manual Gain Control (MGQC).......cceceeeverererereeerereessesenennns 137
Automatic Gain COntrol........ccvveveueinerneeecnernennersenseneens 139

Rev. 0 | Page 2 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

AGC Clock and Gain Block Timing 147
Analog Peak Detector (APD)ccccocveuniuricencencencnncnnenceennes 148
Half-Band 2 Peak Detectorccoceuveeunemeerecrneeereceneerneenns 149
Power Detector ... 151
API Programming..........coeceeeivinimcmcnnnnicenineeseneines 152
AGC Holdover FUNCHONcuvveerieerieirieinieeeieieeeiseeieseees 153
Receiver Gain Mode Switching Using GPIO............ccccccuuc. 153
Gain Control Data Structures.........coeeeveeevremeereerreeerenerseenes 155

Sample Python Script—Peak Detect Mode with Fast Attack

Gain Compensation, Floating Point Formatter and Slicer. 162

Receiver Data Format Data Structure 168
Digital Filter Configurationccceeeeeeecencencnencunceneeeennenn. 172
OVEIVIEW ..t 172
Receiver Signal Path..........coooiiiininiccncncrceeeienas 172
Complex Low IF to Zero IFc.ooveeuveeunecereceneeineceneceneeens 173
Complex Low IF to Real IF.........cccocuiiiiinincicinincicicinnes 174
Zero IF to Real TF.......cocuiuiuieceencereieeneneneneeeseesenennes 174
Dual Band Modecccvcuveueeercrnerreireeneeeienenrenessesneseeensennes 174
Dual Band Mode (Real IF)........ccoeererereerereeeeeeeeeerevevnene 174
HB Filter Only Mode........cocvveveueuneererneeeerereineineineseeensennes 174
Receiver Signal Path Exampleccocoeeueveuerncuneencrnerneennennes 175
Receiver Filter APT Structure........ccvcuecueceecveciecieiieninnns 176
Transmitter Signal Pathc.ccevveecvvinencrninenceineneneennes 178
Transmit Signal Path Exampleccccoveveveineuncieenerncnennnes 180
Transmitter Filter API Structure..........coccucuecincuncuncuncninnnas 181
Observation Receivers Signal path ..., 181
Observation Receiver Signal Path Example..........ccccceceuucec. 183
Observation Receiver Filter API Structure...........cccceeueeueecs 184
Dual Band Overview: Dual-Band 2T2R Solution 185
Dual-Band Configuration and Example Use Cases............. 186
GPIO Configuration.c.cuecveuimieeiesminseieisinseieiecseneseens 188
Digital GPIO Operation..........cecueuiereieimieneuciiesenseieians 188
GPIO_ANA Operation.......ccccevvvivicmenniiiniincncisiicncnenienes 195
General-Purpose Interrupt (GPINT)cccocuviviuniinincrncicinnee 197
PLL GPINT SOUICESovrririimiiniineiinieniesenieseiessnes 198
JESD204B and JESD204C GPINT SOUICEScccerererervmnnes 199
Power Amplifier Protection GPINT Sources.........c.cccceene. 199
ARM GPINT SOUICESuvrrvrrrrirerereinieieieie st 200
Stream Processor SOUICES ... 200

Memory ECC EITOT ... 200
Software Procedures for GPINTcccccouocuvcuniuncuncrncnicnnn. 200
API Commands for GPINTcccccocviiirieincencncrnerncneneeennes 201
Auxiliary Converters and Temperature Sensor............cccceue.... 203
Auxiliary DAC (AUXDACQC)ccccvcununimriieecenciscnsenseneeeeennes 203
Auxiliary ADC (AUXADQC) ... 205
Temperature SENSOT ... 207
SPI2 DEeSCIIPHON ...veveeieticricn ettt 208
SPI2 Configuration.........cc.cueuuuiencueimimneiiniecicsscnsesessenns 208
Transmitter Control with SPI2.........cccoveeivineineinnineincincanns 208
Receiver and Observation Receiver Control with SPI2......210
RF Port Interface OVErviewccvcueueeunerneemncunenenescnsenensenns 212
RF Port Impedance Data.........cccvcreererreeeererneeneenersenenensennes 212

ADS Setup Using Data Access Component and SEDZ File 215

Transmitter Bias and Port Interface........cccceeveuvevvineuncrncnnes 216
General Receiver Path Interface........ccccoocevevrenernerncunernennenn. 217
Impedance Matching Network Examples..........ccoecveuereneunes 218
Matching Component Recommendations............ccccecceuenee 219
Power Management Considerations...........ccccccuecuvcureurcueeennen. 222
SUPPLY CaPaCILY ..o 222
Power Supply Sequence..........cccocvcuveueiucecincencencenenneneeenenenns 222
Power Supply Domain Connections 222
Power Supply Architecture ..., 226
Current ConsSUMPHION......covevevereieeicee e 226
PCB Layout Considerations..........ccoecueuecueueiencrneieiencusesneieens 228
OVEIVIEW ..ottt 228
PCB Material and Stack Up Selection 228
Fanout and Trace Spacing Guidelines 231
Component Placement and Routing Guidelines.................. 231
RF and JESD Transmission Line Layout...........ccccoecuveuriunnnee. 233
Isolation TeChNIQUES.....c.cccveueuremcurecrremerriereeereeeeeeseeseneeaenees 237
Power Management Layout Design.........cccocvvvvvvviiererenninnnen. 239
Analog Signal Routing Considerations 245
Digital Signal Routing Considerations 246
Unused Pin INStructionscccececueeereeeeencencencnnenseeeecnsennes 247
Transceiver Evaluation Software (TES) Operation 248
Initial SEtUP.......vvieieiicic e 248
Hardware Kitc..cccveeeceeeeeererernernernceeeeneneensessesseseesensenenne 248
Requirements...........coveveecieecieceiccececee s 248

Rev. 0 | Page 3 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

Hardware Setup ... 249 DPD Stability Metrics Characterization 295
Hardware OPerationcceceeeveueereeerrerseneusssesesnesessesessesesnenes 251 DPD Characterization for Optimizing the M Threshold ... 298
TES Installationc.cccceeeicincincininenieeccscceeeeceeeeenns 251 Setting Up the DPD Using the GUI........ccccooeuvcuvcuncrnininnncee 298
Starting the Transceiver Evaluation Software...................... 252 Crest Factor Reduction (CFR)cccoeuivveeiveeceeerceeeeeeeeevenenns 303
Normal Operation............cccucevcenceneureurieeeeseeseesesenseseeensen 253 CFR Algorithm OVerviewcccccvcveuneceeencencescrsensenceenes 305
Transmitter Operation ..., 258 Overview of Blocks Used in CFR.........ccccccovuviniinnincrncininnes 306
Receiver Operation...........cceeuevceevererieneiee e 260 API Software Integration.........cccvcueueceverneircuneineinnenseneinnns 306
SCHPHNG. .ot 261 Typical Procedure to Set Up CFR Using the GUI................ 313
C Code GENErationcevevevevereeeeeeereeeesesesesesereseseseesesenns 263 Closed Loop Gain Control (CLGC)......cvvevererrernerrerrerneeerennes 318
NCO SELUP .. 264 CLGC OVEIVIEW ..eeriiininciniiincrenesiescsenesssssssesesssssssssnenes 318
Digital Front End Tab Setupcccccecvereercrncrneincenernceeenenn. 265 Elements 0f CLGCc.cuvvueieeerncinernerneeerenenennesseesesseseesensenens 318

Digital Predistortion (DPD)......cccccocueuneureuneeeerrernernenserseseeensenne 268 CLGC Algorithm OVervVIeW.........cocuveureurereeermerernersenseseesenens 319
DFE System Level OVerview.......cocvcveeeeeverceneeneeserseeenenenne 268 Enabling the CLGC Tracking Calibrationccecoeceeeueence. 320
DPD Introduction and Principle of Operation..................... 269 CLGC Modes of Operation..........cc.veureereereerereereeseesesseenens 321
Transceiver DPD OVEIVIEWccovcuviuvicenicnnicisicnsicninns 270 CLGC Measurementcccuveeuricmrecmsincmsisesisessnseaseseassesens 322
DPD Algorithm OVerview ... 273 CLGC Transmit Attenuation Control 324
Initializing Precalibrated Coefficients During Startup 276 CLGC API SUIMMATY «..uorreerueirrenrerensseesensesessenssssessenses 326
DPD Sample Capture...........ccccucuecucureuremeeemsemceserscrseseeseesenenns 278 CLGC Configuration SUMMAry........cccceceeeecuncercmreuseueeennes 326
DPD DYNAMUICScovuiuimiiciiciiciicisiciiciissssessssassssessens 281 CLGC StAtUS....ovviceiciiciicieiess s ssssssssssssns 326
DPD Regularizationcccuccuvcuncureuemememneencenenserseseeseesenenns 284 CLGC EITOIS ... 327
DPD RODUSENESScuvrueinceinciieieieeeieneeeiessesessesesseaeesesesnenes 286 CLGC Capture EITors......cccceveerevecrereerenesceereineneeerensesesenenenns 328
DPD Actuator Gain Monitoring for Robustness 289 Recommended Sequence for Enabling CLGC Tracking
DPD Actuator Bypasscccocueveueieieieneieeieecececenes 293 CABDIAON oo 328
DPD STATUS....oiieiiiieieiiceieeieese e sssseassesenes 294 Case Study for Configuring CLGC Batch Sampling Period328
Recommended Sequence for Enabling the DPD Tracking CLGC Recommendationscccuecuveueunicicineuncencusiesiennns 333
Calibration........cuceeereeeceerieierenieiseeensseiesesse e sssssesssens 294

REVISION HISTORY

6/2022—Revision 0: Initial Version

Rev. 0 | Page 4 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

SYSTEM OVERVIEW

The ADRV9026 and ADRV 9029 are part of a family of highly integrated RF agile transceivers designed for use in small cell, massive
MIMO, and macro base station equipment used in advanced communications systems. The transceiver contains four independently
controlled transmitters, dedicated observation receiver inputs for monitoring transmitter channel outputs, four independently controlled
receivers, integrated synthesizers, and digital signal processing functions to provide a complete transceiver solution. The transceiver
provides the high radio performance and low power consumption demanded by cellular infrastructure applications, such as macro
2G/3G/4G/5G and massive MIMO base stations. This user guide is designed to encompass description of all functions available in the
these transceivers. Note that some variants may be developed for specific design targets that do not encompass all available functions,
therefore, refer to the data sheets for the specific transceiver to determine which features are included. To avoid confusion, the term
transceiver is used throughout this user guide to refer to any variant that employs a specific function. When a function that applies to a
specific device is described, the device part number is used to delineate which transceiver is being described.

These transceivers are designed to operate over the wide frequency ranges of 650 MHz to 6 GHz. The receiver channels support
bandwidth up to 200 MHz with data transfer across (up to) four JESD204B/JESD204C lanes at rates up to 24.33 Gbps (see data sheets for
specifications). The transmitter channels operate over the same frequency range as the receivers. Each transmitter channel supports up to
450 MHz synthesis bandwidth with data input across (up to) four JESD204B/JESD204C lanes. In addition, local oscillator (LO) routing
allows the transmitters to operate at different frequencies than the receivers for additional flexibility. Two observation receiver channels
are included to provide the capability to monitor feedback from the transmitter outputs. The feedback loops can be used to implement
error correction, calibration, and signal enhancing algorithms. These receivers operate in the same frequency range as the transmitter
channels, and they support up to 450 MHz channel bandwidth to match the output synthesis bandwidth of the transmitter channels.
These channels provide digital datapaths to the internal ARM processor for use in calibration and signal enhancement algorithms.

Multiple fully integrated PLLs are included in the transceiver to provide a high level of flexibility and performance. Two are high
performance, low power fractional-N RF synthesizers that can be configured to supply the transmitters and receivers in different
configurations. A third fractional-N PLL supports an independent frequency for the observation receiver channels. Other clock PLLs are
included to generate the converter and digital clocks for signal processing and communication interfaces.

The power supply for each block is distributed across four different voltage supplies, three analog voltage supplies and one digital voltage
supply. The analog supplies are 1.8 V, 1.3V, and 1.0 V. These supplies are fed directly to the power inputs for some blocks and buffered by
internal low dropout (LDO) regulators for other functions for maximum performance. The digital processing blocks are supplied by a
1.0 V source. In addition, a 1.8 V supply supplies all GPIO and interface ports that connect with the baseband processor.

See the functional block diagram in the respective data sheets for a high level view of the functions in each transceiver. Descriptions of
each block with setup and control details are provided in subsequent sections of this document.

Rev. 0 | Page 5 of 336

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9029?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

SYSTEM ARCHITECTURE DESCRIPTION

Analog Devices developed a proprietary application programming interface (API) software for the these transceiver devices. However,
this section outlines the overall architecture, folder structure, and methods for using API software on the customer platform, but this
section does not explain the API library functions. Detailed information regarding the API functions is in the doxygen file included with
the API software (adrv9025.chm) located at /c_src/doc. This file can also be viewed in the Help tab on the ADRVTRX transceiver
evaluation software (TES) used for controlling the evaluation platform. Note that ADRV9025 is the generic transceiver reference number
for the ADRV902x family; all API functions use the ADRV9025 number to delineate the product from other transceiver products. With
respect to this user guide, ADRV9025 is interchangeable with ADRV9026 and ADRV9029.

SOFTWARE ARCHITECTURE
Figure 2 illustrates the software architecture for the system evaluation platform.
This architecture can be broadly divided into the following three main layers:

e Hardware abstraction layer: consists of device drivers and device specific code.

e Middleware layer: consists of device APIs and other auxiliary layer functions, and resides in the platform layer.

e Application layer: consists of radio application software running on a baseband processor. The baseband processor can be an
embedded processor or a PC running a digital signal processing application, such as MATLAB®, that processes baseband data.

API FOLDER STRUCTURE

Source files are provided by Analog Devices in the folder structure shown in Figure 1. Note that the baseline device, ADRV9025, is used
in the source file folder structure. Analog Devices understands that each developer may desire to use a different folder structure. Whereas
Analog Devices provides API source code releases in the folder structure shown in Figure 1, the developer can organize the API into a
custom folder organization. Creating a new folder structure, however, does not permit the developer the right to modify the content of
the API source code. Modifying the content of any API source file is not allowed because such modification causes issues with supporting
the API and complicates updates to future API code releases.

4 | c_src
4 .| boards
Poos adred025
4 L[| common
B adi_errar
B o adi_hal
B o7 adi_logging
I [B] adi_commaonh
I+ [8] adi_common_macros.h
B[R adi_common_types.h
4] devices
oo add528
Poos adre9025
oo fpga
B fpgaldnln
4 .| platforms
B adsh
B2 adse
B+ adi_platform.c
b [A] adi_platfarm.h .
B[R adi_platform_types.h E

Figure 1. APl Folder Structure
Rev. 0 | Page 6 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-1721

| GUI || NUNIT TEST (C#) | |LABVIEW || MATLAB |

}RESIDES INPC APPLICATION LAYER
| TRANSPORT LAYER (SERVER AND CLIENT) |

| TRANSCEIVER WRAPPER LAYER C++ |

ADI
COMMON ADRV902 BOABRODA sR:;\fg: II;UNCTION LisT
oano | x | RESIDES INPLATFORM | 0
UNIT TEST
AUXILIARY LAYER
ey " ADI ADRV902x DEVICE AT

« LOGGING FUNLITY s ADI DEVICE FPGA|[CLOCK

« ERROR) API (PUBLIC) APl || ~API
POWER

[ADI DEVICE API (PRIVATE) | ICAPI

PLATFORM LIBRARIES AND HARDWARE ABSTRACTION LAYER A
SPI TIMER LOGGING |[FPGAREGS || FPGA DDR MEM HARDWARE
Lll)Nle\)/(Elch g-?:gz SPIDEV)) INUX rt LIBRARY || fprintfTO Rx/Tx WAVEFORMS S\;:S"fIIEEM ABSTRACTION LAYER o
KERNEL | “NanoSLEEP() |[FILE sysTem || U'O KERNEL [l 0 KERNEL DRIVER g
DRIVER DRIVER | 2

Figure 2. ADRV9025 API Software Architecture (Analog Devices Evaluation Platform)

Devices Folder (/c_src/devices)

The devices folder (/c_src/devices) includes the main API code for the transceiver as well as the Analog Devices clock chip AD9528
(/ad9528 folder). The /adrv9025 folder contains the high level function prototypes, data types, macros, and source code to build the final
user software system. The user is strictly forbidden to modify the files contained in the /adrv9025 and /ad9528 folders. Note that
software support cannot be provided if these files have been modified. Analog Devices maintains this code. The only exception is that the
developer may modify user-selectable #define macros, such as ADI_ADRV9025_VERBOSE mode to enable or disable API logging, and
user configurable macros defined in /adrv9025/public/include/adi_adrv9025_user.h.

Platforms Folder (/c_src/platforms)

The platforms folder, named /c_src/platforms, provides the means for a developer to insert custom platform hardware driver code for
system integration with the API. The adi_platform.c/.h files contain function pointers and the required prototypes necessary for the API
to work correctly. It is important that the function prototypes in adi_platform.c do not change. The developer is responsible for
implementing the code for each adi_platform.c function to insure the correct hardware drivers are called for the platform hardware of
the user. In the example code provided by Analog Devices in adi_platform.c, the function pointers are assigned to call the Analog
Devices ADS9 platform functions used by the evaluation system. To allow for easy platform swapping, Analog Devices maintains a
generic implementation of adi_platform.c. To support another platform, assign the function pointers in adi_platform.c to call the
platform functions specific for the platform hardware of the user.

API doxygen (adrv9025.chm) File (/c_src/doc)

The /c_src/doc folder contains the device API doxygen (adrv9025.chm) file for user reference. It is in compressed HTML format. For
security reasons, .chm files can only be opened from a local drive. If you attempt to open from a network drive, the file may look empty.

PRIVATE vs. PUBLIC APl FUNCTIONS

The API is made up of multiple .c and .h files. The API is written in the C computer programming language, so there are no language
modifiers to identify a function as private or public as commonly used in object oriented languages. Per the Analog Devices coding
standard, public API functions are denoted by the function name prepended with adi_adrv9025_FunctionName(). The application layer
is free to use any API function prepended with the adi_adrv9025_ naming. Private helper functions lack the adi_ prefix, and are not
intended to be called by the customer application.

Most functions in the API are prefixed with adi_adrv9025_ and are for public use. However, many of these functions are never called
directly from the application layer of the developer. Utility functions that abstract some common operations, specifically initialization of
the device, are provided in adi_adrv9025_utility.c. For this reason, the majority of the initialization and other helper functions have been
separated from the top level adi_adrv9025.c/adi_adrv9025.h files to help the developer focus on the most commonly and widely used
functions by the application layer program.

Rev. 0| Page 7 of 336

https://www.analog.com/ad9528?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/ADS9?doc=ADRV9026_System_Development_User_Guide_UG-1727.pdf
https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

HARDWARE ABSTRACTION LAYER

The hardware abstraction layer (HAL) interface is a library of functions that the transceiver API uses when it must access the target
platform hardware. The implementation of this interface is platform dependent and must be implemented by the end user in adi_platform.c.
The current adi_platform.c provides example code that calls the HAL functions for the ADS9 evaluation platform specific functions.

The adi_platform.c HAL functions are function pointers that must be initialized by creating a customer supplied, platform specific
function and pointing the associated HAL function pointer to the customer supplied function.

The following is a snippet from the adi_platform.c provided for the ADS9 mother board, demonstrating assignment of adi_hal_ function
pointers to ADS9 specific functions:

adi hal HwOpen = ads9 HwOpen;

adi hal HwClose = ads9 HwClose;

adi hal HwReset = ads9 HwReset;

adi hal DevHalCfgCreate = ads9 DevHalCfgCreate;
adi hal DevHalCfgFree = ads9 DevHalCfgFree;

adi_hal SpiInit = ads9 Spilnit;
adi hal SpiWrite = ads9 SpiWrite v2;
adi hal SpiRead = ads9 SpiRead v2;

adi hal LogFileOpen = ads9 LogFileOpen;
adi hal LogLevelSet = ads9 LogLevelSet;
adi_hal LogLevelGet = ads9 LogLevelGet;

adi_hal LogWrite = ads9 LogWrite;
adi hal LogFileClose = ads9 LogFileClose;

adi hal Wait us = ads9 TimerWait us;

adi hal Wait ms = ads9 TimerWait ms;

/* only required to support the ADI FPGA*/

adi hal BbicRegisterRead = ads9 BbicRegisterRead;
adi hal BbicRegisterWrite = ads9 BbicRegisterWrite;
adi hal BbicRegistersRead = ads9 BbicRegistersRead;

adi hal BbicRegistersWrite = ads9 BbicRegistersWrite;

Hardware Functions

Access to the SPI controller that communicates with the Analog Devices transceiver is required. The SPI details are illustrated in the
Serial Peripheral Interface (SPI) section. In addition, control of the hardware reset signal that controls the RESET pin is required. This is
usually implemented using a platform processor GPIO. For more details of the RESET pin, refer to the target platform schematic and
transceiver data sheet that can be found in the folder at the following link: ADRV9026 Datasheet and Product Info.

Logging Functions

The API provides a simple logging feature function that may be enabled for debugging purposes. This feature requires an implementation
for the adi_hal_LogWrite function. The APIs optionally call to send debug information to the system via the HAL. The function
adi_hal_LogLevelSet may be used to configure HAL flags to configure how the HAL processes the various message types from the API
layer. The open hardware function, adi_hal_HwOpen, calls adi_hal_LogWrite to set the desired logging operation. Available logging
levels are given by the functions shown in Table 1.

Rev. 0 | Page 8 of 336

https://www.analog.com/en/products/ADRV9026.html
https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Table 1. Logging Levels

Function Name Purpose

ADI_COMMON_LOG_NONE All types of log messages not selected
ADI_COMMON_LOG_MSG Log message type

ADI_COMMON_LOG_WARN Warning message type

ADI_COMMON_LOG_ERR Error message type

ADI_COMMON_LOG_API API function entry for logging purposes
ADI_COMMON_LOG_API_PRIV Private API function entry for logging purposes
ADI_COMMON_LOG_BF Bit field function entry for logging purposes
ADI_COMMON_LOG_HAL Analog Devices HAL function entry for logging purposes
ADI_COMMON_LOG_SPI SPI transaction type

ADI_COMMON_LOG_ALL All types of log messages selected

Multiple Device Support

For applications with multiple transceivers, the HAL layer requires a reference to the targeted device and its hardware particulars, such as
SPI chip select and reset signal. The HAL function prototypes first parameter, void* devHalCfg, provides the platform layer functions
with device specific settings, such as SPI chip select and log file names. The devHalCfg pointer is void to the device API layer because the
device API layer has no knowledge of the platform. This allows each platform to use a different devHalCfg structure that properly
represents the specific hardware on the platform.

Note that for the Analog Devices transceiver AP, there is a requirement that only one thread may control and configure a specific device
instance at any given time.

devHalinfo

To pass a target device information from the application to the adi_platform.c HAL functions, the API layer passes a void pointer
parameter, called devHalInfo. This void pointer acts as a state container for the relevant hardware information for a particular device.
Note that within the platform layer (adi_platform.h), devHalInfo is the same as devHalCfg.

The API user must define this state container as per system HAL implementation requirements. The user may implement any structure to
pass any hardware configuration information that the hardware requires between the application layer and platform layer. This state
container may be used to transfer device reference information in multithreaded and multitransceiver systems.

The application passes the device state container, devHallnfo, via the API transceiver device structure, for example the adi_adrv9025_Device_t.
The API function does not read or write the (void *) devHallnfo, but passes it as a parameter to all HAL function calls.

Table 2. HAL Interface Functions for User Integration

Function Name Purpose

adi_hal_HwOpen

adi_hal_HwClose
adi_hal_HwReset
adi_hal_SpiWrite
adi_hal_SpiRead

adi_hal_Wait_us
adi_hal_Wait_ms
adi_hal_LogFileOpen
adi_hal_LogLevelSet
adi_hal_LogLevelGet
adi_hal_LogWrite
adi_hal_LogFileClose

Open and initialize all platform drivers/resources and peripherals required to control the transceiver device (for example, SPI,
timer, and logging)

Close any resources opened by adi_hal_HwOpen

Toggle the hardware reset signal for the transceiver device

Write an array of data bytes on a targeted SPI device (address bytes are packed into the byte array before calling this function)

Read an array of data bytes from a targeted SPI device (address bytes are provided by a TxData array, which are packed into
the byte array before calling this function)

Perform a wait/thread sleep in units of microseconds

Perform a wait/thread sleep in units of milliseconds

Open afile for logging

Mask to set the severity of information to write to the log (Error/Warning/Message)
Get the current log level setting

Log a debug message (message, warning, error) from the API to the platform log
Function to close the log file

adi_hal_DevHalCfgCreate This function allows the platform to allocate and configure the devHalCfg structure
adi_hal_DevHalCfgFree This function allows the platform to deallocate the devHalCfg structure
adi_hal_BbicRegisterRead This function is used to communicate with the baseband processor (FPGA)
adi_hal_BbicRegisterWrite This function is used to communicate with the baseband processor (FPGA)
adi_hal_BbicRegistersRead This function is used to communicate with the baseband processor (FPGA)

)

adi_hal_BbicRegistersWrite This function is used to communicate with the baseband processor (FPGA

Rev. 0 | Page 9 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

SOFTWARE INTEGRATION

The ADRV9025 API package was developed on the Analog Devices ADS9 reference platform utilizing a Xilinx” MicroZed™ running a
Linux variant. This section describes how to use the provided API in a custom hardware/software environment. This is readily
accomplished because the API was developed abiding by ANSI C constructs while maintaining Linux system call transparency. The ANSI
C standard was followed to ensure agnostic processor and operating system integration with the API code.

SOFTWARE INTEGRATION PROCESS OVERVIEW
The following steps can be followed to integrated Analog Devices API into functioning system software:

e Transceiver Device API Integration: The API source code can be integrated into the radio system software deployed on the baseband
processor to control the Analog Devices transceiver operations.

e Integration of Transceiver Specific Files: Platform files which are necessary for the Analog Devices transceiver to function are added
to the system software.

e Integration of Drivers in Hardware Abstraction Layer: The API software provided by Analog Devices communicates with the
transceiver through an SPI interface, accessed via the HAL. The references to the SPI driver must be updated by the user in the HAL.

¢ Compilation and Programming: When the files required for software integration are available, the device API can be compiled, and
the transceiver specific platform files programmed into the transceiver.

INTEGRATION OF INTEGRATION OF
TRANSCEIVER DEVICE TRANSCEIVER SPECIFIC DRIVERS IN THE COMPILATIONAND | 8
API INTEGRATION FILES (FW, STREAM, HARDWARE PROGRAMMING g
GAIN TABLES, PROFILE) ABSTRACTION LAYER 5

Figure 3. Software Integration Process Steps

SOFTWARE PACKAGE FOLDER STRUCTURE OVERVIEW
The software package delivered follows the structure shown in Figure 4. The software package consists of the following four main folders:

e API—contains the API C source code for the ADRV902x family of transceiver devices.

e Firmware—contains the firmware binaries generated for the embedded ARM processor core in the ADRV902x family devices.

¢ Gain Tables—contains the receiver gain table, receiver gain compensated gain table, and the transmit path attenuation table used by
the ADRV902x family devices.

e GUI—contains an installation package for the transceiver evaluation software, which can be used to evaluate the transceiver, and
generate important platform files such as the stream and the use case profile used to initialize the device.

7 Adi.Adrv9025.Api
= Adi.Adrv9025.Firmware

] ADRV9025_DPDCORE_FW.bin
] ADRV9025_FW.bin

= Adi.Adrv9025.GainTables

] RxGainTable.csv
] RxGainTable_GainCompensated.csv
] TxAttenTable.csv
~ Adi.Adrv9025.Gui
('] ADRV9025 Transceiver Evaluation Software_x64_FULL.exe

('] ADRV9025 Transceiver Evaluation Software_x86_FULL.exe

22770-004

Figure 4. Software Package Folder Structure

Rev. 0 | Page 10 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

API SOFTWARE ARCHITECTURE

The API architecture is implemented as three main layers, as shown in Figure 5. This section describes how to use the API in a custom
embedded software environment. This is readily accomplished because the API was developed abiding by ANSI C constructs while
maintaining Linux system call transparency. The ANSI C standard was followed to ensure agnostic processor and operating system
integration with the ADRV902x transceiver family-based API code.

DEVICE LAYER
| ADRV902x CUSTOMER
CANNOT
COMMON MODIFY
HAL LOGGING ERROR
PLATFORM LAYER .
adi_platform
IS AN
ADI_PLATFORM INTERFACE
PLATFORM LAYER THAT
SPI LOGGING TIMER THE CUSTOMER
adi_hal_HwOpen NEEDS TO MAP
adi_hal_HwClose adi_hal_SpiWrite adi_hal_LogFileOpen adi_hal_Wait_us TO THEIR HAL
adi_hal_HwReset adi_hal_SpiRead adi_hal_LogLevelSet adi_hal_Wait_ms THROUGH THE
adi_hal_DevHalCfgCreate adi_hal_LogLevelGet FUNCTIONS
adi_hal_DevHalCfgFree adi_hal_LogWrite POINTERS
HAL LAYER HAL
USTOMER | o
| PLATFORM | | SPI | | LOGGING | | TIMER | IMPLEMENTATION | §
8

Figure 5. Software Integration
IMPLEMENTING HARDWARE ABSTRACTION INTERFACE

Users that develop code to target custom hardware platforms use different drivers for the peripherals, such as the SPI and GPIO compared to the
drivers chosen for the Analog Devices evaluation platform. The Analog Devices HAL interface is a library of functions that the API uses
when it must access the target platform hardware. The Analog Devices HAL is defined by adi_platform.h. The implementation of this
interface is platform dependent and is implemented by the developer in a platform specific subfolder. The prototypes of the required
functions defined in adi_platform.h may not be modified, because this breaks the API. Refer to Table 2 for the functions required by the
HAL interface for integration.

DEVELOPING THE APPLICATION

The /c_src/app/main.c file provides a user example demonstrating top level initialization. The example application was written to
demonstrate initialization of one device, initialize the transmitter, and provide examples of calling the HAL functions and key initialization
functions, such as adi_adrv9025_PreMcsInit_v2. Initialization of the transmitter and loading of the adi_adrv9025_Init_t structure are
omitted from the example code contained here for brevity. The example project also demonstrates how to load the adi_adrv9025_Init_t
structure from a JSON file or using initdata.c files.

The user application must allocate and clear the device and init structures. The adi_adrv9025_Device_t data structure is used to describe
or point to a particular device. The adi_adrv9025_Init_t structure is used to contain the init profile of the user.

An adi_adrv9025_Device_t pointer to the specific device instance is as follows:

typedef struct adi adrv9025 Device

{

adi common Device t common;
adi adrv9025 Info t devStateInfo;
adi adrv9025 SpiSettings t spiSettings;
} adi adrv9025 Device t;
typedef struct adi adrv9025 Init
{
adi adrv9025 ClockSettings t clocks;
adi_ adrv9025 GpInterruptSettings t gplInterrupts;
adi adrv9025 RxSettings t rx;
adi adrv9025 TxSettings t tx;

Rev.0 | Page 11 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

adi adrv9025 DataInterfaceCfg t dataInterface;
} adi adrv9025 Init t;
To support multiple devices in a single system, the application layer code must instantiate multiple adi_adrv9025_Device_t structures to
describe each physical device. Multiple devices can have their own adi_adrv9025_Init_t structure instance, or share a common init
structure if they are configured the same.
The devHallInfo is defined as a void pointer and allows the user to define and pass any platform hardware settings to the platform HAL
layer functions. For example, devHalInfo might contain information such as the SPI chip select to be used for the physical device. The
API does not use the devHalInfo member, and therefore does not define the information it contains. Note that the API functions are
shared across all instances of physical devices. The devHalInfo structure defined by the developer identifies which physical device is
targeted (SPI chip select) when a particular API function is called. The developer may need to store other hardware information unique
to a particular device in this structure, such as timer instances, log file information to allow for multithreading. It is expected that only
one thread uses the API to a particular device.
The devStateInfo member is of the adi_adrv9025_Info_t structure type in the C programming and is a runtime state container for the API. The
application layer must allocate memory for this structure, but only the API writes to the structure. The application layer allocates the devStateInfo
structure with all zeroes. The API uses the devStateInfo structure to keep up with the current state of the API (for example, has it been initialized
and ARM loaded), as well as a debug store for any run-time data, such as error codes and error sources. It is not intended for the application layer
to access the devStateInfo member directly, as API functions are provided to access the last error code and source information.
The adi_adrv9025_Init_t structure is used to contain the customer profile initialization settings to configure a device. This init structure
is passed to the API init functions during the initialization phase. This structure contains the receiver/transmitter/observation receiver
profile settings, system clock settings, JESD204B/JESD204C settings, and transceiver specific SPI slave controller settings. The application
layer passes a pointer to an instance of the adi_adrv9025_Init_t structure for a particular device to handle the majority of the device core
initialization. After initialization is complete, the adi_adrv9025_Init_t structure may be disposed of or deallocated if desired.

#include <stdio.h>

#include "adi platform.h"
#include "adi adrv9025 utilities.h"
#include "adi adrv9025.h"
#include "adi adrv9025 radioctrl.h"

static void adi LoadADRV9025InitStructUseCase24 (adi adrv9025 Init t *init);
static int32 t adi ADRVI9025InitExample (adi adrv9025 Device t *adrv9025Device);
static int32 t adi ADRV9025EnableTxExample (adi adrv9025 Device t *adrv9025Device);
int main ()
{
int32 t recoveryAction = 0;
adi adrv9025 Device t adrv9025Device = {0} ;
adi ADRV9025InitExample (&adrv9025Device) ;
adi ADRV9025EnableTxExample (&adrv9025Device) ;
recoveryAction = adi_adrv9025 HwClose (&adrv9025Device);
if (recoveryAction != ADI ADRV9025 ACT NO ACTION)
{
printf ("Failed closing platform hardware drivers\n");
return -1;
}
adi hal DevHalCfgFree (adrv9025Device.devHalInfo);

return 0;

Rev. 0| Page 12 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

static int32 t adi ADRVI9025InitExample (adi_adrv9025 Device t *adrv9025Device)

{

int32 t recoveryAction = 0;
printf ("Example Init sequence for ADRV9025\n");
if (adrv9025Device == NULL)

{
printf ("NULL ADRV9025 device pointer\n");

return -1

adi adrv9025 Init t adrv9025Init = {0};

/* Platform layer function adi hal DevHalCfgCreate allocates platform specific
settings structure for SPI

driver, logging, etc (per device)*/

void *adrv9025hal = adi hal DevHalCfgCreate ((ADI HAL INTERFACE SPI |

ADI HAL INTERFACE LOG |

ADI HAL INTERFACE HWRESET |

ADI HAL INTERFACE TIMER), 0, "adrv9025Log.txt");

structure\n") ;

if (adrv9025hal == NULL)
{

printf ("Failed allocating platform hardware settings

return -1;

}
adrv9025Device->devHalInfo = adrv9025hal;

/* Load ADRV9025 init structure */
adi LoadADRV9025InitStructUseCase24 (&adrv9025Init);

recoveryAction = adi_ adrv9025 HwOpen (adrv9025Device) ;

if (recoveryAction != ADI_ADRV9025 ACT NO_ ACTION)
{

printf ("Failed opening platform hardware drivers\n");

return -1;

/* Initialize ADRV9025 */
recoveryAction = adi adrv9025 PreMcsInit v2 (adrv9025Device,

&adrv9025Init,

"/home/analog/adrv9025 server/resources/Tokelau M4.bin",

"/home/analog/adrv9025 server/resources/stream imag

e.bin",

"/home/analog/adrv9025 server/resources/RxGainTable.csv",
Rev. 0| Page 13 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

"/home/analog/adrv9025 server/resources/TxAttenTable.csv");

recoveryAction = adi adrv9025 PllFrequencySet (adrv9025Device,
ADI ADRV9025 LOl1 PLL, 3500000000);

return 0;
}
Include Files

For each major function block, there are generally three files: adi_feature.c, adi_feature.h, and adi_feature_types.h. For core API
functionality, Table 3 shows the mandatory .h header files that must be included in the application layer program. Optional add-on API
functions can be included if the application of the developer requires those features. Note that the API places typedef definitions in files
with _types.h suffixes, such as ADRV9025_types.h. These _types.h files are included within their corresponding .h files and do not need
to be manually included in the application layer code.

Note that the ADRV9025_user.h contains the #defines for API timeouts and SPI read intervals, which may be set as needed by the
customer platform. The user files are the only API files that the developer may change.

Table 3. API Mandatory .h Header Files

Mandatory Include Files Description

adi_adrv9025.h Core init functions

adi_adrv9025_error.h Error extension from common error

adi_adrv9025_arm.h ARM related functions

adi_adrv9025_cals.h Calibration related functions

adi_adrv9025_gpio.h General-purpose input/output (GPIO) related functions

adi_adrv9025_data_interface.h | Data interface related functions, JESD204B/JESD204C

adi_adrv9025_hal.h Contains prototypes and macro definitions for transceiver specific HAL wrapper functions

adi_adrv9025_radioctrl.h Functions for controlling the radio

adi_adrv9025_rx.h Receiver related functions

adi_adrv9025_tx.h Transmitter related functions

adi_adrv9025_user.h API timeout and retry definitions

adi_adrv9025_utilities.h Higher level utility functions for init, loading ARM and stream binaries, loading receiver gain table,
transmitter attenuation table (most require file system support)

adi_adrv9025_version.h Version structure

Table 4. API Optional .h Files

Optional (Add On) Include Files Description

adi_adrv9025_agc.h Add-on receiver automatic gain control (AGC) functionality

Rev. 0| Page 14 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

API Error Handling and Debug
Each API function returns an int32_t value representing a recovery action. Recovery actions are divided into the following:

e Warning actions are those that do not have an impact at the time of executing the device API, but can cause performance issues or
logging problems. The value of these actions are positive.

e Error actions are those that cause API not to be able to run and an action is required for API to go back to a good state. The value of
these actions are negative.

The API error structure that is accessed via device.error contains the following various members to narrow the action to be taken:

e errSource: current source of error detected, indicating the source file where the error occurred.
e errCode: current error code
errLine: line of the source code where the error was returned

e errFunc: function name where the error occurred
errFile: file name where the error occurred

e varName: variable name which has the error

e errorMessage: error message to describe the error
e lastAction: last action detected

e newAction: new action detected

API functions respond by telling the application layer what action must be taken due to a possible error in the API function call. The
error structure contains further information to take the adequate action. The possible recovery action return values are listed in Table 5.

Table 5. API Recovery Actions

Recovery Action Name Value | Description
ADI_COMMON_ACT_WARN_CHECK_PARAM 3 API OK: parameter exceeds the range of values allowed
ADI_COMMON_ACT_WARN_RERUN_FEATURE 2 API OK: rerun device feature (ARM init cals)
ADI_COMMON_ACT_WARN_CHECK_INTERFACE | 1 API OK: log not working, this is a warning device programing can continue,
upper layer must decide action to be taken
ADI_COMMON_ACT_NO_ACTION 0 API function completed: no error handling action is required.
ADI_COMMON_ACT_ERR_CHECK_TIMER -1 API OK: timer not working
ADI_COMMON_ACT_ERR_CHECK_PARAM -2 API OK: invalid parameter detected in API
ADI_COMMON_ACT_ERR_RESET_INTERFACE -3 APING: interface not working, device cannot be program or access,
timer/I>)C/SPI/data interface
ADI_COMMON_ACT_ERR_RESET_FEATURE -4 APING: reset device feature (for example, arm init cals)
ADI_COMMON_ACT_ERR_RESET_MODULE -5 API NG: module of device not working (arm not accessible)
ADI_COMMON_ACT_ERR_RESET_FULL -6 APING: full system reset required

The actions can be divided into the following different blocks:

e Parameter

e Parameter either passed to function or member of structure

e This action can be assigned to set a feature/module/interface when it is not configured correctly
e Feature (parts of a module or device)

e GPIO control for transmitter attenuation

e General purpose interrupt

e ARM initial calibrations

e ARM tracking calibrations

e ARM control

e AGC control

e Power amplifier protection

Rev. 0 | Page 15 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

e Module (individual blocks that are contained in the device that are to contain features)
e ARM
e Caching/merging/streaming
e Interface:
e Device interface
e SPI/I*C/data interface
e Log
e Device:
e Target device

API Recovery Action: ADI_COMMON_ACT_NO_ACTION

The ADI_COMMON_ACT_NO_ACTION API recovery action is returned when an API function completes. There is no recovery action
to be performed.

API Recovery Action: ADI_COMMON_ACT_WARN_RERUN_FEATURE

The ADI_COMMON_ACT_WARN_RERUN_FEATURE recovery action is returned when the API detects a failure in any of the device

features.

If a tracking calibration error is detected, it usually is not a catastrophic error, usually resulting in degraded radio performance. The
application layer attempts to recover by resetting the tracking calibration.

If the API detects an error with the transceiver init calibrations, at this point the error severity is high enough that re-running all init
calibrations is required. A full transceiver device reset is not required. It is also not required to reload the ARM firmware of the device.

The following procedure is the suggested application layer action:

. Set PA and other RF front-end components in powered down state.
2. Calladi_adrv9025_ErrorCodeGet() to determine the specific ADIHAL error code and verify ADIHAL is the error source. Log error
code and source.
3. Read ARM calibration status to log debug information on calibration failure, call adi_adrv9025_InitCalDetailedStatusGet()
. Call adi_adrv9025_InitCalsRun() to rerun the init calibrations
5. Call adi_adrv9025_InitCalsWait () and adi_adrv9025_InitCalDetailedStatusGet () to confirm that there is no error in init
calibrations.

API Recovery Action: ADI_COMMON_ACT_WARN_CHECK_INTERFACE

The ADI_COMMON_ACT_WARN_CHECK_INTERFACE API recovery action is returned if the adi_platform has returned an error in
any interface. Further information can be extracted by reading the error structure, which contains extended information about the error.

The following issues are possible scenarios for a check interface action.
Issue: Logging Interface When the Log File Cannot Be Opened Or Written to

The API layer does not return this as an error because it does not directly affect transceiver performance. In addition, this recovery action
does not prevent the API function from completing. Analog Devices suggests that the application layer attempt to close the log file and
reopen to resolve the log file access issue.

Issue: Baseband Processor GPIO Failed to Operate Correctly, but the API Circumvented the Error by Using the SPI Port or
Other Control Mechanism

Because the API was able to complete the API function, the issue is not critical, but the application layer attempts to debug and fix the
issue reported by the adi_common layer with respect to the baseband processor GPIO control. The device.common.error contains the
information for decoding the error, the application layer can use it to debug the root cause of the error further.

Issue: adi_common Returns an Error Reporting that the Timer Is Not Working as Expected

The API uses the timer adi_common functions to perform thread blocking waits to insure that the API does not poll the SPI bus with
100% utilization.

If the timer is reporting an error from the adi_common, it is possible that the API function works correctly, but there may be an impact
on the system due to incorrect usage of system resources.

Rev. 0 | Page 16 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Issue: adi_common Layer Reports a HAL Error While Attempting to Control the Baseband Processor GPIO Pins

If the API function cannot circumvent the error, this action is returned. If the API can circumvent the error, only a warning is returned.

Currently, the only baseband processor GPIO pin used in the adi_common is to reset the transceiver device (RESET pin).

If this error is reported, the application layer attempts to reset the baseband processor GPIO pins that are used within the adi_common
layer of code. If the application layer can resolve the GPIO hardware driver issue, normal operation of the API can resume by retrying the
failed API function.

The following are suggested application layer actions:

e Attempt to reset interface.

e Continue use of API monitoring for future check interface recovery action reports.

e If continued reports of ADI_COMMON_ACT_WARN_CHECK_INTERFACE, a system diagnostic may be required for the
particular hardware.

API Recovery Action: ADI_COMMON_ACT_ERR_CHECK_PARAM

The ADI_COMMON_ACT_ERR_CHECK_PARAM API recovery action is returned if an API parameter range check or null parameter
check failed. In the event that this recovery action is returned, the API function did not complete. It is expected that this recovery action
is only found during the debug phase of development. During application software development, this recovery action informs the
developer to double check the value passed into the API function parameters. When the parameters are corrected to be in the valid range,
or null pointers are corrected, recalling the function allows the API function to complete.

For debug, the developer may access further information located in the error structure, like error code, file name, function name or
variable name, a message is stored in the error message variable describing the error in more detail.

If the application software passes the development test but this recovery action is returned in the field, a bug in the application layer is
highly possible, causing an out of range or null pointer error.

API Recovery Action: ADI_COMMON_ACT_ERR_CHECK_DEVICE

The ADI_COMMON_ACT_ERR_CHECK_DEVICE recovery action is returned when the device detected is not compatible with the
API being executed.

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_INTERFACE

The ADI_COMMON_ACT_ERR_RESET_INTERFACE API recovery action is returned if the ADIHAL layer reports a HAL error while
attempting a SPI read or write transaction. If the ADIHAL function returns a timeout error due to SPI hardware being busy or used by
another thread, the API attempts to retry the SPI operation once. If the SPI transaction fails again, the API reports this recovery action.
This action is also returned if an ADIHAL error is returned due to inability to access the driver.

The following recommended sequence is to implement the suggested application layer actions:

Call to determine the specific ADIHAL error code and verify that ADIHAL is the error source.

Log error code and source.

If the ADIHAL error is a timeout, the API function may be retried.

If the ADIHAL error is not a timeout, application tries resetting the SPI driver and retrying the function call.

R S

If recovery action persists, verify SPI communication with other SPI devices and assess the need for a baseband processor system
reset.

If an API function has detected a condition, only the baseband processor can determine if it is a true error or not. An example is a data
interface error counter threshold overflow. If a data interface counter were to overflow once an hour or once a month, only the baseband
processor can determine if the counter overflow constituted an actual error condition.

The following recommended sequence is to implement the suggested application layer actions:

1. Record the error.
2. Perform any baseband processor determined recovery actions.

Rev. 0| Page 17 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_FEATURE

The ADI_COMMON_ACT_ERR_RESET_FEATURE API recovery action is returned by the API when an error has been detected that
required the reset of a feature of the device. To reset the feature, perform a reconfiguration of the same feature.

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_MODULE
The ADI. COMMON_ACT_ERR_RESET_MODULE API recovery action is returned if the API detects an issue in any of the following modules:

e ARM processor module that requires a complete reset and reload of the ARM firmware. This type of action may be required if the
communication interface to the ARM processor fails or the ARM watchdog timer reports an error. These events are not expected in
production code, but are failsafe mechanisms in the event of a catastrophic error.

e Issue adi_adrv9025_RxTxEnableSet() to disable transmitter to keep hardware in a safe state. If this fails, a full transceiver reset is
required.
e Set power amplifier and other RF front-end components in powered down state.
e Call adi_adrv9025_ErrorCodeGet() to determine the specific error code and verify the error source.
e Log error code and source.
e Dump ARM memory if necessary for debug.
e Dump SPI registers if necessary for debug.
e Reload the stream processor and ARM binary firmware files.
e Continue with normal init sequence to run init calibrations and enable tracking calibrations.

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_DEVICE

The ADI_COMMON_ACT_ERR_RESET_DEVICE recovery action is returned if an API function cannot complete due to a detected error. If
the API cannot correct or circumvent the error, and the severity of the error requires a complete reset of the transceiver device, this action is returned.

The following is the recommended sequence to implement the suggested application layer actions:

1. Put system hardware in safe state.

a. Set the power amplifier and other RF front-end components in powered down state.

b. Hard reset transceiver device (adi_adrv9025_HwReset())
2. Read API error code information for debug.

a. Dump ARM memory if necessary

b. Dump SPI registers if necessary
3. Reinitialize transceiver using normal full initialization sequence.
Restrictions
Developers may not modify any code located in the /c_src/devices/* folder other than changing the adi_platform.c and adi_platform.h
code bodies for hardware driver insertion. Analog Devices maintains the code in /c_src/devices/adrv9025 and /c_src/devices/ad9528.
Analog Devices provides new releases to fix any code bugs in these folders.
No direct SPI read/write operation is permitted when configuring the transceiver or Analog Devices clock chip device. Only use the high-
level API functions defined in /c_src/devices/ad9528/ad9528.h or other public .h files. Do not directly use any SPI read/write functions in

the application layer code for transceiver configuration or control. Analog Devices does not support any customer code containing SPI
writes reverse-engineered from the original API.

Multiple Thread and Multiple Transceiver Application Considerations

For applications with multiple transceivers, the API requires a reference to the targeted device and its hard and soft particulars (for
example, SPI chip-select, reset, and configuration status). The adi_adrv9025_Device_t structure is used to identify each instance of a
physical transceiver device.

For multithreaded applications, there is a requirement that a particular device may only be controlled and configured by a single thread.
Concurrent thread configuration of the same instance of a physical transceiver device is not supported by the APL

Delays, Waits, and Sleeps

A small number of APIs require some time to allow the hardware to complete internal configurations, for example,
adi_adrv9025_PlIFrequencySet(). These APIs request the system to perform a wait or sleep by calling the HAL interface function
adi_hal_Wait_us/adi_hal_Wait_ms. If the HAL interface implementation of the target platform chooses to implement a thread sleep, it is

Rev. 0 | Page 18 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

not permitted for the application to call another API targeting the same transceiver device. The application is required to enter wait/sleep

state and the API to complete before continuing with the configuration of the device.

Table 6 lists the wait/sleep period used by the API. They are defined in adi_adrv9025_user.h. The timeout period values are the

recommended period required to complete the operation. Modifying these values is not recommended and may impact performance.

During this timeout period the status of the transceiver is polled. The frequency of polling the status during this timeout period may be

modified by the user by adjusting the value of the polling interval.

Note that these recommendations may change after evaluation of the device is fully complete.

Table 6. API Internal Wait/Sleep Intervals

Recommended Timeout

Recommended Poll

Wait/Sleep Reference Purpose Period Per ps Interval Per ps
VERIFY_ARM_CHKSUM_XXX Calculation of arm checksum 200000 5000
CLKPLL_CPCAL_XXX Internal clock and PLL configuration 1000000 100000
CLKPLL_LOCK_XXX Internal clock and PLL locking period 1000000 100000
SETARMGPIO_XXX Update ARM information on GPIOs for | 1000000 100000
TDD pin control
SETRFPLL_XXX Configure RF PLL frequency 1000000 100000
GETRFPLL_XXX Retrieve RF PLL frequency 1000000 100000
ABORTINITCALS_XXX Abort initial calibrations 1000000 100000
GETINITCALSTATUS_XXX Retrieving initial calibrations status 1000000 100000
RADIOON_XXXS Enabling radio transmit and receive 1000000 100000
READARMCFG_XXX Reading ARM configurations 1000000 100000
WRITEARMCFG_XXX Updating ARM configurations 1000000 100000
RADIOOFF_XXX Disabling radio transmit and receive 1000000 100000
ENTRACKINGCALS_XXX Enabling tracking calibrations 1000000 100000
RESCHEDULETRACKINGCALS_XXX | Schedule a tracking calibration to run | 1000000 100000
SETTXTOORXMAP_ Set transmitter to observation 1000000 100000
receiver external signal routing
GETTXLOLSTATUS_ Status of transmitter local oscillator 1000000 100000
leakage external tracking cal
GETTXQECSTATUS_ Status of transmitter QEC tracking cal | 1000000 100000
GETRXQECSTATUS_ Status of receiver QEC tracking cal 1000000 100000
GETORXQECSTATUS_ Status of observation receiver QEC 1000000 100000
tracking cal
GETRXHD2STATUS_ Status of receiver HD2 tracking cal 1000000 100000
SENDARMCMD_XXX Sending requests to arm firmware 2000000 100000
GETTEMPERATURE_ Read current temperature 1000000 100000
GETARMBOOTUP_ Waiting for ARM to boot up 1000000 100000

Rev. 0 | Page 19 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

SERIAL PERIPHERAL INTERFACE (SPI)

The SPI bus provides the interface for digital control by a baseband processor. Each SPI register is 8 bits wide, and each register contains
control bits, status monitors, or other settings that control all functions of the transceiver. This section is mainly an information only
section meant to give the user an understanding of the hardware interface used by the baseband processor to control the device. All
control functions are implemented using the API detailed within this user guide and in the documentation included with the software
package. This section contains descriptions and parameters that explain the specifics of this interface.

SPI BUS SIGNALS

The SPI bus consists of the four signals described in this section.

cs

CS is the active low chip select that functions as the bus enable signal driven from the baseband processor to the transceiver. This signal is
an input to the SPI_EN pin. CS is driven low before the first SCLK rising edge and is normally driven high again after the last SCLK
falling edge. The transceiver ignores the clock and data signals while CS is high. CS also frames communication to and from the

transceiver and returns the SPI interface to the ready state when it is driven high.

Forcing CS high in the middle of a transaction aborts part or all of the transaction. If the transaction is aborted before the instruction is
complete or in the middle of the first data word, the state machine returned to the ready state. Any complete data byte transfers prior to
CS deasserting are valid, but all subsequent transfers in a continuous SPI transaction are aborted.

SCLK

SCLK is the serial interface reference clock driven by the baseband processor. This signal is an input to the SPI_CLK pin. It is only active
while CS is low. The minimum SCLK frequency is 10 MHz and the maximum SCLK frequency is 25 MHz. These limits are determined
based on the practical timing requirements of the transceiver system and the physical limitations of the transceiver.

SDIO and SDO

When configured as a 4-wire bus, the SPI utilizes two data signals: SDIO and SDO. SDIO is the data input line driven from the baseband
processor. The signal input to the transceiver is the SPI_DIO pin. SDO is the data output from the transceiver to the baseband processor
in this configuration. The output signal is driven by the SPI_DO pin. When configured as a 3-wire bus, SDIO is used as a bidirectional
data signal that both receives and transmits serial data. The SDO port is disabled in this mode.

The data signals are launched on the falling edge of SCLK and sampled on the rising edge of SCLK by both the baseband processor and
the transceiver. SDIO carries the control field from the baseband processor to the transceiver during all transactions, and it carries the
write data fields during a write transaction. In a 3-wire SPI configuration, SDIO carries the returning read data fields from the transceiver
to the baseband processor during a read transaction. In a 4-wire SPI configuration, SDO carries the returning data fields to the baseband
processor.

The SPI_SDO and SPI_SDIO pins transition to a high impedance state when the cs input is high. The transceiver does not provide any
weak pull-ups or pull-downs on these pins. When SPI_SDO is inactive, it is floated in a high impedance state. If a valid logic state on
SPI_SDO is required at all times, add an external weak pull-up/down (10 kQ value) on the PCB.

SPI DATA TRANSFER PROTOCOL

The SPI is a flexible, synchronous serial communication bus allowing seamless interfacing to many industry standard microcontrollers
and microprocessors. The serial I/O is compatible with most synchronous transfer formats, including both the Motorola SPI and Intel
scalable source routing (SSR) protocols. The control field width for this transceiver is limited to 16 bits, and multibyte IO operation is
allowed. This device cannot be used to control other devices on the bus, it only operates as a slave.

There are two phases to a communication cycle. Phase 1 is the control cycle, which is the writing of a control word into the transceiver.
The control word provides the serial port controller with information regarding the data field transfer cycle, which is Phase 2 of the
communication cycle. The Phase 1 control field defines whether the upcoming data transfer is read or write. It also defines the register
address being accessed.

Rev. 0 | Page 20 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Phase 1 Instruction Format

The 16-bit control field contains the information in Table 7.

Table 7. 16-Bit Control Field

MSB D14:D0

R/W A[14:0]

R/W, Bit 15 of the instruction word, determines whether a read or write data transfer occurs after the instruction byte write. Logic high
indicates a read operation, logic zero indicates a write operation.

D14:D0, Bits A[14:0], specify the starting byte address for the data transfer during Phase 2 of the IO operation.

All byte addresses, both starting and internally generated addresses, are assumed to be valid. That is, if an invalid address (undefined
register) is accessed, the IO operation continues as if the address space were valid. For write operations, the written bits are discarded, and
read operations result in logic zeros at the output.

Phase 2 data transfer is performed in 8 bit words. Both single byte and multibyte transfers can be configured using the API, as described
in the SPI Configuration Using API Function section.

SPI CONFIGURATION USING API FUNCTION

SPI operation is configured via calling adi_adrv9025_SpiCfgSet(). This function is called by the adi_adrv9025_Initialize(), which is called
by adi_adrv9025_PreMcsInit_v2().

The input parameters for adi_adrv9025_PreMcsInit_v2() include the init structure, which is of type adi_adrv9025_Init_t. The
adi_ ADRV9025InitExample() function shows an example of configuring a hard coded init function, which includes the SPI related parameters.

Users can configure SPI settings for the transceiver with different SPI controller configurations by configuring member values of the
adi_adrv9025_SpiSettings_t data structure. The adi_adrv9025_SpiSettings_t data structure parameters are listed in Table 8. Any value
that is not listed in Table 8 is invalid.
typedef struct adi adrv9025 SpiSettings
{
uint8 t msbFirst;
uint8 t enSpiStreaming;
uint8 t autoIncAddrUp;
uint8 t fourWireMode;
adi adrv9025 CmosPadDrvStr e cmosPadDrvStrength;
} adi adrv9025 SpiSettings t;
Table 8. SPI Bus Setup Parameters

Structure Member Value | Function Default
MSBFirst 0x00 | Least significant bit first 0x01
0x01 Most significant bit first
enSpiStreaming 0x00 | Enable single-byte data transfer mode. All communication between the baseband processor and the | 0x00
device uses this mode. Note that this parameter is not implemented in the Analog Devices platform
layer.

0x01 Enable streaming to improve SPI throughput for indirect data transfer using an internal DMA
controller. Note that this parameter is not implemented in the Analog Devices platform layer.

autolncAddrUp 0x00 | Autoincrement. Functionality intended to be used with SPI streaming. Sets address 0x01
autoincrement -> next addr = addr — 4. Note that this parameter is not implemented in the
Analog Devices platform layer.

0x01 Autodecrement. Functionality intended to be used with SPI streaming. Sets address
autodecrement -> next addr = addr + 4. Note that this parameter is not implemented in the
Analog Devices platform layer.

fourWireMode 0x00 | SPIhardware implementation. Use 3-wire SPI (SDIO pin is bidirectional). Figure 8 shows example of 0x01
SPI 3-wire mode of operation. Note that Analog Devices FPGA platform always uses 4-wire mode.

0x01 SPI hardware implementation. Use 4-wire SPI. Figure 6 and Figure 7 show examples of SPI 4-wire
mode of operation. The default mode for Analog Devices FPGA platform is 4-wire mode.

Rev. 0| Page 21 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Structure Member Value | Function Default

cmosPadDrvStrength | 0x00 | 5 pF load at 75 MHz. 0x01
0x01 100 pF load at 100 MHz.

Single Byte Data Transfer

When enSpiStreaming = 0, a single byte data transfer is chosen. In this mode, CS goes active low, the SCLK signal activates, and the
address is transferred from the baseband processor to the transceiver. This mode is always used in direct communication between the
baseband processor and the transceiver.

In LSB mode, the LSB of the address is the first bit transmitted from the baseband processor, followed by the next 14 bits in order from
next LSB to MSB. The next bit signifies if the operation is read (set) or write (clear). If the operation is a write, the baseband processor
transmits the next 8 bits LSB to MSB. If the operation is a read, the transceiver transmits the next 8 bits LSB to MSB.

In MSB mode, the first bit transmitted is the R/W bit that determines if the operation is a read (set) or write (clear). The MSB of the
address is the next bit transmitted from the baseband processor, followed by the remaining 14 bits in order from next MSB to LSB. If the
operation is a write, the baseband processor transmits the next 8 bits MSB to LSB. If the operation is a read, the transceiver transmits the
next 8 bits MSB to LSB.

Single byte data transfer can continue in either mode for multiple byte transfers using the transfer format of address followed by data (A
D A D ...) until the CS signal is driven high. The address must be written for each data byte transfer when using this mode.

Multiple Byte Data Transfer (SPI Streaming)

Multiple byte data transfer (also called SPI streaming) is not utilized in standard communication between the baseband processor and the
transceiver. When enSpiStreaming = 1, data is transferred in multibyte packets, depending on the streaming mode that is enabled. This
mode is used to transfer data indirectly to internal ARM memory using a direct memory access (DMA) controller.

TIMING DIAGRAMS

The diagrams in Figure 6 and Figure 7 illustrate the SPI bus waveforms for a single register write operation and a single register read
operation, respectively. In Figure 6, the value 0x55 is written to Register 0x00A. In Figure 7, Register 0x00A is read and the value returned
by the transceiver is 0x55. If the same operations are performed with a 3-wire bus, the SDO line in Figure 6 is eliminated, and the SDIO
and SDO lines in Figure 7 are combined on the SDIO line. Note that both operations use MSB first mode and all data is latched on the
rising edge of the SCLK signal.

SDO

22770-006

WRITE TO REGISTER 0x00A, VALUE = 0x55
cs \
setK MWWW\IW\IWWWWW\I\E

w [N

READ REGISTER 0x00A, VALUE = 0x55

Figure 6. Nominal Timing Diagram, SPI Write Operation

-

22770-007

Figure 7. Nominal Timing Diagram, SPI Read Operation

Rev. 0 | Page 22 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Table 9 lists the timing specifications for the SPI bus. The relationship between these parameters is shown in Figure 8. This diagram
shows a 3-wire SPI bus timing diagram with the timing parameters marked. Note that this is a single read operation. Therefore, the bus
ready parameter after the data is driven from the transceiver (tuzs) is not shown in Figure 8. Note that the byte to byte delay time (tivr) is
also not shown in Figure 8 because Figure 8 only shows a single byte write operation.

Table 9. SPI Bus Timing Constraint Values

Parameter Min Typ Max Description

tep 40 ns 100 ns SCLK cycle time (clock period)

tmp 10 ns SCLK pulse width

tsc 4ns CS setup time to first SCLK rising edge

the Ons Last SCLK falling edge to CS hold

ts 4ns SDIO data input setup time to SCLK

th Ons SDIO data input hold time to SCLK

tco 10 ns 16 ns SCLK falling edge to output data delay (3-wire or 4-wire mode)
thzm tH tco (max) Bus turnaround time after baseband processor drives the last address bit
thzs 3ns tco (max) Bus turnaround time after transceiver drives the last data bit

tint 400 ns Byte to byte delay time during any single read or write operation

thzm the

tsc tmp tep - - tco
"\1 b t ‘,'
H [— (|-
SCLKDON‘TCARE*L\’\}‘/{,"\’\,\,\,\’\,\}\ M’\,\’\’\’\,J‘DON’TCARE
4

SDIO DON'T CARE)RIWl A14|A13| A12| A11|A10| A9| A8| A7| A6| A5| A4] A3 A2| A1 | AO[

),
¢

,
€

L
A

22770-009

D7| D6 D5| D4| D3| D2| D1|D0[DON’T CARE

Figure 8. 3-Wire SPI Timing with Parameter Labels

Rev. 0 | Page 23 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

SYSTEM INITIALIZATION

This section provides information about the initialization process for the transceiver utilizing the API developed by Analog Devices. Each
subsection describes the developer preparation requirements and the initialization sequence. This section does not explain the API
library functions. Detailed information regarding the API functions can be found in the API doxygen document (adrv9025.chm) located
at /src/doc. Details about API integration and the hardware abstraction interface can be found in the Software Integration section and the
Hardware Abstraction Layer section.

INITIALIZATION SEQUENCE

The initialization sequence is comprised of API calls intermixed with user defined function calls specific to the hardware platform. The
API functions perform all of the necessary tasks for transceiver configuration, calibration, and control. The user is required to insert the
code into the initialization sequence specific to the hardware platform requirements. These platform requirements include but are not
limited to user clock device, user FPGA\ASIC\baseband processor JESD204B and JESD204C interface, data path control, and various
system checks governed by the application.

The initialization process consists of the following steps. Some of the steps are done by the ARM. All functions before loading the stream
must be write only (use SPI write or bit field write, no SPI read).

The following steps are the pre-multichip synchronization (MCS) initialization sequence:

1. adi_adrv9025_Initialize

Set SPI controller settings

Set master bias

Enable pin pads

Set device clock hsdig divider
Load PFIRs per channel

Load gain tables

Load transmitter attenuation tables

@ oo a0 o

Load stream binary
Load ARM binary
Write initialization structure/receiver/transmitter profile info into ARM memory
ARMrun =1
Wait for ARM boot to complete
. Verify ARM checksum
2. ARM configuration

-

a. Receiver/transmitter channel configuration (all half-band filter enables, clock dividers)
b. Clock PLL and SERDES PLL configuration

c. JESD204B and JESD204C configuration

d. ARM switches to clock PLL output after PLL locked

The following steps are the post MCS initialization sequence:

1. MCS:
a. SetARMrun=0
b. Enable MCS state machine to listen for new SYSREF pulses
c. Customer sends SYSREF pulses
d. When MCS state machine complete, ARM run = 1
2. Run ARM init calibrations
3. Enable tracking cals
a. Enable radio control pin mode or not
b. Setup any GPIO for ARM/streams

The system is now ready.

Rev. 0 | Page 24 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

SERIALIZER/DESERIALIZER (SERDES) INTERFACE

The transceiver employs a SERDES high speed serial interface based on the JESD204B and JESD204C standards to transfer ADC and
DAC samples between the transceiver and a baseband processor. The transceiver can support high speed serial lane rates up to 24.33
Gbps. An external clock distribution solution provides a device clock and SYSREF to both the transceiver and the baseband processor.
The SYSREEF signal ensures deterministic latency between the transceiver and the baseband processor.

Note that the initialization sequence of the device is critical to guarantee deterministic latency. Specifically, the ARM init calibrations
must be run before the SERDES links are established, as described in the Initialization Sequence section. It is also imperative to check the
FIFO depth after the link has been established. Major blocks in the interface include clock distribution, SERDES framer, and SERDES
deframer.

JESD204B AND JESD204C STANDARD

The JESD204B and JESD204C specification defines four key layers that implement the protocol data stream, as shown in Figure 9. The
transport layer maps the conversion between samples and framed, unscrambled octets. The optional scrambling layer scrambles one
direction of data of the octets and descrambles the other direction of data of the octets, spreading the spectral peaks to reduce EMI. The data
link layer handles link synchronization, setup, and maintenance. The data link layer also encodes/decodes the optionally scrambled octets
to/from 10-bit characters in the case of JESD204B (8-bit/10-bit encoding) and 66-bit characters in the case of JESD204C (64-bit/66-bit
encoding). The physical layer is responsible for transmission and reception of characters at the bit rate.

Tx Rx
APPLICATION APPLICATION
LAYER LAYER
TRANSPORT TRANSPORT
LAYER LAYER
SCRAMBLING SCRAMBLING
LAYER LAYER
DATA LINK DATA LINK
LAYER LAYER
PHYSICAL (PHY) PHYSICAL (PHY)
LAYER LAYER

HIGH SPEED SERIAL LANES
Figure 9. Key Layers of the JESD204B and JESD204C Standard

22770-010

Figure 10 and Figure 11 illustrate how the JESD204B and JESD204C transmit and receive protocols are implemented.

The data interface blocks in the transceiver can operate in either JESD204B or JESD204C modes. Fewer number of lanes may be needed

when operating in JESD204C, which results in simpler PCB layout and less power consumption.

TRANSPORT LAYER LINK LAYER PHYSICAL LAYER
PROCESSED FRAME/LANE 8B/10B (204B)
| SAMPLE i FRAME || ALIGNMENT | | =
F%%%Pkg(s: CONSTRUCTION] CONSTRUCTION SCRAMBLER CHARACTER 642‘%36@;‘:) SERIALIZER | OUTPUT g
GENERATION S
Figure 10 JESD204B and JESD204C Framer (JTX)
PHYSICAL LAYER LINK LAYER TRANSPORT LAYER
8B/10B (204B) FRAME/LANE
INPUT — DESERIALIZER [—| 64B/66B (204C) [ALIGNMENT i DESCRAMBLER |—{ DEFRAMER |- SAMPLES &
DECODER gEﬁERéETTI%'E TO DAC(s) &

Figure 11 JESD204B and JESD204C Deframer (JRX)

Rev. 0 | Page 25 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

DIFFERENCES BETWEEN JESD204B AND JESD204C

The initial revision of the interface provided supports both single and multiple lanes per converter device. Revision B added programmable
deterministic latency, usage of device clock as main clock source, and data rate up to 12.5 Gbps. In the Revision C specification, the data rate
is increased up to 32 Gbps and three link layers are defined as 8-bit/10-bit, 64-bit/66-bit, and 64B/80B, where the 8-bit/10-bit link layer is
the same as the JESD204B link layer.

In the 8-bit/10-bit link layer, the data is organized into multiframes where in the 64-bit/66-bit link layer data is organized into multiblocks
of 32 blocks where each block contains 8 octets. In the 8-bit/10-bit link layer, phase synchronization is done by the local multiframe clock
(LMFC) where 64-bit/66-bit uses the local extended multiblock clock (LEMC). In the 8-bit/10-bit link layer, LMFC marks multiframe
boundaries where in 64-bit/66-bit link layer LEMC is used to mark extended multiblock boundaries. Deterministic latency can be
achieved by both LMFC or LEMC as per the link layer used.

The 8-bit/10-bit link layer does the alignment between multiple converters by the alignment of their LMFCs to an external signal SYSREF.
In the 64-bit/66-bit link layer, the alignment between multiple converter devices is done by the alignment of the LEMC to an external
signal SYSREF/multireference in Subclass 1. Each converter device can then adjust its LEMC phase to match with the common LEMC of
the logic device. The 64-bit/66-bit link layer only supports Subclass 1-based LEMC alignment. In this case, the release buffer delay (RBD)
adjustment resolution must not be greater than 255 steps, and if more than one multiframe or multiblock per lane fits in the buffer, the
RBD adjustment resolution must be at least 16 steps per multiframe or multiblock. The 64-bit/66-bit link layer also defines a
synchronization header stream, which transmits the information parallel to the user data. This information is encoded using the
synchronization header portion of the 66-bit word block. One synchronization header per block is decoded to a single bit, and 32 of these
bits across a multiblock makes a 32-bit synchronization word. The synchronization word can contain the following information:

¢ Pilot signal (used to mark the borders of the multiblocks and extended multiblocks)
e CRC-3signal (used for error detection)

e CRC-12 signal (used for error detection)

e FEC signal (used for error detection and correction)

e Command channel (used for transmitting commands and status information)

With the 8-bit/10-bit link layer, JESD204B uses the SYNC interface for synchronization and error reporting. The 64-bit/66-bit encoding
synchronization headers within the encoded data are used for the synchronization process and the reporting of errors is left to the
application layer.

CLOCK DISTRIBUTION

The clock distribution in the transceiver allows the SERDES to be driven either by the SERDES PLL or the clock PLL depending on the
use case. Analog Devices provides tested predefined profiles with the appropriate settings so that each use case has known working setup
configurations. For other profile configurations, a profile generator application is planned for future release, allowing customers to change
bandwidths and sampling rates for custom configuration support.

RECEIVER (ADC) DATAPATH

Figure 12 is a block diagram of the transceiver receive side (SERDES framer).

Rev. 0 | Page 26 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-1721

- SYNCINB1
SYNC [syne SYNCINB2
XBAR [SYNCINB3
A
L - FRAMER 0 »- >
ADC | [
> > LANE >
SAMPLES TO | 8B10B/64B66B XBAR
LANES ENCODE > >
]
ADC | ol > >
1
ADC | - FRAMER 1 - > X SERDOUTA
1
| SERDOUTB
SAMPLE LANE OR
i XBAR SAMPLES TO | 8B10B/64B66B XBAR GATE SERIALIZERS | sErDOUTC
apc | P LANES ENCODE > P
| SERDOUTD
o >
> > y A
L]
°
L[]
_— FRAMER 2 - >
LANE
SAMPLES TO | 8B10B/64B66B XBAR
LANES ENCODE
| > >
]
CLOCK GENERATION
AND SYSREF

RETIMING

22770-012

Figure 12. High Level JESD204B/JESD204C Interface Block Diagram (Receiver Only)

The framers take care of all the encoding functions of the interface and is highly configurable with regard to interface rates and
combinations of RF receiver and observation receiver data streams, either separately or utilizing link sharing (receiver and observation
receiver data time multiplexed on the same lane according to the receiver and transmitter frame timing) for up to four lanes. To assist in
debugging, the framers contain an internal data generator allowing a number of test patterns and PBRS patterns to be sent across the link.

There are three framers in the transceiver to allow flexibility in configuring the output data streams. Data samples from the receivers and
observation receivers can be routed through a cross bar to put specific data on a particular lane. The framer supports separate lanes for
receiver and observation receiver, as well supporting link sharing in TDD mode that reduces the number of physical lanes needed by
putting receiver data on the lanes during the receiver slot and observation receiver data on the same lanes during the transmitter slot.
Figure 13 shows the configuration for use case 83C with link sharing (UC83C-LS) where all the signals are routed into Framer 0. Framer 1
and Framer 2 are not needed and are unused. This profile is a 25G 204C profile.

Rev. 0 | Page 27 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Q) Framer 0
Link Sharing Rx Settings
JESD Parameters JESD204
LaneRate (MHz) 24330.24 Link Sharing Mode: Framer
SampleRate (MHz) 365,64 Set Rx ORx here. S FrameT e
Input Output]
L (#Lanes) ORx ORx Rx (0 to M-1) (0 to L1)
K a2 JESD ORX1_IRX1_I *° FrmOuto ™ [FEERDOUT
ORX1_(RX1_Q "™~ ; FrmOut1 * [EERDOUT B
M (#ADCs) 8~ ORX2 I RX2 1| Unnseed [EERDO0T T
ORX2_ (RX2_Q™* Unused [[ZERLE
F 8 Unused RX3 | 1 ¢
LMFC Offset 0 Unused RX3 Q"1 5
Unused RX4_| *— ¢
S B RX1 Q RX4 Q¥ 7
Unused Unused H— =
NP Unused Unused H— ¢
Unused Unused -— "7
Ecaabing Unused Unused =— 11
Link Sharing Unused Unused H— 12
a Unused Unused -— '3
SYSREF Seltings Unused Unused H— 4
Relink on SYSREF 0 Unused Unused —— 18
SYSREF for Startup (|
SYSREF N Shot Enabled (]
Ignore when Linked 0
NShot Count 0
@
2
3
- IN
UC83C-LS 5
&
Figure 13. Example Framer Configuration for UC83C-LS
) Framer 0 Q) Framer 1
Framer 0 Settings Ermegi|SellkrGs
JESD Paramet EESBEaeter JESD204
LaheR.:I':e(MeSZ) 1622016 JFErsaaze‘iA LaneRate (MHz) 16220.16 Framer
SampleRate (MHz) 24576 Sampe
SampleRate (MHz) 49152 SamTe Tramer v opat
gt Gutput L (#Lanes) B
L (#Lanes) 0ty @t L) = o - o
-0 EERDOUT A RX1_Q* !
K omaal | E%ﬂi M (#ADCs) RX2| o2
M (#ADC) ORX21 ™ SERDOUTC ¢ noRaRT .
o LMFC Offset Unused T~ ¢
F Unused Unused - ©
LMFG Offset e | B Unused - 7
Unused] Unused -
s Unused NP Unused - ©
. o
- 3:::3 q Scrambling 32323 e
— Unused - 12
Scrambling 3::;3 o e Unused M- 12
ings -
Link Sharing O Tl Relink on SYSREF Unused 12
SYSREF Seftings T SYSREF for Startup
Relink on SYSREF & Unused | SYSREF N Shot Enabled
'SYSREF for Startup 1 Ignore when Linked
SYSREF N Shot Enabled B NShot Count 0
Ignore when Linked @]
NShot Count 0
Framer 2
Framer 2 Settings
JESD Parameters JESD204
LaneRate (MHz) 16220.16 Framer
SampleRate (MHz) 24576
_ L (#Lanes)
UC26C-NLS . — gl S
Unused > SERDOUTE]
M (#ADCs) Unused :%
FrmOut0
F 8
LMFC Offset 0
s
NP
Scrambling V]
'SYSREF Settings
Relink on SYSREF Unused -~ 15

SYSREF for Startup

SYSREF N Shot Enabled

Ignore when Linked

NShot Count 0

22770-014

Figure 14. Example Framer Configuration for UC26C-NLS

Figure 14 shows a configuration for a non-link sharing use case UC26C-NLS. This profile has a unique configuration where the datalink
on the observation receiver must have the data in a specific format (IIQQ). Framer 0 has more flexibility than the other two framers. For
this case Framer 0 is used to format the observation receiver data as needed, and the other two framers are used to route the receiver data
on the lanes. This is a 16G JESD204C profile.

The transport and link layers for JESD204B/JESD204C are performed in the framers. This transceiver has three JESD204B/JESD204C
framers that get ORed together into four serial lanes. There are 20 logical converters to choose from, and samples from any of the logical
converters can be connected to any framer using the sample crossbar. Each framer has its own SYNC signal. This allows links to be
brought up or down for reconfiguration without interrupting the other links.

The three framers are capable of operating at different sample rates. The highest sample rate must be a power of two multiple of the lower
sample rates (2%, 4%, 8x). There are two options to make this work: oversample at the framer input or bit repeat at the framer output.

Rev. 0 | Page 28 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Oversample mode samples the same converter samples of the lower sample rate multiple time, essentially oversampling the converter
output. This allows for all serializers to run at the same bit rate. In oversample mode, the baseband processor must decimate the data after
the transport layer to remove the extra samples.

Bit repeat mode repeats each bit at the framer output on the lane or lanes that carry the slower data, before it enters the serializer. Because this is
after the 8B/10B or 64B/66B encoding, it appears as if the lane is running at a slower data rate than the other lanes. This essentially expands the
eye of the signal in the horizontal direction. In bit repeat mode, the baseband processor must be able to configure the lane rates on the individual
lanes independently as the lanes with the slower link must be sampled at a slower lane rate than the lanes with the faster link.

All framers must share the four serializer lanes. Each framer must be configured for 0, 1, 2, or 4 lanes such that at a time all framers
combine for no more than 4 lanes.

Each framer is capable of generating a pseudo-random bit sequence (PRBS) on the enabled lanes. After the PRBS is enabled, errors can be
injected. Enabling the PRBS generator disables the normal JESD204B/JESD204C framing, and causes the link to drop.

The serializers can be configured to adjust the amplitude and preemphasis of the physical signal to help combat bit errors due to various
PCB trace lengths.

Supported Framer Link Parameters

This transceiver supports a subset of possible JESD204B/JESD204C link configurations. The number of virtual converters and the
number of serial lanes implemented in the silicon limit these configurations.

Table 10. JESD204B/JESD204C Framer Parameters

JESD204B/JESD204C Parameter Description

M Number of converters. Framer 0 supports M maximum of 8, Framer 1 and Framer 2 support M maximum of 4.
L Number of lanes (L can be 1, 2, or 4).

S Number of samples per converter per frame cycle (S can be 1, 2, or 4).

N Converter resolution (N can be 12, 16, or 24).

N’ Total number of bits per sample (N'can be 12, 16, or 24).

CF Number of control words/frame clock. Cycle/converter device.

cs Number of control bits/conversion sample.

K JESD204B only: Number of frames in 1 multiframe, (20 < F x K < 256), F x K must be a multiple of 4.

E JESD204C only: Number of multiblocks in an extended multiblock.

For the JESD204B/JESD204C configuration to be valid, the lane rate must be within the range 3686.4 Mbps to 16220.16 Mbps. The lane
rate is the serial bit rate for one lane of the JESD204B/JESD204C link. The lane rates can be calculated using Equation 1 for JESD204B
configurations and using Equation 2 for JESD204C configurations.

1
JESD204B Lane Rate = IQ Sample Rate x M x N' x ?0 +L (1)

JESD204C Lane Rate = IQ Sample Rate x M x N' x % +L(2)

Serializer Configuration

The amplitude of the serializer is represented by a 3-bit number that is not linearly weighted. The JESD204B/JESD204C transmitter mask
requires a differential amplitude greater than 360 mV and less than 770 mV.

Table 11. Serializer Amplitude Settings

Serializer Amplitude (Decimal) Average Differential Amplitude (Vrr=1V)
0 1.00 X V11
1 0.85 X Vrr
2 0.75 x V1t
3 0.50 X V7

It is always recommended to verify the eye diagram in the system after building a PCB to verify any layout related performance
differences. If possible, verify the eye using an internal eye monitor after the equalizer circuit of the receiver as this shows the true eye that
the receiver circuit receives.

Rev. 0 | Page 29 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

A three-tap FIR equalizer is implemented in the serializer, as shown in Figure 15. Here, the cursor or largest tap weight multiplying ax is in the
center. There is a precursor tap, b, multiplying aw. and a postcursor tap, by, multiplying ax-: to realize the following difference equation for yi.
Transmit preemphasis is used because it is simpler to realize bit delays with flip flops than trying to implement analog delays at the receiver.

PRE-CURSOR CURSOR POST-CURSOR
// » - Yk
b_q bo by -
Jyu—— LS S T LS W S

! ! f

Yk = b_qay + 1+ boay + bqak _ 4

22770-015

Figure 15. Serializer Emphasis Implementation

This serializer preemphasis circuit allows boosting the amplitude anytime the serial bit changes state. If no bit transition occurs, the
amplitude is left unchanged. Preemphasis helps open the eye for longer PCB traces or when the parasitic loading of connectors has a
noticeable effect. In most cases, to find the best setting, a simulation or measurement of the eye diagram with a high-speed scope at the
receiver is reccommended, or as mentioned above an internal eye monitor after the equalizer is the optimum solution. The serializer
preemphasis is controlled by setting a precursor and a postcursor setting, which are listed in Table 12 and Table 13, respectively.

Table 12. Precursor Amplitude Settings

Emphasis (Decimal) Emphasis (dB)
0 0

1 3

2 6

Table 13. Postcursor Amplitude Settings

Emphasis (Decimal) Emphasis (dB)
0 0

1 3

2 6

3 9

4 12

The adi_adrv9025_SerCfg_t data structure contains the information required to properly configure the serializer. Details of each member
can be found in API documentation (/c_src/doc). The transceiver evaluation software has the option to output example data structures
with values chosen from the configuration tab of the software.
typedef struct adi adrv9025 SerCfg
{

uint8 t serAmplitude;

uint8 t serPreEmphasis;

uint8 t serPostEmphasis;

uint8 t serInvertLanePolarity;

} adi adrv9025 SerCfg t;
Framer

Each framer receives logical converter samples and maps them to high speed serial lanes. The mapping changes depending on the
JESD204B/JESD204C configuration chosen, specifically the number of lanes, the number of converters, and the number of samples per
converter. Figure 16 provides one valid framer configuration for this device.

The converter samples are passed into the framer through a sample crossbar. The sample crossbar allows any of the 20 logical converters
to be mapped to any input of any framer. For example, this can be used to swap I and Q samples or to mix and match different receivers’
data across different logical lanes. The framer lane data outputs also pass through a lane crossbar. This allows mapping of any framer

Rev. 0 | Page 30 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-1721

output lane (internal to the silicon) to any physical JESD204B/JESD204C lane at the package pin. The framer packs the converter samples
into lane data following the JESD204B/JESD204C specification. Figure 16 shows the data packing for M =2,L =1,and S = 1 as an example.

CONVERTER DEVICE, 2 x 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

CONVERTER 0 | | CONVERTER 1
SAMPLE 0 | | SAMPLE 0
< NO CONTROL BITS TO ADD CF = 0 AND CS = 0 >
WORD 0 | | WORD1
NG 0 | | NG 1
OCTET 0 | | OCTET 1 | | OCTET 2 | | OCTET 3
LANE 0
NFI
CONFIGURATION ' F-socTETS -
DATA: - >
CF=0 = _ = _
cs=0 2 2 @ 2
F=4 LANE 0 = = = =
L=1 3 2] & ®
M=2 e 3 T 3
- o © o ©
N=16
N'=16 o
s=1 TIME g

Figure 16. Framer Data Packing forM=2,L=1,andS=1

Other Useful Framer IP Features
PRBS Generator

Each framer has a built in PRBS test pattern generator to aid in debugging the JESD204B/JESD204C serial link. The pattern generator is
capable of generating PRBS7, PRBS9, PRBS15, PRBS23, or PRBS31 patterns. If errors caused by signal integrity exist, it may be difficult to
get the JESD204B/JESD204C framer-to-deframer link to work properly. The PRBS generator built into the framer allows the transceiver
to output serial data even when the link cannot be established. With this mode enabled, the serializer amplitude and preemphasis can be
adjusted to find the best setting to minimize bit errors seen by the PRBS checker at the receiver side of the link. For this mode to be
utilized, the baseband processor must have a PRBS checker to check the PRBS sequence for errors.

The following list is the typical PRBS generator usage sequence:

Initialize the device as outlined in the Link Initialization and Debugging section

2. Run the adi_adrv9025_FramerTestDataSet(...) with the required framer, test data source set to desired PRBS order, and injection

point set to serializer input
3. Enable PRBS checker on the baseband processor and reset its error count

Wait a specific amount of time to allow an adequate number of samples to be transmitted, and then check the PRBS error count of

the baseband processor.

5. Adjust framer amplitude and preemphasis settings and/or deframer equalization settings and repeat Step 3 and Step 4 to find the

optimum settings.

Rev. 0 | Page 31 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Pattern Generator

The framer also has the capability to generate some other patterns that can be used during debug like ramp and checkerboard. There is
also a way the user can load a custom pattern into the framer, which can be verified on the baseband processor. The pattern can be sent
once or be repeated continuously.

API Software Integration
Configuration of the serializer and framers are all handled by the adi_adrv9025_Initialize(...) API function. Set all JESD204B/JESD204C
link options for the framer in the adi_adrv9025_FrmCfg_t data structure before calling adi_adrv9025_Initialize(...). After initialization,
there are some other API functions to aid in debugging and monitoring the status of the JESD204B/JESD204C link.
JESD204B/JESD204C Framer API Data Structures
adi_adrv9025_FrmCfg_t
The adi_adrv9025_FrmCfg_t data structure contains the information required to properly configure each framer. Details of each member
can be found in API documentation. The transceiver evaluation software has the option to output example data structures with values
chosen from the configuration tab of the software.
typedef struct adi _adrv9025 FrmCfg
{

uint8 t enableJesd204C;

uint8 t bankId;

uint8 t deviceld;

uint8 t laneOId;

uint8 t jesd204M;

uintl6 t jesd204K;

uint8 t jesd204F;

uint8 t jesd204Np;

uint8 t jesd204E;

uint8 t scramble;

uint8 t externalSysref;

uint8 t serializerLanesEnabled;

uintl6 t ImfcOffset;

uint8 t reserved;

uint8 t syncbInSelect;

uint8 t overSample;

uint8 t syncbInLvdsMode;

uint8 t syncbInLvdsPnInvert;

uint8 t enableManualLaneXbar;

adi adrv9025 SerLaneXbar t serializerLaneCrossbar;

adi adrv9025 AdcSampleXbarCfg t adcCrossbar;

uint8 t newSysrefOnRelink;

uint8 t sysrefForStartup;

uint8 t sysrefNShotEnable;

uint8_ t sysrefNShotCount;

uint8 t sysrefIgnoreWhenLinked;
} adi _adrv9025 FrmCfg t;

Rev. 0| Page 32 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-1721

Table 14. JESD204B/JESD204C Framer Configuration Structure Member Description

Structure Member Valid Values | Description

enableJesd204C 0,1 0 = enable JESD204B framer, 1 = enable JESD204C framer

bankid 0to15 JESD204B/JESD204C configuration Bank ID—extension to device ID

deviceld 0to 255 JESD204B/JESD204C configuration Device ID—lIink identification number

laneOld 0to 31 JESD204B/JESD204C configuration Lane ID—if more than one lane is used, each subsequent
lane increments from this number

jesd204M 0,1,2,4,8 Number of converters—typically two converters per receive chain

jesd204K 1t032 Number of frames in a multiframe—default is 32; F x K must be a multiple of 4

jesd204F 1,2,3,4,6,8, | Number of octets per frame

12,16

jesd204Np 12,16,24 Number of bits per sample

Scramble (JESD204B Only) | 0, 1 Scrambling enabled
If scramble = 0, scrambling is disabled
If scramble = 1, scrambling is enabled

externalSysref 0,1 External SYSREF enabled
If externalSysref = 0, use internal SYSREF
If externalSysref = 1, use external SYSREF

serializerLanesEnabled 0x0 to OxOF Serializer lane enabled, one bit per lane

serializerLaneCrossbar 0x0 to OxFF Serializer lane crossbar, two bits per lane

ImfcOffset 0to 31 LMFC offset, set the local multiframe counter offset value for deterministic latency setting,
such that 0 < ImfcOffset < (K- 1)

reserved

syncinbSelect 0,12 SYNC selection, selects which SYNC input is connected to the framer
If syncinbSelect = 0, SYNCINO is connected to the framer
If syncinbSelect = 1, SYNCIN1 is connected to the framer
If syncinbSelect = 2, SYNCIN2 is connected to the framer

overSample 0,1 Oversample mode, selects which method is chosen when oversample or bit repeat is needed
If oversample = 0, bit repeat mode is selected
If oversample = 1, oversample is selected

enableManualLaneXbar 0,1 0 = automatic lane crossbar mapping, 1 = manual lane crossbar mapping (using
serializerLaneCrossbar value)

syncbinLvdsMode 0,1 1 =Enables LVDS input pad, 0 = enables CMOS input pad

syncblnLvdsPniInvert 0,1 0=SYNC LVDS polarity not inverted, 1 = SYNC LVDS polarity inverted

newSysrefOnRelink 0,1 Set the flag to determine if SYSREF is set on relink, where, if >0 = set, 0 = not set

sysrefForStartup 0,1 1 =framer: require a SYSREF before code group synchronization (CGS) is output from serializer,
0: Allow CGS to output before SYSREF occurs (recommended on framer to allow deframer
clock data recovery (CDR) to lock and equalization to train)

sysrefNShotEnable 0,1 1 = enable SYSREF NShot (ability to ignore first rising edge of SYSREF to ignore possible runt
pulses)

sysrefNShotCount 0to 15 Count value of which SYSREF edge to use to reset LMFC phase

sysreflgnoreWhenLinked 0,1 When the JESD204B and JESD204C link is up and valid, 1 = ignore any SYSREF pulses

Rev. 0 | Page 33 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

JESD204B/JESD204C Framer Enumerated Types

adi_adrv9025_FramerDataSource

The adi_adrv9025_FramerDataSource_e is an enumerated data type to select the framer test data source. The allowable values are listed in Table 15.

Table 15. Framer Data Source Enumeration Description

Enumeration Value

Description

FTD_ADC_DATA
FTD_CHECKERBOARD
FTD_TOGGLEO_1
FTD_PRBS31
FTD_PRBS23
FTD_PRBS15
FTD_PRBS9
FTD_PRBS7
FTD_RAMP
FTD_PATTERN_REPEAT
FTD_PATTERN_ONCE

Framer test data ADC data source, this is used for normal operation
Framer test data checkerboard data source

Framer test data toggle 0 to 1 data source

Framer test data PRBS31 data source

Framer test data PRBS23 data source

Framer test data PRBS15 data source

Framer test data PRBS9 data source

Framer test data PRBS7 data source

Framer test data ramp data source

Framer test data 16-bit programmed pattern repeat source

Framer test data 16-bit programmed pattern executed once source

adi_adrv9025_FramerDatalnjectPoint

The adi_adrv9025_FramerDatalnjectPoint is an enumerated data type to select the framer test data injection point. The allowable values

are listed in Table 16.

Table 16. Framer Injection Point Enumeration Description

Enumeration Value Description

FTD_FRAMERINPUT
FTD_SERIALIZER
FTD_POST_LANEMAP

Framer test data injection point at framer input
Framer test data injection point at serializer input
Framer test data injection point after lane mapping

adi_adrv9025_FramerSel

The adi_adrv9025_FramerSel is an enumerated data type to select the desired framer. The allowable values are listed in Table 17.

Table 17. Framer Selection Enumeration Description

Enumeration Value

Description

ADI_ADRV9025_FRAMER_0
ADI_ADRV9025_FRAMER_1
ADI_ADRV9025_FRAMER_2
ADI_ADRV9025_ ALL_FRAMERS

Framer 0 selection
Framer 1 selection
Framer 2 selection

All framers selected

API Functions
adi_adrv9025_FramerSysrefCtrlSet(...)

adi adrv9025 FramerSysrefCtrlSet (adi adrv9025 Device t *device, uint8 t framerSelMask, uint8 t
enable) ;

This function enables or disables the external SYSREF JESD204B/JESD204C signal connection to the framers.

For the framer to retime its LMFC/local extended multiblock clock (LEMF), a SYSREF rising edge is required. The external SYSREF
signal at the pin can be gated off internally so the framer does not see a potentially invalid SYSREF pulse before it is configured correctly.

By default, the device has the SYSREF signal ungated. However, the multichip synchronization state machine still does not allow the
external SYSREEF to reach the framer until the other stages of multichip synchronization have completed. As long as the external SYSREF
is correctly configured before performing MCS, this function may not be needed by the baseband processor, because the MCS state
machine gates the SYSREF to the framer.

Precondition

This function is called after the device has been initialized and the JESD204B/JESD204C framer is enabled.

Rev. 0 | Page 34 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Dependencies
device->devHallInfo

Parameters

Table 18. adi_adrv9025_FramerSysrefCtrlSet(...) Parameters

Parameter Description

*device A pointer to the device settings structure

framerSelMask | Select framer to enable/disable SYSREF input for (valid for any OR'ed combination of enums ADI_ADRV9025_FRAMER_O,
ADI_ADRV9025_FRAMER_1, ADI_ADRV9025_FRAMER_2, or ADI_ADRV9025_ALL_FRAMERS)

enable =1 enables SYSREF to framer, 0 disables SYSREF to framer

Return Values

Table 19. General API Function Return Values

Return Value Description
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required

adi_adrv9025_FramerStatusGet(...)

adi adrv9025 FramerStatusGet (adi adrv9025 Device t *device, adi adrv9025 FramerSel e framerSel,
adi adrv9025 FramerStatus t *framerStatus);

This function reads back the status of the selected framer to determine the state of the JESD204B/JESD204C link. The framer status
return value is an 8-bit status word, as shown in Table 20. It also returns the qbfStateStatus and sync signal used by the selected framer.

Table 20. Framer Status Return Value

framerStatus Description

[7] Reserved

[6] Reserved

[5] Reserved

[4] Reserved

[3] Current SYNCIN level (1 = high, 0 = low)

[2] SYSREF phase error, is set when a new SYSREF has different timing than the first that set the LMFC
timing

[1] SYSREF phase established by framer

[0] Flag indicating that configuration parameters are not supported when set (1)

Precondition

The receiver JESD204B/JESD204C link(s) must be configured and running to use this function
Dependencies
device->devHallnfo

Parameters

Table 21. adi_adrv9025_FramerStatusGet(...) Parameters

Parameter Description

*device is a pointer to the device settings structure

framerSel Read back the framer status of the selected framer (Framer0, Framer1 or Framer2)
framerStatus is the framer status structure read

Rev. 0 | Page 35 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Return Values
See Table 19.
adi_adrv9025_FramerTestDataSet(...)

adi adrv9025 FramerTestDataSet (adi_adrv9025 Device t *device, adi adrv9025 FrmTestDataCfg t
*frmTestDataCfqg) ;

This function selects the PRBS type and enables or disables the receiver framer PRBS generation. This is a debug function used for debug
of the receiver JESD204B/JESD204C lanes. Receiver data transmission on the JESD204B/JESD204C link(s) is not possible when the
framer test data is activated.

Precondition

This function may be called any time after device initialization.
Dependencies

device->devHallnfo

Parameters

Table 22. adi_adrv9025_FramerTestDataSet(...) Parameters

Parameter Description

*device A pointer to the device settings structure

frmTestDataCfg A pointer to a structure that contains the framer(s) of interest, testDataSource and injectPoint
Return Values

See Table 19.
adi_adrv9025_FramerTestDataInjectError (...)

adi adrv9025 FramerTestDataInjectError (adi adrv9025 Device t *device, adi adrv9025 FramerSel e
framerSelect, uint8 t laneMask);

This function injects an error into the framer test data by inverting the data. This is a debug function used for debug of the receiver JESD204B/
JESD204C lanes. Receiver data transmission on the JESD204B/JESD204C link(s) is not possible when the framer test data is activated.

Precondition

This function is called after the framer test data is enabled.
Dependencies

device->devHallnfo

Parameters

Table 23. adi_adrv9025_FramerTestDataInjectError(...) Parameters

Parameter Description

*device A pointer to the device settings structure

framerSelect Select the desired framer ADI_ADRV9025_FRAMER_0, ADI_ADRV9025_FRAMER_1, or ADI_ADRV9025_FRAMER_2
laneMask is a four bit mask allowing selection of lanes 0-3 for the selected framer

Return Values

See Table 19.
adi_adrv9025_FramerLinkStateSet(...)

adi adrv9025 FramerLinkStateSet (adi adrv9025 Device t *device, uint8 t framerSelMask, uint8 t
enable) ;

This function enables and disables the JESD204B/JESD204C framer. This function is normally not necessary. In the event that the link
must be reset, this function allows a framer to be disabled and reenabled.

Precondition
This function may be called any time after device initialization.

Rev. 0 | Page 36 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-1721

Dependencies
device->devHallnfo

Parameters

Table 24. adi_adrv9025_FramerLinkStateSet(...) Parameters

Parameter Description

*device A pointer to the device settings structure

framerSelMask Desired framer(s) to set/reset.

enable 0 = disable the selected framers, 1 = enable the selected framer link
Return Values

See Table 19.
TRANSMITTER (DAC) DATAPATH
Figure 17 shows a block diagram of the transceiver transmit side (SERDES deframer).

The SERDES deframer receives the transmitter data from the baseband processor, decodes it, and distributes the data streams to the
transmitters. The transceiver includes two deframers that share up to four lanes that can operate at up to 25G. Figure 18 shows the
configuration for UC26C-NLS that uses Deframer 0 and utilizes four lanes at 16G to support four transmitters at maximum bandwidth.

SYNG ovne SYNCINB1
XBAR SYNCINB2
/
L |— DEFRAMER 0 - -
DAC |[*
|a—] - -
] LANE
LANES TO | 8B10B/64B66B XBAR |
«— SAMPLES ENCODE -
DAC - -<
=
SAMPLE ¢ T SERDOUTB
i XBAR DESERIALIZERS
f——
DAC
a—]
Y)
LANE
i SAMPLES TO
pac
- < -+ -
A
CLOCK GENERATION ~
AND SYSREF 2
RETIMING N

Figure 17. High Level JESD204B/JESD204C Interface Block Diagram (Transmitter Only)

Rev. 0 | Page 37 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

@ Deframer 0
Deframer 0 Settings
JESD Parameters JESD204
LaneRate (MHz) 16220.16 Deframer
SampleRate (MHz) 491.52 Sample Deframer Lane
Output Input
L (#Lanes) 4 - @ WAy Ot Lty
= 64 TT)§11 (!_; - DfrmOut0 3 —: SERDESIN A
T DfrmOut1 ~T® SERDESIN B
M (#DACs) 3 - T2 | | * DRrmOut? 2 =1 SERDESIN C
T2 0| * DfrmOut3 * —1® SERDESIN_D
F 4 T73_1 | *1 DfrmOut4 4 —1® Unused
LMFC Offset 0 133 G| *T DffmOutS 5 —1® Unused
T4 | |1 DFrmOut6 & —1® Unused
5 1 - T4 |+ DfrmOut? 7 —1® Unused

NP 16 -
v

Scrambling

SYSREF Settings
Relink on SYSREF
SYSREF for Startup
SYSREF N Shat Enabled
Ignore when Linked
NShat Count 0

22770-018

UC26C-NLS
Figure 18. Example Deframer Configuration for UC26C-NLS

Figure 19 shows the configuration for UC83C-LS that uses Deframer 0. Only two lanes are needed to realize the maximum chip RF
bandwidth (450 MHz) across all four transmitters. This device has two JESD204B/JESD204C deframers that share four physical lanes.
The two deframers feed a sample crossbar that connects to eight DACs. All converters must run at the same sample rate. Likewise, all
lanes must run at the same data rate. Each deframer is capable of receiving a PRBS sequence and accumulating error counts. The
deserializers have adjustable equalization circuits to counteract the insertion loss due to various PCB trace lengths and material.

@ Deframer 0
Deframer 0 Settings
JESD Parameters JESD204
LaneRate (MHz) 2433024 Deframer
SampleRate (MHz) 368.64 Sample Deframer Lane
Output | it
L (#Lanes) Eag EDutapuM-ﬂ ful ton_p-:j
= 22 TT>§ é T DFrmQut0 ? —T*® SERDESIN A
1 DfrmQut1 —T*® SERDESIN_C
M (#DACs) 8 v T || <+ DfrmOut2 2 —T*® Unused
T2 0 | 1 DfrmOut3 —T*® Unused
F 8 T73_1 | *+T DfrmQut4 4 —1® Unused
LMFC Offset 0 123 4 | *1T DfrmOut5 S —® Unused
T4 | |1 DFrmOut6 & —1® Unused
5 1 - T4 O |+ DfrmQut7? 7 —-# Unused

NP 16 -
v

Scrambling

SYSREF Settings
Relink on SYSREF
SYSREF for Startup
SYSREF N Shot Enabled
lgnore when Linked
NShot Count 0

UC83C-LS

22770-019

Figure 19. Example Deframer Configuration for UC83C-LS

SUPPORTED DEFRAMER LINK PARAMETERS

The product supports a subset of possible JESD204B/JESD204C link configurations. The modes are limited by the number of DACs and
the number of serial lanes implemented in the silicon.

Rev. 0 | Page 38 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Table 25. JESD204B/JESD204C Deframer Parameters

JESD204B/JESD204C Parameter Description

M Number of converters (M can be 1, 2,4 or 8)

L Number of lanes (L can be 1, 2, or 4)

S Number of samples per converter per frame cycle

N Converter resolution (N can be 12 or 16)

N’ Total number of bits per sample (N’ can be 12 or 16)

CF Number of control words/frame clock cycle/converter device

cs Number of control bits/conversion sample

HD High density mode.

K JESD204B only: number of frames in 1T multiframe, (20 < F x K < 256), F x K must be a multiple of 4, K < 32
E JESD204C only: number of multiblocks in an extended multiblock.

For a particular converter sample rate, not all combinations listed in Table 25 are valid. Calculate the JESD204B or JESD204C lane rate
using the equations described in the Supported Framer Link Parameters section.

The deserializer link is allowed to run at a different lane rate than the serializer link, under the condition that both lane rates are possible
with respect to the clock divider settings. Both the deserializer and serializer link rates are derived from the same PLL, but there are
separate dividers to generate the deserializer clock and the serializer clock.

Deserializer Configuration

The deserializer includes a nonadaptive, programmable equalizer. This helps in compensating for signal integrity distortions for each
channel due to PCB trace length and impedance. Table 26 summarizes the amount of insertion loss each equalizer setting can overcome.
Equalizer boost settings can range from 0 (maximum boost) to 3 (default).

Table 26. Deserializer EQ Boost Correction

EQ Boost Settings Boost (dB)
0 0

1 -3

2 -6

3 =12

If the insertion loss is greater than the equalizer boost setting, one of the other settings may be appropriate. Note that any setting can be
used in conjunction with transmitter preemphasis to ensure functionality and/or to optimize for power. The equalizer setting can be
changed in the API using the desEqGainSetting parameter in the adi_adrv9025_DesCfg_t data structure.
The adi_adrv9025_DesCfg_t data structure contains the information required to properly configure the deserializer. Details of each
member can be found in the API documentation. The transceiver evaluation software has the option to output example data structures
with values chosen from the configuration tab of the software.
typedef struct adi adrv9025 DesCfg
{

uint8 t desInvertLanePolarity;

uint8 t desEgBoostSetting;

uint8 t desEgGainSetting;

uint8 t desEgFeedbackSetting;
} adi adrv9025 DesCfg t;
In JESD204B mode, the transceiver uses passive equalizer architecture that deemphasizes low frequencies in relation to the high
frequencies and then amplifies the signal. This provides the required equalization, or boost, to properly capture the signal. A brief
description of the data members in adi_adrv9025_DesCfg_t is given in Table 27.
Table 27. Deserializer Equalizer Data Members

Structure Member Description

deslnvertLanePolarity | Deserializer lane polarity inversion select. Bit 0 = invert polarity of Lane 0, Bit 1 = invert polarity of Lane 1.
desEqBoostSetting It sets how much high frequency attenuation the user is trying to compensate.

desEqGainSetting Gain is setting the number of stages of limiting amplifier. This compensates for the amount of EqBoost added.

Rev. 0 | Page 39 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Structure Member Description

desEgFeedbackSetting | This is the amount of feedback set for each gain stage. The gain stage works like a basic operational amplifier,

where the feedback network can be tuned depending on the feedback setting in the equalizer. This feedback
setting is applied to each of the limiting amplifiers (depending on number of stages) and can cause peaking in the
total channel response. It is not recommended to tune this data member while compensating for insertion losses.

When operating in JESD204C mode, the equalization is done with a continuous time linear equalizer (CTLE) that is configured during
device initialization with a SERDES INIT calibration.

Deframer

The active deframers receive 8B10B/64B66B encoded data from the deserializer and decode the data into converter samples. The
deserializer-to-converter sample mapping changes depending on the JESD204B/JESD204C link configuration setting. The following is a

list of the functions of the deframer:

Monitor the health of the JESD204B/JESD204C link

Control the JESD204B/JESD204C interrupt signal (can output on a GP_INTx pin on the device general purpose interrupt pin) to
signal baseband processor when certain JESD204B/JESD204C error conditions arise.

Remove character replacement (valid for only JESD204B).

Perform 8B10B/64B66B decoding.

Map JESD204B/JESD204C lane data to converter samples.

A lane crossbar provides the ability to reorder the lanes into each deframer input. A sample crossbar provides the ability to reorder the

converter samples at the output of the deframers. The lane and sample crossbars enable flexiblity on which physical lanes are used and

which data is on each link.

The deframer unpacks the converter samples from lane data following the JESD204B/JESD204C specification. Figure 20 shows the data
unpacking for M =4, L =2, and S = 1 as an example.

Rev. 0 | Page 40 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-1721

CONVERTER DEVICE, 4 x 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

CONVERTER 0 | | CONVERTER 1 | | CONVERTER 2 | | CONVERTER 3
SAMPLE 0 | | SAMPLE 0 | | SAMPLE 0 ‘ | SAMPLE 0
< NO CONTROL BITS TO ADD CF = 0 AND CS =0 >
WORD 0 | | WORD 1 | | WORD 2 ’ | WORD 3
NGO | | NG 1 | | NG 2 ‘ | NG 3

OCTET 0 | | OCTET 1 | | OCTET 2 | | OCTET 3 | | OCTET 4 | | OCTET 5 | | OCTET 6 | | OCTET 7

LANE 0 | | LANE 1
CONFIGURATION
_ F=40CTETS _
DATA: - >
CF=0 . .
© =y (-] =y
cs=0 2 g @ g
F=4 LANE 0 = = = =
L=2] 2] 2]
- o b - T
M=4 5 G 5 5
N=16
N'=16
s=1 _ _
w 5 ® =)
e 1) s)
LANE 1 2 a 2 @
o~ N ™ @
S 3] S 3]
TIME 8

Figure 20. JESD204B Deframer Configuration (M =4, =2)

Rev. 0| Page 41 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Other Useful Deframer IP Features
PRBS Checker

The deframer has a built in PRBS checker. The PRBS checker can self synchronize and check for PRBS errors on a PRBS7, PRBS15, or
PRBS31 sequence. Because this mode works even in the midst of potential bit errors on each lane, the physical link can be debugged even
when the JESD204B/JESD204C link cannot be established. This mode can be used to check the robustness of the physical link during
initial testing and/or factory test. For this mode to be fully utilized, the baseband processor must have a PRBS generator capable of
creating PRBS7, PRBS15, or PRBS31 data.

A typical usage sequence is as follows:

Initialize the device as outlined in the Deserializer Configuration section.

2. Enable the PRBS generator on the baseband processor with the desired PRBS sequence.

3. Call the API adi_adrv9025_DfrmPrbsCheckerStateSet(...) passing the actual device being evaluated, the PRBS sequence to check,
and the location at which to check the PRBS sequence.

4. After some amount of time, call the API function to check the PRBS errors. This can be done by calling the API function
adi_adrv9025_DfrmPrbsErrCountGet(...) passing the actual device being evaluated, the counter selection lane to be read and the
error count is returned in the third parameter passed.

To prove an error count of 0 is valid, the baseband processor may have a PRBS error inject feature. Alternatively, the baseband processor

amplitude and emphasis settings can be set to a setting where errors occur. To reset the error count call the API function that clears the

counters: adi_adrv9025_DfrmPrbsCountReset(...).

API Software Configuration

Configuration of the deserializer and deframers are handled by the adi_adrv9025_Initialize(...) API function. Set all JESD204B/JESD204C link

options for the framer in the adi_adrv9025_DfrmCfg_t data structure before calling adi_adrv9025_Initialize(...). After initialization,

there are some other API functions to aid in debug and monitoring the status of the JESD204B/JESD204C link.

JESD204B/JESD204C Deframer API Data Structures

adi_adrv9025_DfrmCfg_t

The adi_adrv9025_DfrmCfg_t data structure contains the information required to properly configure each deframer. Details of each
member can be found in API documentation. The transceiver evaluation software has the option to output example data structures with
values chosen from the configuration tab of the software.
typedef struct adi adrv9025 DfrmCfg
{

uint8 t enableJesd204C;

uint8 t bankId;

uint8 t deviceId;

uint8 t lane0Id;

uint8 t jesd204M;

uintl6é t jesd204K;

uint8 t jesd204Np;

uint8 t jesd204E;

uint8 t scramble;

uint8 t externalSysref;

uint8 t deserializerLanesEnabled;

uintl6e t ImfcOffset;

uint8 t reserved;

uint8 t syncbOutSelect;

uint8_ t syncbOutLvdsMode;

uint8_ t syncbOutLvdsPnInvert;

uint8 t syncbOutCmosSlewRate;

uint8 t syncbOutCmosDriveLevel;
Rev. 0 | Page 42 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

uint8 t enableManualLaneXbar;

adi adrv9025 DeserLaneXbar t deserializerLaneCrossbar;

adi adrv9025 DacSampleXbarCfg t dacCrossbar;

uint8 t newSysrefOnRelink;

uint8 t
uint8 t
uint8 t
uint8 t

sysrefForStartup;
sysrefNShotEnable;
sysrefNShotCount;

} adi adrv9025 DfrmCfg t;

sysrefIgnoreWhenLinked;

Table 28. JESD204B/JESD204C Deframer Configuration Structure Member Description

Structure Member Valid Values | Description

enableJesd204C 0,1 0 = enable JESD204B framer, 1= enable JESD204C framer

bankld 0to 15 JESD204B/JESD204C Configuration Bank ID (extension to device ID)

deviceld 0to 255 JESD204B/JESD204C Configuration Device ID (link identification number)

laneOld 0to 31 JESD204B/JESD204C Configuration Lane ID (if more than one lane is used, each subsequent
lane increments from this number)

jesd204M 0,2,4,8 Number of converters: 2 converters per transmit chain

jesd204K (JESD204B Only) 1t032 Number of frames in a multiframe (default is 32), F x K must be a multiple of 4

jesd204Np 12,16 Number of bits per sample

jesd204E 0to 255 JESD204C E parameter

Scramble (JESD204B Only) | O, 1 Scrambling enabled
If scramble = 0, scrambling is disabled
If scramble = 1, scrambling is enabled

externalSysref 0,1 External SYSREF enabled
If externalSysref = 0, use internal SYSREF
If externalSysref = 1, use external SYSREF

deserializerLanesEnabled 0x0 to OxF Deserializer lane enabled: one bit per lane

deserializerLaneCrossbar 0x0 to OxFF Deserializer lane crossbar: three bits per lane

ImfcOffset 0to 31 LMFC offset: set the local multiframe counter offset value for deterministic latency setting,
such that 0 < ImfcOffset < (K- 1)

syncbOutSelect 0,1 New SYSREF on relink: flag to indicate that a SYSREF is required to reestablish the link
If newSysrefOnRelink = 0, no SYSREF is required
If newSysrefOnRelink = 1, SYSREF is required

enableManualLaneXbar 0,1 SYNC selection: selects which SYNCOUT output is driven by the deframer
If syncbOutSelect = 0, the deframer drives SYNCOUTO
If syncbOutSelect = 1, the deframer drives SYNCOUT1

syncbinLvdsMode 0,1 0 = automatic lane crossbar mapping, 1 = manual lane crossbar mapping (using
deserializerLaneCrossbar value)

syncblnLvdsPninvert 0,1 1 = enables LVDS input pad, 0 = enables CMOS input pad

syncbOutCmosSlewRate 0to3 0 = SYNC LVDS PN not inverted, 1 = SYNC LVDS PN inverted

syncbOutCmosDrivelevel 0,1 0 = fastest rise/fall times, 3 = slowest rise/fall times

newSysrefOnRelink 0,1 Set the flag to determine if SYSREF is set on relink, 1 = set, 0 = not set

sysrefForStartup 0,1 1: framer requires a SYSREF before CGS outputs from serializer, 0: allow CGS to output before
SYSREF occurs (recommended on framer to allow deframer CDR to lock and equalization to
train)

sysrefNShotEnable 0,1 1 = enable SYSREF NShot (ability to ignore first rising edge of SYSREF to ignore possible runt
pulses)

sysrefNShotCount 0to 15 Count value of which SYSREF edge to use to reset LMFC phase

sysreflgnoreWhenLinked 0,1 When the JESD204B and JESD204C link is up and valid, 1 = ignore any SYSREF pulses

Rev. 0 | Page 43 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

adi_adrv9025_DatalnterfaceCfg _t
The adi_adrv9025_DatalnterfaceCfg_t data structure contains the information required to properly configure each framer, each
deframer, the serializers, and deserializers. Details of each structure member can be found in the API documentation (/c_src/doc).
typedef struct adi adrv9025 DatalnterfaceCfg
{

adi adrv9025 FrmCfg t framer([3];

adi adrv9025 DfrmCfg t deframer[2];

adi adrv9025 SerCfg t serCfg[8];

adi adrv9025 DesCfg t desCfg[8];

uint8 t sysrefLvdsMode;

uint8 t sysreflLvdsPnInvert;

adi adrv9025 LinkSharingCfg t linkSharingCfg;
} adi adrv9025 DataInterfaceCfg t;

Table 29. JESD204B/JESD204C Settings Structure Member Description

Structure Member Valid Values Description

framer0 data structure Framer 0 configuration data structure.

framer1 data structure Framer 1 configuration data structure.

framer2 data structure Framer 2 configuration data structure.

deframer0 data structure Deframer 0 configuration data structure.

deframer1 data structure Deframer 1 configuration data structure.

serAmplitude Oto3 Serializer amplitude setting. Default = 1.

serPreEmphasis 0to2 Serializer preemphasis setting. Default = 0.
serlnvertLanePolarity 0x0 to OxOF Serializer Lane Polarity Inversion Select. One bit per lane
desInvertLanePolarity 0x0 to OxOF Deserializer Lane Polarity Inversion Select. One bit per lane
desEqSetting Oto3 Deserializer Equalizer setting. Applied to all deserializer lanes.

JESD204B/JESD204C Deframer Enumerated Types
adi_adrv9025_DeframerSel

The adi_adrv9025_DeframerSel is an enumerated data type to select the desired deframer. The allowable values are listed in Table 30.

Table 30. Deframer Selection Enumeration Description

Enumeration Value Description
ADI_ADRV9025_DEFRAMER_O Deframer 0 selection
ADI_ADRV9025_DEFRAMER_1 Deframer 1 selection
ADI_ADRV9025_DEFRAMER_O_AND_1 Deframer 0 and 1 selection

adi_adrv9025_DeframerPrbsOrder

The adi_adrv9025_DeframerPrbsOrder is an enumerated data type to select the desired deframer PRBS pattern. The allowable values are
listed in Table 31.

Table 31. Deframer PRBS Polynomial Order Enumeration Description

Enumeration Value Description
ADI_ADRV9025_PRBS_DISABLE Deframer PRBS pattern disable
ADI_ADRV9025_PRBS7 Deframer PRBS7 pattern select
ADI_ADRV9025_PRBS15 Deframer PRBS15 pattern select
ADI_ADRV9025_PRBS31 Deframer PRBS31 pattern select

adi_adrv9025_DeframerPrbsCheckLoc

The adi_adrv9025_DeframerPrbsCheckLoc is an enumerated data type to select the desired location within the Deframer to check the PRBS
pattern. The allowable values are listed in Table 32.

Rev. 0 | Page 44 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Table 32. Deframer PRBS Check Location Enumeration Description

Enumeration Value Description

ADI_ADRV9025_PRBSCHECK_LANEDATA Check PRBS at deserializer lane output (does not allow JESD204B/JESD204C link to be established)
ADI_ADRV9025_PRBSCHECK_SAMPLEDATA | Check PRBS at output of deframer (JESD204B/JESD204C deframed sample)

API Functions
adi_adrv9025_DeframerSysrefCtrlSet(...)

adi adrv9025 DeframerSysrefCtrlSet (adi adrv9025 Device t *device, adi adrv9025 DeframerSel e
deframerSel, uint8 t enable)

This function enables or disables the external SYSREF to the deframers of the transceiver.

For the deframer to retime its LMFC/LEMC, a SYSREEF rising edge is required. The external SYSREF signal at the input pins on the device
can be gated off internally. Therefore, the deframer does not see a potential invalid SYSREF pulse before it is configured correctly.

By default, the device has the SYSREF signal ungated. However, the multichip synchronization state machine still does not allow the
external SYSREF to reach the deframer until the other stages of multichip synchronization have completed. As long as the external
SYSREF is correctly configured before performing MCS, this function may not be needed by the baseband processor because the MCS
state machine gates the SYSREF to the deframer.

Precondition

This function is called after the device has been initialized and the JESD204B/JESD204C deframer is enabled.
Dependencies

device->devHallnfo

Parameters

Table 33. adi_adrv9025_DeframerSysrefCtrlSet(...) Parameters

Parameter | Description

*device Pointer to the device settings structure

deframerSel | Select deframer to enable/disable SYSREF input for valid ADI_ADRV9025_DEFRAMER_0, ADI_ADRV9025_DEFRAMER_1, or
ADI_ADRV9025_DEFRAMER_0_AND_1

enable 1 = enable SYSREF to deframer, 0 = disable SYSREF to deframer

Return Values
See Table 19.
adi_adrv9025_DfrmLinkStateSet(...)

adi adrv9025 DfrmLinkStateSet (adi adrv9025 Device t *device, uint8 t deframerSelMask, uint8 t
enable)

This function is normally not necessary. In the event that the link must be reset, this function allows a deframer to be disabled and re-
enabled.

During disable, the lane FIFOs for the selected deframer are also disabled. When the deframer link is enabled, the lane FIFOs for the
selected deframer are reenabled (reset). The baseband processor sends valid serializer data before enabling the link. Therefore, the device
CDR is locked.

Precondition
This function can be called any time after device initialization.
Dependencies

device->devHallInfo

Rev. 0 | Page 45 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

Parameters

Table 34. adi_adrv9025_DfrmLinkStateSet(...) Parameters

Parameter

Description

*device
deframerSelMask

enable

Pointer to the device settings data structure

Desired deframer to reset. Valid states are ADI_ADRV9025_DEFRAMER_0, ADI_ADRV9025_DEFRAMER_1, or
ADI_ADRV9025_DEFRAMER_0_AND_1.

0 = disable the selected deframer, 1 = enable the selected deframer link

Return Values
See Table 19.

adi_adrv9025_DeframerStatusGet(...)

adi adrv9025 DeframerStatusGet (adi adrv9025 Device t *device,
adi adrv9025 DeframerStatus t *deframerStatus)

deframerSel,

adi adrv9025 DeframerSel e

After bringing up the deframer JESD204B/JESD204C link, the baseband processor can check the status of the deframer for the
parameters shown in Table 35.

Table 35. Deframer Status Parameters

Deframer Status Bit | Bit Name Description

7 Valid Checksum =1 if the checksum calculated by the device matched the checksum sent in the ILAS data.

6 EOF Event This bit captures the internal status of the end of frame event of the deframer. Value =1 if
there is a framing error during ILAS.

5 EOMF Event This bit captures the internal status of the end of multiframe event of the deframer. Value = 1
if there is a framing error during ILAS.

4 FS Lost This bit captures the internal status of the frame symbol event of the deframer. Value = 1 if
there is a framing error during ILAS or user data (invalid replacement characters).

3 Reserved

2 User Data Valid =1 when in user data (deframer link is up and sending valid DAC data).

1 SYSREF Received Deframer has received the external SYSREF signal.

0 SYNC level Current level of SYNC signal internal to deframer (= 1 means link is up).

Precondition

The transmitter JESD204B/JESD204C link(s) must be configured and running to use this function.

Dependencies
device->devHalInfo

Parameters

Table 36. adi_adrv9025_DeframerStatusGet(...) Parameters

Parameter Description

*device A pointer to the device settings structure

deframerSel Select the deframer to read back the status of ADI_ADRV9025_DEFRAMER_O, ADI_ADRV9025_DEFRAMER_1, or
ADI_ADRV9025_DEFRAMER_0_AND_1

deframerStatus | 8 bit deframer status word return value

Return Values

See Table 19.

adi_adrv9025_DfrmPrbsCheckerStateSet(...)

adi adrv9025 DfrmPrbsCheckerStateSet (adi adrv9025 Device t *device,

*dfrmPrbsCfqg)

adi adrv9025 DfrmPrbsCfg t

This function configures and enables or disables the transceiver lane or sample PRBS checker. This is a debug function to be used for
debug of the transmitter JESD204B/JESD204C lanes.

If the checkerLocation parameter is ADI_ADRV9025_PRBSCHECK_LANEDATA, the PRBS is checked at the output of the deserializer.
If the checkerLocation parameter is ADI_ADRV9025_PRBSCHECK_SAMPLEDATA, the PRBS data is expected to be framed

Rev. 0 | Page 46 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

JESD204B/JESD204C data and the PRBS is checked after the JESD204B/JESD204C data is deframed. For the sample data, there is only a
PRBS checker on DAC 0 input. The lane PRBS has a checker on each deserializer lane.

Precondition

This function can be called any time after device initialization.
Dependencies

device->devHalInfo

Parameters

Table 37. adi_adrv9025_DfrmPrbsCheckerStateSet(...) Parameters

Parameter Description
*device A pointer to the device settings structure
polyOrder Selects the PRBS type based on enum values (ADI_ADRV9025_PRBS_DISABLE, ADI_ADRV9025_PRBS7,

ADI_ADRV9025_PRBS15, or ADI_ADRV9025_PRBS31)
checkerLocation | Check at deserializer (deframer input) or sample (deframer output)

Return Values
See Table 19.

adi_adrv9025_DfrmPrbsCountReset(...)

adi adrv9025 DfrmPrbsCheckerStateSet (adi adrv9025 Device t *device, adi adrv9025 DfrmPrbsCfg t
*dfrmPrbsCfq)

This function allows the baseband processor to clear the deframer PRBS counters by resetting the PRBS error counters for all lanes. It is
recommended to clear the error counters after enabling the deframer PRBS checker.

Precondition

The transmitter JESD204B/JESD204C link(s) must be configured to use this function.
Dependencies

device->devHalInfo

Parameters

Table 38. adi_adrv9025_DfrmPrbsCountReset(...) Parameter

Parameter Description
*device A pointer to the device settings structure
Return Values

See Table 19.
adi_adrv9025_DfrmPrbsErrCountGet(...)

adi adrv9025 DfrmPrbsErrCountGet (adi adrv9025 Device t *device,
adi adrv9025 DfrmPrbsErrCounters t *counters)

After enabling the deframer PRBS checker and clearing the PRBS error counters, use this function to read back the PRBS error counters.
The lane parameter allows the baseband processor to select which lane error counter to read. Only one lane error counter can be read at a
time. To read error counters for all four lanes, the baseband processor calls this function four times.

In the case that the PRBS checker is set to check at the deframer output sample, there is only a checker on the DAC 0 input. In this case,
the lane function parameter is ignored and the sample 0 PRBS counter is returned. The sample crossbar can be used to switch all
deframer outputs to DAC 0 in turn.

Precondition

The transmitter JESD204B/JESD204C link(s) must be configured to use this function.
Dependencies

device->devHallnfo

Rev. 0 | Page 47 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

Parameters

Table 39. adi_adrv9025_DfrmPrbsErrCountGet(...) Parameters

Parameter Description

*device Pointer to the device settings structure

counters Pointer to PRBS error counter structure to be returned
Return Values

See Table 19.

API SOFTWARE INTEGRATION

Configuration of the JESD204B/JESD204C circuitry is handled by the adi_adrv9025_Initialize(...) API function. Set all
JESD204B/JESD204C link options in the adi_adrv9025_Init_t data structure before calling adi_adrv9025_Initialize(...).

JESD204B/JESD204C API Data Structures
adi_adrv9025_DatalnterfaceCfg t

The adi_adrv9025_DatalnterfaceCfg_t data structure contains the information required to properly configure each framer, each

deframer, the serializers, and deserializers. Details of each structure member can be found in API documentation (/c_src/doc).

typedef struct adi adrv9025 DatalnterfaceCfg
{

adi adrv9025 FrmCfg t framer([3];

adi adrv9025 DfrmCfg t deframer[2];

adi adrv9025 SerCfg t serCfg[8];

adi adrv9025 DesCfg t desCfg[8];

uint8 t sysrefLvdsMode;

uint8 t sysrefLvdsPnlInvert;

adi adrv9025 LinkSharingCfg t linkSharingCfg;
} adi adrv9025 DataInterfaceCfg t;

Table 40. JESD204B/JESD204C Settings Structure Member Description

Structure Member

Valid Values

Description

framer0

framer1

framer2

deframer0

deframer1
serAmplitude
serPreEmphasis
serlnvertLanePolarity
deslInvertLanePolarity
desEqSetting

data structure
data structure
data structure
data structure
data structure
0.3

0.2

0x0 to OxOF
0x0 to OxOF
Oto3

Framer 0 configuration data structure

Framer 1 configuration data structure

Framer 2 configuration data structure

Deframer 0 configuration data structure

Deframer 1 configuration data structure

Serializer amplitude setting. Default = 1.

Serializer preemphasis setting. Default = 0.

Serializer Lane Polarity Inversion Select. One bit per lane.
Deserializer Lane Polarity Inversion Select. One bit per lane.
Deserializer Equalizer Setting. Applied to all deserializer lanes.

IMPLEMENTATION RECOMMENDATIONS

The following list contains the recommendations for implementing a JESD204B and JESD204C interface in hardware:

e SYSREF must be dc-coupled. If SYSREF is generated by GPIO pins, for example, both pins being in the low state at startup is not
valid. Ensure that the signals are active and/or in a known valid state prior to enabling the MCS gate.

e For 25G operation, it is recommended to use deframer Lane A and Lane C to minimize crosstalk possibilities.

e Deframer input amplitude is approximately 500 mV p-p to 700 mV p-p if insertion loss is approximately 5 dB at room temperature.

Minimizing data link uncertainty:

e Ensure setup and hold times are met for each SYSREF/DCLK pair

e Separate the SYSREF/DCLK pairs for each device in the system

e Match the trace length within each pair so that the propagation time is the same

Rev. 0 | Page 48 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

LINKINITIALIZATION AND DEBUGGING

Link initialization occurs during the post MCS phase of device initialization. The link bring up procedure follows the steps outlined for
both JESD204B and JESD204C configurations in the JESD204B and JESD204C subsections.

JESD204B
For the deframer side in JESD204B mode, follow these steps:

Initialize and bring up the baseband processor framer side.

Deframer is held in reset state until INIT command, then deframer issues a synchronization request by asserting the SYNC signal.
Framer starts sending K28.5 characters, then deframer is brought out of reset.

Deframer identifies four consecutive K28.5 characters then deasserts SYNC and goes into the ILAS phase.

If SYNC stays asserted, this indicates that the interface is stuck in the CGS phase. If the link parameters match, check the signal
integrity (refer to the Sample Iron Python Code for PRBS Testing section).

R S

For the framer side, link establishment follows the same procedure. First, the framer is enabled and the baseband processor deframer
synchronizes to the signal.

JESD204C
For the deframer side in JESD204C mode, follow these steps:

Initialize and bring up the baseband processor framer side.

2. Send the JESD204C initialization calibration command. This brings the link up because it is now protocol based (no SYNC signal
needed).

3. Enable the JESD204C tracking calibrations. This maintains the link parameters on a 60 second schedule.

For the framer side, link establishment follows the same procedure. First the framer is enabled and then the baseband processor deframer
synchronizes to the signal.

The adi_board_adrv9025_JesdBringup API function is used to configure and establish the data links. The overall detailed sequence,
including the MCS, is in the adi_adrv9025_daughter_board.c file.

FIRST TIME SYSTEM BRING UP—CHECKING LINK INTEGRITY
The following is a list of suggested actions when checking the link integrity during first time system bring up:

1. For ease of debug during bring up, it is recommended to start with a single lane on both sides and with the minimum possible link speed.

2. Check that the parameters are configured the same at both ends of the transceiver and FPGA. The adi_adrv9025_DfrmCfg_t data
structure contains the information required to properly configure each deframer.

3. There is a PRBS checker available that can be used to check signal integrity related issues. Initialize the transceiver as outlined in the
Link Initialization and Debugging section. Enable the PRBS generator on the baseband processor with the desired PRBS sequence.

4. Confirm that the lanes baseband processor is transmitting PRBS on are the actually configured in the transceiver. Start with the
PRBS errors. Ensure baseband processor and the transceiver are both using the same PRBS signal and the transceiver expects the
same PRBS 7 from baseband processor.

5. Call the API adi_adrv9025_DfrmPrbsCheckerStateSet(...) passing the actual device being evaluated, the PRBS sequence to check,
and the location at which to check the PRBS sequence.

6. After some amount of time, call the API function to check the PRBS errors. This can be done by calling the API function
adi_adrv9025_DfrmPrbsErrCountGet(...) passing the actual device being evaluated, the counter selection lane to be read, and the
error count is returned in the third parameter passed.

7. The user can use adi_adrv9025_DeframerSysrefCtriSet(...) API so that the external SYSREF signal at the pin can be gated off
internally so the deframer does not see a potential invalid SYSREF pulse before it is configured correctly.

8. After bringing up of the JESD204B link or for debugging the deframer, the baseband processor can check the status of the deframer
using adi_adrv9025_DeframerStatusGet(...).

SAMPLE IRON PYTHON CODE FOR PRBS TESTING

The following Iron Python script can be loaded into the Iron Python tab in the GUI to run the PRBS test. To use this code, select File >
New and place this code just after the ##### YOUR CODE GOES HERE ##### note.

#Create an Instance of the Class

Rev. 0 | Page 49 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

link = AdiEvaluationSystem.Instance
connect = False
adrv9025 = 1link.Adrv9025Get (1)

FrmTestDataCfg=Types.adi adrv9025 FrmTestDataCfg t ()

FrmTestDataCfg.framerSelMask=int (Types.adi adrv9025 FramerSel e.ADI ADRV9025 FRAMER 0)
print FrmTestDataCfg.framerSelMask

FrmTestDataCfg.testDataSource=Types.adi adrv9025 FramerDataSource e.ADI ADRV9025 FTD PRBS7

FrmTestDataCfg.injectPoint=Types.adi adrv9025 FramerDataInjectPoint e.ADI ADRV9025 FTD SERIALIZE
R

adrv9025.DatalInterface.FramerTestDataSet (FrmTestDataCfqg)

#Enable Deserializer

link.platform.board.Fpga.Prbs.PrbsDeserializerEnable (0xF,0x1) #1:PRBS7;2:PRBS9;3:PRBS15;5:PRBS31
link.platform.board.Fpga.Prbs.PrbsDeserializerEnable (0xF,0x1) #1:PRBS7;2:PRBS9;3:PRBS15;5:PRBS31
#clear PRBS error

link.platform.board.Fpga.Prbs.PrbsErrorClear (0xF)

#Read PRBS error

#adrv9025.DatalInterface.FramerTestDatalnjectError (Types.adi adrv9025 FramerSel e.ADI ADRV9025 FR
AMER 0, 0x0)

time.sleep (1)

errCounts=Array[System.UInt32]([0,0,0,0,0,0,0,01])
errCounts=link.platform.board.Fpga.Prbs.PrbsErrorCountsRead (errCounts) [1]

errCounts=[int (data) for data in errCounts]

print errCounts #710,0,0,0,0,0,0,0]

When this script is run, it results in the number of errors per enabled lane. Note that only the first four positions are valid and the last
four positions are always 0. To create errors as a test, change the 0x1 in the line immediately below the Enable Deserializer comment to
one of the other values indicated. The enabled lanes show errors by enabled lane position.

PRBS ERRORS

When the baseband processor is transmitting PRBS, confirm that the active lanes are also configured properly in the transceiver. Start
with the PRBS errors. Ensure that the baseband processor and the transceiver are both using the same PRBS signal and the transceiver
expects the same PRBS 7 from baseband processor.

If stuck in CGS mode, or if SYNC stays at the logic low level or pulses high for less than four multiframes, take the following steps:

1. Power down the system and check the following:

a. SYSREF and SYNC signaling is dc-coupled.

b. Check that the pull-down or pull-up resistors are not dominating the signaling. For example, if values are too small or shorted
and therefore cannot be driven correctly.

c. Verify that the differential pairs traces are length matched.

d. Verify that differential impedance of the traces is 100 Q.

2. Power up the system and check the following:
a. If there is a buffer/translator in the SYNC path, make sure it is functioning properly.
b. Check that the SYNC source is properly configured to produce compliant logic levels.
3. Check SYNC signaling using the following actions:

a. If SYNC is static and logic low, the link is not progressing beyond the CGS phase. There is either an issue with the data being
sent or the JESD204B receiver is not decoding the samples properly. Verify /K/ characters are being sent, verify receive
configuration settings, and verify the SYNC source. Consider overdriving the SYNC signal and attempt to force link into ILAS
mode to isolate link receiver vs. transmitter issues.

Rev. 0 | Page 50 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

b. If SYNC is static and logic high, verify that the SYNC logic level is configured correctly in the source device. Check pull-up and
pull-down resistors.

c. If SYNC pulses high and returns to a logic low state for less than six multiframe periods, the JESD204 Link is progressing
beyond the CGS phase but not beyond ILAS phase. This suggests that the /K/ characters are okay and the basic function of the
CDR is working. Proceed to ILAS troubleshooting.

d. If SYNC pulses high for a duration of more than six multiframe periods, the link is progressing beyond the ILAS phase and is
malfunctioning in the data phase. See the Link Initialization and Debugging for troubleshooting tips.

4. Check serial data using the following actions:

a. Verify that the transmitter data rate and the receiver expected rate are the same.

b. Measure lanes with a high impedance probe (a differential probe, if possible). If characters appear incorrect, ensure lane
differential traces are matched, the return path on the PCB is not interrupted, and devices are properly soldered on the PCB.
CGS characters are easily recognizable on a high speed scope.

c. Verify /K/ characters with a high impedance probe. If /K/ characters are correct, the transmitter side of the link is working
properly. If /K/ characters are not correct, the transmitter device or the board lane signals have an issue.

d. Verify the transmitter CML differential voltage on the data lanes.

e. Verify the receiver CML differential voltage on the data lanes.

f. Verify that the M and L configuration parameters values match between the baseband processor and the transceiver. Otherwise,
the data rates may not match. For example, for M = 2 and L = 2, expect % the data rate over the serial interface as compared to
theM=2and L =1 case.

g. Ensure that the device clock is phase locked and at the correct frequency.

If the user is stuck in ILAS mode, or if SYNC pulses high for approximately four multiframes, take the following steps:

1. Link parameter conflicts
a. Verify that ILAS multiframes are transmitting properly and verify the link parameters on the transmitter device, the receiver
device, and those parameters transmitted in the ILAS second multiframe are all valid.
b. Calculate expected ILAS length terame, tmurrirrams, and 4 X tvurrerame and verify that ILAS is attempted for approximately four
multiframes.
2. Verify that all lanes are functioning properly. Ensure that there are no multilane/multilink conflicts.

If the interface enters data phase but occasionally the link resets (returns to CGS and ILAS before returning to data phase), look for the
following issues and make adjustments to the link parameter to remove the condition:

e Invalid setup and hold time of periodic or gapped periodic SYSREF or SYNC signal.
e Link parameter conflicts

e Character replacement conflicts

e Scrambling problem, if enabled

e Lane data corruption, noisy or jitter can force the eye diagram to close

e Spurious clocking or excessive jitter on device clock

STATIC PHASE OFFSET (SPO) TEST TO VERIFY EYE WIDTH

High speed data rates present a tougher challenge because signal integrity is required for reliable error free data transfer. See the PCB
Layout Considerations section for differential line layout recommendations.

When debugging lane errors, it can be useful to understand how large the eye of the waveform is to determine how reliable the link is. In the case
of the deframer, in JESD204C mode the channel is estimated during an initialization calibration that configures the CTLE and automatically
adjusts the sampling position on the waveform. To gain confidence in the link stability, the opening of the eye over the operating conditions is
one measure of robustness. A method of determining the opening size is to sweep the sampling position, searching for dead space where no
transitions are occurring. Therefore, the sampling point is in the eye. This is an SPO test that offsets the clocks to move the sampling edge left or
right on the waveform and the resulting dead steps total at least 4 steps left and right from center. The link is considered good overall operating
conditions. The SPO test requires PRBS transmission in the FPGA and setup of the PRBS pattern checker in the transceiver device.

A typical test output report is shown in the SPO Test Example Python Script section. In this case, two lanes are in use. The phase is swept
in 128 steps The resolution is dependent on the lane rate, but in general the result shown is considered good with approximately 16 phase
steps open in the center of the eye, as shown in the resulting output files.

Rev. 0 |Page 51 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

SPO Test Example Python Script
The SPO test code can be run in the GUI and works for both JESD204B and JESD204C. The user needs to set the first line appropriately
and also configure the output file path to a folder on the PC. Insert these functions in the def section of the new script, as follows:
def FpgaWrite (address, data):
link.platform.board.Fpga.Hal.RegisterWrite (address, data)
#print "FPGA Write Address " + hex(address) + ": " + hex(data)

def FpgaRead (address) :
data = link.platform.board.Fpga.Hal.RegisterRead (address, 0)
print "FPGA Read Address " + hex(address) + ": " + hex(datal[l])

def FPGAPRBSSetup (mode is 204c=0) :

enablePRBS chl = link.platform.board.Fpga.Hal.RegisterRead (0x43400220,0)
#Read the value in PRBS control register (FPGA chl testmodes register)

disablePRBS = enablePRBS chl[1l] & OxFOffFFFF
#Zero bits 27-24 without affecting the other bits

in the register.

enablePRBS7 = disablePRBS | 0x01000000
#Set the enablePRBS variable bits 27-24 to 0001
to enable PRBS7

enablePRBS23 = disablePRBS | 0x05000000
#Set the enablePRBS variable bits 27-24 to 0101 to
enable PRBS23

for fpgaregister in range (0x43400100, 0x43400900, 0x100):
#Update all FPGA ch0-7

if (mode is 204c == 1):

FpgaWrite (fpgaregister, 0x00000004)
#Puts the lane transmit side in reset

FpgaWrite (fpgaregister + 0x48, 0x20800080)
#Sets the data and data mask for the DRP write to enable
the buffer and disable the gearbox

FpgaWrite (fpgaregister + 0x40, 0x0003007C)
#Initiates the write to the DRP

FpgaWrite (fpgaregister + 0x10, 0x02015233)
#Sets the transmit clock source to the PMA clock

FpgaWrite (fpgaregister + 0x20, enablePRBS7)
#Write the new value back to the FPGA to enable PRBS7 -
chl (fpga) to ch7 =serdinA to H

if (mode is 204c):

FpgaWrite (fpgaregister, 0x00000000)
#Remove reset

print "PRBS7 is enabled", hex(disablePRBS), hex(enablePRBS7), hex(enablePRBS23)

ErrorCount = Types.adi adrv9025 DfrmPrbsErrCounters t()

dfrmPrbsCfg = Types.adi adrv9025 DfrmPrbsCfg t ()

dfrmPrbsCfg.deframerSel = dfrm sel

dfrmPrbsCfg.polyOrder = Types.adi adrv9025 DeframerPrbsOrder e.ADI ADRV9025 PRBS7

Rev. 0| Page 52 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

dfrmPrbsCfg.checkerLocation =
Types.adi adrv9025 DeframerPrbsCheckLoc e.ADI ADRV9025 PRBSCHECK LANEDATA

adrv9025.DatalInterface.DfrmPrbsCheckerStateSet (dfrmPrbsCfqg)
#check config matches what you've written

dfrmPrbsCfgRead = Types.adi adrv9025 DfrmPrbsCfg t()
adrv9025.Datalnterface.DfrmPrbsCheckerStateGet (dfrmPrbsCfgRead)

print "PRBS config setup, Poly, location,drmrSel", dfrmPrbsCfgRead.polyOrder,
dfrmPrbsCfgRead.checkerLocation, dfrmPrbsCfgRead.deframerSel

adrv9025.DatalInterface.DfrmPrbsCountReset ()

adrv9025.DataInterface.DfrmPrbsErrCountGet (ErrorCount) #api method to read error
counters + flags

for lanes in range(len(ErrorCount.laneErrors)):
print "Initial laneError count for lane", lanes, "is :", ErrorCount.laneErrors|[lanes]

print "Initial ErrorStatus for lane", lanes, "is :", ErrorCount.errorStatus[lanes] #Bit
0 = Lane inverted, bit 1 = invalid data flag, bit 2 = sample/lane error flag

if ErrorCount.laneErrors[0] == O0O:
print "No Errors detected as expected in PRBS7 mode. Will switch to PRBS23 now"
else:

print "Errors detected!! Link not good, please check link"

for fpgaregister in range (0x43400100, 0x43400900, 0x100):
#Update all FPGA ch0-7

link.platform.board.Fpga.Hal.RegisterWrite (fpgaregister + 0x20, enablePRBS23)
#Write to the FPGA to enable PRBS23 on all Ch

print "Changing to PRBS23"

adrv9025.DataInterface.DfrmPrbsCountReset ()
adrv9025.DataInterface.DfrmPrbsErrCountGet (ErrorCount)

for lanes in range(len(ErrorCount.laneErrors)) :

print "PRBS23 laneError count for lane", lanes, "is :", ErrorCount.laneErrors[lanes]
print "PRBS23 ErrorStatus for lane", lanes, "is :", ErrorCount.errorStatus[lanes]
if ErrorCount.laneErrors[0] != 0:

print "Errors detected as expected with PRBS mismatch. Will switch back to PRBS7 now"
else:

print "Errors not detected with PRBS mismatch !! Please verify PRBS generator in FPGA"

for fpgaregister in range (0x43400100, 0x43400900, 0x100):
#Update all FPGA ch0-7

link.platform.board.Fpga.Hal.RegisterWrite (fpgaregister + 0x20, enablePRBS7)
print "PRBS7 is enabled again on all channels"
adrv9025.DataInterface.DfrmPrbsCountReset ()
adrv9025.DataInterface.DfrmPrbsErrCountGet (ErrorCount)

if ErrorCount.laneErrors[0] ==

Rev. 0 | Page 53 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

print "No Errors detected after switching back to PRBS7 mode. Will move onto phase/amp
eye sweep"

else:

print "Errors detected!! please check setup - may need to reboot"

Insert the following in the Iron Python tab after the line: ##### YOUR CODE GOES HERE ##### (approximately Line 40). See Figure 21 for
the SPO test measurement result.

mode is 204c = 0 # need to setup FPGA differently for 204c vs. 204b mode, so
set this bit appropriately.

foldername = "C:\\tmp"

errorTimeDuration = 0.001 #time duration to allow PRBS errors to accumulate

LaneErrorFlag = [] #containers to store ErrorFlag Data for each lane to print
to file

LaneErrorCntr= []

dfrmPrbsCfg = Types.adi adrv9025 DfrmPrbsCfg t ()
ErrorCount = Types.adi adrv9025 DfrmPrbsErrCounters t()
dfrm sel = Types.adi adrv9025 DeframerSel e.ADI ADRV9025 DEFRAMER 0

FPGAPRBSSetup (mode_is 204c) #Setup PRBS TestMode on FPGA side

dfrmPrbsCfg.deframerSel = dfrm sel

dfrmPrbsCfg.polyOrder = Types.adi adrv9025 DeframerPrbsOrder e.ADI ADRV9025 PRBS7 #can
configure PRBS mode on Madura

dfrmPrbsCfg.checkerLocation =
Types.adi adrv9025 DeframerPrbsCheckLoc e.ADI ADRV9025 PRBSCHECK LANEDATA

adrv9025.DatalInterface.DfrmPrbsCheckerStateSet (dfrmPrbsCfqg)

adrv9025.DatalInterface.DfrmPrbsCountReset ()

adrv9025.DatalInterface.DfrmPrbsErrCountGet (ErrorCount) #Run initial PRBS error check -
should have zero errors initially

for lanes in range(len(ErrorCount.laneErrors)) :

print "Initial laneError count for lane", lanes, "is :", ErrorCount.laneErrors[lanes]
print "Initial ErrorStatus for lane", lanes, "is :", ErrorCount.errorStatus/[lanes] #Bit 0 =
Lane inverted, bit 1 = invalid data flag, bit 2 = sample/lane error flag

for phase in range (64,192,1):

phase = phase % 128 #0ffset the phase to centre the eye
spiWrite (0x6805, 0xD) # Write the serdes submap addr

spiWrite (0x6808, phase | 0x80) # Write the phase data

spiWrite (0x6806, O0xOF) # Latch in phase data for all lanes

spiWrite (0x6806, 0x00) #clear latch

adrv9025.DataInterface.DfrmPrbsCountReset ()

Rev. 0 | Page 54 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

time.sleep(errorTimeDuration) #Set a wait time to allow errors
to accumulate

adrv9025.DatalInterface.DfrmPrbsErrCountGet (ErrorCount)

for lanes in range(len(ErrorCount.laneErrors)): #readback errors from each lanes
and store in an array

LaneErrorFlag.append (int (ErrorCount.errorStatus|[lanes] >> 2) & 0x1)

LaneErrorCntr.append (ErrorCount.laneErrors[lanes])

Print ErrorFlag & ErrorCounter data to files

filename = "{0}\\eyedata lane.txt".format (foldername)

filename2 = "{O}\\cntrdata_lane.txt".format(foldername)

with open(filename, 'w') as fl, open(filename2, 'w') as f2:
fl.write ("LaneErrorFlag[0]\tLaneErrorFlag[l]\tLaneErrorFlag[2]\tLaneErrorFlag[3]\n")
f2.write ("LaneErrorCntr[0]\tLaneErrorCntr[1l]\tLaneErrorCntr[2]\tLaneErrorCntr[3]\n")

for i in range (0, len(LaneErrorFlag),4): #print out the eye diagram ascii
symbols to file

fl.write ("{O}\t{1}\t{2}\t{3}\n".format (LaneErrorFlag[i],
LaneErrorFlag[i+1l],LaneErrorFlag[i+2],LaneErrorFlag[i+3]))

f2.write ("{0}\t{1}\t{2}\t{3}\n".format (LaneErrorCntr[i],
LaneErrorCntr[i+1],LaneErrorCntr[i+2], LaneErrorCntr[i+3]))

Connected

PRBS7 is enabled exeL exi L ex5 L

PRBS com‘ig setup, Poly, location,drmrSel ADI_ADRV9©1@_PRBS7 ADI_ADRV9@1€@_PRESCHECK_LANEDATA ©
Initial laneError count for lane @ is : @

Initial Errorstatus for lane @ is : @

Initial laneError count for lane 1 is : ©

Initial ErrorStatus for lane 1 is : @

Initial laneError count for lane 2 is : @

Initial ErrorsStatus for lane 2 is : @

Initial laneError count for lane 3 is : @

Initial ErrorStatus for lane 3 is : @

No Errors detected as expected in PRBS7 mode. Will switch to PRBS23 now
Changing to PRBS23

PRBS23 laneError count for lane @ is : 333222

PRBS23 Errorstatus for lane @ is : 4

PRBS23 laneError count for lane 1 is : @

PRBS23 ErrorStatus for lane 1 is : @

PRBS23 laneError count for lane 2 is : 517779

PRBS23 ErrorStatus for lane 2 is : 4

PRBS23 laneError count for lane 3 is : @

PRBS23 ErrorStatus for lane 3 is : @

Errors detected as expected with PRBS mismatch. Will switch back to PRBS7 now
PRBS7 is enabled again on all channels

No Errors detected after switching back to PRBS7 mode. Will move onto phase/amp eye sweep
Initial laneError count for lane @ is : ®©

Initial ErrorStatus for lane @ is : @

Initial laneError count for lane 1 is : @

Initial ErrorsStatus for lane 1 is : @

Initial laneError count for lane 2 is : @

Initial ErrorStatus for lane 2 is : @

Initial laneError count for lane 3 is : ©

Initial ErrorStatus for lane 3 is : @

22770-021

Figure 21. SPO Test Measurement Result

The test reported in Figure 21 was run on UC14C-LS on the evaluation board platform with the result indicating that initially there are no
PRBS errors. Then errors are injected with the resulting error counts, and the eye sweep is run with no errors being reported. In this case,
only two deframer lanes are in use, Lane A and Lane C. Data for the unused lanes are 0.

Rev. 0 | Page 55 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Two files are also generated by the script: cntrdata_lane.txt and eyedata_lane.txt.
The cntrdata_lane.txt indicates the number of errors counted as the phase is adjusted, and the count goes to 0 in the center of the eye.

In the eyedata_lane.txt file, errors are represented by 1 and the eye indicated by 0. Similarly, the Os occur toward the center of the
waveform, indicating an acceptable eye width. Figure 22 and Figure 23 show excerpts from the center of the files.

683046 0 657487 O
602268 O 614251 O
397518 0 469438 O
817921 O 719822 0
685900 O 527792 O
689797 0 611034 O
648607 O 765663 O
437121 O 522234 O
253707 0 442740 0
85281 0 179763 O
18818 0 60046 0
815 0 9462 0
25 0 1529 0
0 0 159 0
0 0 2 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0] 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0] 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
113 0 2 0
5567 0 170 0
39999 0 2632 0
122796 O 33358 0
230292 0 277960 0
734022 0 748024 0
701161 O 783019 O
532885 O 628545 O
782405 0 896331 O E
445538 0 562745 O S

Figure 22. cntrdata_lane.txt Showing PRBS Error Counts About the Eye Center

Rev. 0 | Page 56 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-17271

ADRV3026/ADRV93029

€20-0L222

CO0000000000000O0000O000O0O0O0O00000O0O00O00O0000O0O0OCQ

4T A A A A A A A OO0 000000000000 dd

CO0000000000000O0000O000O0O0O0O00000O0O00O00O0000O0O0OCQ

A AA A A A A A OO0 0000000000000 O0 A rdd

Figure 23. eyedata_lane.txt Showing Center of the Eye

Rev. 0 | Page 57 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

CHECKING JESD204C LINK STATUS

JESD204C link status can be examined by using SPI commands to read the following address locations:

e Address 0x6B2B to Address 0x6B2E are for Deframer 0 for Lane A, Lane B, Lane C, and Lane D, respectively
e Address 0x6D2B to Address 0x6D2E are for Deframer 1 for Lane A, Lane B, Lane C, and Lane D, respectively

It is only necessary to check as many lanes as the deframer is using. For example, if both deframers are in use and each one uses two lanes,
it is only necessary to check the first two registers in each deframer, not all four.

Table 41. Deframer Register Bit Function Assignments

Bits Name Description
7:3 Reserved Reserved
2:0 Jrx_dl_204c_state Current Lock State

Table 42. Deframer Register State Options

Bits[2:0] Description

Reset

Unlocked

Block (blocks aligned)

M_Block (lanes aligned)
E_M_Block (multiblock aligned)
FEC_BUF

FEC_READY (good state)
Reserved

N O unn b W N = O

SELECTING THE OPTIMAL LMFC AND LEMC OFFSET FOR A DEFRAMER

This section describes how to set the LMFC/LEMC offset for a deframer, how to read back the corresponding elastic buffer depth, and
how to select the optimal LMFC/LEMC offset value for a given system.

Deterministic Latency in JESD204B Mode

In JESD204B mode, the transceiver digital data interface follows the JESD204B Subclass 1 standard, which has provisions to ensure
repeatable latencies across the link from power-up to power-up or over link reestablishment by using the SYSREF signal.

To achieve this deterministic latency, the transceiver deframers include elastic buffers for each of their lanes. The elastic buffers are also
used to deskew each lane before aligning them with the LMFC signal. The depth of the elastic buffers can therefore be different for each
lane of a given deframer.

A deframer starts outputting data out of its elastic buffers on the next LMFC (that is, multiframe) boundary following the reception of the
first characters in the ILA sequence by all the active lanes. It is therefore possible to adjust when the data is output from the elastic buffers,
and how much data is stored in those buffers (called buffer depth), by adjusting the phase relationship between the external SYSREF
signal and the internally generated LMFC signal. This phase relationship is adjustable by using the LMFC offset parameter, which is
programmable for each of the deframers. This is shown in Figure 24 and Figure 25.

LANES MAY NOT BE ALL LANES ARE ALIGNED
ALIGNED WITH WITH EACH OTHER AND
EACH OTHER HERE WITH LMFC/LEMC HERE.

\ DESKEWED AND
DEFRAMER ELASTIC LMFC/LEMC
LANEINPUTO — | BUFFER [~ ALIGNED DEFRAMER
LANE 0
DESKEWED AND
DEFRAMER ELASTIC LMFC/LEMC
LANE INPUT 1 ®1 BUFFER [™ ALIGNED DEFRAMER
LANE 1
.
°
L[]
DESKEWED AND .
DEFRAMER > ELASTIC LMFC/LEMC g
LANE INPUT L-1 BUFFER [~ ™ ALIGNED DEFRAMER £
LANE L-1 8

Figure 24. Elastic Buffers in the Deframers

Rev. 0 | Page 58 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

SYSREF
SYNC~ I\ Tx ILA BEGINS ON FIRST LMFC ZERO-CROSSING AFTER SYNC~ IS DEASSERTED
DETERMINISTIC

DELAY FROM SYSREF

Tx b % SAMPLED HIGH TO
DEVICE LMFC ZERO-CROSSING
e 4 + + f f t f
MULTIFRAME
| 1 1
O g 3 o e 0

'YNC~RISING EDGE WHEN LMFC OFFSET = N

SYNC~RISING EDGE WHEN LMFC OFFSET =N + 1
SYSREF
SYNC~

DETERMINISTIC DELAY FROM SYSREF SAMPLED HIGH TO LMFC ZERO-CROSSING FOR LMFC OFFSET =N
> -+

(LMFC OrFseT - N) f f * f * f *

> RETERMINISTIC DELAY FROM SYSREF SAMPLED HIGH TO LMFC ZERO-CROSSING FOR LMFC OFFSET =N + 1

(LMFC OFFSET =N +1) f * * * * * *

]]]
O Bl 5 3 G G a0 S D S 0 oEG R R S22 R
LATEST | 1 |
RS, PR - (R -~~~ G S N A uaa S

DATA STORED IN ELASTIC BUFFER FOR
“ » EARLIEST LANE WHEN LMFC OFFSET =N

DATA STORED IN ELASTIC BUFFER FOR
. > EARLIEST LANE WHEN LMFC OFFSET = N + 1

DATA STORED IN ELASTIC BUFFER FOR
“ ’ LATEST LANE WHEN LMFC OFFSET =N

DATA STORED IN ELASTIC BUFFER FOR
LATEST LANE WHEN LMFC OFFSET =N +1
ELASTIC BUFFER

| |
i D 3 g 0 G D D {elelefelet - - - feloH- PRIt -------
uFC o) S AR LA T | |
ELASTIC BUFFER y y
qurrunion el IKIKIKIKIRIDI poommmes D[R --- Pt-PRRPEE ------- ---

(LMFC OFFSET =N + 1)
DETERMINISTIC DELAY FROM Tx ILA OUTPUT
TO Rx ILA OUTPUT WHEN LMFC OFFSET =N + 1

Figure 25. Impact of LMFC Offset on Elastic Buffer Depth in JESD204B Mode

22770-025

>

Rev. 0 | Page 59 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Deterministic Latency in JESD204C Mode

In JESD204C mode, deterministic latency can also be achieved because of the elastic buffers in the deframers. The elastic buffers are still
used to de-skew each lane before aligning them with the LEMC signal. The depth of the elastic buffers can, therefore, be different for each
lane of a given deframer.

A deframer starts outputting data from its elastic buffers on the next LEMC boundary following the reception of the first multiblock in an
extended multiblock by all the active lanes. As a result, it is possible to adjust when the data is output from the elastic buffers and,
therefore, how much data is stored in those buffers (the buffer depth) by adjusting the phase relationship between the external SYSREF
signal and the internally generated LEMC signal. This phase relationship is adjustable by using the LEMC offset parameter, which is
programmable for each of the deframers. This is shown in Figure 24 and Figure 26.

Note that the size of each elastic buffer is 512 octets. When the JESD204C E parameter (number of multiblocks in an extended
multiblock) is bigger than 2, the elastic buffer is not able to store enough data for some LEMC offset values.

1 EXTENDED MULTIBLOCK (EMB)
E x 1 MULTIBLOCK (MB)

E x 256 OCTETS

K x F OCTETS

SYSREF j

~<¢——» DETERMINISTIC DELAY FROM SYSREF SAMPLED HIGH TO LEMC ZERO-CROSSING
*FOR LMFC OFFSET =N *

LEMC
(LEMC OFFSET = N)

~—————p DETERMINISTIC DELAY FROM SYSREF SAMPLED HIGH TO LEMC ZERO-CROSSING
FOR LMFC OFFSET =N +1

LEMC
(LEMC OFFSET = N + 1)

EARLIEST LANE - ——— - {o|1| |31}----{o|1| |31|o|1| |31} ___________________
ARRIVAL
MB 0 MB E-1 MB 0
EARLIESTLANE _________ 1 | | 1}____1 |1 | | 1| |1 | | 1} ________________
ARRIVAL { 0 | 3 0 il I 3
MB 0 MB E-1 MB 0

<«——p DATA STORED IN ELASTIC BUFFER FOR
EARLIEST LANE WHEN LMFC OFFSET =N

<«4—— p DATA STORED IN ELASTIC BUFFER FOR
EARLIEST LANE WHEN LMFC OFFSET =N + 1

- » DATA STORED IN ELASTIC BUFFER FOR
LATEST LANE WHEN LMFC OFFSET =N

<«—» DATA STORED IN ELASTIC BUFFER FOR
LATEST LANE WHEN LMFC OFFSET =N + 1

ELASTIC BUFFER OUTPUT

ONALLLANES . ______________ 40|1 | |31l____lo|1 | |31|o|1 | |31l __________
(LEMC OFFSET = N)
MB 0 MB E-1 ME 0
Bt e L B Tola] o [st]----Jo 1] e EIE I S g
(LEMC OFFSET = N) ™y T ™ :

Figure 26. Impact of LEMC Offset on Elastic Buffer Depth in JESD204C Mode

Programming the LMFC Offset for a Deframer
The following are three ways to program the LEMC offset for a given deframer:

e Modify the profile file being used
e Use the adi_adrv9025_DfrmCfg data structure
e Write directly to the relevant SPI registers

Setting the LMFC/LEMC Offset in the Profile File

There is a ImfcOffset field for each of the two deframers in the profile file. This field corresponds to the LMFC offset in JESD204B mode,
and corresponds to the LEMC offset in JESD204C mode. The ImfcOffset field can be set to a decimal value between 0 and (K x S) — 1
(where K is the number of frames per multiframe/extended multiblock, and S is the number of samples per converter per frame cycle).
For example, for the ADRV9025Init_StdUseCase26C_nonLinkSharing.profile file, the ImfcOffset field is located around Line 189 for
Deframer 0 and around Line 229 for Deframer 1 (see Figure 27).

Rev. 0 | Page 60 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

22770-027

E 3.

Figure 27. Deframer 0 ImfcOffset Field for the ADRV9025Init_StdUseCase26C_nonLinkSharing.profile File

Note that the device must be reprogrammed after changing an LMFC/LEMC offset in the profile file and loading it into ARM memory
for the change to take effect. Also note that if the goal is to sweep the LMFC/LEMC offset values for test purposes without any need for
RF performance (for example, to determine the optimal LMFC/LEMC value), it is not necessary to run the initialization calibrations
when programming the transceiver. Not running the init calibrations makes the programming process quicker.

Setting the LMFC/LEMC Offset in the adi_adrv9025_DfrmCfg Data Structure

An alternative way of programming the LMFC/LEMC offset consists of using the ImfcOffset field of the adi_adrv9025_DfrmCfg data
structure for the relevant deframer (see Figure 28). Note that the device must be reprogrammed after changing the LMFC/LEMC offset
for a given deframer in the adi_adrv9025_DfrmCfg data structure for the change to take effect. Also note that if the goal is to sweep the
LMFC/LEMC offset values for test purposes without any need for RF performance (for example, to determine the optimal LMFC/LEMC
value), it is not necessary to run the init cals when programming the transceiver. Not running the init cals makes the programming
process quicker.

typedef struct adi adrv9025 DfrmCfg
{

uint8 t enabledesd204C;
uint8 t bankId:
uint8_t deviceld:
uint8 t laneOId;
uint8 t jesd204M;
uintlé t jesd204K:
uint8 t jesd204F:
uint8_ t jesd204Np;
uint8 t jesdZ04E;
uint8 t scramble:
uint8 t deserializerLanesEnabled;
uint8 t syncbOutSelect:
uint8 t syncbOutLvdsMode;
uint8 t syncbOutLvdsPnInvert:
uint8 t syncbOutCmosSlewRate;
uint8 t syncbOutCmosDrivelLevel;
adi_adrv9025 DeserLaneXbar t deserializerLaneCrossbar;
adi_adrv9025_ DacSampleXbarCfg t dacCrossbar;
uint8 t newSysrefOnRelink;
uint8 t sysrefForStartup;
uint8 t sysrefNShotEnable;
uint8 t sysrefNShotCount:
uint8 t sysrefIgnoreWhenLinked;

} adi adrv9025 DfrmCfg t:

22770-028

Figure 28. LMFC Offset Field in adi_adrv9025_DfrmCfg Data Structure

Rev. 0| Page 61 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Setting the LMFC/LEMC Offset Through SPI Registers Controls
It is possible to set the LMFC/LEMC offset value by writing to the Deframer 0 and Deframer 1 SPI registers using the following steps:
Deframer 0:

e Register 0x6A8E, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the LMFC/LEMC phase adjustment 16-bit word for Deframer 0.
The valid range of phase adjustment values is 0 to (K x S) — 1 (where K is the number of frames per multiframe/extended multiblock,
and S is the number of samples per converter per frame cycle).

e Register 0x6AS8F, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the LMFC/LEMC phase adjustment 16-bit word for Deframer 0.
The valid range of phase adjustment values is 0 to (K x S) — 1 (where K is the number of frames per multiframe/extended multiblock,
and S is the number of samples per converter per frame cycle).

Deframer 1:

e Register 0x6C8E, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the global LMFC/LEMC phase adjustment 16-bit word for
Deframer 1. The valid range of phase adjustment values is 0 to (K x S) — 1 (where K is the number of frames per
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle).

e Register 0x6C8E, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the global LMFC/LEMC phase adjustment 16-bit word for
Deframer 1. The valid range of phase adjustment values is 0 to (K x S) — 1 (where K is the number of frames per
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle).

Note that a SYSREF pulse must be applied and then the link between the JESD204B and JESD204C framer and JESD204B and JESD204C
deframer of the transceiver must be reestablished after changing the LMFC/LEMC offset through SPI writes for a given deframer for the
change to take effect.

It is also possible to set the LMFC/LEMC offset value by writing to the following SPI registers:
Deframer 0:

e Register 0x6A50, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the LMFC/LEMC phase adjustment 16-bit word for deframer 0.
The valid range of phase adjustment values is 0 to (K x S) — 1 (where K is the number of frames per multiframe/extended multiblock,
and S is the number of samples per converter per frame cycle).

e Register 0x6A51, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the LMFC/LEMC phase adjustment 16-bit word for deframer 0.
The valid range of phase adjustment values is 0 to (K x S) — 1 (where K is the number of frames per multiframe/extended multiblock,
and S is the number of samples per converter per frame cycle).

Deframer 1:

e Register 0x6C50, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the global LMFC/LEMC phase adjustment 16-bit word for
deframer 1. The valid range of phase adjustment values is 0 to (K x S) — 1 (where K is the number of frames per
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle).

e Register 0x6C51, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the global LMFC/LEMC phase adjustment 16-bit word for
deframer 1. The valid range of phase adjustment values is 0 to (K x S) — 1 (where K is the number of frames per
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle).

Reading Back the Buffer Depths for Each Deframer Lanes

It is possible to read back the depths of the elastic buffers for each deframer lane in the Deframer 0 and Deframer 1 SPI registers of the
device. The corresponding registers for Deframer 0 and Deframer 1 are:
Deframer 0:

e Register 0x6A8A, Bits[7:0]: buffer depth for Lane 0 of Deframer 0
e Register 0x6A8B, Bits[7:0]: buffer depth for Lane 1 of Deframer 0
e Register 0x6A8C, Bits[7:0]: buffer depth for Lane 2 of Deframer 0
e Register 0x6A8D, Bits[7:0]: buffer depth for Lane 3 of Deframer 0
Deframer 1:

e Register 0x6C8A, Bits[7:0]: buffer depth for Lane 0 of Deframer 1
e Register 0x6C8B, Bits[7:0]: buffer depth for Lane 1 of Deframer 1
e Register 0x6C8C, Bits[7:0]: buffer depth for Lane 2 of Deframer 1
e Register 0x6C8D, Bits[7:0]: buffer depth for Lane 3 of Deframer 1

Rev. 0 | Page 62 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

In JESD204B mode, the unit of the values read back in those registers is 4 octets. In other words, an increment of the buffer depth value
read back by 1 unit corresponds to an actual increment by 4 octets. The values read back range from 0 to (K x F)/4 (where K is the
number of frames per multiframe, and F is the number of octets per lane in a frame cycle).

In JESD204C mode, the unit of the values read back in those registers is 8 octets. In other words, an increment of the buffer depth value
read back by 1 unit corresponds to an actual increment by 8 octets. The values read back range from 0 to E x 32 (where E is the number of
multiblocks in an extended multiblock). Note that the size of the elastic buffer is 512 octets. When E > 2, the maximum buffer depth
values read back are therefore limited to 64, which corresponds to 512 octets.

Note that the values reported in each of those registers correspond to a value based on the positions of the elastic buffer read and write
pointers. The value has a fixed offset and does not represent the exact number of octets in the elastic buffer.

Buffer Protection

By default, an automatic buffer protection is enabled for the elastic buffers. This automatic buffer protection prevents the read and write

pointers from being too close, which can lead to corrupted data being read out of the elastic buffers, because data can be read at the same
time it is being written. When the automatic buffer protection detects that the read and write pointers are too close to each other for any
of the elastic buffers, a predetermined buffer depth is used, the data out of the elastic buffer no longer aligns to the LMFC/LEMC output

signal, and deterministic latency is lost.

Checking if the Buffer Protection is Active

It is possible to read back the elastic buffers if the buffer protection is active in the Deframer 0 and Deframer 1 SPI registers.

Table 43. Deframer 0, Register 0x6A89, Bit 7: jrx_tpl_buf_protection

Bit Setting

Description

0
1

Buffer protection not active for Deframer 0

Buffer protection active for Deframer 0. Buffer read and write pointers are too close with the chosen LMFC/LEMC
offset setting. A predetermined buffer depth is used. Deterministic latency is lost.

Table 44. Deframer 1, Register 0x6C89, Bit 7: jrx_tpl_buf_protection

Bit Setting

Description

0
1

Buffer protection not active for Deframer 1.

Buffer protection active for Deframer 1. Buffer read and write pointers are too close with the chosen LMFC/LEMC
offset setting. A predetermined buffer depth is used. Deterministic latency is lost.

Disabling the Automatic Buffer Protection

It is possible to disable the automatic buffer protection by using the Deframer 0 and Deframer 1 SPI register bits.

Table 45. Deframer 0, Register 0x6A89, Bit 6: jrx_tpl_buf_protection_en

Bit Setting

Description

0
1

Automatic buffer protection disabled for Deframer 0
Automatic buffer protection enabled for Deframer 0

Table 46. Deframer 1, Register 0x6C89, Bit 6: jrx_tpl_buf_protection_en

Bit Setting

Description

0
1

Automatic buffer protection disabled for Deframer 1
Automatic buffer protection enabled for Deframer 1

Figure 29 shows an example that corresponds to the elastic FIFO buffer depths for Lane 0 and Lane 1 vs. the LMFC offset setting
measured for Deframer 0 on an ADI customer evaluation board with the ADRV9025Init_StdUseCase50_nonLinkSharing profile. In this
example, the buffer protection activated for LMFC offset values between 23 and 26 and the buffer depths were fixed to values between 7
and 9 independently of the LMFC offset. For other LMFC offset values, the buffer depths read back change with the LMFC offset.

During the measurement, the link between the JESD204B framer and JESD204B deframer of the transceiver is reestablished 10 times
(with application of a new SYSREF pulse each time) for each LMFC offset value and each time the buffer depth is read. That is why
several buffer depth values can be seen for a given LMFC offset. This variation in buffer depth is due to the variance in, for example,
synchronization delays and physical lane skews during the JESD204B link establishments that the elastic buffers are to correct.

Rev. 0 | Page 63 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

UC50-NLS - DEV CLOCK = 245.76MHz
S=1,M=8 N'=16, K=32,L=2, F = 8, Tx IQRATE = 122.88MHz
BUFFER PROTECTION ENABLED

68 1

66 | ® LANE 0

64 L BUFFER DEPTH

62 | (REGISTER

60 |-

58 | LANE 1

56 | BUFFER DEPTH

gg | (REGISTER 0x6b8b)

50 | ® BUFFER

zg I PROTECTION £

46 BIT o

42 >

40 5
T Q
k38 z

36
834 e
o (8]
w 30 =
w 28 o
2
B %5 8

22

20 69 i

18

16 2

14

12

12 ¢

6

4

2

0

-2

4

0
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
LMFC OFFSET

Figure 29. Buffer Depths for Lane 0 and Lane 1 vs. LMFC Offset on the Customer Evaluation Board with the ADRV9025Init_StdUseCase50_nonLinkSharing Profile and
Buffer Protection Enabled

Selecting the Optimal LMFC/LEMC Offset for a System
The buffer depths are expected to be slightly different after power cycling the system or from one link establishment to another due to the

22770-029

variance in parameters such as synchronization delays and physical lane skews. Buffer depths are also expected to slightly change from
system to system due to process, voltage, and temperature (PVT) variations.

Therefore, it is recommended to select an LMFC/LEMC offset value resulting in optimal buffer depths to account for those variations and
maintain deterministic latency on all boards for a given system. The LMFC/LEMC offset to be selected depends on whether buffer
protection is enabled or not.

Selecting the Optimal LMFC Offset for a System in JESD204B Mode with Buffer Protection Enabled

To ensure deterministic latency when buffer protection is enabled, it is recommended to select an LMFC offset value that gives buffer
depth values as close as possible to the center of the linear part of the buffer depth vs. LMFC offset plot for all the lanes used. To find the
LMEC offset corresponding to those optimal buffer depths, read back the buffer depth values for all the used lanes for all LMFC offset
values with buffer protection enabled on a sample board for a given system. Measuring the buffer depths per LMFC offset for 10 power
cycles or link establishments (with application of a new SYSREF pulse each time) provides a good indication of the buffer depths spread
for each LMFC offset value. Select an LMFC offset value that results in buffer depths as close as possible to the center of the linear part of
the buffer depth vs. the LMFC offset plot the user creates for all the used lanes.

Figure 29 shows this process using the customer evaluation board programmed with the ADRV9025Init_StdUseCase50_nonLinkSharing
profile, with automatic buffer protection enabled. In that example, an LMFC offset value of 9 is optimal because it results in a buffer depth
around 37 or 38 for each lane, which is in the middle of the linear part of the plot and, therefore, guarantees deterministic latency.

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LMFC
offset value that results in buffer depths as small as possible. In that case, an LMFC offset value above the highest LMFC offset resulting in
the automatic buffer protection being active with some additional headroom to account for PVT variations can be selected. In that
situation, carry out thorough system testing over all possible temperature, supply, and board variations to ensure that the automatic buffer
protection never gets activated and that deterministic latency is maintained in all possible operating conditions for the system.

Avoid LMFC offset values with large buffer depths (that is, near a value of (K x F)/4) because, for some combinations of JESD204B
parameters, it can lead to the write and read pointers being too close and, therefore, can result in data corruption.

Selecting the Optimal LMFC Offset for a System in a JESD204B Mode with Buffer Protection Disabled

When buffer protection is disabled, it is recommended to select an LMFC offset value that has buffer depths as close as possible to (K x
F)/8 to account for variations and maintain deterministic latency on all boards for a given system.

Rev. 0 | Page 64 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

To find the LMFC offset corresponding to the optimal buffer depth, read back the buffer depth values for all LMFC offset values for all
the used lanes with buffer protection disabled on a sample board for a given system. Measuring the buffer depths per LMFC offset for

10 power cycles or JESD204B link establishments (with application of a new SYSREF pulse each time) provides an accurate indication of
the buffer depth spread for each LMFC offset value.

Select an LMFC offset value that results in buffer depths as close as possible to (K x F)/8 for all lanes.

Figure 30 illustrates this process using the same customer evaluation board with the ADRV9025Init_StdUseCase50_nonLinkSharing
profile example with automatic buffer protection disabled.
UC50-NLS - DEV CLOCK = 245.76MHz

S=1,M=8 N =16, K=32 L=2, F = 8, Tx IQRATE = 122.88MHz
BUFFER PROTECTION DISABLED

66 [® LANEO
64 | BUFFER DEPTH
62 | (REGISTER 0x6a8a)

58 | ® LANE 1
56 | BUFFER DEPTH
24 [(REGISTER 0x6bsb)

BUFFER DEPTH
w
S

o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
LMFC OFFSET

Figure 30. Buffer Depths Read Back for Lane 0 and Lane 1 vs. LMFC Offset on the Customer Evaluation Board with ADRV9025Init_StdUseCase50_nonLinkSharing
Profile and Buffer Protection Disabled
In this example, an LMFC offset value of 6 or 7 is an optimal choice because the result is buffer depths around 31 and 34 for all the used

22770-030

lanes, guaranteeing deterministic latency with no chance of data corruption due to the read and write pointers being too close.

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LMFC
offset value that results in buffer depths as small as possible but still above a small number (for example, 10 or 12) to avoid data corruption
due to the read and write pointers being too close. Note that in that situation, carry out thorough system testing over all possible
temperature, supply, and board variations to ensure that data corruption never occurs in all possible operating conditions for the system.

Avoid LMFC offset values that results in a large buffer depth (that is, near a value of (K x F)/4) because, for some combinations of
JESD204B parameters, it can lead to the write and read pointers being too close and, therefore, can result in data corruption.
Selecting the Optimal LEMC Offset for a System in JESD204C Mode When E < 2 with Buffer Protection Enabled

In JESD204C mode, when E < 2, it is also recommended to select an LEMC offset that results in buffer depth values as close as possible to
the center of the linear part of the buffer depth vs. LEMC offset plot for all the lanes used. To find that LEMC offset, read back the buffer
depth values for all the used lanes for all LEMC offset values with buffer protection enabled on a sample board for a given system.
Measuring the buffer depths per LEMC offset for 10 power cycles or JESD204C link establishments (with application of a new SYSREF
pulse each time) provides an optimal indication of the buffer depths spread for each LEMC offset.

Figure 31 illustrates this process using the customer evaluation board programmed with the ADRV9025Init_StdUseCase26C_nonLinkSharing
profile, with automatic buffer protection enabled.

In this example, LEMC offset values between 36 and 40 are optimal choices because the result is a buffer depth around 24 for each lane,
which is in the middle of the linear part of the plot and, therefore, guarantees deterministic latency.

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LEMC offset
value that results in buffer depths as small as possible. In that case, an LEMC offset value above the highest LEMC offset resulting in the
automatic buffer protection being active with some additional headroom to account for PVT variations can be selected. In that situation,

Rev. 0 | Page 65 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

carry out thorough system testing over all possible temperature, supply, and board variations to ensure that the automatic buffer
protection never gets activated and that deterministic latency is maintained in all possible operating conditions for the system.

Avoid LEMC offset values that result in large buffer depths (near a value of E x 32) because, for some combinations of JESD204C
parameters, it can lead to the write and read pointers being too close and, therefore, can result in data corruption.
MADURA - UC26C-NLS - DEV CLOCK = 245.76MHz

S=1,M=8,N=16,K=64,L=4,F =4, E=1, TxIQRATE =491.52MHz
BUFFER PROTECTION ENABLED

38 1
2T T
[[[TTTT
34 | e LANE 0 ® LANE 3
32 || BUFFER DEPTH BUFFER DEPTH
(REGISTER 0x6a8a) (REGISTER 0x6a8d) [34 4
30
® LANE 1 © BUFFER b & 4
28 [BUFFER DEPTH PROTECTION -
(REGISTER 0x6a8b) BIT ® -
26 ? o
24 |-L ° LANE 2 b w
BUFFER DEPTH b ¢ ¢ 2
22 | (REGISTER 0x6a8c) 5
z ' <
o 20 - z
W L p o
0 18 =
o (8]
w 16 w
o 3 5
514 °
2 12 h e
> ¢ ¢ ﬁ
10 < 4 &
8 2
L
6
L L L [] > & 4 L <
4
2 ’ [
p [
0
-2 s
-4 g

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62
LEFC OFFSET

Figure 31. Buffer Depths for Lane 0, Lane 1, Lane 2, and Lane 3 vs. LEMC Offset on the Customer Evaluation Board with the
ADRV9025Init_StdUseCase26C_nonLinkSharing Profile and Buffer Protection Enabled

Selecting the Optimal LEMC Offset for a System in JESD204C Mode When E < 2 with Buffer Protection Disabled

When buffer protection is disabled, it is recommended to select an LEMC offset value that results in buffer depths as close as possible to
(E x 32)/2 to account for variations and maintain deterministic latency on all boards for a given system. To find the LEMC offset
corresponding to that optimal buffer depth, read back the buffer depth values for all LEMC offset values for all the used lanes with buffer
protection disabled on a sample board for a given system. Measuring the buffer depths per LEMC offset for 10 power cycles or JESD204C
link establishments (with application of a new SYSREF pulse each time) provides an accurate indication of the buffer depth spread for
each LEMC offset value. Select an LEMC offset value that results in buffer depths as close as possible to (E x 32)/2 for all lanes.

Figure 32 shows this process using the same customer evaluation board with the ADRV9025Init_StdUseCase26C_nonLinkSharing profile
and automatic buffer protection disabled.

In this example, an LEMC offset value between 21 and 24 is an optimal choice because it results in buffer depths around 16 for all the
used lanes, guaranteeing deterministic latency with no chance of data corruption due to the read and write pointers being too close.

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LEMC
offset value that results in buffer depths as small as possible but still above a small number (for example, 10 or 12) to avoid data
corruption due to the read and write pointers being too close. Note that in that situation, carry out thorough system testing over all
possible temperature, supply, and board variations to ensure that data corruption never occurs in all possible operating conditions for the
system.

Avoid LEMC offset values giving a large buffer depth (near a value of E x 32) because, for some combinations of JESD204C parameters, it
can lead to the write and read pointers being too close and, therefore, can result in data corruption.

Rev. 0 | Page 66 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

UC26C-NLS - DEV CLOCK = 245.76MHz
S=1,M=8,N=16,K=64,L=4,F =4, E=1, TxIQRATE = 491.52MHz
BUFFER PROTECTION DISABLED

38 1
wo AL
rrrrr1r1r1101r1rrr1rr1rrTrrTTd
34 |l eLANEO © LANE 2
BUFFER DEPTH BUFFER DEPTH
32 |- (REGISTER 0x6a8a) (REGISTER 0x6a8c)
LN p
30 1 ®LANE 1 ® LANE 3
BUFFER DEPTH BUFFER DEPTH P & ¢
28 [—— (REGISTER 0x6a8b) (REGISTER 0%6a8d) X =
o
26 ? g
u b ¢ 4 5
T
b 22 z
& p b S
o 20 =
& 18 ? o
E 1 b ¢ ¢ 5
2) ? &
14) E
12 %
p O ¢
o
10
L > &
8
<
6
< '
4
ry
2 g
< 2
0 S

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62
LEFC OFFSET

Figure 32. Buffer Depths for Lane 0, Lane 1, Lane 2, and Lane 3 vs. LEMC Offset on the Customer Evaluation Board with the
ADRV9025Init_StdUseCase26C_nonLinkSharing Profile and Buffer Protection Disabled

Selecting the Optimal LEMC Offset for a System in JESD204C Mode When E > 2

The size of each elastic buffer is 512 octets. When E is bigger than 2, there are some LEMC offset values for which more than 512 octets
are required to be stored in the elastic buffer to be able to release the data on the next LEMC edge. Because this is not possible due to the
elastic buffer size, buffer protection gets activated for such LEMC offset values when it is enabled. Therefore, it is recommended to have
buffer protection enabled when E > 2.

In JESD204C mode, when E > 2, it is recommended to select an LEMC offset that results in buffer depth values as close as possible to the
center of the linear part of the buffer depths vs. LEMC offset plot in Figure 33 for all the lanes used.

To find that LEMC offset, read back the buffer depths values for all the used lanes for all LEMC offset values with buffer protection enabled
on a sample board for a given system. Measuring the buffer depths per LEMC offset for 10 power cycles or JESD204C link establishments
(with application of a new SYSREF pulse each time) provides an accurate indication of the buffer depths spread for each LEMC offset.

Select an LEMC offset value that results in buffer depths as close as possible to the center of the linear part of the buffer depth vs. LEMC
offset plot for all the used lanes.

Figure 33 illustrates this process using a customer evaluation board programmed with the ADRV9025Init_StdUseCase14C_LinkSharing
profile, with automatic buffer protection enabled.

In this example, LEMC offset values between 87 and 89 are optimal choices because they result in a buffer depth around 41 for each lane,
which is in the middle of the linear part of the Figure 33 and, therefore, guarantees deterministic latency.

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LEMC
offset value giving buffer depths as small as possible. In that case, an LEMC offset value above the highest LEMC offset resulting in the
automatic buffer protection being active with some additional headroom to account for PVT variations can be selected. In that situation,
carry out thorough system testing over all possible temperature, supply, and board variations to ensure that the automatic buffer
protection never gets activated and that deterministic latency is maintained in all possible operating conditions for the system.

Avoid LEMC offset values giving large buffer depths (near a value of 64) because, for some combinations of JESD204C parameters, it can
lead to the write and read pointers being too close and, therefore, can result in data corruption.

Rev. 0| Page 67 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

UC14C-LS - DEV CLOCK = 245.76MHz
$§=1,M=8,N=12, K=128,L =2, F =6, E = 3, Tx IQRATE = 491.52MHz

BUFFER PROTECTION ENABLED

68 T 1
66
64 [
62 [—
60 [— e LANEO © BUFFER
58 | BUFFER DEPTH PROTECTION
56 | (REGISTER 0x6a8a) BIT
54 [—
52 [®LANE1
50 | BUFFER DEPTH
28 — (REGISTER 0x6asb) =
46 @
w
@ g
40 5
T (8]
E 3% IB:FL 5
& 34 o 9
x 32)
w 30 w
& 28 £
> 26 4
@0 24 o
o
w
w
[T
2
[1]
i :

0
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128
LEMC OFFSET

Figure 33. Buffer Depths for Lane 0 and Lane 1 vs. LEMC Offset on the Customer Evaluation Board with the ADRV9025Init_StdUseCase14C_LinkSharing Profile and
Buffer Protection Enabled

Rev. 0 | Page 68 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-1721

SYNTHESIZER CONFIGURATION

OVERVIEW

The transceiver employs four phase-locked loop (PLL) synthesizers, clock, RF (x2), and auxiliary. Each PLL is based on a fractional-N
architecture and consists of a common block made up of a reference clock divider, phase frequency detector, charge pump, loop filter,
feedback divider, digital control block, and either a 1 or 4 core voltage-controlled oscillator (VCO). The auxiliary PLL and clock PLL VCO
have a tuning range of 6.5 GHz to 13 GHz. The RFPLL1 and RFPLL2 VCO have a tuning range of 6.4 GHz to 12.8 GHz. Each PLL drives
its own local oscillator (LO) generator, RF LO generator, auxiliary LO generator, and clock generator The output of the LOGEN block is a
divided version of the VCO frequency. No external components are required to cover the entire frequency range of the transceiver. This
configuration allows the use of any convenient reference frequency for operation on any channel with any sample rate. The reference
frequency for the PLL is scaled from the reference clock applied to the device. Figure 35 illustrates the common PLL block used in the
transceiver.

CONNECTIONS FOR EXTERNAL REFERENCE CLOCK (DEVCLK)

The external clock is used as a reference clock for the clock synthesizer, two RF synthesizers, and auxiliary synthesizer in the transceiver
and, therefore, must be a very clean clock source with respect to noise. Connect the external clock inputs to the DEVCLK+ pin (C8) and
DEVCLK- pin (C9) via ac coupling capacitors and terminate them with 100 € close to the device, as shown in Figure 34. The device
clock receiver is a noise sensitive differential RF receiver. The frequency range of the DEVCLK signal must be between 10 MHz and

1 GHz. Ensure that the external clock peak to peak amplitude is not less than 50 mV or greater than 1 V.

22770-034

Figure 34. Reference Clock Input Connections

LOGIC,ADCs,
DACs, ETC...

Tx1, Tx2

CLK PLL CLOCK DIGITAL CLOCK
REF |—"| SYNTHESIZER Hg@%ﬁ'ﬁ}#‘g& |—’| DISTRIBUTION | | Tx3, Tx4 |
RF PLL1 |‘ RF RF LOA |
REF CLK REF _.|SYNTHESIZER2 |_’| GENERATOR
REF CLK IN+ —»{ DISTRIBUTION
RF PLL2 RF RF LO2
REF SYNTHESIZER2 GENERATOR
AUX PLL AUXILLARY AUXLO | >
REF |_"| SYNTHESIZER |_’| GENERATOR | > ORx1, ORx2

22770-035

ORx3, ORx4

Figure 35. Synthesizer Interconnection, Clock, and LO Distribution Block Diagram

Rev. 0 | Page 69 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

EXTERNAL REFERENCE CLOCK (DEVCLK) REQUIREMENTS

Each RF synthesizer takes a lower frequency reference and multiplies it up to a higher frequency. The phase noise performance at the final
frequency subsequently has some dependency on the phase noise of the input reference clock. This section discusses the impact of the
reference (DEVCLK input) on the phase noise performance of the RF synthesizers. In general, the reference clock requirements are
derived from the desired LO frequencies, PLL loop bandwidths, and somewhat on the phase margin.

The phase noise plots provided in the ADRV902x family data sheets are taken with a nearly ideal reference clock. An example is shown in Figure 36. Any
noise on the reference is an additional noise source and can be root square sum (RSS) added to the phase noise specified in the data sheets.
-80

-90

N

-100

-110

-120

LOPHASENOISE (dBc/Hz)

-130

—140

-150
100 1k 10k 100k 1M 10M

Figure 36. LO Phase Noise vs. Frequency Offset, F.o =2600 MHz, Loop Bandwidth = 500 kHz, Phase Margin = 60°, DEVCLK Supplied by a Wenzel VCXO

22770-036

The LO frequency is related to the reference clock by the following equation:
fLo =N ><be'1~'
DEVCLK Noise Gain = 20 x logi(N) x H(s)

where
N is the multiplier applied to the reference clock frequency (fzer) to generate the desired LO frequency
H(s) is the PLL loop transfer function

Noise power from the reference experiences a multiplication factor equal to the 20 x logio(N) term. Outside the loop bandwidth, the
multiplied reference noise is attenuated by the loop filter. This means the reference phase noise is typically only a contributor for close-in
offsets less than the loop bandwidth. The loop bandwidth and phase margin are provided in the caption of the phase noise figures
provided in the product data sheet (as shown in Figure 36).

Figure 37 illustrates several closed loop responses with different loop bandwidths and phase margins listed. Each response is normalized
to 0 dB using the loop gain calculation value for each to factor in the amount of gain that each response shifts. For example, for an fio of
2600 MHz and an frer of 245.76 MHz, the gain is 20.5 dB. The total noise can be calculated with the reference clock noise, the RF LO
phase noise, and this transfer function.
10
: Il

™ N
~i
) N N
T 10 AN N
Z
< N
G 20
S) \
9 a0]
[=]
o \
o 40
<
z \
X 50 5
=z \
| — 50k, 80°C
=60 = — 300k, 60°C
— 500k, 60°C
ol uiinm 4
100 1k 10k 100k M 10M

22770-037

FREQUENCY (Hz)

Figure 37. Normalized PLL Closed Loop Response

Rev. 0 | Page 70 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

A 245.76 MHz reference with relatively high noise content is shown in Figure 38. This can be used to calculate the reference clock noise

impact to the RF PLL using the following process:

e Multiply the phase noise of the reference clock by the PLL closed loop transfer function.

e RSS add the result of multiplying the phase noise of the reference clock by the PLL closed loop transfer function to the
corresponding RF PLL phase noise response for the given LO frequency provided in the data sheet.

The result of this process using the example data in Figure 36 through Figure 38 is shown in Figure 40. Note that the data sheet reference

information has much better phase noise at low frequency because it was measured during device characterization testing using an
extremely low phase noise VCXO as the reference clock. The phase noise of the AD9528 is included in Figure 40 for reference. The
AD9528 clock device is used on the evaluation board for all clock generation. Therefore, measured phase noise is dominated by the

AD9528.

-70 _‘_IL"L “ u
ol M
Bl T T T

Y Vil

-100 At

~110 e

-120 i

-130

CARRIER POWER (dBm)

140 W“V i U

-150

-160 [— RAW
SMOOTHED

~170 [N EARIT] 1
100 1k 10k 100k ™M

FREQUENCY OFFSET (Hz)
Figure 38. Phase Noise Plot for a Noisy 245.76 MHz Reference Clock

22770-038

-60 = <
-70 N
-80
-90 ™
™~ ‘\\

LEVEL (dBc)
1
8

N
-140 N
-150
=160 [— pATA SHEET
_170 } — MEASURED NOISE
— CALCULATED NOISE
—180
100 1K 10k 100k ™ 10M

22770-039

OFFSET FREQUENCY (Hz)

Figure 39. Measured and Calculated Phase Noise vs. Offset Frequency

Rev. 0| Page 71 of 336

https://www.analog.com/ad9528?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

LEVEL (dBc)

100 1k 10k 100k ™ 10M
OFFSET FREQUENCY (Hz)

Figure 40. AD9528 Phase Noise Using a High Phase Noise Reference Clock

22770-340

CLOCK SYNTHESIZER

The clock synthesizer is used to generate all the clocking signals necessary to run the transceiver. The synthesizer uses a single core VCO block.
The reference frequency for the clock PLL is scaled from the device clock by the reference clock generator. Although the clock PLL is a fractional-
N architecture, the signal sampling relationships to the JESD204B and JESD204C interface rates typically require that the synthesizer operates in
integer mode. Profiles that are included in the Transceiver Evaluation Software configure the clock synthesizer appropriately. Reconfiguration of
the clock synthesizer is typically not necessary after initialization. The most direct approach to configuration is to follow the recommended
programming sequence and utilize provided API functions to set the clock synthesizer to the desired mode of operation. The clock generation
block of the clock synthesizer provides clock signals for the high speed digital clock, receiver ADC sample and interface clocks, observation
receiver ADC sample and interface clocks, and the transmitter DAC sample and interface clocks.

RF SYNTHESIZER

The transceiver contains two RF PLLs. Each RF PLL uses the PLL block common to all synthesizers in the transceiver and employs a 4 core VCO
block, which provides a 6 dB phase noise improvement over the single core VCO. As with the other synthesizers in the transceiver, the reference
for RF PLL 1 and RF PLL 2 are sourced from the reference generation block of the transceiver. The RF PLLs are also fractional-N architectures
with a programmable modulus. The default modulus of 8386560 is programmed to provide an exact frequency on at least a 2 kHz raster using
reference clocks that are integer multiples of 122.88 MHz. More details of the divider options are given in Table 47.

The RF LO frequency is derived by dividing down the VCO output in the LOGEN block. The tunable range of the RF LO is 400 MHz to 6400 MHz. The
LO divider boundaries are given in Table 48. Note that it is recommend rerunning the initialization calibrations when crossing a divide by 2 boundary or
when changing the LO frequency by +100 MHz or more from the frequency at which the initialization calibrations were performed.

Table 47. RF Synthesizer Divider Ranges

LO Frequency Limits (MHz)
Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper
Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit
Divide By 32 16 8 4 2
Auxiliary PLL 203.125 406.25 406.25 8125 8125 1625 1625 3250 3250 6500
RF PLL1 and RF 200 400 400 800 800 1600 1600 3200 3200 6400
PLL2

Table 48. RF Synthesizer LO Boundaries

Desired LO Frequency Ranges (MHz)

PLL Lower | Upper | Lower | Upper | Lower | Upper | Lower | Upper | Lower | Upper
DEV_CLK_IN | PFD Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit

(MHz) (MHz) | 200 400 400 800 800 1600 1600 3200 3200 6400
LO Step Size | 491.52, 24576 | 0.92 1.83 3.66 7.33 14.65
(Hz) 24576

307.2 307.2 1.14 2.29 458 9.16 18.32

Rev. 0| Page 72 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

Desired LO Frequency Ranges (MHz)
PLL Lower | Upper | Lower | Upper | Lower | Upper | Lower | Upper | Lower | Upper
DEV_CLK_IN | PFD Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit
(MHz) (MHz) | 200 400 400 800 800 1600 | 1600 | 3200 | 3200 | 6400
122.88 122.88 | 0.46 0.92 1.83 3.66 7.33
153.6 153.6 | 0.57 1.14 2.29 458 9.16
Exact 491.52, 24576 | 250 500 1000 2000 4000
Decimal 24576
Frequency 307.2 307.2 3125 625 1250 2500 5000
Raster (H2) 177788 12288 | 125 250 500 1000 2000
153.6 153.6 156.25 3125 625 1250 2500

A switching network is implemented in the transceiver to provide flexibility in LO assignment for the two RF LO sources. The switching
network is diagrammed in Figure 41. Note that it is not recommended to set RFLO1 = RFLO2, which can cause unwanted coupling
between the two PLLs. To set RFLO1 = RFLO2, set either RFPLL1 or RFPLL2 to the desired frequency and mux that PLL to both the
TXLO and RXLO. That is, set either TXLO = RXLO = RFLO1 or TXLO = RXLO = RFLO2 and power down the unused RFLO.

AUXILIARY SYNTHESIZER

An auxiliary synthesizer is integrated to generate the signals necessary to calibrate the transceiver. This synthesizer utilizes a single core
VCO. The reference frequency for the auxiliary synthesizer is scaled from the device clock via the reference clock generation system. The
output signal is connected to a switching network and injected into the various circuits to calibrate filter bandwidth corners, or into the
receiver signal chain as an offset LO. Calibrations are executed during the initialization sequence at startup. There is no signal present at
the receiver or observation receiver input during tone calibration time. Calibrations are fully autonomous. During the calibration, the
auxiliary synthesizer is controlled solely by the internal ARM processor and does not require any user interactions. The auxiliary LO
signal is also available as an LO source for the observation receiver mixers.

EXT LO1 EXT LO2

/

Tx1, Tx2 Tx3 Tx4 Rx1 Rx2 Rx3, Rx4
SWITCH SWITCH SWITCH SWITCH
| Tx1, Tx2 | | Tx3, Tx4 | | Rx1, Rx2 | | Rx3, Rx4 |

AUXLO

ORx1, 0Rx2 ORx3, ORx4
SWITCH SWITCH

| ORx3, ORX4 |

22770-040

| ORx1, ORX2 |

Figure 41. LO Switching Network
SETTING THE LO FREQUENCIES

There are two commands that the user can execute to select the LO frequency in the transceiver. One command is used when the user
does not have special phase requirements between the transmitter LO and the auxiliary LO. The other command is used when the user
has special phase requirements. When no phase requirements exist, the user can run the following API command.

int32 t adi adrv9025 PllFrequencySet (adi adrv9025 Device t* device, adi adrv9025 PllName e

pllName, uinté64 t pllLoFrequency Hz)

If the user has special phase requirements, relies on their own LOL/QEC tracking calibrations, or requires a faster lock time, the user can
use the following function, which provides more control over these settings.

Rev. 0 | Page 73 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

int32 t adi adrv9025 PllFrequencySet v2(adi adrv9025 Device t* device, adi adrv9025 PllConfig t

*pllConfig)

An example of this situation involves placing the auxiliary LO at a user defined offset from the transmitter LO that is typically defaulted to
+(bandwidth/2 + 5) MHz. If the user has no specific requirements on the phase or frequency of the auxiliary LO, use the
adi_adrv9025_PllIFrequencySet(...) command. More details about these commands are in the API Functions section.

Both commands can be run any time after device initialization, and neither command has any prerequisite commands or requirements.
The structures and enumerators for these API commands are detailed in Table 49 through Table 53.

Table 49. adi_adrv9025_PlIConfig t Structure

Data Type Parameter Range Description
PlIName_e plIName Table 50 Name of the PLL the user wants to control.
PliModeSel_e pliIModeSel Table 51 The user can select between slow locking or fast locking mode.
PllAuxLoResyncSel_e | pllAuxLoResyncSel Table 52 The user can select between resyncing and not resyncing the auxiliary LO
to the transmitter LO after a frequency change.
PlIAuxLoOffsetProgSel | pllAuxLoOffsetProgSel | Table 53 The user can select whether the auxiliary LO frequency is changed to be
+(bandwidth/2 + 5) MHz or to not be changed after a frequency change.
Uint64_t pllLoFrequency_Hz 400 x 106 to | The LO frequency that the customer wants to set in Hz.
6000 x 106

Table 50. adi_adrv9025_PlIName_e Enumerator

Enumerator Enumerator Values Description

PliName_e ADI_ADRV9025_LO1_PLL
ADI_ADRV9025_LO2_PLL
ADI_ADRV9025_AUX_PLL

Selects LO1 PLL for transmitter/receiver/observation receiver.
Selects LO2 PLL for transmitter/receiver/observation receiver.
Selects auxiliary PLL for observation receiver.

Table 51. adi_adrv9025_PIll_ModeSel_e Enumerator

Enumerator Enumerator Values Description

plIModeSel_e | ADI_ADRV9025_PLL_SLOW_MODE

Slow lock mode. This mode skips some calibrations to lock the PLL faster.

Table 52. adi_adrv9025_pllAuxLoResyncSel_e Enumerator

Enumerator Enumerator Values

Description

pllAuxLoResyncSel_e | ADI_ADRV9025_PLL_AUX_LO_RESYNC_ENABLE

Resyncs the auxiliary LO to the transmitter LO after a frequency
change.

ADI_ADRV9025_PLL_AUX_LO_RESYNC_DISABLE

Does not resync the auxiliary LO to the transmitter LO after a
frequency change.

Table 53. adi_adrv9025_pllAuxLoOffsetProgSel_e Enumerator

Enumerator

Enumerator Values

Description

pllAuxLoOffsetProgSel_e

ADI_ADRV9025_PLL_AUX_LO_OFFSET_PROG_ENABLE | Programs the auxiliary LO to be +(bandwidth/2 + 5)

MHz from the transmitter LO after every frequency
change.

ADI_ADRV9025_PLL_AUX_LO_OFFSET_PROG_DISABLE | Does not set the auxiliary LO after a frequency

change.

API Functions

adi_adrv9025_PllIFrequencySet(...)

int32 t adi adrv9025 PllFrequencySet (adi adrv9025 Device t* device, adi adrv9025 PllName e
pllName, uinté64 t pllLoFrequency Hz)

Description

This function sets the LO frequency of the chosen PLL.

Precondition

Device initialization is the only precondition.

Rev. 0 | Page 74 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

Parameters

Table 54. adi_adrv9025_PllFrequencySet(...)

Parameter Description
*device Pointer to device structure.
plIName The PLL selected for setting the frequency.

pllLoFrequency_Hz

Frequency of the LO the user wants to set in Hz.

adi_adrv9025_PllIFrequencyGet(...)

int32 t adi adrv9025 PllFrequencyGet (adi_adrv9025 Device t* device,

pllName, uint64 t *pllLoFrequency Hz)

Description

This function gets the LO frequency of the chosen PLL.

Precondition

Device initialization is the only precondition.

Parameters

Table 55. adi_adrv9025_PllFrequencyGet(...) Parameters

adi adrv9025 PllName e

Parameter Description
*device Pointer to device structure.
plIName The PLL selected for getting the frequency.

*pllLoFrequency_Hz

Pointer to the frequency of the LO the user wants to set in Hz.

adi_adrv9025_PllIFrequencySet_v2(...)

int32 t adi adrv9025 PllFrequencySet v2(adi adrv8025 Device t* device,

*pllConfiqg);

Description

adi adrv9025 PllConfig t

Use this function when the user has special phase constraints that must be put on certain PLLs to meet system requirements.

adi_adrv9025_PllIFrequencySet_v2(...) is equivalent to adi_adrv9025_PllFrequencySet(...) with the parameters in Table 56 set in the
adi_adrv9025_PllConfig_t structure.

Table 56. adi_adrv9025_PllConfig_t Structure Parameters

Parameter

Description

plIModeSel
pllAuxLoResyncSel
pllAuxLoOffsetProgSel

ADI_ADRV9025_PLL_SLOW_MODE
ADI_ADRV9025_PLL_AUX_LO_RESYNC_ENABLE
ADI_ADRV9025_PLL_AUX_LO_OFFSET_PROG_ENABLE

Precondition

Device initialization is the only precondition.

Parameters

Table 57. adi_adrv9025_PllFrequencySet_v2(...) Parameters

Parameter Description
*device Pointer to device structure.
*pllConfig Pointer to PLL configuration structure.

adi_adrv9025_PllLoopFilterSet(...)

int32 t adi adrv9025 PllLoopFilterSet (adi adrv9025 Device t* device, adi adrv9025 PllName e
pllName, adi adrv9025 PllLoopFilterCfg t *pllLoopFilterConfig);

Description

This function allows the user to set the PLL loop filter bandwidth, phase margin, and power scale of the device.

Precondition

Device initialization is the only precondition.

Rev. 0| Page 75 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Parameters

Table 58. adi_adrv9025_PIlILoopFilterSet(...) Parameters

Parameter Description

*device Pointer to device structure.

plIName PLL selected for changing settings.

*pllLoopFilterConfig Pointer to loop filter configuration structure passed to the device.

adi_adrv9025_PllLoopFilterGet(...)

int32 t adi adrv9025 PllLoopFilterGet (adi adrv9025 Device t* device, adi adrv9025 PllName e
pllName, adi adrv9025 PllLoopFilterCfg t *pllLoopFilterConfig);

Description

This function allows the user to get the PLL loop filter bandwidth, phase margin, and power scale of the device.
Precondition

Device initialization is the only precondition.

Parameters

Table 59. adi_adrv9025_PllLoopFilterGet(...) Parameters

Parameter Description

*device Pointer to device structure.

plIName PLL selected for getting settings.

*pllLoopFilterConfig Pointer to loop filter configuration structure passed to the device, returns the current configuration.

RF PLL PHASE SYNCHRONIZATION

This function allows the internally generated LO to be phase synchronized and aligned to the applied reference clock. In multiple
transceiver systems, this function allows all devices to align the RF PLL to the same point. Therefore, the phase between each device is
aligned at startup so that phasing between transceivers is repeatable and fixed. At startup, the standard JESD204B multichip
synchronization (MCS) mechanism implemented with the device clock (DEVCLK) and system reference signal (SYSREF) are used to
reset the data converter clocks and all other clocks at the baseband rate. These same signals are also used to initialize an on-chip counter,
which is later used during PLL programming to synchronize the LO phase. No additional signals are required to take advantage of the LO
phase synchronization mechanism. From the on-chip counter and PLL fractional word programming, a digital representation of the
desired LO phase can be computed at each PLL reference clock edge and is remembered in the digital phase accumulator (DPA).

The LO phase synchronization hardware operates by directly sampling the LO signal (in quadrature) using the PLL reference clock signal
(DEVCLK). Averaging is required to increase the accuracy of the LO phase measurement. Therefore, at every sample, the observed LO
phase is derotated by the digitally desired phase. Derotating is done by performing a vector multiplication of the complex conjugate of the
digital phase. The result is a vector representing the phase difference between the LO and the digitally desired phase, and these vectors
can be averaged over many DEVCLK cycles to obtain an accurate measurement of the phase adjustment required.

After the phase difference has been measured, the adjustment can be applied into the first stage 2-A modulator (SDM) of the PLL by
adding it to the first stage modulator input. The total adjustment amount is added over many reference clock cycles to stay within the PLL
loop bandwidth and not cause the PLL to come unlocked. To counteract temperature effects after calibration, a PLL phase tracking mode
can be activated. Figure 42 is a block diagram of the phase synchronization system.

Rev. 0 | Page 76 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-1721

REF_CLK_IN

1
1
1
PFD - m ——0) »{ LO GEN :
1
H

\

1 Q
REFCLK [CAPTURE CAPTURE

el

£ (LO, x NCO, + LOg x NCOgq)
APD

NCO
»{ 5 (LO, x NCO, - LOg * NCOg)

PHASE
SYNCHRONIZER FREQUENCY TUNING WORD

y
| <_|— MULTI CHIP SYNC

> CONTROL

22770041

Figure 42. LO Phase Synchronization Functional Diagram

System Level Considerations

Opverall phase synchronization is determined by a number of factors, including the printed circuit board (PCB) level clock routing (tcix),
the on-chip reference path routing (trerears), the PLL and LO divider path (tpir), and the RF and antenna paths (tzr). These time delays are
shown in Figure 43. In a beam forming/MIMO system, there is a system level antenna calibration that is performed to equalize the sum of
these paths between all channels. The following list is the goals of this transceiver mechanism:

¢ Reduce the complexity of the antenna calibration by initializing to a more consistent startup condition with deterministic PLL phase
and LO divider state

e Reduce the temperature dependence of the system phase synchronization to allow the antenna calibration to run less frequently
during operation

e Allow transceivers to be stopped and started in an operational system and hot synchronize with the other transceiver elements

The LO phase synchronization method addresses the initial PLL phase and LO divider state and reduces their temperature dependence to
a negligible amount compared to other sources of phase drift in the system.

Aterk AtrerpatH Atp. Atge
f_%f—%

CLOCK
CHIP

L

22770-042

Figure 43. High Level Contributions to System Phase Per Antenna
Enabling the RF PLL Phase Synchronization Function Using the API
To enable the LO phase synchronization function, peform the following steps:

1. Set the phase synchronization bit in the initialization data structure.

2. Perform MCS to set the JESD204B and JESD204C deterministic latency using SYSREF pulses as normal. LO phase synchronization
uses existing signaling and SYSREF to accomplish LO phase synchronization. The following structure definition describes the
parameters needed for this process.
adi adrv9025 Init t deviceInitStruct =
{

Rev. 0| Page 77 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

{ // clocks
245760, // deviceClock kHz
9830400, // clkPllVcoFreq kHz
9830400, // serdesPllVcoFreq kHz
0, // ldoSelect
0, // extLoFreql kHz
0, // extLoFreq2 kHz
ADI_ADRV9025 INTLO NOOUTPUT, // rfPlllLoMode
ADI_ADRV9025 INTLO NOOUTPUT, // rfPl12LoMode
0, // rfPlllLoOutDivider
0, // rfPll2LoOutDivider
ADI ADRV9025 RFPLLMCS INIT AND CONTTRACK, // rfPllPhaseSyncMode
Possible enumerator values are shown in the following code:
/xx

* \brief Enumerated list of RFPLL phase synchronization modes

*

* RFPLL Phase sync requires extra time to sync each time the RFPLL frequency

* is changed. If RFPLL phase sync is not required, it may be desired to

* disable the feature to allow the RFPLL to lock faster.

* Depending on the desired accuracy of the RFPLL phase sync, several options
* are provided.
*/

typedef enum adi adrv9025 RfP11Mcs

{

ADI ADRV9025 RFPLLMCS NOSYNC =0, /*!< Disable RFPLL phase
synchronization */

ADI ADRV9025 RFPLLMCS INIT AND SYNC =1, /*!< Enable RFPLL phase sync init
only */

ADI ADRV9025 RFPLLMCS INIT AND CONTTRACK
track continuously */

} adi_adrv9025 RfPl1Mcs_e;

Il
N

/*!< Enable RFPLL phase sync init and

RF PLL Phase Synchronization Demo Setup

A vector network analyzer is used to measure the phase difference between two transmitter outputs, LO1 and LO2, with the same
frequency assigned to each transmitter output. The test setup is shown in Figure 44. It is important to use the same clock reference for all
the equipment in the setup. In this diagram, all equipment is locked to the same 10 MHz reference.

X2 2
X3

EVB VNA -

Yy

1
+ 10MHz

122.88MHz
REFERENCE
OSCILLATOR

22770-043

Figure 44. RFPLL Phase Sync Test Setup

Users can edit specific use case files (also referred to as JSON files or profiles) to set the RF PLL phase synchronization using the
parameters shown here under rfPllPhaseSyncMode Options and Clock Options. When using the evaluation board system, the
Transceiver Evaluation Software must be restarted for these changes to take effect.

rfPlIPhaseSyncMode Options (parameter in use case block below is bold):

0: Disable RFPLL phase synchronization
Rev. 0 | Page 78 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

1: Enable RFPLL phase sync init only

2: Enable RFPLL phase sync init and track continuously

Clock Options:
"deviceClock_kHz": 245760,
"clkPIlVcoFreq_kHz": 9830400,
"serdesPllVcoFreq_kHz": 9830400,
"ldoSelect": 0,
"extLoFreql_kHz" 0,
"extLoFreq2_kHz": 0,
"rfPll1LoMode": 0,
"rfPll2LoMode": 0,
"rfPll1LoOutDivider": 0,
"rfPlI2LoOutDivider": 0,
"rfPllPhaseSyncMode": 2,

Figure 45 shows five power cycles of the same device with the phase synchronization function beginning in the disabled state. At each

power up, the phase difference between the two LOs is a random value. This diagram also shows initialization and tracking results, which

brings initial random phase to a repeatable value.

200

RF PLL PHASE SYNC

150

100 DISABLED
50

0
50

-100
-150

INIT+TRACKING

INIT ONLY CONTINUOUSLY

© SERIES 1
SERIES 2
SERIES 3
SERIES 4

© SERIES 5

22770-044

—-200
0 500 1000 1500

2000 2500 3000 3500 4000 4500

Figure 45. RF PLL Phase Sync Transitions from Disabled through Inititialization and into Tracking Mode (5 Independent Power Up Sequences Shown)

Figure 46 shows a close up view of the transition from initialization to continuosly tracking.

-152.0

RF PLL PHASE SYNC

-152.5
INIT ONLY

-153.0
2 oa tinn. oo o o diipasn.

INIT+TRACKING
CONTINUOUSLY

-153.5
-154.0 © SERIES 1
SERIES 2
SERIES 3
-154.5 SERIES 4
© SERIES 5
-155.0
1603 2103 2603 3103 3603 4103 4603

Figure 46. RF PLL Phase Synchronization Initialization to Tracking Results

Rev. 0 | Page 79 of 336

22770-045

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

ARM PROCESSOR AND DEVICE CALIBRATIONS

The transceiver is equipped with a built in ARM M4 processor. The firmware for this ARM processor is loaded during the initialization
process. The firmware memory size is 224 kB, and the ARM has access to another 160 kB of data memory to utilize. The ARM is tasked
with configuring the transceiver for the selected use case, performing initial calibrations of the signal paths, and maintaining device
performance over time through tracking calibrations.

ARM STATE MACHINE OVERVIEW

STATE 0:
POWER UP/RESET

BOOT SEQUENCE
SYSTEM INITIALIZATION

STATE 1:
READY/IDLE

ALL COMMANDS ACCEPTED IN THIS STATE.
INITIAL CALIBRATRIONS CAN BE RUN.
TRACKING CALIBRATIONS CAN BE RUN.

22770-046

Figure 47. ARM State Machine

When the arm core is powered up, the ARM moves into its power-up/reset state, shown as State 0 in Figure 47. The ARM firmware image
is loaded at this point. When the ARM image has been loaded, the ARM is enabled and begins its boot sequence.

After the arm has been booted, it enters its ready/idle state, shown as State 1 in Figure 47. In this state, it can receive configuration settings
or commands (instructions), such as performing the initial calibrations or enabling tracking calibrations.

SYSTEM INITIALIZATION
This section provides a detailed description of the initialization procedure. There are three main sections to the initialization procedure.

Pre-MCS initialization initializes the device up to the multichip synchronization procedure. The pre-MCS initalization is split into two
commands that the application layer function calls. These commands are adi_adrv9025_PreMcsInit_v2(...) and
adi_adrv9025_PreMcsInit_NonBroadCast(...). The adi_adrv9025_PreMcslInit_v2(...) command is a broadcastable command that can
simultaneously issue commands to multiple transceivers to save time during system initialization for systems with multiple transceivers.
ARM and stream binaries are programmed to the chip during this step. The broadcast functionality is realized by issuing SPI write
commands only. The adi_adrv9025_PreMcsInit_NonBroadCast(...) command verifies that the ARM is programmed properly by
verifying the ARM checksum and that the ARM is in the ready/idle state.

The multichip synchronization (MCS) step uses SYSREF pulses to synchronize internal clocks within the transceiver, which is required
for deterministic latency.

Post-MCS initalization continues initialization following MCS. The application layer command that performs the post-MCS initialization
is adi_adrv9025_PostMcsInit(...). This command programs the PLLs, configures the radio control initialization structure, and instructs
the ARM to perform initialization calibrations.

PRE-MCS INITIALIZATION
This section explains the ARM related function calls in adi_adrv9025_PreMcsInit_v2(). Run adi_adrv9025_PreMcsInit_v2(...) as part of

the initialization sequence.
adi adrv9025 PreMcsInit v2(adi adrv9025 Device t *device,
adi adrv9025 Init t *init,
const char *armImagePath,
const char *streamImagePath,
adi adrv9025 RxGainTableFile t rxGainTableFileArr[],
uint8 t rxGainTableFileArrSize,
adi adrv9025 TxAttenTableFile t txAttenTableFileArr[],
uint8 t txAttenTableFileArrSize);
An important system from the perspective of the ARM is the armImagePath, a file system location where the ARM binary is stored,

which is required for the ARM to be loaded.
Rev. 0 | Page 80 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

The adi_adrv9025_PreMcsInit_v2(...) function is in the adi_adrv9025_utilities.c/h file. This function performs a sizeable part of the full chip
initialization. From the point of view of the ARM, it performs a number of tasks. The first step is to load the ARM image,
adi_adrv9025_ArmImageLoad(device, armImagePath), where device is the transceiver device structure. The armImagePath is the path to the
ARM image binary passed as a parameter to adi_adrv9025_PreMcsInit_v2(). The ARM image is provided in the Resources/ArmFiles folder of
the GUI installation folder.

Following the ARM firmware image being loaded, the next step is to load the device configuration into data memory using
adi_adrv9025_ArmProfileWrite(adi_adrv9025_Device_t *device, const adi_adrv9025_Init_t *init).

*init is the initialization settings data structure.

The ARM is then started and begins its boot sequence. This process is initiated by adi_adrv9025_ArmStart(adi_adrv9025_Device_t
*device, const adi_adrv9025_Init_t *init).

As part of the boot sequence, the ARM configures the device for the required profile (transmitter/receiver/observation receiver path
configuration as determined by the use case), configures and enables the clock PLL (the device starts initialization on the device clock),
and configures the JESD204B and JESD204C framers and deframers. The ARM also computes a checksum for the ARM firmware image
loaded, for each of the streams loaded, and the profiles loaded (determining if they are valid profiles). The following API function waits for
the ARM boot to complete and compares the computed checksums during booth to precomputed checksums. For example, comparing
the ARM firmware checksum vs. the ARM checksum that is calculated after compilation of the ARM firmware and stored within the
ARM firmware image adi_adrv9025_ArmStartStatusCheck(adi_adrv9025_Device_t *device, uint32_t, timeout_us), where timeout_us is
a timing parameter that dictates the longest time that the function waits for arm booting to complete.

If a checksum is found to be not valid, this function returns an error.

POST-MCS INITIALIZATION

After the MCS sequence has been completed, the ARM is ready to configure the radio, perform its initialization calibrations, and bring up
the JESD204B and JESD204C link. When complete, the tracking calibrations can be enabled. The RF data paths can then be enabled using
either the SPI or pin modes.

Note that there is no absolute requirement to follow this sequence. The initialization calibrations and tracking calibrations do not have to be run
for the paths to be enabled in the device. It is ultimately up to the user to ensure that the paths have been correctly configured prior to operation.

DEVICE CALIBRATIONS

The ARM is tasked with performing calibrations for the transceiver to achieve its performance specifications. These calibrations are split
into two categories: initial calibrations, which are run either before the transceiver is operational or after LO frequency change, and
tracking calibrations, which are used to maintain performance during runtime.

A number of transmitter calibrations use an observation path to observe the signal at the output of the transmitter. For the most part,
these calibrations use an internal loopback path from transmitter to observation receiver. The exception is the external LOL initialization
and tracking algorithms that require the use of an external path connection between the transmitter output and an observation input.

A requirement for this device is that the observation receiver channel used to calibrate a transmitter channel must be on the same side of
the chip as that transmitter channel. Table 60 provides the possible feedback combinations. For example, it is not possible for LO leakage
tracking to calibrate Tx4 by providing its output to ORx1 or ORx2.

Table 60. External Feedback Path Possibilities

Channel Available Feedback Channels
Tx1 ORx1 or ORx2
Tx2 ORx1 or ORx2
T3 ORx3 or ORx4
Tx4 ORx3 or ORx4

Figure 48 shows an example of four feedback paths, each transmitter going back to an observation receiver, obeying the principle of each
transmitter being fed back to an observation receiver on the same side of the device. It is also possible to have both Tx1 and Tx2 going
back to a single observation receiver input (either ORx1 or ORx2) through a switch. Similarly, Tx3 and Tx4 can go back to a single
observation receiver input (either ORx3 or ORx4).

Note that for the diagrams outlining the operation of individual calibrations, the transmitter and observation receiver inputs are not numbered.
Instead, it is assumed that the principle of a transmitter being fed back to an observation receiver on the same side of the device is being obeyed.
Rev. 0 | Page 81 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

INITIAL CALIBRATIONS

The ARM processor in the transceiver is tasked with scheduling/performing initial calibrations to optimize the performance of the signal

ANTENNA 3 m| H ANTENNA 2 V
|| Tx3 Tx2 -
]] [Torcon
'_E ORx3/ORx4 ORx1/ORx2 E_h
B Rx4 Rx1 u
Tx4 <1

SERDES

22770-047

Figure 48. External Feedback for Transmitter Tracking Calibrations

paths prior to device operation. These calibrations are run as part of the utility API function adi_adrv9025_PostMcsInit(). To correctly

perform the initial calibrations, this utility function must be called. This section also provides details of the procedure invoked in

adi_adrv9025_PostMcsInit() to perform the initial calibrations, principally for further information, but also in case there is a need to run
initial calibrations outside of the post-MCS initialization procedure. The API function definition for the post-MCS initialization is:

adi adrv9025 PostMcsInit (adi adrv9025 Device t *device, adi adrv9025 PostMcsInit t *utilityInit)

*utilityInit is a structure containing a structure determining the initial calibrations to be run as part of the post-MCS initialization routine.

In some cases, it is required to run an initial calibration outside of adi_adrv9025_PostMcslInit(...). This following command instructs the
ARM to perform the requested calibrations:

adi adrv9025 InitCalsRun(adi adrv9025 Device t *device, adi adrv9025 InitCals t *initCals)

*initCals is the initial calibration structure, passed to adi_adrv9025_PostMcslInit as part of utilityInit, that informs the ARM processor
which calibrations to run on which enabled path. initCals is composed of a uint32_t calMask and a uint8_t channelMask. calMask
indicates which calibrations are to run in this call of adi_adrv9025_InitCalsRun().

Table 61 shows the bit assignments of the calibration mask. Note that Table 61 provides a full list of initialization calibrations for the
device. Some initial calibrations are not available for certain transceivers and applications.

The channelMask parameter, a member of the adi_adrv9025_InitCals_t structure, advises which channels the selected calibrations run. Each bit
of the bitmask refers to an individual channel, as shown in Table 62. The mask is universally applied to all calibrations selected in the current call
of adi_adrv9025_initCalsRun(), regardless of the paths for which the calibrations are being run. For example, if OxF is chosen as a mask and both

receiver and transmitter calibrations are selected in the calMask, when the ARM runs a receiver calibration it then does so on all four receiver

channels. Likewise, when the ARM runs a transmitter calibration, the calibration is run on all four transmitter channels.

Table 61. calMask Bit Assignments

Bits | Corresponding Enumerator Calibration Description

Do ADI_ADRV9025_TX_BB_FILTER Transmitter This is used to tune the corner frequency of the transmitter
baseband filter baseband filter.
calibration

D1 ADI_ADRV9025_ADC_TUNER ADC tuner This is used to configure the ADC for the required profile
calibration bandwidth.

D2 ADI_ADRV9025_RX_TIA Receiver TIA filter This is used to tune the corner frequency of the receiver TIA
calibration filter.

D3 | ADI_ADRV9025_ORX_TIA Observation This is used to tune the corner frequency of the observation
receiver TIA filter receiver TIA filter.
calibration

D4 ADI_ADRV9025_LBRX_TIA Loopback receiver This is used to tune the corner frequency of the loopback
TIA filter calibration receiver TIA filter.

D5 ADI_ADRV9025_RX_DC_OFFSET Receiver dc offset This is used to correct for dc offset within the receiver chain.
calibration

Rev. 0 | Page 82 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

Bits | Corresponding Enumerator Calibration Description
D6 ADI_ADRV9025_ORX_DC_OFFSET Observation This is used to correct for dc offset within the observation
receiver dc offset receiver chain.
calibration
D7 ADI_ADRV9025_LBRX_DC_OFFSET Loopback receiver | This is used to correct for dc offset within the loopback
dc offset calibration | receiver chain.
D8 | ADI_ADRV9025_FLASH_CAL ADC flash calibration | This is used to optimally configure the ADC flash converters.
D9 | ADI_ADRV9025_INTERNAL_PATH_DELAY Internal path delay | This computes the transmitter to internal loopback path delay,
calibration which is required for the TxQEC initial calibration and tracking.
D10 | ADI_ADRV9025_TX_LO_LEAKAGE_ INTERNAL | Transmitter LO This performs an initial LO leakage calibration for the
leakage initial transmitter path. It utilizes the transmitter path and the
calibration internal loopback path (see Figure 51).
D11 | ADI_ADRV9025_TX_LO_LEAKAGE_EXTERNAL | Transmitter LO This performs an initial external LO leakage calibration for
leakage external the transmitter path. It utilizes the transmitter path, a
initial calibration required external loopback path, and the observation
receiver path (see Figure 52). The external loop must be
enabled such that the transmitter output is observable by
the observation receiver.
D12 | ADI_ADRV9025_TX_QEC_INIT Transmitter QEC This performs an initial QEC calibration for the transmitter path.
initial calibration It utilizes the transmitter path and an internal loopback path
(see Figure 51).
D13 | ADI_ADRV9025_LOOPBACK_RX_LO_DELAY Loopback receiver | This is used to perform an LO delay calibration for the
LO delay loopback path.
calibration
D14 | ADI_ADRV9025_LOOPBACK_RX_RX_QEC_INIT | Loopback receiver | This performs an initial QEC calibration for the receiver path.
QEC initial
calibration
D15 | ADI_ADRV9025_RX_LO_DELAY Receiver LO delay This is used to perform an LO delay calibration for the
calibration receiver path.
D16 | ADI_ADRV9025_RX_QEC_INIT Receiver QEC initial | This performs an initial QEC calibration for the receiver path.
calibration
D17 | ADI_ADRV9025_ORX_LO_DELAY Observation This is used to perform an LO delay calibration for the
receiver LO delay observation receiver path.
calibration
D18 | ADI_ADRV9025_ORX_QEC_INIT Observation This performs an initial QEC calibration for the observation
receiver QEC initial | receiver path.
calibration
D19 | ADI_ADRV9025_TX_DAC Transmitter DAC This performs a calibration of the transmitter DAC.
initial calibration
D20 | Reserved
D21 | ADI_ADRV9025_EXTERNAL_PATH_DELAY External This acquires an estimation of the transmitter to observation
transmitter to receiver path delay (not required if CLGC tracking is not
observation used).
receiver path delay
initial calibration
D22 | Reserved
D23 | ADI_ADRV9025_HD2 HD?2 initial This performs an initial calibration of the HD2 product in the
calibration receiver path (typically required only in GSM applications).
D24 | ADI_ADRV9025_TX_ATTENUATION_DELAY Transmitter This is used to calculate the path delay between the transmitter
attenuation delay analog and digital attenuation blocks. This delay is then used to
calibration delay the onset of transmitter analog attenuation when the
transmitter attenuation changes. This synchronizes the
attenuation change at the transmitter output.
D25 | ADI_ADRV9025_TX_ATTEN_TABLE Transmitter This is used to correct for phase changes between different

attenuation table
linearization
calibration

attenuation indices in the transmitter attenuation table.

Rev. 0 | Page 83 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Bits | Corresponding Enumerator Calibration Description
D26 | ADI_ADRV9025_RX_GAIN_DELAY Receiver gain delay | This is used to calculate the path delay between the receiver
calibration analog and digital attenuation blocks. This delay is then used

to delay the onset of receiver analog attenuation when the
receiver gain index is changed. This synchronizes the gain
change in the baseband data. This calibration does not check
the status of the DDC filter, so if the NCO is enabled it may
cause the calibration to fail with no warning if the calibration
tone is placed outside the pass band. The NCO must not be
used when doing this calibration.

D27 | ADI_ADRV9025_RX_GAIN_PHASE Receiver gain This is used to correct for phase changes between different
phase calibration gain indices in the receiver gain table.

D28 | Reserved

D29 | ADI_ADRV9025_CFR_INIT CFRinitialization This performs an initialization calibration for the transceiver
calibration CFR hardware (ADRV9029 only).

D30 | ADI_ADRV9025_SERDES_INIT SERDES This performs an initialization calibration for the JESD204C
initialization cal data interface.

D31 | Reserved

Table 62. channelMask Bit Assignments

Bits Channel

DO Channel 1 (either Rx1/Tx1/ORx1 depending on calibration being performed)
D1 Channel 2 (either Rx2/Tx2/ORx2 depending on calibration being performed)
D2 Channel 3 (either Rx3/Tx3/0ORx3 depending on calibration being performed)
D3 Channel 4 (either Rx4/Tx4/ORx4 depending on calibration being performed)

The ARM sequences the initial calibrations as required, not necessarily in the bit order presented in Table 61. It is mandatory that the user
wait for calibrations to complete before continuing with the initialization of the device. The following API command is used to verify that
the initial calibrations are complete:

adi adrv9025 InitCalsWait (adi adrv9025 Device t *device, uint32 t timeoutMs, uint8 t *errorFlag)
timeoutMs is the time in milliseconds (ms) that the function must wait for the calibrations to complete before returning an error.
errorFlag indicates if there is an ARM error when running the initialization calibrations.

This function implements a blocking wait until the initial calibrations have been completed. An alternative function can be used instead,
which determines if the initial calibrations are still running using the following API command:

adi adrv9025 InitCalsCheckCompleteGet (adi adrv 9025 Device t *device, uint8 t *areCalsRunning,
uint8 t *errorFlag);

*areCalsRunning is a value to indicate if calibrations are still running (0 = initial calibrations have completed, 1 = initial calibrations are
still running). errorFlag indicates if there is an ARM error when the running the initialization calibrations.
In the case when an initial calibration error occurs, information about the error can be obtained with the following command:

adi adrv9025 InitCalsDetailedStatusGet (adi adr v9025 Device t *device,
adi adrv9025 InitCalStatus t *initStatus);

*initStatus is a pointer to a data structure that contains initial calibration status information. The adi_adrv9025_InitCalStatus_t data
structure details are described in Table 63.

Table 63. Definition of adi_adrv9025_InitCalStatus_t

Parameter Interpretation

initErrCode Returns the object ID and error code reported for the initialization calibration failure. The object ID is contained
within Bits[D15:D8] and error bits are contained within Bits[D7:D0].

initErrCal Returns the object ID of the calibration reporting an error.

calsDurationUsec Time duration in microseconds of the most recent InitCalsRun invocation.

calsSincePowerUpl[4] | A 4-element array indicating the bitmask of initial calibrations run after power up. Each element of the array
corresponds to calibrations performed on each channel.

calsLastRun[4] A 4-element array indicating the bitmask of initial calibrations run in the most recent invocation of InitCalsRun. Each
element of the array corresponds to calibrations performed on each channel.

Rev. 0 | Page 84 of 336

https://www.analog.com/ADRV9029?doc=ADRV9026-System-Development-User-Guide-UG-1727.pdf
https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-1721

SYSTEM CONSIDERATIONS FOR INITIAL CALIBRATIONS

Figure 49 through Figure 52 show how the transceiver is configured for notable calibrations with external system requirements, such as
the QEC and LOL calibrations. In all diagrams, gray lines and blocks are not active in the calibration. Lines showing the path of the LOs
are shown in color to distinguish them from the signal paths. A brief explanation of the calibration is provided. Note that as the ARM
performs each of the calibrations, it is tasked with configuring the device as per Figure 49. For example, with respect to enabling/disabling
paths. No user input is required in this regard.

It is important that the user ensures that external conditions are met, such as having the PA off for all calibrations other than the external
LOL initialization calibration, or having the receiver input properly terminated for a receiver QEC initialization calibration.

Receiver QEC Initial Calibration

The receiver QEC initialization calibration algorithm is utilized to improve the receiver path QEC performance. The receiver QEC
calibration routine sweeps a number of internally generated test tones across the desired frequency band, measuring quadrature performance
and calculating correction coefficients. Tone generation is performed by the calibration PLL (CAL PLL), which is the auxiliary PLL.
When the receiver QEC initialization calibration runs, the ARM configures the receiver to the maximum gain index (255).

It is a system requirement that the input port must be isolated from incoming signals or the calibration may fail to complete. The calibration
tones appear on the receiver pins and, therefore, must be prevented from reaching the antenna through the receiver port being properly
terminated into a 50 Q2 load. If an LNA is present at the receiver input, it is reccommended to disable the LNA during the calibration.

50Q

Rx
LPF ADC |—|1/2 BANDS | |
L INPUT F(F 12 BAND: e
< BLOCK

[:(2 —<"apnc | 12BaNDs] |
) LPF ADC AND FIR

CAL

PLL Rx LO

ADRV902x

22770-048

Figure 49. Receiver QEC Initial Calibration System Configuration

Observation Receiver QEC Initial Calibration

The observation receiver QEC calibration functions by sweeping a number of internally generated test tones across the band measuring
quadrature performance and calculating correction coefficients. The ARM determines which PLL is free for use as a calibration source
given the LO selections. In Figure 50, the transmitter LO is the LO source for the observation receiver channel and the auxiliary PLL acts
as the calibration PLL.

It is a system requirement that for optimum performance, it is recommended to set the internal observation receiver attenuation to 10 dB
for TXLO < 2.8 GHz or 14 dB to 16 dB for TXLO > 2.8 GHz.

Isolate the observation receiver input from incoming signals and be properly terminated into a 50 Q load while the calibration is running.
The calibration tones appear on the observation receiver pins and, therefore, must be prevented from reaching the antenna.

Receiver/Observation Receiver TIA Initial Calibration

The receiver/observation receiver TIA calibration is used to calibrate the corner frequency of the analog baseband TIA filter in the
receiver/observation receiver signal path. The signal path used for this calibration is the same as the receiver QEC initialization calibration
shown in Figure 49. The calibration applies two tones sequentially, one in-band and another at the TIA corner frequency, and compares the
amplitude of both of these signals to ensure that the corner frequency produces the appropriate roll-off.

It is a system requirement to isolate the input port from incoming signals or the calibration may fail to complete.

Rev. 0 | Page 85 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

50Q

ORx
LPF ADC |—|1/2 BANDS | |
L INPUT F(F 12 BAND: .
< BLOCK

| _11/2 BANDS ||
R tpr [Anc [1/2BAND:

CAL
PLL TxLO

ADRV902x

22770-049

Figure 50. Observation Receiver QEC Initial Calibration System Configuration

Internal Transmitter LO Leakage and Transmitter QEC Initial Calibrations

The transmitter LO leakage and transmitter QEC initial calibrations utilize the internal loopback path and the baseband section of the
observation receiver path to calculate its initial correction factors. During these calibrations, test signals (tones and wideband signals) are
output. These appear at the transmitter output, so it is important that the PA connected to the transceiver output be switched off. Both
calibrations sweep through a series of attenuation values, creating a table of initial calibration values over attenuation. Then during
operation and upon application of a new transmitter attenuation setting, the corresponding QEC and LOL correction values are applied
to the transmitter channel by the ARM. The transceiver configuration for this calibration is shown in Figure 51.

It is a system requirement that the PA in the transmitter path must be powered off during these calibrations to prevent potential damage
to the PA. When the PA is disabled, ensure the load seen at the transmitter output is 50 Q.

ADRV902x
—
FEEDBACK
PATH 1/2 BANDS
F{Z() LPF ADC _‘ 12 BAND! |7
1/2 BANDS
T—_é@_‘ | LPF ADC AND FIR
QEC
BLOCK

/
]

H

| T™xLO

1/2 BANDS
Jt{éi) | LpF DAC _| I2BANDS |
Tx 1/2 BANDS |
| ¢ E— [<oac [z asmos]

SIGNAL
GEN

22770-050

Figure 51. Device Path Configuration for Transmitter LOL and QEC Initial Calibrations

External Transmitter LO Leakage Initial Calibration

The external LOL initialization calibration requires that the PA be enabled such that a full external loop is made between the transmitter
outputs and the observation receiver inputs. The purpose of this calibration is to obtain a good estimate (gain/phase) of the external loop
channel conditions prior to operation. The transceiver configuration is shown in Figure 52. The calibration utilizes a pseudorandom noise
signal to estimate the channel conditions. This is a broadband signal with a nominal level of —78 dBES out of the DAC.

Rev. 0 | Page 86 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

It is important that a suitable attenuator be chosen between the PA output and the observation receiver input. This is to prevent transmitter
data from saturating the observation receiver input. This is also necessary from the perspective of digital predistortion (DPD) operation.

Note that if the observation receiver receives an input signal larger than the ADC full scale, the channel overloads and calibration results
are poor. The arm does not issue a warning or error condition in this case. Similarly, the arm does not issue a warning if the physical
transmitter to observation receiver mapping does not match the programmed transmitter to observation receiver mapping.

It is a system requirement that the output of the transmitter channel to be calibrated must be routed to the utilized observation receiver
path to properly observe the calibration signal. If there is a PA in the path, it must be enabled during this calibration. The transmitter to
observation receiver mapping must be configured (via API or GPIO) prior to the calibration to indicate which transmitter is routed back
to which observation receiver (see the Transmitter to Observation Receiver Feedback section).

Choose the combined external coupler plus attenuation to provide a peak input power close to Puicn (as specified in the device’s
datasheet) at the observation receiver input pin so that the peak power is close to —2 dBFS at the digital output with the programmed
internal attenuation. For optimal external LOL initial calibration and LOL tracking calibration, it is recommended to set the internal
observation receiver attenuation to 10 dB for TXLO < 2.8 GHz or 14 dB to 16 dB for TXLO > 2.8 GHz.

I ADRV902x

FEEDBACK
PATH 1/2 BANDS
[o oo IR
=2 =T

[|AUXLO

QEC
BLOCK

_| TxLO

N [

LPF 112 BANDS
T—@ ' < AND FIR
—{<]
T S 112 BANDS |
OUTPUT 0 I - AND FIR
SIGNAL

GEN

22770-050

Figure 52. External LOL System Configuration (Grayed Out Circuitry Not in Use)
Receiver Gain Delay Initial Calibration

The receiver datapath features an analog and a digital gain/attenuation element. If the analog and digital gain changed simultaneously, the
received baseband data shows a two-step change in the gain index. The first gain change seen in the baseband is from the digital gain
change and the second gain change is from the analog gain change. This is due to the nonzero data path latency between the analog and
digital gain/attenuation elements.

The receiver gain delay calibration measures the latency between the analog and digital gain/attenuation elements to delay the onset of
digital gain. This ensures that when the analog and digital gain change, the baseband data shows a single coordinated gain change
between these two elements. Because the analog gain change is not delayed, there are no consequences to automatic gain control (AGC)
timing due to this calibration.

Receiver Gain Phase

The receiver gain phase calibration is used to minimize the phase differences between different gain indices. This calibration scans the
gain table for unique analog attenuation settings and applies a phase shift for each setting to minimize the phase difference between gain

Rev. 0 | Page 87 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

index settings. The auxiliary PLL is used to transmit a tone at the receiver input and measure the phase difference. The phase shift is
introduced by a digital phase shifting element.

Transmitter Attenuation Phase Initial Calibration
This calibration is called ADI_ADRV9025_TX_ATTEN_TABLE in the API enumerations. This calibration corrects for phase differences

between different attenuation settings in the transmitter attenuation table. A tone is transmitted during this calibration at —12 dBFS and it
is advised to disable the PA during this calibration. No external loopback is necessary during the operation of this calibration.

Run this calibration run prior to any LO leakage initial calibrations. When combined in the initial calibration mask with LO leakage
calibrations, the ARM sequences this calibration before LO leakage initial calibrations.

The attenuation phase calibration supports up to 20 dB of attenuation. This calibration has known performance issues below 1 GHz LO
frequency operation.

Transmitter Attenuation Delay

Similar to the receiver, the transmitter datapath features an analog and digital gain/attenuation element. The transmitter attenuation delay
calibration helps to ensure that when a change in attenuation occurs in both analog and digital, the transmitter output only sees a single
change in output power rather than a two-step effect. This is done by delaying the onset of the analog attenuator change, unlike the
receiver gain delay calibration, which delays the onset of digital gain or attenuation changes.

Transmitter to Observation Receiver Feedback

For the external transmitter LO leakage initial calibration to complete, the ARM must be advised of the current transmitter to observation
receiver feedback paths through the external circuitry. Specify this path at initialization, through the adi_adrv9025_PostMcslnit_t structure
that is passed to adi_adrv9025_PostMcsInit(). In this structure, there are four variables that indicate which transmitter is being fed back
to each observation receiver. These variables are shown in Table 64.

Table 64. Definition of adi_adrv9025_TxToOrxMappingConfig t

Observation Receiver Maps Permissible Values

orx1Map ADI_ADRV9025_MAP_NONE_ORX1
ADI_ADRV9025_MAP_TX1_ORX1
ADI_ADRV9025_MAP_TX2_ORX1

orx2Map ADI_ADRV9025_MAP_NONE_ORX2
ADI_ADRV9025_MAP_TX1_ORX2
ADI_ADRV9025_MAP_TX2_ORX2

orx3Map ADI_ADRV9025_MAP_NONE_ORX3
ADI_ADRV9025_MAP_TX3_ORX3
ADI_ADRV9025_MAP_TX4_ORX3

orx4Map ADI_ADRV9025_MAP_NONE_ORX4
ADI_ADRV9025_MAP_TX3_ORX4
ADI_ADRV9025_MAP_TX4_ORX4

Note that in the case of multiple transmitter channels being fed back to a single observation receiver, a multiple pass is required for the
external transmitter LO leakage initial calibration. During the first pass when adi_adrv9025_PostMcsInit() is called, the current feedback
paths must be advised to the device. When the external LOL initial calibration is run, the ARM performs the calibration on transmitter
paths that have a feedback path to an observation receiver. In a second pass, the feedback paths are modified and advised to the device,
and the external LOL initial calibration must be called again.

Note Regarding Auxiliary LO Settings During Initialization Calibrations

For users that intend to use an auxiliary LO frequency other than the default auxiliary LO frequency for their given use case, note that
initial calibrations must run with the default auxiliary PLL frequency. Therefore, the user must use a procedure if a nondefault auxiliary
PLL frequency is used in their application. This procedure is as follows:

1. Set the transmitter PLL frequency to the desired frequency.
a. Ifthe user uses adi_adrv9025_PlIFrequencySet(...), the auxiliary PLL is configured to the default offset frequency when the
transmitter PLL is programmed.
b. Ifthe user uses adi_adrv9025_PllFrequencySet_v2(...), the auxiliary PLL is configured to the default offset frequency if the
adi_adrv9025_PlIConfig_t-> pllAuxLoOffsetProgSel parameter is set to ADI._ ADRV9025_PLL_AUX_LO_OFFSET_PROG_ENABLE.

Rev. 0 | Page 88 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

2. Runinitialization calibrations.
3. After all initialization calibrations are complete, the user can set the auxiliary PLL frequency to the desired application frequency.

If the user sets the auxiliary PLL to a different frequency and requires initial calibrations to be rerun, follow this same procedure.
Summary of Initial Calibration Requirements
Table 65 summarizes initial calibration requirements and other related details.

Table 65. Recommended Initial Calibrations

Initial Calibration Recommended Values

Receiver QEC ADI_ADRV9025_MAP_NONE_ORX1
ADI_ADRV9025_MAP_TX1_ORX1
ADI_ADRV9025_MAP_TX2_ORX1

Receiver TIA ADI_ADRV9025_MAP_NONE_ORX2
ADI_ADRV9025_MAP_TX1_ORX2
ADI_ADRV9025_MAP_TX2_ORX2

Observation Receiver TIA ADI_ADRV9025_MAP_NONE_ORX3
ADI_ADRV9025_MAP_TX3_ORX3
ADI_ADRV9025_MAP_TX4_ORX3

orx4Map ADI_ADRV9025_MAP_NONE_ORX4
ADI_ADRV9025_MAP_TX3_ORX4
ADI_ADRV9025_MAP_TX4_ORX4

TRACKING CALIBRATIONS

The ARM processor is tasked with ensuring that QEC and LOL (and HD2 for GSM applications) corrections are optimal throughout device
operation over time, attenuation, and temperature. The ARM processor achieves this optimization by performing calibrations at regular intervals.
These calibrations are termed tracking calibrations, and they utilize normal traffic data to update the path correction coefficients.

The following API function enables the tracking calibrations in the ARM:

adi adrv9025 TrackingCalsEnableSet (adi adrv9025 Device t *device, uint32 t enableMask,

adi adrv9025 TrackingCalEnableDisable e enableDiasbleFlag)
enableMask is a mask that informs the ARM processor which tracking calibrations to run (Table 66 shows the bit assignments of the
enable mask (presently only receiver/observation receiver QEC calibrations are available)). enableDiasbleFlag is an enable or disable
parameter (valid enumerators are shown in Table 67). Based on the enumerator chosen for enableDiasbleFlag, the selected tracking
calibrations in enableMask are enabled or disabled.

Table 66. Tracking Calibrations Enable Mask Bit Assignments

Calibration Mask Bits Function

DO Rx1 QEC Tracking
D1 Rx2 QEC Tracking
D2 Rx3 QEC Tracking
D3 Rx4 QEC Tracking
D4 ORx1 QEC Tracking
D5 ORx2 QEC Tracking
D6 ORx3 QEC Tracking
D7 ORx4 QEC Tracking
D8 Tx1 LOL Tracking
D9 Tx2 LOL Tracking
D10 Tx3 LOL Tracking
D11 Tx4 LOL Tracking
D12 Tx1 QEC Tracking
D13 Tx2 QEC Tracking
D14 Tx3 QEC Tracking
D15 Tx4 QEC Tracking

Rev. 0 | Page 89 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Table 67. adi_adrv9025_TrackingCalEnableDisable_e Definition

Enumerator Description

ADI_ADRV9025_TRACKING_CAL_DISABLE | When used, the selected tracking calibrations in enableMask are disabled upon the call to
adi_adrv9025_TrackingCalsEnableSet.
ADI_ADRV9025_TRACKING_CAL_ENABLE | When used, the selected tracking calibrations in enableMask are enabled upon the call to
adi_adrv9025_TrackingCalsEnableSet.

The arm is tasked with the scheduling of the tracking calibrations. No user input is required to initiate a tracking calibration.

System Considerations for Tracking Calibrations

This section describes the operation of the tracking calibrations. Diagrams are used to show how the transceiver is configured for each
calibration, and a brief explanation of the calibration is provided. In all configuration diagrams, grayed-out lines and blocks are not active
in the calibration. Lines showing the path of the LOs are shown in color to distinguish them from the signal paths. As the ARM performs
each of the calibrations, it is tasked with configuring the feedback path or observation receiver input as per the following set of diagrams.
No user input is required in this regard. However, for external LOL tracking the user must ensure that the feedback path is available to
use.

The calibration description sections show the requirements for GPIO and enable pins during each of the tracking calibrations. These
calibrations may need many milliseconds of observation to calculate an update. The ARM reduces the total time needed by splitting up
this time into batches in a way so that observations do not have to be continuous. The ARM algorithms are optimized to process batches
of 100 ps, but smaller batches are acceptable.

The receiver/observation receiver tracking algorithms run while the channels are in normal use, using the data in the channel to calculate
updates to the correction coefficients. The transmitter correction algorithms utilize the observation receiver path when run, feeding back
transmission data for observation to calculate updates to the correction coefficients. Therefore, observation receiver paths must be time
shared with other uses of the observation receiver path.

Because the transceiver has two observation paths, the expectation is that the calibrations always have access to a single observation
receiver path and an equal amount of time for observation receiver paths on either side of the device (that is, an equal amount of time on
ORx1/ORx2 and ORx3/ORx4). When an observation receiver on one side of the device is being assigned to calibrations, the other
observation receiver(s) on the other side of the device are available to the user for observation.

Receiver QEC Tracking Calibration

The receiver QEC tracking algorithm improves the receiver path QEC performance during operation. The receiver QEC utilizes normal
traffic data to calculate updated corrected coefficients. The receiver QEC runs continuously while the receivers are active.

It is a system requirement that the receiver channels must be enabled. For example, in TDD mode, receiver QEC tracking only runs
during receiver periods. If only one channel is enabled, the receiver QEC only runs on this channel. Note that in FDD modes, receiver
enable is high at all times. Receiver enable refers to the enable of any of Rx1 to Rx4.

Rx
X | LPF 1/2 BANDS
=] R El=
< BLOCK
1/2 BANDS
I—_[g | LPF -@ AND FIR

Figure 53. Receiver QEC Tracking

JESD204B/C INTERFACE

ADRV902x

22770-052

AIR TIME | Tx | Rx | Tx Rx
Rx ENABLE |
PERIODS WHERE 3
RxQEC RxQEC RxQEC 2
COULD RUN 5

Figure 54. Timing Diagram Showing When Receiver QEC can Run in TDD Mode

Rev. 0 | Page 90 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Observation Receiver QEC Tracking Calibration

The observation receiver QEC tracking algorithm improves the observation receiver path QEC performance during operation. The
observation receiver QEC tracking calibration utilizes normal traffic data to calculate updated corrected coefficients. The observation
receiver QEC tracking calibration runs continuously in the background while the observation receiver is active.

It is a system requirement that observation receiver channels must be enabled. For example, in TDD mode, observation receiver QEC
tracking only runs during observation receiver periods. If only one channel is enabled, the observation receiver QEC only runs on this
channel.

Do not change the observation receiver gain index while the tracking calibration runs. If the observation receiver gain index changes,
rerun the observation receiver QEC initial calibration.

w
(&]
=
Rx @
LPF apc |_[12BaNDs | |
INPUT i c AND FIR =
< QEC £
S BLOCK o
|12 BANDS || @
) LPF ADC /2 BAND: 2
[a]
[72]
w
=N
RxLO o
ADRV902x | ¢
o
o~

Figure 55. Observation Receiver QEC Tracking

AIR TIME Tx Rx Tx Rx |
ORx ENABLE
PERIODS WHERE 8
RxQEC ORXQEC ORxQEC g
COULD RUN 3

Figure 56. Timing Diagram Showing when Observation Receiver QEC can Run in TDD Mode (Observation Receiver Enable Refers to the Internal Enable Control of
ORx1 to ORx4)

Transmitter QEC Tracking Calibration

The transmitter QEC tracking is an online calibration that is run to improve the QEC performance using transmit data. It utilizes the
loopback (feedback) path for operation. Therefore, the transmit QEC tracking must be interleaved with normal other captures that utilize
the observation receiver path. This tracking determines optimal coefficients for the current gain setting, updating the table stored during
the transmitter QEC initialization to ensure this table has the best values for the current operating conditions. Figure 57 shows the
transceiver configuration for transmitter QEC tracking calibration.

It is a system requirement that the transmitter channel(s) must be enabled. To run, the observation receiver path must be available for the
ARM to use (observation receiver enable low). That means the required observation receiver path cannot be required by the user for
other (or voltage standing wave radio (VSWR)) captures.

Note that in FDD modes, transmitter enable is high at all times. Transmitter enable refers to the enable of any Tx1 to Tx4. Observation
receiver enable refers to the internal enable signal for the selected observation receiver channel.

QEC tracking uses an offset LO on the feedback path during tracking. This ensures that the quadrature errors of the transmitter path are
not aligned with those of the observation receiver path. This frequency is set to

foreser = (Primary Transmitter Bandwidth/4) + 5 MHz

Continuous wave tones placed at +forrser, or 2x (£forrser), show reduced QEC performance. However, modulated signals centered at these
frequencies do not have reduced performance.

Rev. 0 | Page 91 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

ADRV902x
4‘ : —

FEEDBACK]
PATH 1/2 BANDS

LPF ADC AND FIR
_| 1/2 BANDS |7
| LPF ADC T

b

< w
$ ATTENUATOR —] 2
AUX LO w

"4

— w

-

B QEC z

~ BLOCK o

[11]

|

(<]

+ a

| TxLO a

w

]

LPF DA 1/2 BANDS —
COUPLER (g) l c Ry
4 < |
Tx 12BANDS | . |
PA POWERED OFF OUTPUT k®:‘ LPF 'iDAC _| AND FIR

22770-056

Figure 57. Transmitter QEC Tracking Calibration Configuration

AIR TIME Tx Rx Tx Rx
Tx ENABLE
ORx ENABLE
PERIODS WHERE 5
TxQEC TxQEC e
COULD RUN §

Figure 58. Timing Diagram Showing When Transmitter QEC can Run in TDD Mode

Transmitter LOL Tracking Calibration

The transmitter LO leakage tracking calibration uses an external path between the transmitter output and observation receiver input to
measure LO leakage and calculate correction factors. This calibration is run while user data is being transmitted (with the PA operational).
For this calibration, the auxiliary LO is used in the observation receiver path to offset the transmitter LO leakage from the observation
receiver LO. Figure 59 shows the transceiver configuration for the transmitter LO leakage tracking calibration with the transmitter output
looped back to the observation receiver input (an observation receiver on the same side of the chip as the transmitter being calibrated).

Note that if the observation receiver receives an input signal larger than the ADC full scale, the channel overloads and calibration results
are poor. The ARM does not issue a warning or error condition in this case.

It is a system requirement that the transmitter channel(s) must be enabled. The observation receiver path must be available for the ARM
to use (that is, not required by the user for DPD (or VSWR) captures). The observation receiver path must be connected to the appropriate
transmitter to be calibrated, and the ARM must be advised which transmitter output has a connection to which observation receiver.

Rev. 0 | Page 92 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

A proper channel estimate is required for optimal LOL tracking performance. A new initial channel estimate must be acquired when the
LO frequency changes or the observation receiver gain index changes. The following are two options to achieve a proper channel
estimate, but it is highly recommended to follow the first option:

1. Run external transmitter LO leakage initialization calibration. Ensure that mapping is set up properly, PA is enabled, and all tracking
calibrations are disabled.

2. Ifnot running external transmitter LO leakage initialization calibration, follow this procedure:
a. Run transmitter LOL tracking calibration. If external transmitter LOL initial calibration is skipped, change LO frequency or

observation receiver attenuation and disable transmitter LOL tracking (if it is running).

If transmitter traffic has content at dc, disable data transmission. If data is offset from dc it can be left on.

Reset the desired channels using the ExtTxLolchannelReset() command.

Call TrackingCalTxLolStatusGet() and note the value of iterCount.

Enable transmitter LOL tracking.

Call TrackingCalTxLolStatusGet() again and note the value of iterCount

If the iterCount value has increased by at least 1, enable transmitter data transmission

I N 2

ORx
INPUT

4|:|__ s ADRV902x
_<
ig)

LPF 1/2 BANDS
1/2 BANDS
-@ AND FIR

[]AUXLO

$ ATTENUATOR

QEC
BLOCK

JESD204B/C INTERFACE

LPF 12BANDS ||
COUPLER i 4’__@) ! -@ AND FIR
| _<

Tx <R 1/2 BANDS
I -
PA POWERED OFF OUTPUT %Y. -« AND FIR

22770-058

Figure 59. Transmitter LOL Tracking Configuration

CALIBRATION GUIDELINES AFTER PLL FREQUENCY CHANGES

Some applications require changing the PLL frequency for transmitter, receiver, or observation receiver signal paths after the transceiver
has started normal operation and tracking calibrations have improved performance. Some tracking calibrations require rerunning initial
calibrations after the PLL frequency change to relearn the new channel conditions. It is important that certain procedures are followed to
maintain proper operation of the tracking calibrations.

The LO frequency changes fall into one of two types. Type 1 is the LO frequency change that is described by both of the following criteria:

e The LO frequency change is less than 100 MHz.
e The LO frequency change does not step over an LO divider boundary, as explained in the Synthesizer Configuration section.

Type 2 is the LO Frequency change that is described by either of the following criteria:

e The LO frequency change is greater than 100 MHz.
e The LO frequency change steps over an LO divider boundary.

Rev. 0 | Page 93 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Type 1 Frequency Change Procedure

If the LO frequency change falls into Type 1 described in the Calibration Guidelines after PLL Frequency Changes section, implement the
following procedure:

. Disable all tracking calibrations

2. Disable all RF channels. If TX_EN/RX_EN/ORX_CTRL pins cannot stop toggling, put the transceiver into command control mode
via adi_adrv9025_RadioCtrlCfgSet(...), then call adi_adrv9025_RxTxEnaleSet(...) to disable all channels.

3. Rerun the following initial calibrations. Ensure to follow system considerations as described in System Considerations for Initial
Calibrations. Ensure that INTERNAL_PATH_DELAY is run prior to TX_QEC_INIT if calibrations are run one at a time. The ARM
sequences the calibrations properly when the following is true:

a. ADI_ADRV9025_INTERNAL_PATH_DELAY (if transmitter QEC tracking is used)
ADI_ADRV9025_LO_LEAKAGE_EXTERNAL. This step is optional but highly recommended. The PA must be enabled in this
step. Ensure that the external calibration is run for all transmitter to observation receiver mappings used in the application. If
the previous step is not executed, it is mandatory to call the adi_adrv9025_ExtTxLolChannelReset(...) command for each
transmitter channel. It must be called one transmitter channel at a time. Then a special procedure must be followed to relearn
the channel estimate described in the Transmitter LOL Tracking Calibration section.

b. Enable relevant tracking calibrations.

Transition back to pin control mode, if necessary.

Type 2 Frequency Change Procedure

If the LO frequency change falls into Type 2 as described in the Calibration Guidelines after PLL Frequency Changes section, implement a
similar procedure to the Type 1 frequency change procedure while adding the ADI_ADRV9025_LOOPBACK_RX_LO_DELAY and
ADI_ADRV9025_TX_QEC_INIT calibrations.

Initialization Calibrations Durations

To achieve best performance, the transceiver features autonomous internal calibrations that are performed during device initialization.
The calibrations are run in the post-MCS part of device initialization. The majority of the calibrations are run with a single API call after
the calibration structure is set. These are the internal calibrations that utilize internal loopback paths. Those that utilize external paths
(such as the external transmitter LOL calibration) are run separately afterward.

All of the calibrations are overseen and scheduled by the ARM processor, therefore the user does not have to be concerned about what
order the calibrations are run. The sequence is defined in a way so that those calibrations that depend on others are scheduled
appropriately. The amount of time it takes for the calibrations to complete are related to the internal high speed clock and the resulting IQ
rates of the receiver, transmitter, and observation receiver paths. The ARM clock is derived from the clock PLL.

In the Figure 60, the slices show the relative timing of each common initialization calibration relative to the total time. Some of the
calibrations are very short and mostly involve, for example, loading coefficients and initializing for operation, or measuring the delay of
the calibration path. Some other calibrations require observation of either internally generated calibration tones or pseudorandom noise
to calculate the required coefficients that are used to define the characteristics of the channel. However, other calibrations, for example the
transmitter QEC calibration, use an algorithm to determine the correction factors that can be influenced by the actual load conditions to
which the transmitter is connected. For these reasons, the amount of time each of the calibrations require to complete may vary slightly.

Rev. 0 | Page 94 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

TX_LO_LEAKAG E_INTERlz‘lA}’L

INTERNAL_PATH_DELAY

ADC_TUNER
TX_BB_FILTER
TX_DAC

TX_QEC_INIT
9%

ORX_QEC_INIT
2 0/

FLASH_CAL
0,

%

3%
RX_TIA

ORX_TIA
1% 1%

LBRX_TIA
1%

o

7%

Figure 60. Relative Time Distribution of Initialization Calibrations

RX_DC_OFFSET
.

ORX_DC_OFFSET

LBRX_DC_OFFSET

RX_QEC_INIT
23%

Lg/)OPBACK_RX_LO_DELAY
5%

22770-059

Table 68 through Table 97 are measured calibration times of the transceiver for a number of different use cases using the standard

calibration mask of 0xD73FF. These results can be used as guidelines as to what the typical expected times are for a particular

configuration. Table 68 through Table 97 are listed in pairs. The first of each pair lists the relevant bandwidths and sample rates. The

second table of each pair lists the calibration timing results in milliseconds for 1, 2, 3, and 4 enabled receiver or transmitter channels. In

the case of observation receiver calibrations, because there are just two shared paths, the entries for ORX_DC_OFFSET are different for 1

and 2 channels enabled, but remain the same for 3 and 4 channels enabled. Other observation receiver calibrations show differences from

1 to 4 channels because the paths from each of the transmitters are calibrated individually.

Table 68. ADRV9025Init_StdUseCasel3_nonLinkSharing

Observation | Observation | Observation Receiver
Transmitter | Transmitter | Transmitter | Receiver Receiver Receiver Receiver Output Receiver

Use Case | Bandwidth | InputRate | DAC Rate Bandwidth Output Rate | ADC Rate Bandwidth | Rate ADC Rate
UC13_NLS | 225 MHz 24576 MHz | 1.966 GHz 225 MHz 245.76 MHz 4.915 GHz 100 MHz 122.88 MHz | 1.966 GHz
Table 69. ADRV9025Init_StdUseCasel3_nonLinkSharing Calibration Durations
Calibration 1 Channel (ms) 2 Channels (ms) | 3 Channels (ms) 4 Channels (ms)
TX_DAC 4 8 12 17
TX_BB_FILTER 2 2 4 5
ADC_TUNER 1 1 1 1
FLASH_CAL 219 263 324 365
RX_TIA 84 125 166 207
ORX_TIA 64 86 108 128
LBRX_TIA 64 86 107 129
RX_DC_OFFSET 451 451 451 451
ORX_DC_OFFSET 451 899 899 899
LBRX_DC_OFFSET 8 14 14 14
LOOPBACK_RX_LO_DELAY 175 345 510 679

Rev. 0 | Page 95 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

Calibration 1 Channel (ms) 2 Channels (ms) | 3 Channels (ms) 4 Channels (ms)
RX_QEC_INIT 756 1508 2262 3013
ORX_QEC_INIT 787 1570 2354 3137
INTERNAL_PATH_DELAY 1 1 3 3
TX_LO_LEAKAGE_INTERNAL 892 1781 2671 3560
TX_QEC_INIT 584 1162 1730 2323
Total Calibration Time 4545 8302 11616 14932
Table 70. ADRV9025Init_StdUseCasel4_LinkSharing

Observation | Observation Observation Receiver
Use Transmitter | Transmitter | Transmitter | Receiver Receiver Receiver Receiver Output Receiver
Case Bandwidth Input Rate DAC Rate Bandwidth Output Rate ADC Rate Bandwidth Rate ADC Rate
UC14_LS | 450 MHz 491.52 MHz 1.966 GHz 450 MHz 491.52 MHz 4915 GHz 200 MHz 245.76 MHz 4915 GHz

Table 71. ADRV9025Init_StdUseCasel4_LinkSharing Calibration Durations

Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
TX_DAC 4 9 12 17
TX_BB_FILTER 1 2 4 4
ADC_TUNER 1 1 1 1
FLASH_CAL 219 263 324 365
RX_TIA 64 85 106 126
ORX_TIA 54 65 76 88
LBRX_TIA 54 65 77 87
RX_DC_OFFSET 451 451 451 450
ORX_DC_OFFSET 467 899 898 899
LBRX_DC_OFFSET 7 14 14 14
LOOPBACK_RX_LO_DELAY 163 324 484 644
RX_QEC_INIT 787 1570 2354 3138
ORX_QEC_INIT 785 1566 2347 3127
INTERNAL_PATH_DELAY 1 2 2 3
TX_LO_LEAKAGE_INTERNAL 876 1748 2622 3494
TX_QEC_INIT 293 595 908 1197
Total Calibration Time 4226 7658 10680 13654
Table 72. ADRV9025Init_StdUseCase14C_LinkSharing
Observation | Observation | Observation

Transmitter | Transmitter | Transmitter | Receiver Receiver Receiver Receiver Receiver Receiver
Use Case Bandwidth Input Rate DAC Rate Bandwidth Output Rate | ADC Rate Bandwidth | Output Rate ADC Rate
UC14C_LS | 450 MHz 491.52 MHz | 1.966 GHz 450 MHz 491.52 MHz 4.915GHz 200 MHz 245.76 MHz 4.915 GHz

Table 73. ADRV9025Init_StdUseCase14C_LinkSharing Calibration Durations

Calibration 1 Channel (ms) | 2 Channels (ms) | 3 Channels (ms) | 4 Channels (ms)
TX_DAC 3 6 11 15
TX_BB_FILTER 2 3 3 4
ADC_TUNER 1 1 1 1
FLASH_CAL 219 262 325 368
RX_TIA 64 85 105 126
ORX_TIA 54 65 76 87
LBRX_TIA 55 65 76 87
RX_DC_OFFSET 451 451 450 451
ORX_DC_OFFSET 450 899 899 899
LBRX_DC_OFFSET 7 15 14 14
LOOPBACK_RX_LO_DELAY 166 325 484 645

Rev. 0 | Page 96 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

Calibration 1 Channel (ms) | 2 Channels (ms) | 3 Channels (ms) | 4 Channels (ms)
RX_QEC_INIT 786 1569 2354 3138
ORX_QEC_INIT 784 1567 2350 3130
INTERNAL_PATH_DELAY 1 2 2 2
TX_LO_LEAKAGE_INTERNAL 876 1749 2622 3495
TX_QEC_INIT 307 593 902 1188
Total Calibration Time 4226 7657 10674 13649
Table 74. ADRV9025Init_StdUseCase23C_LinkSharing
Observation | Observation | Observation Receiver
Transmitter | Transmitter | Transmitter | Receiver Receiver Receiver Receiver Output Receiver
Use Case Bandwidth | InputRate DAC Rate Bandwidth | OutputRate | ADC Rate Bandwidth | Rate ADC Rate
UC23C_LS | 337.5MHz | 368.64 MHz | 1.475GHz | 337.5 MHz 368.64 MHz | 3.686 GHz 150 MHz 184.32 MHz | 3.686 GHz
Table 75. ADRV9025Init_StdUseCase23C_LinkSharing Calibration Durations
Calibration 1 Channel (ms) | 2 Channels (ms) | 3 Channels (ms) | 4 Channels (ms)
TX_DAC 4 5 9 11
TX_BB_FILTER 1 2 3 5
ADC_TUNER 1 1 1 1
FLASH_CAL 285 343 426 482
RX_TIA 84 111 139 172
ORX_TIA 72 86 100 114
LBRX_TIA 72 85 100 115
RX_DC_OFFSET 450 451 451 451
ORX_DC_OFFSET 451 899 898 898
LBRX_DC_OFFSET 7 14 14 15
LOOPBACK_RX_LO_DELAY 210 419 628 835
RX_QEC_INIT 863 1728 2583 3443
ORX_QEC_INIT 861 1718 2574 3430
INTERNAL_PATH_DELAY 1 2 3 4
TX_LO_LEAKAGE_INTERNAL 883 1765 2645 3526
TX_QEC_INIT 401 800 1192 1607
Total Calibration Time 4645 8429 11767 15108
Table 76. ADRV9025Init_StdUseCase26C_LinkSharing
Observation | Observation | Observation
Transmitter | Transmitter | Transmitter | Receiver Receiver Receiver Receiver Receiver Receiver
Use Case Bandwidth Input Rate DAC Rate Bandwidth Output Rate | ADC Rate Bandwidth | Output Rate ADC Rate
UC26C_LS | 450 MHz 491.52 MHz 1.966 GHz 450 MHz 491.52 MHz 4915 GHz 200 MHz 245.76 MHz 4915 GHz
Table 77. ADRV9025Init_StdUseCase26C_LinkSharing Calibration Durations
Calibration 1 Channel (ms) | 2 Channels (ms) | 3 Channels (ms) | 4 Channels (ms)
TX_DAC 4 7 10 15
TX_BB_FILTER 1 2 3 4
ADC_TUNER 1 1 1 1
FLASH_CAL 220 263 324 367
RX_TIA 64 84 106 125
ORX_TIA 54 66 76 88
LBRX_TIA 55 65 75 86
RX_DC_OFFSET 451 450 451 450
ORX_DC_OFFSET 451 900 899 899
LBRX_DC_OFFSET 7 14 14 14
LOOPBACK_RX_LO_DELAY 163 323 485 645
RX_QEC_INIT 787 1571 2354 3137

Rev. 0 | Page 97 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

Calibration 1 Channel (ms) | 2 Channels (ms) | 3 Channels (ms) | 4 Channels (ms)
ORX_QEC_INIT 783 1564 2346 3125
INTERNAL_PATH_DELAY 1 2 2 3
TX_LO_LEAKAGE_INTERNAL 876 1748 2622 3494
TX_QEC_INIT 291 597 892 1201
Total Calibration Time 4210 7657 10660 13654
Table 78. ADRV9025Init_StdUseCase26C_nonLinkSharing
Observation | Observation | Observation Receiver
Transmitter | Transmitter | Transmitter | Receiver Receiver Receiver Receiver Output Receiver
Use Case Bandwidth | InputRate | DACRate Bandwidth | OutputRate | ADC Rate Bandwidth | Rate ADC Rate
UC26C_NLS | 450 MHz 491.52 MHz | 1.966 GHz 450 MHz 491.52 MHz 4915 GHz 200 MHz 245.76 MHz | 4915 GHz
Table 79. ADRV9025Init_StdUseCase26C_nonLinkSharing Calibration Durations
Calibration 1 Channel (ms) | 2 Channels (ms) | 3 Channels (ms) | 4 Channels (ms)
TX_DAC 3 7 13 14
TX_BB_FILTER 1 2 3 4
ADC_TUNER 1 1 1 1
FLASH_CAL 220 261 324 368
RX_TIA 64 85 105 125
ORX_TIA 54 65 77 87
LBRX_TIA 54 65 76 87
RX_DC_OFFSET 451 451 451 451
ORX_DC_OFFSET 450 899 899 899
LBRX_DC_OFFSET 7 14 14 15
LOOPBACK_RX_LO_DELAY 164 325 485 645
RX_QEC_INIT 786 1570 2355 3138
ORX_QEC_INIT 785 1565 2346 3128
INTERNAL_PATH_DELAY 1 1 2 2
TX_LO_LEAKAGE_INTERNAL 876 1749 2621 3494
TX_QEC_INIT 293 598 891 1192
Total Calibration Time 4211 7658 10663 13649
Table 80. ADRV9025Init_StdUseCase50_LinkSharing
Observation | Observation | Observation Receiver
Use Transmitter | Transmitter | Transmitter | Receiver Receiver Receiver Receiver Output Receiver
Case Bandwidth | InputRate | DAC Rate Bandwidth Output Rate | ADC Rate Bandwidth | Rate ADC Rate
UC50_LS | 450 MHz 122.88 MHz | 1.966 GHz 450 MHz 245.76 MHz 4915 GHz 100 MHz 122.88 MHz | 1.966 GHz

Table 81. ADRV9025Init_StdUseCase50_LinkSharing Calibration Durations

Calibration 1 Channel (ms) | 2 Channels (ms) | 3 Channels (ms) | 4 Channels (ms)
TX_DAC 5 7 12 13
TX_BB_FILTER 1 2 3 4
ADC_TUNER 1 1 1 1
FLASH_CAL 218 261 324 369
RX_TIA 85 126 166 207
ORX_TIA 54 65 76 88
LBRX_TIA 54 66 75 87
RX_DC_OFFSET 451 452 451 452
ORX_DC_OFFSET 450 899 899 899
LBRX_DC_OFFSET 7 15 14 14
LOOPBACK_RX_LO_DELAY 172 342 506 663
RX_QEC_INIT 793 1583 2373 3161
ORX_QEC_INIT 784 1564 2347 3126
INTERNAL_PATH_DELAY 1 2 2 3

Rev. 0 | Page 98 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-1721

Calibration 1 Channel (ms) | 2 Channels (ms) | 3 Channels (ms) | 4 Channels (ms)
TX_LO_LEAKAGE_INTERNAL 876 1749 2621 3494
TX_QEC_INIT 299 588 899 1186
Total Calibration Time 4251 7721 10771 13766
Table 82. ADRV9025Init_StdUseCase50_nonLinkSharing
Observation Observation Observation Receiver

Transmitter | Transmitter | Transmitter | Receiver Receiver Receiver Receiver Output Receiver
Use Case | Bandwidth Input Rate DAC Rate Bandwidth Output Rate ADC Rate Bandwidth | Rate ADC Rate
UC50_LS | 450 MHz 122.88 MHz 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 100 MHz 122.88 MHz 1.966 GHz

Table 83. ADRV9025Init_StdUseCase50_nonLinkSharing Calibration Durations

Calibration 1 Channel (ms) | 2 Channels (ms) | 3 Channels (ms) 4 Channels (ms)
TX_DAC 4 8 10 15
TX_BB_FILTER 1 3 3 4
ADC_TUNER 1 1 1 1
FLASH_CAL 219 262 324 367
RX_TIA 84 125 167 208
ORX_TIA 54 65 77 87
LBRX_TIA 54 66 76 87
RX_DC_OFFSET 451 451 451 452
ORX_DC_OFFSET 451 899 899 898
LBRX_DC_OFFSET 7 14 15 14
LOOPBACK_RX_LO_DELAY 174 343 507 663
RX_QEC_INIT 757 1508 2261 3012
ORX_QEC_INIT 785 1564 2347 3129
INTERNAL_PATH_DELAY 1 1 2 2
TX_LO_LEAKAGE_INTERNAL 875 1749 2622 3494
TX_QEC_INIT 301 605 890 1200
Total Calibration Time 4219 7663 10651 13634
Table 84. ADRV9025Init_StdUseCase51_LinkSharing

Observation | Observation | Observation Receiver
Use Transmitter | Transmitter | Transmitter | Receiver Receiver Receiver Receiver Output Receiver
Case Bandwidth | Input Rate DAC Rate Bandwidth Output Rate | ADC Rate Bandwidth | Rate ADC Rate
UC51_LS | 450 MHz 245.76 MHz 1.966 GHz 450 MHz 245.76 MHz 4915 GHz 200 MHz 24576 MHz | 4.915 GHz
Table 85. ADRV9025Init_StdUseCase51_LinkSharing Calibration Durations
Calibration 1 Channel (ms) | 2 Channels (ms) | 3 Channels (ms) 4 Channels (ms)
TX_DAC 3 9 1 13
TX_BB_FILTER 1 3 3 4
ADC_TUNER 1 1 1 1
FLASH_CAL 219 262 324 367
RX_TIA 63 84 105 126
ORX_TIA 54 65 76 87
LBRX_TIA 54 64 75 87
RX_DC_OFFSET 450 451 451 451
ORX_DC_OFFSET 451 898 899 899
LBRX_DC_OFFSET 7 14 14 14
LOOPBACK_RX_LO_DELAY 165 328 488 647
RX_QEC_INIT 786 1571 2353 3139
ORX_QEC_INIT 783 1564 2347 3126
INTERNAL_PATH_DELAY 1 1 2 2
TX_LO_LEAKAGE_INTERNAL 873 1742 2612 3482
TX_QEC_INIT 291 598 921 1191

Rev. 0 | Page 99 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

Calibration

1 Channel (ms)

2 Channels (ms)

3 Channels (ms)

4 Channels (ms)

Total Calibration Time

4203

7656

10682

13637

Table 86. ADRV9025Init_StdUseCase51_nonLinkSharing

Observation | Observation | Observation Receiver
Transmitter | Transmitter | Transmitter | Receiver Receiver Receiver Receiver Output Receiver
Use Case | Bandwidth | InputRate DAC Rate Bandwidth Output Rate | ADC Rate Bandwidth | Rate ADCRate
UC51_NLS | 450 MHz 245.76 MHz | 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 200 MHz 24576 MHz | 4.915 GHz

Table 87. ADRV9025Init_StdUseCase51_nonLinkSharing Calibration Durations

Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
TX_DAC 4 9 10 16
TX_BB_FILTER 2 2 3 5
ADC_TUNER 1 1 1 1
FLASH_CAL 219 263 325 367
RX_TIA 64 85 106 127
ORX_TIA 54 65 77 87
LBRX_TIA 54 65 76 87
RX_DC_OFFSET 451 450 451 450
ORX_DC_OFFSET 451 899 898 898
LBRX_DC_OFFSET 7 14 14 14
LOOPBACK_RX_LO_DELAY 164 326 486 646
RX_QEC_INIT 790 1573 2358 3142
ORX_QEC_INIT 783 1564 2346 3128
INTERNAL_PATH_DELAY 1 1 2 3
TX_LO_LEAKAGE_INTERNAL 872 1743 2612 3482
TX_QEC_INIT 293 600 921 1210
Total Calibration Time 4210 7659 10686 13664
Table 88. ADRV9025Init_StdUseCase54_nonLinkSharing

Observation | Observation | Observation Receiver

Transmitter | Transmitter | Transmitter | Receiver Receiver Receiver Receiver Output Receiver

Use Case | Bandwidth | Input Rate | DAC Rate Bandwidth Output Rate | ADC Rate Bandwidth | Rate ADC Rate
UC54_NLS | 450 MHz 122.88 MHz | 1.966 GHz 450 MHz 245.76 MHz 4915 GHz 200 MHz 122.88 MHz | 4.915 GHz

Table 89. ADRV9025Init_StdUseCase54_nonLinkSharing Calibration Durations

Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
TX_DAC 86 89 92 97
TX_BB_FILTER 83 84 85 86
ADC_TUNER 82 81 82 81
FLASH_CAL 301 344 560 603
RX_TIA 146 167 228 250
ORX_TIA 136 147 199 210
LBRX_TIA 136 147 199 210
RX_DC_OFFSET 532 532 980 980
ORX_DC_OFFSET 532 980 1428 1877
LBRX_DC_OFFSET 89 96 102 109
LOOPBACK_RX_LO_DELAY 99 115 283 447
RX_QEC_INIT 870 1655 2440 3223
ORX_QEC_INIT 865 1647 2430 3211
INTERNAL_PATH_DELAY 82 83 85 84
TX_LO_LEAKAGE_INTERNAL 957 1850 2703 3576
TX_QEC_INIT 447 724 1022 1326
Total Calibration Time 5443 8742 12917 16370

Rev. 0 | Page 100 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-1721

Table 90. ADRV9025Init_StdUseCase55_nonLinkSharing

Observation | Observation | Observation Receiver
Transmitter | Transmitter | Transmitter | Receiver Receiver Receiver Receiver Output Receiver
Use Case | Bandwidth | Input Rate | DAC Rate Bandwidth Output Rate | ADC Rate Bandwidth | Rate ADC Rate
UC55_NLS | 450 MHz 122.88 MHz | 1.966 GHz 450 MHz 245.76 MHz 4915 GHz 160 MHz 122.88 MHz | 4.915 GHz

Table 91. ADRV9025Init_StdUseCase55_nonLinkSharing Calibration Durations

Calibration 1 Channel (ms) 2 Channels (ms) | 3 Channels (ms) | 4 Channels (ms)
TX_DAC 86 89 93 119
TX_BB_FILTER 83 84 85 86
ADC_TUNER 81 82 81 81
FLASH_CAL 300 344 561 604
RX_TIA 146 166 227 248
ORX_TIA 136 160 199 209
LBRX_TIA 136 146 199 210
RX_DC_OFFSET 533 532 981 982
ORX_DC_OFFSET 532 980 1428 1877
LBRX_DC_OFFSET 89 2 103 110
LOOPBACK_RX_LO_DELAY 929 115 284 449
RX_QEC_INIT 656 1229 1799 2370
ORX_QEC_INIT 866 1658 2431 3211
INTERNAL_PATH_DELAY 82 83 84 85
TX_LO_LEAKAGE_INTERNAL 958 1831 2703 3576
TX_QEC_INIT 404 720 1017 1336
Total Calibration Time 5186 8315 12274 15552
Table 92. ADRV9025Init_StdUseCase61_LinkSharing

Observation | Observation | Observation Receiver
Use Transmitter | Transmitter | Transmitter | Receiver Receiver Receiver Receiver Output Receiver
Case Bandwidth | Input Rate DAC Rate Bandwidth Output Rate | ADC Rate Bandwidth | Rate ADC Rate
UC61_LS | 300 MHz 368.64 MHz 1.843 GHz 337.5 MHz 368.64 MHz 3.686 GHz 300 MHz 368.64 MHz | 3.686 GHz

Table 93. ADRV9025Init_StdUseCase61_LinkSharing Calibration Durations

Calibration 1 Channel (ms) 2 Channels (ms) | 3 Channels (ms) | 4 Channels (ms)
TX_DAC 7 11 15 20
TX_BB_FILTER 4 5 6 8
ADC_TUNER 2 3 3 3
FLASH_CAL 292 342 435 491
RX_TIA 73 88 102 17
ORX_TIA 74 88 103 118
LBRX_TIA 74 88 103 17
RX_DC_OFFSET 453 453 452 453
ORX_DC_OFFSET 453 901 901 902
LBRX_DC_OFFSET 1 21 22 21
LOOPBACK_RX_LO_DELAY 242 480 721 967
RX_QEC_INIT 861 1718 2573 3430
ORX_QEC_INIT 862 1717 2574 3431
INTERNAL_PATH_DELAY 4 5 5 7
TX_LO_LEAKAGE_INTERNAL 885 1763 2642 3521
TX_QEC_INIT 403 807 1231 1631
Total Calibration Time 4701 8489 11889 15236

Rev. 0| Page 101 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

Table 94. ADRV9025Init_StdUseCase82C_LinkSharing

Observation | Observation | Observation Receiver
Transmitter | Transmitter | Transmitter | Receiver Receiver Receiver Receiver Output Receiver
Use Case | Bandwidth | Input Rate | DACRate Bandwidth Output Rate | ADC Rate Bandwidth | Rate ADC Rate
UC82C_LS | 450 MHz 491.52 MHz | 1.966 GHz 450 MHz 491.52 MHz 4,915 GHz 200 MHz 245.76 MHz | 4915 GHz

Table 95. ADRV9025Init_StdUseCase82C_LinkSharing Calibration Durations

Calibration 1 Channel (ms) 2 Channels (ms) | 3 Channels (ms) | 4 Channels (ms)
TX_DAC 5 7 10 15
TX_BB_FILTER 2 2 3 5
ADC_TUNER 1 1 1 1
FLASH_CAL 219 263 324 366
RX_TIA 63 84 105 127
ORX_TIA 54 65 76 87
LBRX_TIA 54 65 76 87
RX_DC_OFFSET 451 451 450 451
ORX_DC_OFFSET 451 899 899 898
LBRX_DC_OFFSET 7 14 14 14
LOOPBACK_RX_LO_DELAY 166 330 485 650
RX_QEC_INIT 787 1569 2354 3138
ORX_QEC_INIT 785 1564 2346 3126
INTERNAL_PATH_DELAY 1 2 2 3
TX_LO_LEAKAGE_INTERNAL 876 1749 2622 3495
TX_QEC_INIT 302 589 907 1188
Total Calibration Time 4224 7654 10676 13652
Table 96. ADRV9025Init_StdUseCase83C_LinkSharing

Observation | Observation | Observation Receiver

Transmitter | Transmitter | Transmitter | Receiver Receiver Receiver Receiver Output Receiver

Use Case | Bandwidth | Input Rate | DAC Rate Bandwidth Output Rate | ADC Rate Bandwidth | Rate ADC Rate
UC83C_LS | 337.5MHz 368.64 MHz | 1.475 GHz 337.5 MHz 368.64 MHz 3.686 GHz 200 MHz 368.64 MHz | 3.686G Hz

Table 97. ADRV9025Init_StdUseCase83C_LinkSharing Calibration Durations

Calibration 1 Channel (ms) 2 Channels (ms) | 3 Channels (ms) | 4 Channels (ms)
TX_DAC 2 5 8 13
TX_BB_FILTER 1 3 3 5
ADC_TUNER 1 1 1 1
FLASH_CAL 285 343 425 483
RX_TIA 71 84 99 112
ORX_TIA 71 85 929 115
LBRX_TIA 71 85 100 114
RX_DC_OFFSET 451 451 450 451
ORX_DC_OFFSET 450 899 898 899
LBRX_DC_OFFSET 7 14 14 14
LOOPBACK_RX_LO_DELAY 208 416 625 830
RX_QEC_INIT 547 1094 1638 2184
ORX_QEC_INIT 860 1717 2572 3437
INTERNAL_PATH_DELAY 1 2 3 4
TX_LO_LEAKAGE_INTERNAL 883 1764 2645 3525
TX_QEC_INIT 419 818 1202 1639
Total Calibration Time 4328 7781 10782 13826

Rev. 0| Page 102 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

INITIALIZATION CALIBRATIONS TO BE RUN AFTER DEVICE INITIALIZATION

The transceiver requires a few additional initialization calibrations to be run after the standard set because they require external signal
routing. An external transmitter LOL initialization calibration is available where the observation point is moved from inside the device to
the selected observation receiver input. In this case, the transmitter channel is typically connected to a directional coupler after the PA in
the antenna path. This configuration results in the best possible performance because the correction observation point is moved to the PA
output. The calibration is run on each transmitter individually after the correct observation input path has been set. Similarly, crest factor
reduction (CFR) calibrations are also run separately and sequentially. Refer to Table 61 for the appropriate calibration mask.

Table 98 addresses the typical times for these initialization calibrations. Note that the CFR initialization calibration is mostly coefficient
setting and, therefore, completes quickly.

Table 98. Post Initialization Transmitter Calibrations

Initialization Calibration Time
TX_LO_LEAKAGE_EXTERNAL 122.88 MHz IQ Rate 320 ms
TX_LO_LEAKAGE_EXTERNAL 245.76 MHz IQ Rate and Higher 230 ms
Crest Factor Reduction (ADRV9029 only) <1ms

TRACKING CALIBRATION TIMING

Tracking calibrations are provided to maintain performance over the device operating conditions. The ARM processor periodically runs
the enabled tracking calibrations according to the tracking calibration scheduler.

On the receive side, there are receiver QEC, observation receiver QEC, and on some devices, receiver HD2 tracking calibrations. These
calibrations, when enabled, constantly observe the receiver (or observation receiver) spectrum and update the correction parameters

while the computations are completed. They are triggered on a 7 ms schedule, but are essentially running continuously in the background
whenever the channel is enabled.

The transmitter tracking calibrations include transmitter LOL, transmitter QEC, and some versions of the device also include closed-loop
gain control (CLGC) tracking calibration. When the tracking calibrations are enabled on the transmitter, the spectrum is observed based
upon the available observation path, and correction parameters are applied to each transmitter as the computations are completed.

Transmitter LOL tracking calibration runs on a 6 second schedule. The samples are collected in batches of 20 us durations for a total
sample size of approximately 30 ms. The transmitter QEC runs on a 30 sec schedule and also collects batches in 20 ps durations. The
transmitter QEC captures as many batches as necessary to obtain acceptable correlator results. The time to finish can vary and can be
from 100 ps to 55 ms. However, because the calibration batches run in the background, the absolute time is not of concern to the user.
Even though these calibrations run at fixed intervals (6 seconds and 30 seconds), any change in transmitter attenuation causes both
calibrations to be restarted. This is done to quickly correct any channel impairments.

The CLGC tracking calibration runs on a 1 second schedule with similar batch sizes. In the case of JESD204C, an additional tracking
calibration is run to maintain the link parameters on a 60 second schedule.

ARM MEMORY DUMP

The contents of the ARM firmware memory and ARM data memory can be captured for debugging purposes by using the
adi_adrv9025_ArmMemDump(...) API function.

adi_adrv9025_ArmMemDump(...)
adi adrv9025 ArmMemDump (adi adrv9025 Device t *device, const char *binaryFilename)

Description

This utility function reads the ARM memory and writes the binary byte array directly to a binary file. The first 224 kB correspond to the
program memory. The following 160 kB correspond to the data memory. The binaryFilename file is opened before reading the ARM
memory to verify that the file has valid write access. A file IO exception is thrown if the file does not have valid write access.

Precondition

Device initialization is the only precondition.

Rev. 0 | Page 103 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Parameters

Table 99. adi_adrv9025_ArmMemDump(...) Parameters

Parameter Description
*device Pointer to device structure.
*binaryFilename File opened by the API to store ARM memory contents. Total size must be 384 kB.

Whenever it is necessary to debug an issue, an ARM memory dump can be captured, and the resulting binaryFilename file can be sent to
Analog Devices for analysis. To correctly capture the ARM memory content, the adi_adrv9025_ArmMemDump(...) API function must
set the ARM processor into an exception state. After calling the adi_adrv9025_ArmMemDump(...) API function, the device must be
reinitialized to put the ARM back into its normal operating condition.

Rev. 0 | Page 104 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

STREAM PROCESSOR AND SYSTEM CONTROL

A stream processor is a processor within the transceiver tasked with performing a series of configuration tasks based on some event. After
a request from the user, the stream processor performs a series of predefined actions that are loaded into the stream processor during
device initialization. This processor takes full advantage of the speed of the internal register buses for efficient execution of commands.
The stream processor can access and modify registers independently, avoiding the need for ARM interaction.

The stream processor executes streams, or series of tasks, for the following:

e Tx1/Tx2/Tx3/Tx4 enable/disable
e RxI/Rx2/Rx3/Rx4 enable/disable
e ORx1/ORx2/ORx3/ORx4 enable/disable

The transceiver flexibility is maintained by implementing the stream processors with similar flexibility. The stream processor image
changes with configuration, similar to how the initialization structures change with the selected profiles. For example, the stream that
enables the receivers differs depending on the JESD204B and JESD204C interface configuration. For this reason, it is necessary to save a
stream image for each device configuration. When the user saves the configuration files (.c) using the GUI, a stream binary image is
generated automatically. Use this stream file when initializing the transceiver with the profile in question.

The following are examples of how the stream files can differ:

e The framer choices for observation receiver and receiver
e For link sharing purposes
o Iffloating point formatting is being used on receiver and observation receiver paths, the stream image can change

Eleven separate stream processors exist in the transceiver, which are each responsible for the execution of some dedicated functionality
within the device. These stream processors can be divided into two broad categories, slice stream processors and the core stream processor.

SLICE STREAM PROCESSORS

There are ten slice stream processors, one each for the four transmitter and four receiver data paths, and two for the observation receiver
data paths. Note that even though there are four distinct RF front ends for the observation receiver, the transceiver only supports two
digital data paths, one shared between Observation Receiver 1 and Observation Receiver 2 and another shared between Observation
Receiver 3 and Observation Receiver 4. These observation receiver data paths are also shared with the internal transmitter channel
loopback paths to facilitate data collection during the various transmitter calibrations. The existence of individual slice stream processors
for each data path enables true real-time parallel operation of all unique transmitter and receiver data paths. The observation receiver
data paths still must be managed based on the various system operation use cases detailed in this section.

Because each slice stream processor is limited to some dedicated part of the transceiver, a given slice stream processor may only access the
digital register sub maps corresponding to its specific functionality. For example, the transmitter slice stream processors can only access
the transmitter digital sub maps.

Core Stream Processor

There is also a core stream processor that has access to the entire transceiver. The core stream processor services GPIO pin-based streams
and any custom streams that are cross domain.

SYSTEM CONTROL

The signal paths within the transceiver can be controlled by either the API or through pin control. In the case of API control, control
relies on the SPI communication bus and its inherent unpredictable timing with respect to register access. For critical time alignment
when powering on or off signal chains, pin control is recommended. The device defaults to API mode upon power up.

Rev. 0 | Page 105 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

API Control

adi_adrv9025_RxTxEnableSet(...)
adi adrv9025 RxTxEnableSet (adi adrv9025 Device t *device, uint32 t rxChannelMask, uint32 t

txChannelMask)

Description

This API controls and configures the transmitter and receiver data paths.

Parameters

Table 100. adi_adrv9025_RxTxEnableSet(...) Parameters

Parameter

Description

*device
rxChannelMask
txChannelMask

Pointer to device structure.
The desired receiver/observation receiver signal chain to power up. See Table 101 for the list of enumerators.
The desired transmitter signal chain to power up. See Table 102 for the list of enumerators.

The enumerators are used (ORed) to create a value for the channel masks that determine the paths enabled when this AP is called. The
selected channels remain active until further instruction from this API command. It is important to note that if an observation receiver
channel is enabled continuously and not returned to ADI_ADRV9025_RXOFF for any time, the transmitter tracking calibrations are able

to function.

Table 101. adi_adrv9025_RxChannels_e Enumerator Definition

adi_adrv9025_RxChannels_e Enum Enabled Channels

ADI_ADRV9025_RXOFF
ADI_ADRV9025_RX1
ADI_ADRV9025_RX2
ADI_ADRV9025_RX3
ADI_ADRV9025_RX4
ADI_ADRV9025_ORX1
ADI_ADRV9025_ORX2
ADI_ADRV9025_0ORX3
ADI_ADRV9025_ORX4
ADI_ADRV9025_LB12
ADI_ADRV9025_LB34

No receiver or observation receiver channels enabled

Rx1 enabled

Rx2 enabled

Rx3 enabled

Rx4 enabled

ORx1 enabled

ORx2 enabled

ORx3 enabled

ORx4 enabled

Tx1 or Tx2 internal loopback into ORx1/2 channel enabled
Tx3 or Tx4 internal loopback into ORx3/4 channel enabled

Table 102. adi_adrv9025_TxChannels e Enumerator Definition

adi_adrv9025_TxChannels_e Enum Enabled Channels

ADI_ADRV9025_TXOFF
ADI_ADRV9025_TX1
ADI_ADRV9025_TX2
ADI_ADRV9025_TX3
ADI_ADRV9025_TX4
ADI_ADRV9025_TXALL

No transmitter channels enabled
Tx1 enabled

Tx2 enabled

Tx3 enabled

Tx4 enabled

All transmitters enabled

Rev. 0 | Page 106 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

Pin Control

The individual channels can also be controlled using a series of enable pins. In pin control mode, the receiver and transmitter signal

chains are controlled using dedicated pins, one RX_ENABLE pin per receiver and one TX_ENABLE pin per transmitter. When these pins

are toggled high, the relevant signal chain is enabled. When these pins are toggled low, the relevant signal chain is disabled.

The observation receiver paths can be controlled in various modes, as indicated in Table 103.

Table 103. Observation Receiver Select Mechanisms

Observation

Observation Receiver Select Mechanism

Receiver Pin

Mode

Single Channel In this mode, a single channel is selected through the API (over SPI). ORX_CTRL_A is the enable/disable control pin.
1-Pin Mode When high, the selected observation receiver is enabled, and when low, all observation receiver paths are disabled.

Figure 61 shows single Channel 1 pin mode. Note that ORx1 has been shown in this example. However, any of ORx1 to
ORx4 can be chosen.

Single Channel
2-Pin Mode

In this mode, ORX_CTRL_A is the enable/disable control pin. When high, the selected observation receiver is enabled,
and when low, all observation receiver paths are disabled. The ORX_CTRL_B pin is used to select the observation
receiver path, allowing the user to choose between two different observation receiver paths. These paths are
predetermined through the API (over SPI), with one path selected when ORX_CTRL_B is high and another when it is
low. This mode is shown in Figure 62. Note where ORx2 on and ORx3 on are shown in Figure 62. Any of the other
observation receivers can be configured to turn on at this time instead of ORx2 or ORx3.

Single Channel

ORX_CTRL_A is the enable/disable control. Observation receiver select is accomplished by ORX_CTRL_B and

3-Pin Mode ORX_CTRL_C. The mapping of which path is selected is as follows.
ORX_CTRL_C ORX_CTRL_B Path Selected
0 0 ORx1
0 1 ORx2
1 0 ORx3
1 1 ORx4
This mode is shown in Figure 63.
Dual Channel In this mode, ORX_CTRL_A and ORX_CTRL_C are the enable/disable control, allowing the user to choose between two
2-Pin Mode different observation receiver paths. These paths are predetermined through the API (over SPI). This mode is shown in
Figure 64.
Dual Channel In this mode, ORX_CTRL_A and ORX_CTRL_C are the enable/disable controls while ORX_CTRL_B and ORX_CTRL_D
4-Pin Mode select which channel is to be enabled, allowing the user to choose between four different observation receiver paths.

This mode is shown in Figure 65.

ORX_CTRL_A ‘

ORx1
ON

ALL
ORx
OFF

Figure 61. Single-Channel 1-Pin Mode

ORx ALL SIﬁL
ON X
OFF OFF

I
|
: ORx
I
I
I

Rev. 0| Page 107 of 336

ALL
ORXx
OFF

ALL
ORXx
OFF

ALL
ORXx
OFF

22770-060

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-1727

190-04222

29004422

J&kE J&kE
266 266
JEk dEk
266 266
T T
66 2566
|||||||||| __ e & SR IS
s
dEE < dEE
366 5 366
)
- e p— . T ---- - — .
S
@ S <
3z 8 Xz
['4
c° Y c°
<@
SN ISR S S | ___ S
S
i ™
~
3z g 2z
) © o
S
e ———— . S .
[y
2z 3z
c° c°
Rz =
4 4
c° c°
A_ B_ A_ B_ C_
- -l -1 . -
['4 ['4 ['4 ['4 ['4
= = = = =
C_ c_ C_ c_ C_
& & & & &
o] o o c

Figure 63. Single-Channel 3-Pin Mode

ORx1/ORx2
ON

£90-02422

ORx3/ORx4
OFF

ORx1/ORx2
OFF

ORXx3/ORx4
ON

ORx3/ORx4
OFF

ORX_CTRL_A

ORx3/ORx4
ON

ORX3/ORx4
OFF

ORx1/ORx2
OFF

ORX_CTRL_C

ORXx3/ORx4
ON

Figure 64. Dual-Channel 2-Pin Mode

Rev. 0 | Page 108 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

ORX_CTRL_A
1
ORX_CTRL_B
I 1 I 1 1 I 1 I
I 1 I 1 I I 1 I
I 1 I 1 I I 1 I
ORx1 | ORx2 | ORx1 | ORx2 1| ORxi 1ORX1AND ORx1AND ORx1AND
ON ' ON ' ON ' ON ' oN ! ORe , ORx2 , ORx2
| 1 | 1 | OFF | OFF I OFF |
I 1 I 1 1 I 1 I
I 1 Il L L 1
I 1 1 I I 1
ORX_CTRL_C ! ! ! ! ! !
I 1 I I I 1
I 1 1] I 1
T T 1 1 I 1
I 1 I 1 1 I 1 I
ORX_CTRL_D
I 1 I 1 I I 1 I
I 1 I 1 I I 1 I
ORx3 AND | ORx3 AND | ORx3 AND ! ! ! ! ! !
ORx4 | ORx4 | ORx4 | ORx4 | ORx | ORxd | ORx3 | ORxd |
OFF | OFF OFF | 1 1 | 1 1
I I 1 1 I 1 I
I I 1 I I 1 I

22770-064

Figure 65. Dual-Channel 4-Pin Mode

The user can set the channel control mode (API/pin) with the post multichip sequence API function.

adi_adrv9025_PostMcsInit(...)

adi adrv9025 PostMcsInit (adi adrv9025 Device t *device,

Description

This API sets the channel control mode (API or pin).

Parameters

Table 104. adi_adrv9025_PostMcsInit(...) Parameters

adi adrv9025 PostMcsInit t *utilityInit)

Parameter | Description

*device Pointer to device structure.
*utilityInit Structure of type adi_adrv9025_PostMcsInit_t containing all relevant settings for the post MCS initialization routines.

This command contains a structure of type adi_adrv9025_RadioctrlInit_t for setting up how the device is controlled. Inside this structure

is the structure adi_adrv9025_RadioCtrIModeCfg_t that contains the radio control mode configuration for the transmitter, receiver, and

observation receiver channels.

This structure is defined in Table 105 and, depending on how the user configures this structure before the call to

adi_adrv9025_PostMcsInit(), the device is configured in either pin or API mode.

Table 105. adi_adrv9025_RadioCtrIModeCfg_t Definition

Member Name

Description

txRadioCtrIModeCfg
rxRadioCtrIModeCfg

orxRadioCtrIModeCfg

Transmitter signal path enable mode configuration. See Table 106 for description.
Receiver signal path enable mode configuration. See Table 107 for description.
Observation receiver signal path enable mode configuration. See Table 108 for description.

Table 106. adi_adrv9025_TxRadioCtrIModeCfg_t Definition

Member Name

Value

Description

txEnableMode

A value of type adi_adrv9025_TxEnableMode_e options are
ADI_ADRV9025_TX_EN_SPI_MODE

Setting this mode selects API (or SPI) mode to control
the transmitter signal path.

ADI_ADRV9025_TX_EN_PIN_MODE

Setting this mode does not modify the currently set
mode to control the transmitter signal path.

Rev. 0 | Page 109 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

Member Name

Value

Description

ADI_ADRV9025_TX_EN_INVALID_MODE

Setting this mode selects no mode to control the
transmitter signal path.

txChannelMask

Bit mask, one bit per channel ([D0] =Tx1, [D1]1 =Tx2, [D2] =
Tx3, [D3] =Tx4). For example, to apply this to all four
transmitters, txChannelMask is set to 15.

Set this to the transmitter channels desired to configure
with the selected txEnableMode.

Table 107. adi_adrv9025_RxRadioCtrIModeCfg_t Definition

Member Name

Value

Description

rxEnableMode

A value of type adi_adrv9025_RxEnableMode_e, options are

ADI_ADRV9025_RX_EN_SPI_MODE

Setting this mode selects API (or SPI) mode to control
the receiver signal path

ADI_ADRV9025_RX_EN_PIN_MODE

Setting this mode selects the pin mode to control the
receiver signal path

ADI_ADRV9025_RX_EN_INVALID_MODE

Setting this mode does not modify the currently set
mode to control the receiver signal path

rxChannelMask

Bit mask, one bit per channel ([D0] = Rx1, [D1] = Rx2, [D2] =
Rx3, [D3] = Rx4). For example, to apply this to all four
receivers, rxChannelMask is set to 15.

Set this to the receiver channels you want to configure
with the selected rxEnableMode

Rev.0 | Page 110 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

Table 108. adi_adrv9025_ORxRadioCtrIModeCfg_t Definition

Member Name Value

Description

orxEnableMode A value of type adi_adrv9025_OrxEnableMode_e, options are
ADI_ADRV9025_ORX_EN_SPI_MODE

ADI_ADRV9025_ORX_EN_SINGLE_CH_3PIN_MODE

ADI_ADRV9025_ORX_EN_SINGLE_CH_2PIN_MODE

ADI_ADRV9025_ORX_EN_SINGLE_CH_1PIN_MODE

ADI_ADRV9025_ORX_EN_DUAL_CH_4PIN_MODE

ADI_ADRV9025_ORX_EN_DUAL_CH_2PIN_MODE

ADI_ADRV9025_ORX_EN_INVALID_MODE

Setting this mode selects API
(or SPI) mode to control the
observation receiver signal path

Setting this mode puts the
device in Single Channel 3
pin mode, as described in
Table 103

Setting this mode puts the
device in Single Channel 2
pin mode, as described in
Table 103

Setting this mode puts the
device in Single Channel 1
pin mode, as described in

Table 103

Setting this mode puts the
device in Dual Channel 4
pin mode, as described in
Table 103

Setting this mode puts the
device in Dual Channel 2
pin mode, as described in
Table 103

Setting this mode does not
modify the currently set mode
to control the observation
receiver signal path

orxPinSelectSettlingDelay_armClkCycles | Minimum value: 0, maximum value: 16

Amount of time for the
firmware to wait before
sampling pins used for
observation receiver selection,
minimum is 2 ARM clock
cycles, maximum is 18 ARM
clock cycles

singleChannel1PinModeOrxSel A value of type adi_adrv9025_
SingleChannelPinModeOrxSel_e, options are

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX1_FE

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX2_FE

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX3_FE

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX4_FE

ADI_ADRV9025_SINGLE_CH_PIN_MODE_INVALID_ORX_SEL

Selects ORx1 when in Single
Channel 1 pin observation
receiver enable mode

Selects ORx2 when in Single
Channel 1 pin observation
receiver enable mode

Selects ORx3 when in Single
Channel 1 pin observation
receiver enable mode

Selects ORx4 when in Single
Channel 1 pin observation
receiver enable mode

Does not modify the current
mode of the observation
receiver when in Single Channel
1 pin observation receiver
enable mode

Rev.0 | Page 111 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

Member Name

Value

Description

singleChannel2PinModeLowOrxSel

A value of type
adi_adrv9025_SingleChannelPinModeOrxSel_e, options are

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX1_FE

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX2_FE

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX3_FE

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX4_FE

ADI_ADRV9025_SINGLE_CH_PIN_MODE_INVALID_ORX_SEL

Selects ORx1 when the
ORX_CTRL_B pin is low in Single
Channel 2 pin observation
receiver enable mode

Selects ORx2 when the
ORX_CTRL_B piniis low in Single
Channel 2 pin observation
receiver enable mode

Selects ORx3 when the
ORX_CTRL_B piniis low in Single
Channel 2 pin observation
receiver enable mode

Selects ORx4 when the
ORX_CTRL_B pin is low in Single
Channel 2 pin observation
receiver enable mode

Does not modify the current
mode of the observation
receiver when the ORX_CTRL_B
pin is low in Single Channel 2
pin observation receiver
enable mode

singleChannel2PinModeHighOrxSel

A value of type
adi_adrv9025_SingleChannelPinModeOrxSel_e, options are

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX1_FE

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX2_FE

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX3_FE

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX4_FE

ADI_ADRV9025_SINGLE_CH_PIN_MODE_INVALID_ORX_SEL

Selects ORx1 when the
ORX_CTRL_B pinis highiin
Single Channel 2 pin observation
receiver enable mode

Selects ORx2 when the
ORX_CTRL_B pin is high in
Single Channel 2 pin observation
receiver enable mode

Selects ORx3 when the
ORX_CTRL_B pin is high in
Single Channel 2 pin observation
receiver enable mode

Selects ORx4 when the
ORX_CTRL_B pin is high in
Single Channel 2 pin observation
receiver enable mode

Does not modify the current
mode of the observation
receiver when the ORX_CTRL_B
pinis high in Single Channel 2
pin observation receiver
enable mode

dualChannel2PinModeOrxSel

A value of type adi_adrv9025_DualChannelPinModeOrxSel_e,

options are
ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX1_ORX3_SEL

ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX1_ORX4_SEL

Selects ORx1 and ORx3 when
the device is in Dual Channel 2
pin mode

Selects ORx1 and ORx4 when
the device is in Dual Channel 2
pin mode

Rev.0 | Page 112 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Member Name Value Description

ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX2_ORX3_SEL Selects ORx2 and ORx3 when
the device is in Dual Channel 2
pin mode

ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX2_ORX4_SEL Selects ORx2 and ORx4 when
the device is in Dual Channel 2
pin mode

ADI_ADRV9025_DUAL_CH_PIN_MODE_INVALID_ORX_SEL Does not modify the current
mode of the observation
receiver when the device is in
Dual Channel 2 pin mode

ADC Crossbar Control

There are two control modes for the ADC crossbar (Xbar) switches that feed the JESD204B and JESD204C interface serializers during
link sharing mode. In the default mode, the receiver channel is connected to the serializer when the enable pin of the channel is active,
and the observation receiver channel is connected to the serializer when the ORX_CTRL pins are driven to select the observation receiver
channel. A second mode called ADC crossbar toggling exists that assigns the path control solely to the observation receiver channel
control signals.

When ADC crossbar toggling is enabled, the ADC sample crossbar connects the desired observation receiver channel to the serializer
when that channel is enabled using the ORX_CTRL pins. When the ORX_CTRL pins disable the observation receiver channel, the
receiver channel is automatically connected to the serializer. This allows the system to keep the receiver channel enabled during link
sharing operation and limit toggling to the ORX_CTRL inputs.

ADC crossbar control can be enabled in a stream file by selecting ADC Xbar control in the TES Stream Settings window before
generating the stream. The appropriate selection is shown in Figure 66.

@ Stream Settings

Stream Options

O

AGC state persist

=l

ADC XBar contral

ORxADC On

OO

ORx TI& On

P Gain Gpio Pin || INV v |

DPD capture trigger [INV v]

DPD capture done [INV v]

Custam Stream I:‘ >

22770-065

Figure 66. Stream Settings Window for Selecting ADC Xbar Control Mode

USE CASES
This section details example use cases for the transceiver that show how the device is typically operated to ensure that calibrations are run.

4 Transmitter/4 Receiver/2 Observation Receiver Input Use Case

In the 4 transmitter/4 receiver/2 observation receiver use case, the transceiver is configured in a way so that two transmitters feed back
into one observation receiver for each side of the device. The ORX_CTRL signals are configured in Single Channel 2 pin mode, with
ORX_CTRL_A and ORX_CTRL_B used to determine which observation receiver is enabled and selected for the observation purposes of
the user. ORX_CTRL_A is high at all times, because an observation receiver path is always being used. When ORX_CTRL_A goes low,
regardless of the state of ORX_CTRL_B, no observation receiver channel is enabled. ORX_CTRL_B determines which observation
receiver channel the user is observing. For this example, ORx2 and ORx3 are being used. Note that ORx1 can be used in place of ORx2, or
ORx4 can be used in place of ORx3. At least one observation receiver from each side of the device must be used. Therefore, either ORx1
or ORx2 must be used for calibrations on Tx1 and Tx2. The observation receiver from one side of the device cannot be used to calibrate
the transmitter on the other side of the device. That is, ORx1 or ORx2 cannot be used to calibrate Tx3 and Tx4.

Rev.0 | Page 113 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

The ORX_TX_SEL and ORX2_TX_EN signals are used to indicate the external routing of the feedback paths, allowing the ARM to know
which transmitter is being looped back to which observation receiver at a given time, and whether a calibration may be run or not.
Because a transmitter is always available at an observation receiver on its own side of the chip, ORX2_TX_EN and ORX3_TX_EN are
defaulted high over SPI while they remain fixed. ORX2_TX_SEL and ORX3_TX_SEL indicate the external routing of a transmitter to a
given observation receiver. When ORX2_TX_SEL is low, it indicates that the Tx1 path is routed back to ORx2. Likewise, when
ORX2_TX_SEL is high, this indicates that the Tx2 path is routed back to the ORx2 input. This is similar for ORX3_TX_SEL, in a way that
when this signal is low, it indicates that the Tx3 path is routed back to the ORx3 input. Likewise, when ORX3_TX_SEL is high, the Tx4
path is routed back to the ORx3 input.

For this use case, internal calibrations can be performed on the inactive observation receiver channel while an external calibration is
running on the active channel. In the first time slot of the timing diagram in Figure 68, it is shown that ORx2 is enabled by the user. PA1
and PA3 have been routed back to ORx2 and ORx3, respectively. The transceiver can perform an external LOL tracking calibration for
Tx3 via ORx3, or a QEC tracking calibration on Tx3 or Tx4, while the system is performing calculations for PA1. The QEC tracking
calibration is performed via an internal routing between each transmitter channel and its corresponding observation receiver channel.
The external LOL tracking calibration, however, can only be performed when an external loopback path is available. In the second time
slot in Figure 68, ORx2 is still enabled for the user with PA2 and PA4 made available to ORx2 and ORx3. The system can perform calculations
for PA2 via ORx2 while performing a QEC tracking calibration on Tx3 or Tx4, or an external LOL tracking calibration on Tx4.

Note that calibrations are not automatically run in a designated time slot. The ARM scheduler of the device schedules which calibrations
run at any given time. For more information on the scheduler, refer to the ARM Processor and Device Calibrations section. Also, the
same JESD204B and JESD204C link can be used for ORx2 and ORx3 in this scenario because only one observation receiver is used at any

given time.
MACRO TDD/MASSIVE MIMO
4T, 4R, 20Rx
\/ ANTENNA 3 | :l:— Lo1 Lo1 —:I: | ANTENNA 2 \/
= PA | BALUN | Tx3 - > Tx2 | | BALUN | PA =

MHS

@ IR\

Lot Lot -
3> o U A<
SWITCH o1 Lot SWITCH
| i M [o]
25 | ORx3/0Rx4 |e— —»~{ ORx1/ORx2 [] o2

,_
o
=
-
o
a

\/ ANTENNA 4 3 R

- —»| R H @__ ANTENNA 1\/
O | LO1 LO1 | @
=< ra | BaLUN| | | Tx4 — Tx1 T [saLun I A
GPIO_Y SERDES GPIO_X é
ORx3_Tx_SEL ORx2_Tx_SEL E

Figure 67. 4 Transmitter/4 Receiver/2 Observation Receiver Configuration

Rev.0 | Page 114 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

PA OUTPUT
TO ORx JESD PA1 PA2 PA3 PA4 PA1 PA2 PA3 PA4 PA1 PA2 PA3 PA4
i i i i i i i i i i i i i
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
| | | | | | | | 1 | | |
I I I I I I I I 1 I I 1
1 1 1 1 1 1 1 1 1 1 1 1
ORX_CTRL_A 1 | 1 | 1 | 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 I I I 1 I I I I 1 I I I
1 I | I | 1 | |
1 I I I I 1 I
1 1 1 1 1 1 1
ORX_CTRL_B ! ! ! ! ! ! !
— = 1 1 1 1 1 1 1
1 1 1 1 1 1 1
L . | . | L |
1 I I I I I I I I 1 I I I
1 I I I I I I I I 1 I I I
1 1 1 1 1 1 1 1 1 1 1 1 1
: ORx2 : ORx2 : ORx3 : ORx3 : ORx2 : ORx2 : ORx3 : ORx3 : ORx2 : ORx2 : ORx3 : ORx3 :
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 I I I I | I I 1 I | I
1
1
ORx2_Tx_SEL : PA1 PA2 PA1 PA2
1
—_
1 I I I 1 I I I I 1 I I I
1 I I I I I I I I 1 I | I
1
1
ORx3_Tx_SEL : PA3 PA4 PA3 PA4
1
—_—
1 I I I I I I I I 1 I I I
1 I I I I I I I I 1 I I I
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
ORx2 Tx EN | T T T T I T I T T l l 11
ORx3_Tx_EN : : : : : : : : : : DEFAULTED TO HIGH OVER SPI :
| !
1 1 1 1 1 1 1 1 1 1 1 1 1
CALIBRATIONS CALIBRATIONS CALIBRATIONS
ORx2 USAGE PA1 PA2 TxATx2 PA1 PA2 TxATx2 PA1 PA2 TxATx2
CALIBRATIONS CALIBRATIONS CALIBRATIONS g
ORx3 USAGE Tx3/Txd PA3 PA4 Tx3/Txd PA3 PA4 Tx3Txd PA3 PA4 3

Figure 68. Observation Receiver Enable and Transmitter Select Signals: 4 Transmitter/4 Receiver/2 Observation Receiver Configuration

4 Transmitter/4 Receiver/4 Observation Receiver Input Use Case

In this use case, each transmitter is routed back to its own observation receiver input. The transceiver is configured in Single Channel 3
pin mode for this use case. ORX_CTRL_A is principally high all the time, meaning an observation receiver path is always being used.
ORX_CTRL_B and ORX_CTRL_C determine what observation receiver channel is enabled and selected for the observation purposes of
the user. Refer to Table 109 for how each observation receiver is selected via the two observation receiver select signals.

Table 109. Observation Receiver Select Logic

Logic of ORX_CTRL_C (MSB) and ORX_CTRL_B (LSB) Observation Receiver Selected
00 ORx1
01 ORx2
10 ORx3
11 ORx4

Because each transmitter is routed back to a separate observation receiver input, there is no need for external switching in this use case
and each of the ORX_TX_SEL signals can be set to a default value via the SPI. ORX2_TX_SEL and ORX4_TX_SEL are both defaulted to
a high state, and ORX1_TX_SEL and ORX3_TX_SEL are both defaulted to a low state. ORX1_TX_EN, ORX2_TX_EN, ORX3_TX_EN,
and ORX4_TX_EN are all defaulted to a high state.

The first time slot in the timing diagram in Figure 70 shows that the ORX_CTRL_B and ORX_CTRL_C signals are set to a 00 value,
enabling ORx1 to the user. In this scenario, calculations can be performed on PA1. ORx2 is on this side of the chip. Therefore, the device
cannot use it for any calibrations during this time slot. The other side of the chip can be utilized via ORx3/ORx4 for calibrations. Note
that calibrations can be performed on either Tx3 or Tx4 and it is up to the scheduler to determine what calibration for which transmitter

Rev.0 | Page 115 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

is to run in a given time slot. Because each transmitter is permanently routed back to its own observation receiver, the external path always exists
for external LOL tracking to run.

Because only one observation receiver is used at any given time, the same JESD204B and JESD204C link for ORx1, ORx2, ORx3, and

ORx4 can be used in this scenario.

MACRO TDD/MASSIVE MIMO
4T, 4R, 40Rx

ANTENNA 2 V

ANTENNA 3

}
Ve

Tx3 Tx2 o

\&/
B
E
|
2
&
18
2
|
E
B
/2\

,_
o
=
-
[}
=

ORx1/ORx2

ORXx3/ORx4

f
{

,_
o
=
-
[}
=

Rx4 lt— —| Rx1
LO1 LO1
Tx4 |t— —| Tx1
SERDES

22770-068

Figure 69. 4 Transmitter/4 Receiver/4 Observation Receiver Configuration

Rev.0 | Page 116 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

o ouTElT PA1 PA2 PA3 PA4 PA1 PA2 PA3 PA4 PA1 PA2 PA3 PA4
i i i i i i | i i i i i i
I I 1 I 1 I 1 I 1 1 1 I 1
I I 1 I 1 I 1 I 1 I 1 I 1
] 1 | 1 | 1 | 1 | 1 | 1]
[] 1] 1 [] 1] 1] []] 1
] 1] 1] 1 I 1 I 1 | 1
ORX_CTRL_A 1 1 | 1 | 1 1 1 1 1 1 1
] 1 | 1 I 1] 1 1 1 | 1
I 1 I 1 I 1 I 1 I 1 I 1
I 1 I 1 I 1 I 1 1 1 I 1
I I 1 I 1 I 1 I 1 1 1 I 1
I
]
1
ORX_CTRLB | PA1 PA2 PA1 PA2
I
[R
I I 1 I 1 I 1 I 1 1 1 I 1
1 1 1 I 1 I 1 | 1 | 1 | 1
|] 1] 1] 1 I 1 I 1 | 1
I I 1 I 1 I 1 I 1 I 1 I 1
1 I 1 | I | I | 1
I I T I T I T
I I I I I I I
ORx2_Tx_SEL | ' ' ' ' ' '
] 1] | |] |
! ! ! ! ! . !
I I 1 I 1 I 1 I 1 I 1 I 1
1 I 1 I 1 I 1 I 1 I 1 I 1
1 ORx1 1 ORx2 ORx3 | ORx4 | ORx1 I ORx2 1 ORx3 | ORx4 1 ORx1 I ORx2 1 ORx3 1 ORx4 1
I I 1 I 1 I 1 I 1 1 1 I 1
ORx2_Tx_EN
ORx4_Tx_EN
- DEFAULTED TO HIGH OVER SPI
ORx1_Tx_EN
ORX3_Tx_EN
- DEFAULTED TO LOW OVER SPI
ORx1_Tx_EN
ORx2_Tx_EN
ORX3_Tx_EN
ORX4_TxEN DEFAULTED TO HIGH OVER SPI
Tx1 Tx1 Tx1
ORx1 USAGE PA1 CALIBRATIONS PA1 CALIBRATIONS PA1 CALIBRATIONS
Tx2 Tx2 Tx2
ORx2 USAGE PA1 CALIBRATIONS PA1 CALIBRATIONS PA1 CALIBRATIONS
Tx3 Tx3 Tx3
ORx3 USAGE CALIBRATIONS PA3 CALIBRATIONS PA3 CALIBRATIONS PA3
Tx4 CALIBRATIONS Tx4 g
ORx4 USAGE CALIBRATIONS PA4 TX3/Tx4 PA4 CALIBRATIONS PA4 g

Figure 70. Observation Receiver Enable and Transmitter Select Signals: 4 Transmitter/4 Receiver/4 Observation Receiver Configuration

4 Transmitter/4 Receiver/2 Observation Receiver Input — Single Point of Feedback from 4 Transmitter to Observation

Receiver Use Case

This use case shows an example where all the observation receiver paths are shared through one common feedback point. Because there

are two sides to the device from a calibration perspective, the user must route Tx1 and Tx2 to either ORx1 or ORx2, respectively.

Similarly, Tx3 and Tx4 need a path back to ORx3 or ORx4 for the purpose of calibrations. To allow calibrations to run in parallel with PA

observation captures, the opposite side of the device to that required for calibrations is used to capture observation data. Therefore, if Tx2

is being fed back through this single feedback point, ORx2 is used for transceiver calibrations and ORx3 can be used to capture

observation data. A resistive splitter is used to route the signal to both sides of the device.

For this use case, use Single Channel 2 pin mode. ORX_CTRL_A is set high all the time because an observation receiver path is always

being used. ORX_CTRL_B selects which observation receiver the user is observing in a given time slot. For this example, ORx2 and ORx3 are
used. ORx3 is selected for observation when ORX_CTRL_B is high and ORx2 is selected for observation when ORX_CTRL_B is low.

ORX2_TX_SEL and ORX2_TX_EN together tell the ARM which external path (either Tx1 or Tx2) is routed back to ORx2. When

ORX2_TX_SEL and ORX2_TX_EN are both high, the PA2 path is routed back to both ORx2 and ORx3. When ORX2_TX_SEL is low
and ORX2_TX_EN is high, the PA1 path is routed back to both ORx2 and ORx3. When ORX2_TX_EN is low, this tells the transceiver
Rev.0 | Page 117 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

that there is no external feedback path between this observation receiver input and a transmitter on the same side of the device. In this
scenario, the external LOL calibration cannot be performed. Likewise, the ORX3_TX_SEL and ORX3_TX_EN perform the same
function for the Tx paths on the other side of the chip. If ORX3_TX_SEL is low and ORX3_TX_EN is high, the PA3 path is routed back
to both ORx2 and ORx3. If ORX3_TX_SEL and ORX3_TX_EN are both high, the PA4 path is routed back to both ORx2 and ORx3.
Finally, if ORX3_TX_EN is low, this tells the transceiver that there is no external feedback path between this observation receiver input
and a transmitter on the same side of the device. In this scenario, the external LOL calibration cannot be performed.

Unlike the other use cases previously described, the transceiver can perform both calculations on a given PA and calibrations with the
other observation receiver input for the same side of the chip. Though the transmitter calibrations must be performed with an
observation receiver from the same side of the chip, the PA calculations do not have that constraint. The first time slot in Figure 72 shows
that calculations are being performed on PA1 via ORx3 while calibrations are performed on Tx1/Tx2 via ORx2. Note at the first time slot
in Figure 72 that the external LOL calibration can be performed for Tx1 as the path is routed back to ORx2. In time slot two, the external
LOL calibration can be performed for Tx2, but not Tx1 because there is no external feedback path. QEC calibrations are performed
though an internal feedback path and do not require an external feedback path to run. It is up to the ARM scheduler to determine what
calibration is due to run in any given slot. The same JESD204B and JESD204C link can be used for ORx2 and ORx3 in this scenario
because only one observation receiver is used at any given time.

ADRV902x
1 PA1 I
ORx2_Tx_EN o ——
™2 PA2
ORx3_Tx_EN o
g {
ORx2 |«
ORx_CTRL_A
> A
ORx_CTRL_B o
ORx3 |«
ORx_CTRL_C o
3 PA3 I
ORx2_Tx_SEL - —
Tx4 PA4
ORx3_Tx_SEL -~ ’7

22770-070

Figure 71. Observation Receiver Channel Routing: 4 Transmitter to 2 Observation Receiver Channels

Rev.0 | Page 118 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-17271

ADRV3026/ADRV93029

< o~
< &
o o
) o~
P &
o o
@
4 &
o o
¢l
b &
o o
o~
<
P &
o o
o~
o«
P &
o o
@
4 &
o o
> 2
a S
<] <
< & D
o o o
<
<
||| a_
)
=
©])
< o <
o o o
@
g & P
o o o ~
<
|||||||||||||||||||||||||||||||| P.||||| RN U R |
=
=
©
P & <
o o o
(=g =] - -
=Y < o e i rr i
o w = = (7]] 7] I
== o o | X | X
O x = = B ' X -
B S s Y 3 g 3
x %
a p g
2 o o & o g o

V20-0LL22

<
(2]
2 2
Oy
e
£%
o 3"
2 || 3
2]
2 2
Qu
g2
o %
2" 2
8 z
<
(2]
2 2
Oy
e
B3
2 || 2
o o
g 3
O e
g2
o %
2" -
§ F
<
(2]
g z
Oy
e
£%
) MT
2 || 3
2]
2 2
Oy
g2
o %
2" <
8 2
w w
o Q
< <
(2] (2]
= e
ﬂ ¢
g &
o (<]

Figure 72. Observation Receiver Enable and Transmitter Select Signals: 4 Transmitter to 2 Observation Receiver Multiplexed Configuration

Rev.0 | Page 119 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

TRANSMITTER OVERVIEW AND PATH CONTROL

The transceiver uses an accurate and efficient method of transmit power control (transmitter attenuation control) that involves a
minimum of interaction with the baseband processor. The power control in the transmit chain is implemented with two variable
attenuations, one in the digital domain and one in the analog domain. Furthermore, the maximum output level of the transmitter can be
adjusted between two levels, allowing a tradeoff between linearity and LOL performance.

There are three different modes available to control the attenuation setting of the transmitter. The attenuation can be set immediately via
the API, incremented or decremented using GPIO pins to trigger the increment or decrement, or set through an SPI2 mode that enables
real time operation using a GPIO pin. The choice of attenuation mode is set by the API attenMode.

The attenuation is controlled via a lookup table, which is programmed into the product during initialization. The lookup table maps a
desired value in dB to the appropriate analog and digital attenuation settings to be applied in the datapath. The default table provides a
range of 0 dB to 41.95 dB of attenuation, with a step size of 0.05 dB, resulting in 840 available attenuation settings.

The transmitter path allows the maximum output of the DAC to be increased by 3 dB adjusting the parameter dacFullScale. This results
in the baseband signal (the desired signal) increasing by 3 dB while RF output components (such as LO leakage) remain unchanged,
resulting in a net improvement of 3 dB in LOL performance. There is a reduction in linearity performance in this mode. Therefore, the

setting is a trade-off based on the system requirements of the user.

The transmitter datapath can be configured to automatically ramp the attenuation to the maximum level under certain conditions, such
as the JESD204B and JESD204C link dropping (rampJesdDfrm) or the transmitter PLL unlocking (disTxDataIfPllUnlock), to prevent
spurious transmission in the event of these types of system errors.

Test tones may be generated digitally in the transmitter baseband path. This function is useful for testing/debugging before the JESD204B
and JESD204C link has been established. The frequency can be set from —(Transmitter Input Rate)/2 to +(Transmitter Input Rate)/2. The
transmitter attenuation is manually overridden when this function is enabled. When test tones are selected as the transmitter input, the
analog portion of the transmitter attenuation is set to 0 dB (maximum output power), and the digital portion is set by the API
txToneGain.

APl COMMANDS

Several API commands are available to adjust the transmitter paths after initialization and during normal operation. The API descriptions
in this section detail these commands and how they are used.

adi_adrv9025_TxAttenCfgSet

adi adrv9025 TxAttenCfgSet (adi adrv9025 Device t* device, adi adrv9025 TxAttenCfg t
txAttenCfg[], uint8 t attenCfgs);

Description
This command configures transmitter power control.

Parameters

Table 110. adi_adrv9025_TxAttenCfgSet(...) Parameters

Parameter Description

*device Pointer to device structure.

txAttenCfg(] An array of structures of type adi_adrv9025_TxAttenCfg_t detailed in Table 111.
attenCfgs The number of configurations passed in the array.

Rev. 0 | Page 120 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

Table 111. adi_adrv9025_TxAttenCfg_t Parameters

Parameter

Comments

txChannelMask

This selects the channels upon which the APl acts. It is a bit mask with each bit corresponding to a channel. The
desired mask can be generated by OR'ing the desired channel enumerators as listed below. Data type: uint32_t

Parameter

Transmitter Channel

ADI_ADRV9025_TXOFF
ADI_ADRV9025_TX1
ADI_ADRV9025_TX2
ADI_ADRV9025_TX3
ADI_ADRV9025_TX4
ADI_ADRV9025_TXALL

No transmitter channels selected.
Tx1 channel selected.
Tx2 channel selected.
Tx3 channel selected.
Tx4 channel selected.
All transmitter channels selected.

txAttenStepSize

This parameter sets the attenuation step size, Data type: adi_adrv9025_TxAttenStepSize_e.

Parameter Step Size (dB)
ADI_ADRV9025_TXATTEN_OPO5_DB 0.05
ADI_ADRV9025_TXATTEN_OP1_DB 0.1
ADI_ADRV9025_TXATTEN_OP2_DB 0.2
ADI_ADRV9025_TXATTEN_OP4_DB 0.4

disTxDatalfPllUnlock

Option to ramp transmit attenuation to maximum if the RFPLL unlocks. Data type: adi_adrv9025_TxDatalfUnlock_e.

Parameter

Action

ADI_ADRV9025_TXUNLOCK_TX_NOT_DISABLED

Do not alter transmitter attenuation in an unlock
event.

ADI_ADRV9025_TXUNLOCK_TX_RAMP_DOWN_TO_MIN_ATTEN

Ramp transmitter attenuation to maximum in an
unlock event.

rampJesdDfrm Ramp up attenuation when a deframer link unlocks. Note that this field is not being used actively. If the user enables
at least one deframer event with adi_adrv9025_PaPIIDfrmEventRampDownEnableSet, the gain ramp down on the
deframer event is automatically enabled. Data type: adi_adrv9025_TxDatalfUnlock_e.
attenMode Selects the transmitter attenuation mode. Data type: adi_adrv9025_TxAttenMode_e.
Parameter Mode
ADI_ADRV9025_TXATTEN_BYPASS_MODE Transmitter attenuation mode. Bypass: zero total
attenuation.
ADI_ADRV9025_TXATTEN_SPI_MODE Transmitter attenuation set by 10-bit index
programmed over SPI.
ADI_ADRV9025_TXATTEN_GPIO_MODE Transmitter attenuation is
incremented/decremented using GPIO pins.
ADI_ADRV9025_TXATTEN_SPI2_MODE Attenuation is controlled using the SPI12 mode.
dacFullScale Sets the full scale of the transmitter DAC. Data type: adi_adrv9025_DacFullScale_e.

Parameter

Description

ADI_ADRV9025_TX_DACFS_0DB
ADI_ADRV9025_TX_DACFS_3DB

No full scale boost.
Full scale boost = 3 dB.

Rev. 0| Page 121 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

adi_adrv9025_TxAttenCfgGet

adi adrv9025 TxAttenCfgGet (adi adrv9025 Device t* device, adi adrv9025 TxChannels e txChannel,
adi adrv9025 TxAttenCfg t *txAttenCfg)

Description
This command reads transmitter power control configuration one channel at a time.

Parameters

Table 112. adi_adrv9025_TxAttenCfgGet(...) Parameters

Parameter Description

*device Pointer to device structure.

txChannel The transmitter channel to be read back using an enumerator as described in Table 111.
*txAttenCfgs The pointer to the readback structure of the queried transmitter channel as defined in Table 111.

adi_adrv9025_TxAttenSet

adi adrv9025 TxAttenSet (adi adrv9025 Device t* device, adi adrv9025 TxAtten t txAttenuation[],
uint8 t numTxAttenConfigs);

Description
This command sets transmitter attenuation when transmitter attenuation mode is set to ADI_ADRV9025_TXATTEN_SPI_MODE.

Parameters

Table 113. adi_adrv9025_TxAttenSet(...) Parameters

Parameter Description

*device Pointer to device structure.

txAttenuation(] An array of structures of type adi_adrv9025_TxAtten_t detailed in Table 114.
numTxAttenConfigs The number of configurations passed in the array.

Table 114. adi_adrv9025_TxAtten_t Parameters

Parameter Comments
txChannelMask This selects the channels upon which the API acts. It is a bit mask with each bit corresponding to a channel. The
desired mask can be generated by ORing the desired channel enumerators as listed below. Data type: uint32_t.
Parameter Transmitter Channel
ADI_ADRV9025_TXOFF No transmitter channels selected.
ADI_ADRV9025_TX1 Tx1 channel selected.
ADI_ADRV9025_TX2 Tx2 channel selected.
ADI_ADRV9025_TX3 Tx3 channel selected.
ADI_ADRV9025_TX4 Tx4 channel selected.
ADI_ADRV9025_TXALL All Tx channels selected.

txAttenuation_mdB | This parameter specifies the attenuation in mdB. Data type: uint16_t.

Rev. 0| Page 122 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

adi_adrv9025_TxAttenGet

adi adrv9025 TxAttenGet (adi adrv9025 Device t* device, adi adrv9025 TxChannels e txChannel,
adi adrv9025 TxAtten t* txAttenuation)

Description

This command reads transmitter attenuation when the transmitter attenuation mode is set to ADI_ADRV9025_TXATTEN_SPI_MODE
or ADI_ADRV9025_TXATTEN_GPIO_MODE.

Parameters

Table 115. adi_adrv9025_TxAttenGet(...) Parameters

Parameter Description

*device Pointer to device structure.

txChannel The transmitter channel to be read back using an enumerator as described in Table 114.
*txAttenuation Pointer to the readback structure of the queried transmitter channel as defined in Table 114.

adi_adrv9025 TxAttenModeSet

adi adrv9025 TxAttenModeSet (adi adrv9025 Device t* device, adi adrv9025 TxChannels e txChannel,
adi adrv9025 TxAttenMode e *txAttenMode);

Description
This command sets the transmitter attenuation mode independent of the initialization structure.

Parameters

Table 116. adi_adrv9025_TxAttenModeSet(...) Parameters

Parameter Description

*device Pointer to device structure.

txChannel Transmitter channel upon which the API acts as described in Table 117.
*txAttenMode Pointer to the desired mode of attenuation using an enum as described in Table 117.

Table 117. adi_adrv9025_TxAttenModeSet Parameters

Parameter Comments

txChannelMask | This selects the channels upon which the APl acts. It is a bit mask with each bit corresponding to a channel. The desired
mask can be generated by ORing the desired channel enums as listed below. Data type: uint32_t.

Parameter Transmitter Channel

ADI_ADRV9025_TXOFF No transmitter channels selected.

ADI_ADRV9025_TX1 Tx1 channel selected.

ADI_ADRV9025_TX2 Tx2 channel selected.

ADI_ADRV9025_TX3 Tx3 channel selected.

ADI_ADRV9025_TX4 Tx4 channel selected.

ADI_ADRV9025_TXALL All transmitter channels selected.

txAttenMode Selects the transmitter attenuation mode. Data type: adi_adrv9025_TxAttenMode_e.

Parameter Mode

ADI_ADRV9025_TXATTEN_BYPASS_MODE Transmitter attenuation mode. Bypass: zero total
attenuation.

ADI_ADRV9025_TXATTEN_SPI_MODE Transmitter attenuation set by 10-bit index programmed
over SPI.

ADI_ADRV9025_TXATTEN_GPIO_MODE Transmitter attenuation is incremented/decremented using
GPIO pins.

ADI_ADRV9025_TXATTEN_SPI2_MODE Attenuation is controlled using the SPI2 mode.

Rev. 0| Page 123 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/A

DRV9029

adi_adrv9025 TxTestToneSet

adi adrv9025 TxTestToneSet (adi adrv9025 Device t* device, adi adrv9025 TxTestToneCfg t
txNcoTestToneCfg[], uint8 t arraySize);

Description

This command generates test tones in the transmitter baseband path.

Parameters

Table 118. adi_adrv9025_TxTestToneSet(...) Parameters

Parameter

Description

*device

txNcoTestToneCfg[]

arraySize

Pointer to device structure.

The number of configurations passed in t

An array of structures of type adi_adrv9025_TxAttenCfg_t as detailed in Table 119.

he array.

Table 119. adi_adrv9025_TxTestToneCfg t Parameters

Parameter

Comments

txChannelMask

This selects the channels upon which the API acts. It is a bit mask with each bit corresponding to a channel. The desired
mask can be generated by OR'ing the desired channel enums as listed below. Data type: uint_8.

Parameter

Transmitter Channel

ADI_ADRV9025_TXOFF
ADI_ADRV9025_TX1
ADI_ADRV9025_TX2
ADI_ADRV9025_TX3
ADI_ADRV9025_TX4

No transmitter channels selected.
Tx1 channel selected.
Tx2 channel selected.
Tx3 channel selected.
Tx4 channel selected.

ADI_ADRV9025_TXALL

All transmitter channels selected.

enable

Sets whether the test tones are enabled or disabled. Data type: uint_8.

Parameter

Mode

0
1

Test tones disabled
Test tones enabled

txToneFreq_Hz

Sets the frequency of the test tone in Hz. Range is +2

45.76 MHz. Data type: uint_32.

txToneGain Sets the amplitude of the test tone in dBFS. Data type: adi_adrv9025_TxNcoGain_e.
Parameter Gain
ADI_ADRV9025_TX_NCO_NEG18_DB —18 dBFS test tone
ADI_ADRV9025_TX_NCO_NEG12_DB —12 dBFS test tone
ADI_ADRV9025_TX_NCO_NEG6_DB —6 dBFS test tone
ADI_ADRV9025_TX_NCO_0_DB 0 dBFS test tone
Rev. 0 | Page 124 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

DAC FULL SCALE FUNCTION (DAC BOOST)

The DAC full scale function is an analog 3 dB gain stage that can be used primarily to help systems that have marginal system
performance to the transmitter LO leakage (transmitter LOL) specification. As shown in Figure 73, the gain is realized in the DAC output
but before the transmitter predistortion (LPF) filters, which is where the majority of the flicker noise observed on the transmitter LOL is
added to the signal chain. When enabled, it provides an additional 3 dB of signal gain. By increasing the signal level by 3 dB, this function
provides an additional 3 dB of separation to the noise and transmitter LOL. The 3 dB gain factor is achieved by shifting the bias point of
the DAC.

Increasing the signal level through the chain can potentially result in reduced linearity and spurious. Therefore, the user is cautioned
when transmitting signals with very low PAR. When the mode is enabled, signal PAR does not allow the DAC to be driven above

-3 dBFS. Normally, however, for LTE signals or similar signals with PAR of about 12 dB, the signal chain has enough headroom for
minimal performance impact, shown in the data in Table 120, Table 121, and Table 122.

Because the transmitter signal level is increased when enabled, the configuration must be done prior to device initialization so that the
internal calibrations see the appropriate gain through the signal chain. It is not possible to change internal calibrations after the device has
been configured.

The transmitter predistortion low pass filters (LPF) are the main contributors of flicker noise to the transmitter signal chain. Because the
gain occurs before them, the amount of transmitter LOL emitted from the device is not changed by enabling the 3 dB mode. The
transmitter attenuators follow the filters in the signal chain. For this reason, transmitter LOL reduces at the output with each attenuator
step, dB for dB. The transmitter LOL measurement for both enabled and disabled modes along with the margin gained when the function
is enabled is presented in Figure 73.

-82.0

TXLOL dBFs 0dB
TXLOL dBFs 3dB
-825 —

-83.0 ——

-83.5

-84.0

-84.5

Tx LOL (dBm/MHz)

-85.0

-85.5

-86.0

0 2 4 6 8 10
TX ATTENUATOR (dB)

22770-072

Figure 73. Transmitter LO Leakage with dacFullScale Enabled/Disabled

| T 4 (AR A EI O 3
® ore |+ a | |
3dB BIAS
—

INT5 [

DIG
' THB3 THB2 Hbﬂ:‘—‘ THB1 ' TFIR ' ' GAIN

3dB BIAS
®

INT5 [

dacFullScale d
(DAC BOOST) o—e

JESD204B INTERFACE

22770-073

Figure 74. Transmitter Datapath with dacFullScale Function

Rev. 0| Page 125 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

The transmitter LOL specification is defined in terms of dBFS and is measured in a 1 MHz bandwidth. Transmitter LOL in dBFS is
determined by applying a known signal level (—12 dBFS tone in this case) and then measuring the resulting output power to determine
0 dBFS. Then the difference in power levels results in transmitter LOL (dBFS).

The improvement shown in Table 120 is close to the 3 dB gain added. There is a small amount of variability due to the effects of flicker
noise and the stability/accuracy of measuring the noise.

To meet the performance levels requirements in the device data sheet, adjust the input signal to compensate for the 3 dB increase so that
the resulting power levels are equivalent and, therefore, the OIP3 is equivalent as well. This is presented in Table 121. In general, the OIP3
is only slightly affected by enabling the boost with the same input tone levels (both tones level= —15 dBFS). Typical performance is
approximately 30 dBm, and measurements of the transceiver in both modes are consistent. Impact on linearity is shown in Table 121.

EVM was measured with boost in 0 dB mode and with boost in 3 dB mode. There is no significant impact to EVM as a result of enabling
the 3 dB mode. The impact on EVM is presented in Table 122.

It is a system requirement that the desired DAC boost mode must be configured prior to device initialization. The transmitter signal level
is increased, which impacts internal calibrations. Therefore, DAC boost mode settings cannot be modified during device operation.

Table 120. dacFullScale Transmitter LOL and Transmitter Output Power Comparison 0 dB Mode and 3 dB Mode

Transmitter Tone
DAC Full Scale Attenuation | Transmitter LOL Power Transmitter LOL | Improvement (dB)
Setting (dB) (dBm/MHz) (dBm) | 0 dBFSin dBm (dBFS) Relative to 0 dB Setting
dacFullScale0dB | 0 -77.2 -6 6 -83.2
Mode 5 -816 -108 | 1.2 -82.8

10 —86.5 -16 -4 -82.5
dacFullScale3dB | 0 -76.6 -2.8 9.2 -85.8 2.6
Mode 5 -815 -78 | 42 -85.7 29

10 -85.9 =13 -1 -84.9 24

Table 121. dacFullScale Transmitter Linearity 0 dB Mode and 3 dB Mode

F2 Tone MHz, OIP3 dBm, 0 dB Mode, | OIP3 dBm, 3 dB Mode, Tones =—-18 dBFS | OIP3 dBm, 3 dB Mode,
F1Tone MHz | (F1 + 5 MHz) Tones = -15 dBFS (Data Sheet Equivalent Output Power) (Tones = -15 dBFS)
10 15 326 36.0 33.1
30 35 353 349 36.0
50 55 38.0 37.7 40.0
70 70 339 34.8 33.2
90 95 35.7 31.1 30.0

Table 122. dacFullScale EVM vs. Mode Selection

0 dB Mode 3 dB Mode
Transmitter Attenuator (dB) Signal Power (dBm) EVM (dB) Signal Power (dBm) EVM (dB)
0 -17.9 —45.28 -15.0 —45.86
5 -22.9 —45.09 -20.0 —45.72
10 -27.9 -43.73 -25.0 -44.97
15 -32.8 —43.38 -30.0 —43.06
20 -37.8 —43.08 -34.9 —43.64

Rev. 0 | Page 126 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-1721

ADI_ADRV9025_TXCHANNELCFG API STRUCTURE

The dacFullScale enum is stored in the adi_adrv9025_TxChannelCfg structure. This structure is stored within the
adi_adrv9025_TxSettings_t structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). The parameters
are described in Table 123 and Table 124. The dacFullScale parameter is also found in the json (profile) file.

Table 123. adi_adrv9025_TxChannelCfg Structure Parameters

Data Fields Description
adi_adrv9025_TxProfile_t profile
adi_adrv9025_DacFullScale_e dacFullScale

Table 124. adi_adrv9025_DacFullScale_e Enumerator Parameters

Data Fields Description Value
ADI_ADRV9025_TX_DACFS_0DB DAC full scale = 0 dB (default mode) 0x0
ADI_ADRV9025_TX_DACFS_3DB DAC full scale =3 dB 0x1

Rev. 0| Page 127 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

TRANSMITTER POWER AMPLIFIER PROTECTION

The transceiver features four transmitters with independent power amplifier (PA) protection circuitry. The PA protection circuitry
operates in conjunction with other interrupt sources within the transceiver. This section describes both PA protection and the other
interrupt sources that can trigger a transmitter attenuation ramp to set the transmitter attenuation to 40 dB to protect the PA device.

Note that it is recommended to use these features in conjunction with the GP_INTERRUPT feature so that the baseband processor
receives information over GP_INTERRUPT pins that an attenuation ramp down may have occurred. This is achieved by unmasked
relevant GP_INTERRUPT sources described in Table 207.

PA PROTECTION DESCRIPTION

The PA protection circuitry is designed to alert the user that the digital signal power within the transmitter datapath exceeds a programmable
threshold. The GPINT1 and GPINT?2 pins can be configured to assert when the PA protection block detects an error. In this context,
error means that a power threshold has been exceeded. If PA protection is used, it is recommended that the user unmask the PA protection
interrupts for one of the GPINTX pins to give the baseband processor an indication that a PA protection error has occurred. Set up the
power thresholds at a level appropriate for the system given the PA damage power level and transmitter RF attenuation.

The following are the two types of thresholds in the PA protection circuit:

e Peak power threshold: when the peak signals detected by PA protection exceed the peak power threshold (peakThreshold) a
programmable number of times (peakCount) within a period (peakDuration), this leads to a peak power threshold error
(peakPowerErr = 1).

e Average Power Threshold: When the signal power calculated by PA protection exceeds the programmable average power threshold
(powerThreshold) within a period (avgDuration), this leads to an average power threshold error (avgPowerErr = 1).

When PA protection is enabled and a PA protection error occurs, a ramp down of the transmitter attenuation can be executed. The
attenuation is set to 40 dB after the ramp down, if enabled. This feature can be used to protect PA devices in scenarios where the baseband
processor executes algorithms that affect the power of the transmitted signal. The attenuation ramp down is configured with the
adi_adrv9025_PaPlIDfrmEventRamp DownEnableSet(...) command.

PA Protection Configuration
The PA protection feature is setup with the adi_adrv9025_TxPaProtectionCfgSet(...) API command.

adi_adrv9025_TxPaProtectionCfgSet(...)

adi adrv9025 TxPaProtectionCfgSet (adi adrv9025 Device t* device, adi adrv9025 TxPaProtectCfg t
txPaProtectCfg[], uint8 t arraySize);

Description
This command sets up the PA protection feature.

Parameters

Table 125. adi_adrv9025_TxPaProtectionCfgSet(...) Parameters

Parameter Description

*device Pointer to device structure.

txPaProtectCfg[] | An array of PA protection configurations of data type adi_adrv9025_TxPaProtectCfg_t. This data structure is explained in
further detail in Table 126.

arraySize The array length of txPaProtectCfg[].

Table 126. adi_adrv9025_TxPaProtectCfg t Data Structure Parameters

Parameter Name Data Type Parameter Description

txChannel adi_adrv9025_TxChannels_e Transmitter channel select based on adi_adrv9025_TxChannel_e. PA
protection configuration is applied to channels selected by this
parameter

Rev. 0 | Page 128 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

Parameter Name

Data Type

Parameter Description

avgDuration

uint8_t

Sets the duration for which average power is accumulated and compared
with powerThreshold. Range = 0 to 15. Duration in time is given by
(sample rate in Hz, duration in seconds):

L
- txSampleRate

avgDuration + 5

avgDuration

peakDuration

uint8_t

Sets the duration for which peaks are compared against peakThreshold.

At the end of this duration, the number of counted peaks resets to zero.

Range =0 to 15. Duration in time is given by (sample rate in Hz, duration
in seconds):

1
- txSampleRate

¢t peakDuration + 5

peakDuration

powerThreshold

uint16_t

Sets the powerThreshold for average power measurements. If the
average power exceeds this threshold, the avgPowerErr signal is asserted.

powerThreshold ;. =10log (p ower;;/;rzeshold]

peakCount

uint8_t

Sets a limit for the number of peaks detected within a peakDuration.
When this limit is exceeded, the PA protection peakPowerErr signal is
asserted.

peakThreshold

uint16_t

Sets the peak threshold power limit for counting a peak. If a peak
exceeds this threshold, it is counted. When this counter value exceeds
peakCount, peakPowerErr signal is asserted.

peakThreshold ;. =10log (peakT hresholdJ

8192

avgPowerEnable

uint8_t

When set = 1, the PA protection average power measurement block is
enabled. Allows avgPowerErr signal assertion.

When set =0, the PA protection average power measurement block is
disabled.

peakPowerEnable

uint8_t

When set = 1, the PA protection peak power measurement block is
enabled. Allows peakPowerErr signal assertion.

When set =0, the PA protection peak power measurement block is
disabled.

inputSel

adi_adrv9025_PaProtectionlinputSel_e

Determines the data path location for peak and average power
measurement. Options are given by the enumeration described in
Table 127.

avgPeakRatioEnable

uint8_t

When set = 1, this enables the average to peak power ratio block.
avgPowerEnable and peakPowerEnable must be enabled.

When set = 0, average to peak power calculations are not performed.

Table 127 describes the adi_adrv9025_PaProtectionInputSel_e enumeration. These measurement locations are shown in Figure 75.

Table 127. adi_adrv9025_PaProtectionInputSel_e Enumeration Options

Enumeration

Enumeration Value | Description

ADI_ADRV9025_COMPLEX_MULT_OUTPUT 0

ADI_ADRV9025_TXQEC_ACTUATOR_OUTPUT | 1

Input data to PA protection block comes from the complex multiplier
output.

Input data to PA protection block comes from the transmitter QEC
actuator output. This selection is only valid when the clear required
mode is not set.

Rev. 0| Page 129 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

I
THB DPD COMPLEX DPD l
1 J-q{ TFIR <-¢ QEC ACT MULT HB CFR

—
o

PA PROTECTION

—

THB DPD COMPLEX DPD
l@ 1 J‘[]{ TFIR J'¢ Qe J‘Q{ SRL l[]{ ACT MULT HB CFR

Figure 75. Transmitter Datapath Showing PA Protection Measurement Locations

JESD204B/C INTERFACE

22770-074

PA Protection Run Time Commands

This section describes commands that can be used to check the status of the PA protection blocks. The GP_INTERRUPT represents a real
time interface to notify the baseband processor that a PA protection error has occurred. When the interrupt asserts, call the
GP_INTERRUPT handler command. If it is indicated that a PA protection error has occurred, the commands in this section describe
what the user can do to acquire more information or clear the error.

adi_adrv9025_TxPaProtectionErrFlagsGet(...)

adi adrv9025 TxPaProtectionErrFlagsGet (adi adrv9025 Device t* device, adi adrv9025 TxChannels e
txChannel, adi adrv9025 TxPaProtectionErr t* errorFlags);

Description

This command gets information about which PA protection error flag has been asserted and the associated power level. Do not call this
command before adi_adrv9025_TxPaProtectionCfgSet(...).

Parameters

Table 128. adi_adrv9025_TxPaProtectionErrFlagsGet(...) Parameters

Parameter Description

*device Pointer to device structure.

txChannel The transmitter channel mask that selects which transmitter to retrieve error flag information from.
errorFlags A data structure containing the error flag information for selected transmitter channel.

Table 129. adi_adrv9025_TxPaProtectionErr_t Data Structure Parameters

DataType | Parameter Name | Parameter Description

uint8_t peakPowerErr If value = 1, the peak power error bit is asserted. If value = 0, the peak power error is not asserted. This bit
is sticky depending on the configuration applied in
adi_adrv9025_TxAttenuationRampUpStickyModeEnable(...).

uint8_t avgPowerErr If value = 1, the average power error bit is asserted. If value = 0, the average power error is not asserted.
This bit is sticky depending on the configuration applied in
adi_adrv9025_TxAttenuationRampUpStickyModeEnable(...).

uint16_t powerErr When avgPowerErr asserts, this parameter contains the average power level that triggered the error condition.

Clearing PA Protection Error Flags

In the case when a PA protection error has occurred, it is useful to obtain specific information whether it is a peak power error or an average
power error. To obtain information about which PA protection error flag has been asserted, use adi_adrv9025_TxPaProtectionStatusGet(...).
After this information has been obtained and the cause of the error has been resolved, the user must clear the error flag manually when the errors
are configured in sticky mode. This can be done with the adi_adrv9025_PaPlIDfrmEventClear(...) command or the
adi_adrv9025_TxPaProtectionErrFlagsReset(...) command. Note that adi_adrv9025_PaPllIDfrmEventClear(...) can clear a PA protection error,
a PLL unlock interrupt, or a deframer interrupt. The adi_adrv9025_TxPaProtectionErrFlagsReset(...) command is specific to only PA protection
errors.

adi_adrv9025_TxPaProtectionErrFlagsReset(...)

adi adrv9025 TxPaProtectionErrFlagsReset (adi adrv9025 Device t* device,
adi adrv9025 TxChannels e txChannel, adi adrv9025 TxPaProtectErrFlags e errorFlags);

Rev. 0 | Page 130 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Description
This command clears PA protection error flags for specified channels.

Parameters

Table 130. adi_adrv9025_TxPaProtectionErrFlagsReset(...) Parameters

Parameter Description

*device Pointer to device structure.

txChannel The transmitter channel mask that selects which transmitter to clear/reset PA protection errors.
errorFlags An enumerated data type describing which error flags must be cleared.

Table 131 describes the adi_adrv9025_TxPaProtectErrFlags_e enumeration.

Table 131. adi_adrv9025_TxPaProtectErrFlags_e Enumeration Options

Enumeration Enumeration Value | Meaning
ADI_ADRV9025_TXPA_PROTECT_FLAGS_AVG_POWER_ERR 1 Reset average power error flag
ADI_ADRV9025_TXPA_PROTECT_FLAGS_PEAK_POWER_ERR 2 Reset peak power error flag
ADI_ADRV9025_TXPA_PROTECT_FLAGS_ALL 3 Reset both average and peak power error flags

adi_adrv9025_TxPaProtectionStatusGet(...)

The PA protection status data structure provides information regarding the power in the datapath. After the PA protection configuration
has been applied, the following command can be called:

adi adrv9025 TxPaProtectionStatusGet (adi adrv9025 Device t* device, adi adrv9025 TxChannels e
txChannel, adi adrv9025 TxPaProtectStatus t* status);

Description
This command reads back the transmitter average IQ sample power.

Parameters

Table 132. adi_adrv9025_TxPaProtectionStatusGet(...) Parameters

Parameter Description

*device Pointer to device structure.

txChannel The transmitter channel mask that selects from which transmitter to retrieve PA protection status information.
status A data structure containing the PA protection status information for selected transmitter channel.

The data structure type adi_adrv9025_TxPaProtectStatus_t is described in Table 133.

Table 133. adi_adrv9025_TxPaProtectStatus_t Data Structure Parameters

Data Parameter
Type Name Parameter Description
uint16_t | avgPower Result of the most recently completed average power measurement. Result in dBFS is provided by the formula:
avgPower
2

uint16_t | avgPeakRatio Measurement describing the average to peak ratio as measured by PA protection. Enable peak and average

power measurement for meaningful results.

avgPeakRatio
PAR =10log (gTj
2

uint16_t | avgErrorPower When avgPowerErr asserts, this parameter contains the average power level that triggered the error

condition. This parameter only updates when an average power error occurs.

avgErrorPower
I)angrrPow = 10[0g (216 j

adi_adrv9025_PaPlIDfrmEventRampDownEnableSet(...)

adi adrv9025 PaPllDfrmEventRampDownEnableSet (adi adrv9025 Device t* device, uint32 t
txChannelMask, uint32 t irgMask, uint8 t enable);

Rev.0 | Page 131 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Description
This command configures which interrupts can trigger a transmitter attenuation ramp down event.

Parameters

Table 134. adi_adrv9025_PaPlIDfrmEventRampDownEnableSet(...) Parameters

Parameter Description

*device Pointer to device structure.

txChannelMask | The transmitter channel mask for selecting which transmitters to configure based on adi_adrv9025_TxChannels_e enumeration.
irgMask The bit mask that selects which interrupts are enabled or disabled based on the enable parameter. If a bit within this

mask is set, the value of enable is applied for each bit set. The value must not be zero. A description of the irqMask bit
field is provided in Table 135.

enable Bit that controls ramp down for the events selected by irqMask. If set to 0, the function is disabled for all selections.

Table 135. Bit Descriptions of irgMask

Bit Position | Description Command to Clear Interrupt
D7 PA protection error flag has been asserted. If slew | adi_adrv9025_adrv9025_PaPIIDfrmEventClear(...) or
rate limiter (SRL) interrupt (IRQ) has been adi_adrv9025_adrv9025_TxPaProtectionErrFlagsReset(...)

enabled, this bit also allows attenuation ramp
down based on the SRL IRQ.

D6 SERDES PLL Unlock. adi_adrv9025_adrv9025_PaPIIDfrmEventClear(...)
D5 RF PLL 2 Unlock.

D4 RF PLL 1 Unlock.

D3 Auxiliary PLL Unlock.

D2 CLK PLL Unlock.

D1 Deframer 1 Interrupt/IRQ.

DO Deframer 0 Interrupt/IRQ.

Although the irqMask is a uint32_t data type value, the enumeration adi_adrv9025_PaPlIDfrmRampDownEnSel_e can be used to form
the irqMask.

Sticky Control for Transmitter Attenuation Ramp Down

If a transmitter attenuation ramp down interrupt is asserted, there are two modes of interrupt behavior pertaining to when attenuation is
restored. The following behavior modes control how the attenuation level ramp up is performed.

e Sticky interrupt (default operation): the attenuation ramp down remains in effect until the API command
adi_adrv9025_PaPlIDfrmEventClear(...) is called and the interrupt is no longer asserted. These two conditions must be true for
attenuation to return to its former level before the interrupt. This mode requires user intervention.

e Auto clear interrupt: the attenuation ramp down remains in effect until the interrupt is no longer asserted. This mode only depends
on the status of the interrupt.

The user can select between these modes using the adi_adrv9025_TxAttenuationRampUpStickyModeEnable API command.

adi_adrv9025_TxAttenuationRampUpStickyModeEnable(...)

adi adrv9025 TxAttenuationRampUpStickyModeEnable (adi adrv9025 Device t* device, uint32 t
channelMask, uint8 t txPllJesdProtClrReqd, uint8 t txPaProtectionAvgpowerErrorClearRequired,
uint8 t txPaProtectionPeakpowerErrorClearRequired)

Description
This command configures transmitter attenuation ramp up sticky mode for the selected transmitter channel.
Parameters

Table 136. adi_adrv9025_TxAttenuationRampUpStickyModeEnable(...) Parameters

Parameter Description

*device Pointer to device structure.

channelMask The transmitter channel mask for selecting which transmitters to configure based
on adi_adrv9025_TxChannels_e enumeration.

Rev. 0| Page 132 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Parameter Description

txPllJesdProtCIrReqd Determines if the user is required to manually clear PLL/deframer attenuation
ramp down events after assertion. Setting 1 requires the user to clear. Setting 0
does not require the user to clear.

txPaProtectionAvgpowerErrorClearRequired Determines if the user is required to manually clear PA protection average power
error flag after assertion. Setting 1 requires the user to clear. Setting 0 does not
require the user to clear.

txPaProtectionPeakpowerErrorClearRequired Determines if the user is required to manually clear PA protection peak power
error flag after assertion. Setting 1 requires the user to clear. Setting 0 does not
require the user to clear.

The command adi_adrv9025_adrv9025_PaPlIDfrmEventClear(...) can be used to clear the error.

Determining the Interrupt Source of an Attenuation Ramp Down

The GPINT1 and GPINT2 pins can be configured to alert the baseband processor that a PA protection error, PLL unlock event, or deframer
interrupt has occurred. When the interrupt has occurred, the user is expected to call adi_adrv9025_GpInt1Handler or
adi_adrv9025_GpIntOHandler depending on which GPINTX pin has asserted. GpInt1Handler is linked to the GPINT2 pin and GPIntOHandler
is linked to the GPINT1 pin. The handler returns information relevant to which interrupts have been asserted. This is one method to determine
which interrupts have asserted. However, note that the GP_INTERRUPT bitmask description does not specify whether a peak or average power
PA protection error has occurred. To obtain more specificity regarding the error source, call adi_adrv9025_PaPlIDfrmEventGet(...).
adi_adrv9025_PaPlIDfrmEventGet(...)

adi adrv9025 PaPllDfrmEventGet (adi adrv9025 Device t* device, adi adrv9025 TxChannels e
txChannelSelect, uint8 t eventBits);

Description
This command reads the status of events causing transmitter attenuation ramp down rather than any signal that has asserted GP_INTERRUPT.

Parameters

Table 137. adi_adrv9025_PaPlIDfrmEventGet(...) Parameters

Parameter Description

*device Pointer to device structure.

txChannelSelect | The transmitter channel mask for selecting which transmitters to configure based on adi_adrv9025_TxChannels_e enumeration.

eventBits Selects which interrupt source to clear based on the bit description in Table 138. If a bit position in this value is set high,
the associated interrupt has asserted to cause a transmitter attenuation ramp down.

The command adi_adrv9025_adrv9025_PaPllIDfrmEventClear(...) can be used to clear the error.

Table 138. Bit Descriptions of eventBits Parameter

Bit Position Description

D3 to D7 Unused

D2 Any PLL unlock or deframer error
D1 PA protection peak power error
DO PA protection average power error

Clearing Transmitter Attenuation Ramp Down Events

There are two commands available to clear attenuation ramp down events. In the case that the interrupts are configured as sticky
interrupts, the user must call the appropriate function to clear the error. Note that these commands do not execute corrective measures to
remove the error source. For example, calling adi_adrv9025_TxPaProtectionErrFlagsReset(...) after a PA protection average power error
does not mean that the cause of the error is gone. If the datapath power is still greater than the PA protection average power threshold
after this command is called, then the interrupt persists. In some cases, the baseband processor must take an action to resolve the
interrupt/error. The adi_adrv9025_PaPlIDfrmEventClear command can be used to clear such interrupts.

adi_adrv9025_PaPlIDfrmEventClear(...)

adi adrv9025 PaPllDfrmEventClear (adi adrv9025 Device t* device, adi adrv9025 TxChannels e
txChannelSelect, uint8 t eventBits);

Rev. 0 | Page 133 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Description
This command clears the transmitter attenuation ramp down interrupts caused by the deframer or PLL unlock events.

Parameters

Table 139. adi_adrv9025_PaPlIDfrmEventClear(...) Parameters

Parameter Description

*device Pointer to device structure.

txChannelSelect | The transmitter channel mask for selecting which transmitters to configure based on adi_adrv9025_TxChannels_e
enumeration.

eventBits Selects which interrupt source to clear based on the bit description in Table 138. If a bit position in this value is set high,
the command attempts to clear the interrupt.

Rev. 0 | Page 134 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

RECEIVER GAIN CONTROL AND GAIN COMPENSATION
OVERVIEW

The transceiver has four receivers (Rx1/Rx2/Rx3/Rx4) that feature automatic and manual gain control modes, allowing for flexible gain
control in a wide array of applications. Automatic gain control (AGC) allows for receivers to autonomously adjust the receiver gain
depending on variations of the input signal, such as the onset of a strong interferer that can overload the receiver datapath. AGC controls
the gain of the device based on the information from a number of signal detectors (peak and power detectors). The AGC can control the
gain with very fine resolution if required. The receivers are also capable of operating in manual gain control (MGC) mode where changes
in gain are initiated by the baseband processor. The gain control blocks are configured by means of the API data structures, and several
API functions exist to allow for user interaction with the gain control mechanisms.

The AGC is highly flexible and can be configured in a number of ways. For base station receivers, the received signal is a multicarrier
signal in most cases. Perform a gain change only under large overrange or underrange conditions. Gain changes typically do not occur
very often for typical 3G/4G operation. Therefore, the peak detect mode operation is sufficient. Nevertheless, if an asynchronous blocker
does appear, a fast attack mode exists that is able to reduce the gain at a fast rate.

Alternatively, to manage GSM blockers and radar pulses that have fast rise and rapid fall times, a mode with fast attack, fast recovery, and
peak detect only is provided. This mode can recover receiver gain quickly in addition to the fast attack capability mentioned previously.

This section contains a full description of the gain control functionality available in the transceiver. Some features may not be available
depending on the software revision.

RECEIVER DATAPATH

Figure 76 shows the receiver datapath and gain control blocks. The receivers have front-end attenuators prior to the mixer stage that are
used to attenuate the signal in the RF domain to ensure that the signal does not overload the receiver chain. In the digital domain, there is
the option of digital attenuation or digital gain. This digital gain block is also utilized for gain compensation.

The receiver chain also has multiple observation elements that can monitor the incoming signal. These can be used in either MGC mode
or AGC mode. First, an analog peak detector (APD) exists prior to the ADC. This peak detector is located after the transimpedance
amplifier (TTA) filter, so it receives signals first in the analog domain and also has blocker signal visibility, which can overload the ADC.
The second peak detector is called the Half-Band 2 (HB2) overload detector because it monitors the data at the HB2 filter in the digital
processing section of the receiver chain.

A power measurement detection block is also provided in the receiver chain, which takes the rms power of the received signal over a
configurable period. The power measurement location in the datapath is user configurable.

This transceiver can also control an external gain element through use of the receiver gain table and the GPIO_ANA pins.

SLICER OUTPUT
TO BBP

ADRV901x

EXTERNAL | FRONT DEC5
GAIN END L |
ELEMENT | ATTENUATOR]
a
| h DC DbC DIGITAL GAIN/ FLoaTING PoINT| {1 8
ﬂ' FIR1 'E' HB2 HB1 RFIR| | J*|coRrr. HB cOMPENSATION [P SHICER FORMATTER w

|

J

1

1

1

1

HB2 POWER 1
OVERLOAD| |MEASUREMENT I
BLOCK I

1

1

1

DETECTOR

S, GAIN CONTROL BLOCK
L | (AGC, MGC) |‘ “““““““““““
e
?
3
N
SPI GPIOS 8

Figure 76. Receiver Data Path and Gain Control Blocks
The gain control block is shown in Figure 77 with multiple inputs providing information. Overload (peak) detectors are shown in red and
the power measurement block is shown in blue. The gain control block controls the gain of the signal chain using a gain table.
A gain table is user programmable, and each row of the table provides a combination of front-end attenuator, external gain element (if
used), and digital gain settings. Based on the row of this table selected, either by the user in MGC mode or automatically by the device in
AGC mode, the gain control block updates the variable gain elements depicted by the green arrows. Finally, the user can control the gain
control block using the SPI bus (configuration of AGC and MGC) and GPIOs.

Rev. 0 | Page 135 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

Table 140 shows a sample gain table.

Table 140. Sample Rows from the Default Receiver Gain Table

Front-End Attenuator, | External Gain Control, Signed Digital
Gain Table Index | 7 Bits 3 Bits TIA/ADC Gain | Gain/Attenuation[10:0] Phase Offset
255 0 0 0 0 0
254 14 0 0 0 0
253 28 0 0 0 0

The gain table index is the reference for each unique combination of gain settings in the programmable gain table. It is possible to have
different gain tables for each receiver, but typically the same one is used. The possible range of the gain table is 255 to 0, but typically only
a subset of this range is used. The gain table must be assigned in order of decreasing gain, starting with the highest gain in the maximum
gain index, such as 255, and the lowest gain in the minimum gain index.

The front-end attenuator has an 8-bit control word. The amount of attenuation applied depends on the value set in the front-end
attenuator column of the selected gain table index. The following equation provides an approximate relationship between the internal
attenuator and the front-end attenuation value programmed in the gain table, N:

Attenuation (dB) = 20log,y| >0~

enuation =20log,o| ——
810 256

The external gain control column controls two analog GPIOs for each receiver. Table 141 shows which analog GPIOs are used for which
receiver.

Table 141. Analog GPIOs for External Gain Element Control

Receiver GPIO Pins to Control External Gain Element
Rx1 GPIO_ANA[1:0]
Rx2 GPIO_ANA[3:2]
Rx3 GPIO_ANA[5:4]
Rx4 GPIO_ANA[7:6]

These analog GPIOs must be enabled as outputs and set for external gain functionality. The 2-bit value programmed is directly related to
the status of these GPIO pins. For example, if the external gain word of the Rx1 gain table is programmed to 3 in the selected gain index,
analog GPIO_0 and GPIO_1 are high.

EXTERNAL

ATTENUATOR

0 H

1 1

i = Rxt

I 1

S !
GPIO_ANA_0
GPIO_ANA_1

22770-076

Figure 77. GPIO Control of an External Gain Element to Rx1

The signed digital gain/attenuation is used to apply gain or attenuation digitally. The range of the digital gain is 0 to 50 dB. The range of
the digital attenuation is 0 to 18 dB. The resolution of the steps is 0.05 dB. As an example, a value of 14 results in a 0.7 dB gain, and a value
of —14 results in 0.7 dB of attenuation. The combination of TIA and ADC gain must be zero in all rows because this functionality is not used.

Gain Control Modes
The gain control mode is selected with the adi_adrv9025_RxGainCtrIModeSet API function.
adi_adrv9025_RxGainCtrlModeSet(...)

adi adrv9025 RxGainCtrlModeSet (adi adrv9025 Device t* device,
gainMode[], uint8 t arraySize)

adi adrv9025 RxAgcMode t

Description

This command selects the gain control mode.

Rev. 0 | Page 136 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Parameters

Table 142. adi_adrv9025_RxGainCtrlModeSet(...) Parameters

Parameter Description

*device Pointer to device structure.

gainMode An array of type adi_adrv9025_RxAgcMode_t indicating which gain mode is to be used for which receiver channel
arraySize The size of the array

Each adi_adrv9025_RxAgcMode_t instance contains agcMode, an enumerator selecting the chosen gain mode. The possible options are
shown in Table 143.

Table 143. Definition of adi_adrv9025_RxAgcMode_t

Enumerator Gain Mode
ADI_ADRV9025_MGC Manual gain mode
ADI_ADRV9025_AGCSLOW Automatic gain control Mode
ADI_ADRV9025_HYBRID Not currently supported
rxChannelMask

rxChannelMask selects the channels upon which to enable this gain control mode. rxChannelMask is a bit mask with each bit
corresponding to a channel, DO = Rx1, D1 = Rx2, D2 = Rx3, and D3 = Rx4. Setting the rxChannelMask = 15 means that all receivers are
configured with the same agcMode.

MANUAL GAIN CONTROL (MGC)

The gain control block applies the settings from the selected gain index in the gain table. In MGC mode, the baseband processor is in
control of selecting the gain index. There are two options, API commands and pin control. By default, if MGC is chosen, the device is
configured for API commands. The commands described in this section can be used when in API command mode.

adi_adrv9025_RxGainSet(...)

adi adrv9025 RxGainSet (adi_ adrv9025 Device t* device, adi adrv9025 RxGain t rxGain[], uint8 t
arraySize)

Description
This command selects the gain index in the gain table when in API command mode.
Parameters

Table 144. adi_adrv9025_RxGainSet(...) Parameters

Parameter | Description

*device Pointer to device structure.

rxGain An array of type adi_adrv9025_RxGain_t that determines the gain setting and the channels using the chosen setting.
arraySize The size of the array.

Each adi_adrv9025_RxGain_t instance contains the following:

e gainIndex—the selected gain index from the gain table.

¢ rxChannelMask—this selects the channels upon which to apply the gainIndex setting. It is a bit mask with each bit corresponding to
a channel, DO = Rx1, D1 = Rx2, D2 = Rx3, and D3 = Rx4. Setting the rxChannelMask = 15 applies this gain index to all four receivers.

adi_adrv9025_RxGainGet(...)

adi adrv9025 RxGainGet (adi adrv9025 Device t* device, adi adrv9025 RxChannels e rxChannel,
adi adrv9025 RxGain t *rxGain)

Description
This command reads back the gain index in the gain table for the selected channel when in API command mode.

Parameters

Table 145. adi_adrv9025_RxGainGet(...) Parameters

Parameter | Description

*device Pointer to device structure.

rxChannel | An enumerator as shown in Table 146.

Rev. 0| Page 137 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Parameter | Description

*rxGain Of type adi_adrv9025_RxGain_t, pointer to the current gain of the channel and a mask indicating which gain of the channel is
contained within the structure.

Table 146. Definition of adi_adrv9025_RxChannels_e

Receiver Enumerator

Rx1 ADI_ADRV9025_RX1
Rx2 ADI_ADRV9025_RX2
Rx3 ADI_ADRV9025_RX3
Rx4 ADI_ADRV9025_RX4

The pin control MGC mode is useful when real-time control of gain is required. In this mode, 2 GPIO pins per receiver are used, two for
each receiver, one increasing and the other decreasing the gain table index. The user specifies both the increment and decrement step size
in terms of number of gain indices. A pulse is applied to the relevant GPIO pin to trigger an increment or decrement in gain, as shown in
Figure 78. This pulse must be held high for at least 2 AGC clock cycles for a gain change to occur (see the AGC Clock and Gain Block
Timing section for details).

_I'L—
*R4X1J) GPIO1.8V a GPIO1.8Ve J)*R#3
+Rx1 +Rx3

—————GPIO1.8V b GPIO1.8V f Q)—————
*R—xz()eplm.sw GPIO1.8V g ()ha;4

+R—x3<l) GPI101.8V d GPIO1.8V h (RL

Figure 78. MGC Pin Mode: GPIO1.8V (a through h) Represent Any of GPIO_0 to GPIO_15

22770077

adi_adrv9025_RxGainPinCtrlCfgSet(...)

adi adrv9025 RxGainPinCtrlCfgSet (adi adrv9025 Device t* device, adi adrv9025 RxGainPinCfg t
*rxGainPinCtrlCfg, adi adrv9025 RxChannels e rxChannel)

Description
This command configures pin control MGC mode.
Parameters

Table 147. adi_adrv9025_RxGainPinCtrlCfgSet(...) Parameters

Parameter Description

*device Pointer to device structure.

rxChannel An enumerator indicating which receiver channel to configure, as shown in Table 146.

*rxGainPinCtrlCfg A configuration structure pointer for the pin control MGC mode containing the members shown in Table 148.

Table 148. Definition of ADRV9025 RxGainCtrlPin_t

Member Description

uint8_t incStep Increment in gain index applied when the increment gain is pulsed. Acceptable values for this
parameter are 0 to 7. However, 1 is added to what is programmed into this parameter, resulting in step
sizes of 1 to 8.

uint8_t decStep Decrement in gain index applied when the decrement gain is pulsed. Acceptable values for this

parameter are 0 to 7. However, 1 is added to what is programmed into this parameter, resulting in step
sizes of 1to 8.

adi_adrv9025_GpioPinSel_e GPIO used to increment gain. Any of GPIO_0 to GPIO_15 can be used. Acceptable values are
rxGainlncPin ADI_ADRV_9025_GPIO_00 to ADI_ADRV9025_GPIO_15.
adi_adrv9025_GpioPinSel_e GPIO used to decrement gain. Any of GPIO_0 to GPIO_15 can be used. Acceptable values are
rxGainDecPin ADI_ADRV_9025_GPIO_00 to ADI_ADRV9025_GPIO_15.

Rev. 0 | Page 138 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

The peak detector outputs can be monitored using GPIO pins by configuring them as outputs that are activated when an upper or lower
threshold has been exceeded by the APD or HB2 detectors. More details on what causes an overrange condition are provided in the Peak
Detect Mode section.

AUTOMATIC GAIN CONTROL

In AGC mode, a built-in state machine automatically controls the gain based on a user defined configuration. The AGC can be
configured in one of the following two modes:

e Peak detect mode, where only the peak detectors are used to make gain changes.
e Peak/power detect mode, where information from the power detector and the peak detectors are used to make gain changes.

The agcPeakThreshGainControlMode parameter of the adi_adrv9025_AgcCfg t AGC configuration structure is used to select the
individual modes of the AGC operation, as shown in Table 149.

Table 149. agcPeakThreshGainControlMode Settings

agcPeakThreshGainControlMode Description

0 AGC in peak/power mode
1 AGC in peak detect mode
Peak Detect Mode

In this mode, the peak detectors alone are used to inform the AGC to make gain changes. The APD and HB2 detectors both have a high
threshold and a low threshold. These are set with the apdHighThresh, apdLowThresh, hb2HighTresh, and hb2UnderRangeHighThresh
parameters. These levels are user programmable, as is the limit for the number of times a threshold must be crossed for an overrange or
underrange condition to be flagged. The high thresholds are used as limits on the incoming signal level and typically are set based on the
maximum input of the ADC. When an overrange condition occurs, the AGC reduces the gain (gain attack).

The low thresholds are used as lower limits on signal level. When the signal peaks are not exceeding the lower threshold, this is indicative
of a low power signal, and the AGC increases gain (gain recovery). This is termed an underrange. The AGC stable state (where it does not
adjust gain) occurs when neither an underrange nor overrange condition is occurring (the signal peaks are less than the high threshold
and greater than the lower level). Each overrange/underrange condition has its own attack and recovery gain step, as shown in Table 150.

Table 150. Peak Detector Gain Steps

Overload/Underrange Gain Step

apdHighThresh overrange Reduce gain by apdGainStepAttack
apdLowThresh underrange Increase gain by apdGainStepRecovery
hb2HighThresh overrange Reduce gain by hb2GainStepAttack
hb2UnderRangeHighThresh underrange Increase gain by hb2GainStepHighRecovery

An overrange condition occurs when the high thresholds have been exceeded a configurable number of times within a configurable
period. An underrange condition occurs when the low thresholds have not been exceeded a configurable number of times within the
same configurable period. These counters make the AGC more or less sensitive to peaks in the input signal, ensuring that a single peak
exceeding a threshold does not necessarily cause the AGC to react, allowing the user to trade off bit error rate with signal to noise ratio.
Table 151 outlines the counter parameters for the individual overload/underrange conditions.

Table 151. Peak Detector Counter Values

Overload/Under Range Counter

apdHighTresh over range apdUpperThreshPeakExceededCnt
apdLowThresh under range apdLowerThreshPeakExceededCnt
hb2HighThresh over range hb2UpperThreshPeakExceededCnt
hb2UnderRangeHighThresh under range hb2UnderRangeHighThreshExceededCnt

The AGC uses a gain update counter to time gain changes, with gain changes made when the counter expires. The counter value, and
therefore, the time spacing between possible gain changes, is user programmable through the agcGainUpdateCounter parameter. The
user specifies the period, in AGC clock cycles, that gain changes can be made. Typically, this might be set to frame or sub-frame boundary
periods. The total time between gain updates is the combination of the agcSlowLoopSettlingDelay and the agcGainUpdateCounter.

Rev. 0 | Page 139 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

When the gain update counter expires, all the peak threshold counters are reset. The gain update period is, therefore, a decision period.
The overload thresholds and counters are, therefore, set based on the number of overloads considered acceptable for the application
within the gain update period.

Figure 79 shows an example of the AGC response to a signal vs. the APD threshold levels. For ease of explanation, the APD is considered
in isolation. The green line is representative of the peaks of the signal. Initially, the peaks of the signal are within the apdHighThresh and
apdLowThresh. No gain changes are made. An interferer suddenly appears whose peaks now exceed apdHighThresh. On the next expiry
of the gain update counter (assuming a sufficient number of peaks occurred to exceed the counter), the AGC decrements the gain index
(reduces the gain) by apdGainStepAttack. This is not sufficient to obtain the signal peaks within the threshold levels, and thus the gain is
decremented again, with the peaks now between the two thresholds. The gain is stable in this current gain level until the interfering signal
is removed, and the peaks of the signal are below the apdLowThresh, resulting in an underrange condition. The AGC increases gain by
the apdGainStepRecovery at the next expiry of the gain update counter, continuing to do so until the peaks of the signal are within the
two thresholds again.

GAIN UPDATE

PERIOD
J GAIN DECREMENT - >

(apdGainStepAttack)

GAIN DECREMENT
(apdGainStepAttack)

l apdHighThresh

INTERFERER
REMOVED

SIGNAL

LEVEL INTERFERER

PRESENT

GAIN INCREMENT
(apdGainStepRecovery

apdLowThresh

(apdGainStepRecovery

‘GAIN INCREMENT

22770-076

Figure 79. APD Thresholds and Gain Changes Associated with Underrange and Overrange Conditions

Rev. 0 | Page 140 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Figure 80 shows the same scenario but from the viewpoint of the HB2 detector considered in isolation.

GAIN UPDATE

PERIOD
j GAIN DECREMENT - >

(hb2GainStepAttack)

GAIN DECREMENT
(hb2GainStepAttack)

l hb2HighThresh

INTERFERER
REMOVED

SIGNAL

LEVEL INTERFERER

PRESENT

GAIN INCREMENT
(thGainStepHighReco\Ilery
I

T
hb2UnderRangeHighThresh

(hb2GainStepHighRecovery

‘ GAIN INCREMENT

22770-079

Figure 80. HB2 Thresholds and Gain Changes Associated with Underrange and Overrange Conditions

It is possible to enable a fast attack mode whereby the AGC is instructed to reduce gain immediately when an overrange condition occurs,
instead of waiting until the next expiry of the gain update counter using agcGainChangelfThreshHigh. This parameter has independent
controls for the APD and HB2 detectors. Values from 0 to 3 are valid, as shown in Table 152.

Table 152. agcGainChangelfThreshHigh Settings

agcChangeGainlfThreshHigh[1:0] Gain Change Following APD Overrange Gain Change Following HB2 Overrange
00 After expiry of agcGainUpdateCounter After expiry of agcGainUpdateCounter

01 Immediately After expiry of agcGainUpdateCounter

10 After expiry of agcGainUpdateCounter Immediately

11 Immediately Immediately

Figure 81 shows how the AGC reacts when the agcChangeGainIfThreshHigh is set for APD. In this case, when the interferer appears, the
gain is updated as soon as the number of peaks exceed the peak counter. It does not wait for the next expiry of the gain update counter. A
number of gain changes can be made in quick succession providing a much faster attack than the default operation. The assumption here
is that if the ADC is overloaded, it is best to decrease the gain quickly rather than wait for a suitable moment in the received signal to
change the gain.

Rev. 0| Page 141 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

GAIN UPDATE
PERIOD

GAIN DECREMENT -
(apdGainStepAttack)

GAIN DECREMENT
(apdGainStepAttack)

apdHighThresh

INTERFERER
REMOVED

SIGNAL

LEVEL INTERFERER

PRESENT

GAIN INCREMENT
(apdGainStepRecovery)
I

apdLowThresh
GAIN INCREMENT
(apdGainStepRecovery)
Figure 81. APD Gain Changes with Fast Attack Enabled
Figure 82 shows the same scenario but from the viewpoint of agcChangeGainIfThreshHigh being set for HB2.
GAIN UPDATE
GAIN DECREMENT PERIOD
(hb2GainStepAttack)
GAIN DECREMENT
(hb2GainStepAttack)
l hb2HighThresh
INTERFERER
REMOVED

SIGNAL
INTERFERER
LEVEL PRESENT

GAIN INCREMENT
(thGainstepHighRecoveIry

T
hb2UnderRangeHighThresh

GAIN INCREMENT
(hb2GainStepHighRecovery

22770-081

Figure 82. HB2 Gain Changes with Fast Attack Enabled

It is also possible to enable a fast recovery mode whereby a gain recovery event occurs at the expiry of the gain update period, as shown in
Figure 83. This functionality is enabled with the ableFastRecoveryLoop parameter. This fast recovery mode enables the HB2 overload
detector. The operation is shown in Figure 84. When the signal level falls below hb2UnderRangeLowThresh, the gain is incremented by
hb2GainStepLowRecovery following the expiry of the gain update period. Note that in the fast recovery mode the agcUnderRangeLowInterval
is used instead of the gain update counter to set the gain update period. After sufficient gain increases are implemented to bring the signal
level above hb2UnderRangeLowThresh, the gain is incremented by hb2GainStepMidRecovery after the expiry of a number of gain update
periods, as set by hb2GainStepMidRecovery. Finally, when the signal level is increased above hb2UnderRangeMidThresh, the gain is
incremented by hb2GainStepHighRecovery following the expiry of a number of gain update periods, as set by agcUnderRangeHighInterval.

Rev. 0 | Page 142 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

The multiple threshold and interval parameters allow for a gain recovery whereas the wanted signal level is approached, the magnitude of
the gain adjustments is reduced and the time interval between gain changes is increased. However, recovery events remain periodic, as
shown in Figure 83 because all gain updates occur at the expiry of the gain update period.

GAIN UPDATE COUNTER 5AGC GAIN UPDATE COUNTER 5 AGC
SLOW LOOP CLOCK SLOW LOOP CLOCK

LOW UNDER-RANGE INTERVAL SETTLING DELAY CYCLES | LOW UNDER-RANGE INTERVAL SETTLING DELAY CYCLES

Y Y

GAIN GAIN N
RECOVERY RECOVERY 8
EVENT EVENT S

Figure 83. AGC Sequence with HB2 Detector in Fast Recovery Mode

hb2HighThresh
SIGNAL LEVEL

agcUnderRangeHighinterval GAIN INCREMENT hb2UnderRangeHighThresh
(hb2GainStepHighRecovery)

hb2UnderRangeMidThresh

GAIN INCREMENT
(hb2GainStepMidRecovery)

|<—>| agcUnderRangeMidInterval

hb2UnderRangeLowThresh

GAIN INCREMENT
(hb2GainStepLowRecovery)

22770-083

->| |<- agcUnderRangeLowlnterval

Figure 84. AGC Operation with HB2 Detector in Fast Recovery Mode

Rev. 0 | Page 143 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Priorities and Overall Operation

It is highly reccommended that the apdHighThresh and hb2HighThresh are set to an equivalent dBFS value. Likewise, it is highly
recommended that the apdLowThresh and the hb2UnderRangeHighThresh are set to equivalent values. This equivalence is approximate
because these thresholds have unique threshold settings that are not exactly equal. This section discusses the relevant priorities between
the detectors and how the AGC reacts when multiple threshold detectors have been exceeded. Table 153 shows the priorities between the
detectors when multiple overranges occur.

Table 153. Priorities of Attack Gain Steps

apdHighThresh Over Range hb2HighThresh Over Range Gain Change

No No No gain change

No Yes Gain change by hb2GainStepAttack
Yes No Gain change by apdGainStepAttack
Yes Yes Gain change by apdGainStepAttack

For recovery, the number of thresholds is dependent on whether fast recovery is enabled or not. Considering the fast recovery scenario,
the priority of the thresholds is the following:

e hb2UnderRangeLowThresh underrange condition
e hb2UnderRangeMidThresh underrange condition
e hb2UnderRangeHighThresh underrange condition
e apdLowThresh underrange condition

Upon one underrange condition, the AGC changes the gain by the corresponding gain step size of this condition. However, if multiple
conditions occur simultaneously, the AGC prioritizes based on the priorities indicated. That is, if hb2UnderRangeLowThresh is reporting
an underrange condition, the AGC adjusts the gain by hb2GainStepLowRecovery with two exceptions.

The apdLowThresh has priority in terms of preventing recovery. If apdLowThresh reports an overrange condition (sufficient signal peaks
have exceeded its threshold in a gain update counter period), no further recovery is allowed. Configure apdLowThresh and
hb2UnderRangeHighThresh to be as close to the same value of dBFS. However, assuming some small difference between the thresholds,
then as soon as apdLowThresh is exceeded, recovery no longer occurs. The reverse is not true, hb2UnderRangeHighThresh does not
prevent the gain recovery towards the apdLowThresh. Given the strong recommendation that apdLowThresh and hb2UnderRangeHighThresh
be set equally, a condition where apdLowThresh is at a lower dBES level to hb2UnderRangeLowThresh or hb2UnderRangeMidThresh
does not occur.

Another exception is if the recovery step size for a detector is set to zero. If so, the AGC makes the gain change of the highest priority
detector with a nonzero recovery step. Figure 85 provides a flow diagram of the decisions of the AGC when recovering the gain in peak
detect mode.

Rev. 0 | Page 144 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-1721

GAIN RECOVERY

IF
apdLowThresh
under-range

IF
hb2UnderRange
LowThresh
under-range AND
hb2GainStepLow
RECOVERY # 0

\

RECOVER GAIN BY
hb2GainStepLowRecovery

IF
hb2UnderRange
MidThresh
under-range AND
hb2GainStepMid
RECOVERY # 0

\

RECOVER GAIN BY
hb2GainStepLowRecovery

IF
hb2UnderRange
HighThresh
under-range AND
hb2GainStepHigh
RECOVERY # 0

\

RECOVER GAIN BY
hb2GainStepHighRecovery

IF
apdLowThresh
under-range AND
apdGainStep
RECOVERY # 0

Y

RECOVER GAIN BY
apdGainStepRecovery

!

Figure 85. Flow Diagram for AGC Recovery in Peak Detect AGC Mode

22770-084

Power Detect Mode

In this mode, the power detector measurement is also used to control the gain of the receiver chain. In the event of an overrange
condition, both the peak detectors and the power detector can instantiate a gain decrement. In the event of an underrange, only the power
detector can increment the gain. The power detector changes gain solely at the expiry of the gain update counter. The peak detectors can
be set in one of two modes (depending on the setting of agcGainChangeIfThreshHigh) where the AGC waits for the gain update counter
to expire before initiating a gain change, or immediately updates the gain as soon as the overrange condition occurs (see Figure 79 to
Figure 84).

The power measurement block provides the rms power of the receiver data at the measurement location. The power measurement block
can be configured to monitor the signal in one of three locations, as shown in Figure 76. In power detect mode, the AGC compares the
measured signal level to programmable thresholds, which provide a second order control loop, where gain can be changed by larger
amounts when the signal level is further from the target level, and make smaller gain changes when the signal is closer to the target level.

Rev. 0 | Page 145 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Figure 86 shows the operation of the AGC when using the power measurement detector. Considering the power measurement detector in
isolation from the peak detectors, the AGC does not modify the gain when the signal level is between overRangeLowPowerThresh and
underRangeHighPowerThresh. This range is the target range for the power measurement.

When the signal level goes below underRangeLowPowerThresh, the AGC waits for the next gain update counter expiry and then
increments the gain by underRangeLowPowerGainStepRecovery. When the signal level is greater than underRangeLowPowerThresh but
below underRangeHighPowerThresh, the AGC increments the gain by underRangeHighPowerGainStepRecovery. Likewise, when the
signal level goes above overRangeHighPowerThresh, the AGC decreases the gain by overRangeHighPowerGainStepAttack, and when the
signal level is between overRangeHighPowerThresh and overRangeLowPowerThresh, the AGC decreases the gain by
overRangeLowPowerGainStep Attack.

GAIN UPDATE
< TERIOD DECREMENT GAIN BY
GAIN overRangeHighPowerGainStepAttack
DECREMENT |
overRangeHi'ghPowerThresh + DECRIEMENT GAIN BY
GAIN overRangeLowPowerGainStepAttack
DECREMENT
T
overRangeLowPowerThresh
NO GAIN CHANGE
E:E(\;/'étl_ RECEIVED SIGNAL
LEVEL CHANGE RECEIVED SIGNAL
LEVEL CHANGE
underRangeHighPowerThresh
GAIN INCREMENT INCREMENT GAIN BY
‘ underRangeHighPowerGainStepRecovery
|
underRangeLowPowerThresh GAIN INCREMENT = = = |NCR|IEMENT GAIN BY
g g g underRangeLowPowerGainStepRecovery
wz wZ Wz
rZQ oZQ ,xQ
upk | uzk |uzk ©
sie sis|sie :
=3 |23 |2=3 g
- q

Figure 86. PMD Thresholds and Gain Changes for Underrange and Overrange Conditions

It is possible for the AGC to get contrasting requests from the power and peak detectors. An example is a blocker that is visible to the
analog peak detector but is quite significantly attenuated by the power measurement block. In this case, the APD can be requesting a gain
decrement while the power measurement block can be requesting a gain increment. The AGC has the following priority scheme in power
detect mode:

APD overrange (upper level)
HB2 overrange (upper level)
APD lower level peak exceeded
HB2 lower level peak exceeded

M.

Power measurement

In this example, the gain is decremented because the APD overrange has a higher priority than the power measurement. It is important to
note the APD and HB2 lower level overloads. In peak detect mode, the lower level thresholds for these detectors are used to indicate an
underrange condition, which caused the AGC to increase the gain. In power detect mode, these detectors are not used for gain recovery,
but can be used to control gain recovery by setting the agcLowThreshPreventGain API parameter. If this parameter is set, and if the signal
level is exceeding a lower level threshold, the AGC is prevented from increasing the gain regardless of the power measurement.

This prevents an oscillation condition that may otherwise occur to a blocker visible to a peak detector but filtered before the power
measurement block. In such a case, the peak detector can cause the AGC to decrease gain. The peak detector does this until the blocker is
no longer exceeding the defined threshold. At this point, the power measurement block can request an increase in gain and does so until
the peak threshold of the detector is exceeded, which decreases gain. By using these lower level thresholds, the AGC is prevented from
increasing gain as the signal level approaches an overload condition, providing a stable gain level for the receiver chain under such a

condition.

Rev. 0 | Page 146 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

AGC CLOCK AND GAIN BLOCK TIMING

The AGC clock is the clock that drives the AGC state machine. A number of the programmable counters used by the AGC are clocked at
this rate. The AGC clock maximum frequency is 500 MHz. The clock is the greatest 2V multiple of the IQ rate less than 500 MHz. For
example, for a receiver profile with an IQ output rate of 245.76 MSPS, the AGC clock is 491.52 MHz.

The AGC state machine contains 3 states, the gain update counter, followed by the slow loop settling (SLS) delay, and a constant 5 AGC
clock cycles delay. The total time between gain updates (gain update period) is a combination of agcSlowLoopSettlingDelay and 5 AGC
clock cycles.

IMMEDIATE
GAIN ATTACK
EVENT

AGC GAIN \Y
ATTACK
AGC GAIN
ATTACK) |
DELAYED
GAIN ATTACK
EVENT
A
GAIN
CHANGE
COUNTER/SLS
; T .
SLOW LOOP SLOW LOOP
SETTLING | 5 ASCORICK GAIN UPDATE COUNTER SETTLING | 5 ASS.TEaCK GAIN UPDATE COUNTER
DELAY DELAY
Y Y
GAIN GAIN <
RECOVERY RECOVERY | &
EVENT EVENT £

Figure 87. Gain Update Period

Figure 87 outlines the operation of the AGC state machine. The diagram outlines possible gain change scenarios rather than a practical
example of AGC operation. The possible gain change scenarios are described as follows:

e AGC gain attack within gain update counter, but more than an SLS delay before the gain update counter expiry. Because SLS is
typically several orders of magnitude smaller than the gain update counter, this is the most common gain decrement scenario.

e AGC gain attack within the gain update counter, but within an SLS delay before the gain update counter expiry. This is a special case,
but rarely occurs in applications per the reasoning described in the previous scenario.

e AGC gain recovery at the end of the gain update counter. Note that when fast recovery is enabled, the gain update counter is
substituted with the low underrange interval, per Figure 83.

A gain attack may occur within the gain update counter period when fast attack is enabled. A gain recovery event may only occur at the
end of the gain update counter period. After a gain attack, a gain change counter with a value equal to the SLS delay is started. No further
gain attacks are possible while this counter is running. This allows the minimum time to be set between gain changes. However, the gain
change counter also prevents the AGC from moving from the gain update counter state to the SLS delay state. Therefore, if a gain attack
occurred very close to the end of the gain update counter state, the gain change counter delays the start of the SLS state and shifts the gain
recovery event. To prevent this happening and maintain a periodic gain recovery event, gain attacks are prevented from happening
towards the end of the gain update counter state, as shown in Figure 87. If a gain attack happens in this period, it is delayed until the start
of the next gain update counter state. This can cause gain attacks to be held off for up to 2 x SLS delay, therefore it is recommended to
keep SLS delay as short as possible to minimize the gain attack delay. Note that it is possible to disable this blocking feature, allowing gain
attacks to occur anywhere within the gain update counter state. However, the periodicity of the gain recovery event is no longer
guaranteed as gain attacks towards the end of the gain update counter state cause the gain recovery event to be delayed.

Rev. 0| Page 147 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

At the expiry of the gain update counter, all measurement blocks are reset and any peak detector counts are reset back to zero. When the
receiver is enabled, the counter begins. This may mean that its expiry is at an arbitrary phase to the slot boundaries of the signal. The
expiry of the counter can be aligned to the slot boundaries by setting the agcEnableSyncPulseForGainCounter parameter. While this bit is
set, the AGC monitors a GPIOx pin to find a synchronization pulse. This pulse causes the reset of the counter at this point in time.
Therefore, if the user supplies a GPIO pulse time aligned to these slot boundaries, the expiry of the counter is aligned to slot boundaries.
Any of GPIO_0 to GPIO_15 can be used for this purpose.

For example, considering a 100 ps gain update period and a 491.52 MHz AGC clock, a total of 49,152 AGC clocks exist in the gain update
period.

Gain Update Period (AGC Clocks) = 491.52 MHz x 100 pus = 49,152

As noted, the full gain update period is the sum of the agcGainUpdateCounter, the agcSlowLoopSettlingDelay, and 5 clock cycles. If the
agcSlowLoopSettlingDelay is set to 4, the gain update counter must be set to 49,139.

Gain Update Period (AGC Clocks) = agcGainUpdateCounter x 2(agcSlowLoopSettingDelay) + 5
Gain Update Period (AGC Clocks) = 49,139 + 2(4) + 5 = 49,152

When receiver is enabled, the AGC can be kept inactive for a number of AGC clock cycles by using agcRxAttackDelay. This means the
user can specify one delay for AGC reaction when entering receiver mode, and another for after a gain change occurs
(agcSlowLoopSettlingDelay).

ANALOG PEAK DETECTOR (APD)

The analog peak detector is located in the analog domain following the TIA filter and prior to the ADC input (see Figure 76). The APD
functions by comparing the signal level to programmable thresholds. When a threshold has been exceeded a programmable number of
times in a gain update period, the detector flags that the threshold has been overloaded.

/\ apdHighThresh (mV)

apdLowThresh (mV)

22770-087

TIME

Figure 88. Analog Peak Detector Thresholds

There are two APD thresholds, as shown in Figure 88. These thresholds are contained in the agcPeak API structure, apdHighThresh and
apdLowThresh, respectively.

Rev. 0 | Page 148 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

To determine the setting of the APD thresholds in terms of the closest possible setting in terms of dBFS of the ADC (ADCABFS), the
following equations can be used:

850x10 M —-16
apdHighThresh =round s 0

850x10 ALCIBFS ¢
apdLowThresh =round 162

Note that the APD is an analog circuit located after the TIA filter. The previous equations assume that the TIA does not attenuate the
signal, but the receiver path is typically configured to have some analog roll-off within the pass band, compensated by the programmable
FIR filter. The TIA provides filtering that attenuates the signal seen at the APD, which means that a larger signal is required to assert the
APD. There is a known issue with the APD where it is more sensitive to signals near dc (<5 MHz, generally). This increased sensitivity
(typically on the order of 1 dB to 2 dB) is accounted for with the introduction of a secondary digital threshold that prevents the APD from
making a gain change when the input signal is detected in-band. This prevents the sensitivity from causing unnecessary changes to the
gain index. The APD acts mostly as an out-of-band blocker detector.

The APD threshold must be exceeded a programmable number of times within a gain update counter period before an overrange
condition occurs. Both the upper and lower thresholds have a programmable counter in the agcPeak API structure, as indicated in Table 154.

Table 154. APD Programmable Threshold Counters

Threshold Counter
Upper threshold (apdHighThresh) apdUpperThreshPeakExceededCnt
Lower threshold (apdLowThresh) apdLowerThresPeakExceededCnt

As described in the Automatic Gain Control section, the APD is used for both gain attack and gain recovery in peak detect mode. In
power detect mode, the APD is used for gain attack and is used to prevent overloading during gain recovery.

In AGC mode, the APD has programmable gain attack and gain recovery step sizes.

Table 155. APD Attack and Recovery Step Sizes

Gain Change Step Size
Gain Attack apdGainStepAttack
Gain Recovery apdGainStepRecovery

Step size refers to the number of indices of the gain table used for each gain adjustment. The gain table is programmed with the largest
gain in the maximum gain index (typically Index 255), with ever decreasing gain for decreasing gain index. Therefore, if the APD gain
attack step size is programmed to 6, this means that the gain index is reduced by 6 when the apdHighThresh has been exceeded more
than apdUpperThreshPeakExceededCnt times. For example, if the gain index had been 255 before this overrange condition, the gain
index is reduced to 249. The amount of gain reduction this equates to is dependent on the gain table in use. The default table has 0.5 dB
steps, which, in this example, equates to a 3 dB gain reduction upon an APD overrange condition.

The APD is held in reset for a configurable amount of time following a gain change to ensure that the receiver path is settled at the new
gain setting before monitoring the paths for overranges. This is configured using the agcPeakWaitTime API parameter.

HALF-BAND 2 PEAK DETECTOR

The HB2 peak detector is located in the digital domain at the output of the Half-Band 2 filter. The HB2 peak detector can, therefore, also
be referred to as the decimated data overload detector because it works on decimated data. Like the APD detector, the HB2 peak detector
functions by comparing the signal level to programmable thresholds. The HB2 peak detector monitors the signal level by observing
individual I? + Q* samples (or peak I and peak Q if hb2OverloadPowerMode = 0) over a period of time and compares these samples to the
threshold. If a sufficient number of samples exceed the threshold in the period of time, the threshold is noted as exceeded by the detector.
The duration of the HB2 measurement is controlled by hb2OverloadDurationCnt, whereas the number of samples that exceeds the
threshold in that period is controlled by hb2OverloadThreshCnt.

Rev. 0 | Page 149 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

After the required number of samples exceeds the threshold in the duration required, the detector records that the threshold was
exceeded. Like the APD detector, the HB2 detector requires a programmable number of times for the threshold to be exceeded in a gain
update period before it flags an overrange condition.

Figure 89 shows the two level approach. Figure 89 shows the gain update counter period, with the time being broken into subsets of time
based on the setting of hb2OverloadDurationCnt. Each of these periods of time are considered separately, and hb2OverladThreshCnt
individual samples must exceed the threshold within hb2OverloadDurationCnt for an overload to be declared. These individual samples
greater than the threshold are shown in red, while those less than the threshold are shown in green. Two examples are shown, one where
the number of samples exceeding the threshold is sufficient for the HB2 peak detector to declare an overload (this time period is shown as
red in the gain update counter timeline), and a second example where the number of samples exceeding the threshold is not sufficient to
declare an overload (this time period is shown as green in the gain update counter timeline). The number of overloads are counted, and if
the number of overloads of the hb2HighThresh exceed hb2UpperThreshPeakExceededCnt in a gain update counter period, an overrange
condition is called. Likewise, if the number of overloads of the hb2UnderRangeHighThresh does not exceed
hb2LowerThreshPeakExceededCnt, an underrange condition is called.

hb20verloadDurationCnt hb20verloadDurationCnt

hb20verloadThreshCnt hb20verloadThreshCnt
Exceeded Not Exceeded

A
\
22770-088

agcGainUpdateCounter

Figure 89. HB2 Detector Two-Level Approach for an Overload Condition

The HB2 detector has a number of programmable thresholds. Some of these thresholds are only used in the fast recovery mode of the
peak detect AGC configuration, as summarized in Table 156.

Table 156. HB2 Overload Thresholds

HB2 Threshold Usage

hb2HighThresh Used for gain attack in both peak and power detect AGC modes.

hb2UnderRangeHighThresh | Used for gain recovery in peak detect AGC mode. In power detect AGC mode, it is used to prevent overloads
during gain recovery.

hb2UnderRangeMidThresh | Used only when the fast recovery option of the peak detect AGC mode is being utilized.
hb2UnderRangeLowThresh | Used only when the fast recovery option of the peak detect AGC mode is being utilized.

For more details of how these thresholds are used by the AGC, refer to the Peak Detect Mode section, Figure 80, Figure 82, and Figure 84.
The thresholds are related to an ADC dBFS value using the following equations:

[thHigthFS]
hb2HighThresh =16,384 x10 0

[thUnderRangeHigthFSJ
hb2UnderRangeHighThresh =16,384 x10 20

(th UnderRangeMiddBFS]
hb2UnderRangeMidThresh =16,384 x10 20

(th UnderRungeLodeFS]
hb2UnderRangeLowThresh =16,384 x10 0

Each threshold has an associated counter so that an overrange condition is not flagged until the threshold has been exceeded the amount
of times determined by the corresponding equation in a gain update period. Note that these equations only apply if
hb2OverladPowerMode = 0. If this parameter is set to 1, the denominator in the exponent of each equation changes from 20 to 10.

Rev. 0 | Page 150 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Table 157. Gain Steps for HB2 Overrange and Underrange Conditions

HB2 Threshold Counter

hb2HighThresh hb2UpperThreshPeakExceededCnt
hb2UnderRangeHighThresh hb2UnderRangeHighThreshExceededCnt
hb2UnderRangeMidThresh Hb2UnderRangeMidThreshExceededCnt
hb2UnderRangeLowThresh Hb2UnderRangeLowThreshExceededCnt

In AGC mode, the HB2 has programmable gain attack and gain recovery step sizes.

Table 158. HB2 Attack and Recovery Step Sizes

Gain Change Step Size

Gain Attack hb2GainStepAttack

Gain Recovery (hb2UnderRangeHighThresh) hb2GainStepHighRecovery
Gain Recovery (hb2UnderRangeMidThresh) hb2GainStepMidRecovery

Gain Recovery (hb2UnderRangeLowThresh) hb2GainStepLowRecovery

The HB2 peak detector is held in reset for a configurable amount of time following a gain change to ensure that the receiver path is settled
at the new gain setting before monitoring the paths for over-range conditions. This duration is configured using the agcPeakWaitTime
API parameter.

POWER DETECTOR

The power measurement block measures the rms power of the incoming signal. The power measurement block can monitor the signal
level at different locations, namely the HB2 output, the RFIR output, and the output of the dc correction block. To choose a location, the
powerlInputSelect API parameter is utilized, as described in Table 159.

Table 159. Location of the Decimated Power Measurement

powerinputSelect Value
RFIR Output 0
HB1 1
HB2 2

The number of samples that are used in the power measurement calculation is configurable using the powerMeasurementDuration API
parameter.

PowerMeasDuration (Rx Sample Clocks) = 8 x 2¢overMeasurementDuration

where Rx Sample Clocks is the number of clocks at the power measurement location. It is important that this duration not exceed the gain
update counter. The gain update counter resets the power measurement block and, therefore, a valid power measurement must be
available before this event. In the case of multiple power measurements occurring in a gain update period, the AGC uses the last fully
completed power measurement, and any partial measurements are discarded.

The power measurement block has a dynamic range of 60 dB by default. Power measured in the receiver datapath can be read back with
the adi_adrv9025_RxDecPowerGet command.

adi_adrv9025_RxDecPowerGet(...)

adi adrv9025 RxDecPowerGet (adi_ adrv9025 Device t* device, adi adrv9025 RxChannels e rxChannel,
uintl6 t *rxDecPower mdBFS)

Description
This command readback for receiver power measurement.
Parameters

Table 160. adi_adrv9025_RxDecPowerGet(...) Parameters

Parameter Description

*device Pointer to device structure.

rxChannel An enumerator indicating which receiver channel to configure, as shown in Table 146.
*rxDecPower_mdBFS Pointer to the variable through which the power measurement reading is returned.

Rev.0 | Page 151 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

API PROGRAMMING

The API programming sequence for the gain control blocks is detailed in Figure 90. The configuration of these blocks is one of the last
steps before making the device operational. The structures are defined before initialization of the device begins. When device
initialization has proceeded up to the configuration of the JESD204B and JESD204C, the gain control configuration begins.

The following API is used to configure the gain control blocks within the device, such as the peak detectors, the power detector, and the
AGC if used. It is required to call this command in applications that require AGC.

adi_adrv9025_AgcCfgSet(...)

adi adrv9025 AgcCfgSet (adi adrv9025 Device t* device, adi adrv9025 AgcCfg t agcConfig[], uint8 t
arraySize)

Description
This command configures the gain control blocks within the device, such as peak detectors, power detector, and AGC settings.

Parameters

Table 161. adi_adrv9025_AgcCfgSet(...) Parameters

Parameter Description

*device Pointer to device structure.

agcConfig An array of gain control configuration structures of type adi_adrv9025_AgcCfg_t.
arraySize The number of configuration structures in agcConfig[].

The composition of the gain control configuration structure is detailed in the AGC Holdover Function section. After agcConfig[] has
been configured, the desired gain control mode can be enabled by using the adi_adrv9025_RxGainCtrlModeSet() API function.

The final step is to configure any GPIOs as necessary, whether monitor outputs, which allow real-time monitoring of the peak detector
outputs, or GPIO inputs, which allow the AGC gain update counter to be synchronized to a slot boundary, or GPIOs to directly control
the gain index.

DEVICE DATA STRUCTURE

CONFIGURE GAIN TABLE,
AGC STRUCTURES

DEVICE INITIALISATION
UP TO AND INCLUDING
adi_adrv9025_PostMcslinit()

RUN
adi_adrv9025_AgcCfgSet()

RUN
adi_adrv9025_RxGainModeSet()

CONFIGURE GAIN
CONTROL GPIOs

GAIN CONRTROL SETUP
COMPLETE

22770-089

Figure 90. Gain Control Programming Flowchart

Rev. 0| Page 152 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

AGC HOLDOVER FUNCTION

The transceiver AGC uses counters to keep track of any overrange or underrange events. These events are used to increment a counter
that accumulates and triggers the AGC state machine if it exceeds the desired count value. For a TDD case, the counters get reset every
time the receiver enable goes low. This reset of the overrange and underrange counters can potentially cause the AGC state machine to
never trigger if the gainUpdateCounter is larger than the receiver TDD slot duration. The AGC holdover function has been implemented
to avoid this situation by preventing the counters from getting reset when the receiver enable is toggled.

To enable this function, the user must create a stream file using the transceiver evaluation software with the AGC state persist box
checked in the stream settings window, as shown in Figure 91. After this box is checked, a stream file can be created with the AGC
holdover function enabled to prevent AGC counter resets during TDD operation.

@ Stream Settings

Stream Cptions

=

AGC state persist

ADC XBar control

ORxADC On

Oo|O

ORx TI& On

Rx Gain Gpio Pin | |INV -

DPD capture trigger [lNV v]

DFD capture done [lNV v]

Custom Stream I:‘ =

22770-090

Figure 91. TES Stream Settings Control Window to Enable AGC Holdover
RECEIVER GAIN MODE SWITCHING USING GPIO

This feature allows the use of a GPIOx pin to force receiver gain index changes and move to MGC mode. This feature is beneficial if the
user wants to run a quick RF calibration for the entire receiver signal chain. Such a calibration requires a fixed receiver gain index, which
is not possible to guarantee if the device is in AGC mode. The user can change the mode to MGC and then change the receiver gain
index, but the duration of this switch is a few ms, which is not feasible in a 5G NR TDD platform.

When this feature is employed, the user can enable a GPIOx pin to change the receiver gain index to a fixed predetermined value and
move the receiver to MGC mode. This action sets the gain index and avoids the issue of the AGC state machine modifying the index. The
user can then run the desired function (for example, RF calibration) and then toggle the GPIO low to restore the original receiver state.
When the GPIO is low, the gain control mode is restored back to AGC to resume normal receiver operation.

To enable receiver GPIO gain mode switching, the user must create a stream file using the TES with the Rx Gain Gpio Pin set to the
desired GPIO pin, as shown in Figure 92.

@ Stream Settings

AGC state persist Stream Options

ADCXBar control

ORx ADC On

Oo|goj O

OR=TIA On

R Giain Gpio Pin || -

DPD capture trigger [lNV v]

DFD capture done [lNV v]

22770-091

Custorm Stream I:‘ >

Figure 92. TES Stream Settings Control Window to Enable Receiver Gain Mode Switching using GPIO

Rev. 0 | Page 153 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

The user also must use the StreamGpioConfigSet API function to unmask the stream GPIO source to allow the stream to be triggered on

the desired GPIO. The steps to set up this feature are the following:

Generate the stream with the correct GPIO set to the receiver gain GPIO tag, as shown in Figure 92.
2. Use StreamGpioConfigSet function (called during postMcslInit) with the correct GPIO pin selected, as shown in the

StreamGpioConfigSet Function section.

3. Set the receiver manual gain to the desired value to be used during the calibration.

By following these steps, the user can move the receiver to MGC mode when the GPIO goes high and move the receiver back to AGC

mode when the GPIO goes low. Note that this function affects all four channels of the receivers if utilized.

StreamGpioConfigSet Function

streamGpioCfg

streamGpioCfg.
streamGpioCfg.
streamGpioCfg.
streamGpioCfg.
streamGpioCfg.
streamGpioCfg.
streamGpioCfg.
streamGpioCfg.
streamGpioCfg.
streamGpioCfg.
streamGpioCfg.
streamGpioCfg.
streamGpioCfg.
streamGpioCfg.
streamGpioCfg.
streamGpioCfg.

link.platform.

= Types.adi adrv9025 StreamGpioPinCfg t ()

streamGpInputO
streamGpInputl
streamGpInput2
streamGpInput3
streamGpInput4
streamGpInputb
streamGpInput6
streamGpInput?
streamGpInput8
streamGpInput9
streamGpInputl0
streamGpInputll
streamGpInputl2
streamGpInputl3
streamGpInputl4
streamGpInputlb

Types.
Types.
Types.
Types.
Types.
Types.
Types.
Types.
Types.
Types.
Types.
Types.
Types.
Types.
Types.
Types.

adi adrv9025 GpioPinSel e.
adi adrv9025 GpioPinSel e.
adi adrv9025 GpioPinSel e.
adi adrv9025 GpioPinSel e.
adi adrv9025 GpioPinSel e.
adi adrv9025 GpioPinSel e.
adi adrv9025 GpioPinSel e.
adi adrv9025 GpioPinSel e.
adi_ adrv9025 GpioPinSel e.
adi_adrv9025 GpioPinSel e.
adi_adrv9025 GpioPinSel e.
adi adrv9025 GpioPinSel e.
adi adrv9025 GpioPinSel e.
adi adrv9025 GpioPinSel e.
adi_ adrv9025 GpioPinSel e.
adi adrv9025 GpioPinSel e.

ADI_ADRV9025 GPIO INVALID
ADI_ADRV9025 GPIO INVALID
ADI_ADRV9025 GPIO INVALID
ADI_ADRV9025 GPIO INVALID
ADI_ADRV9025 GPIO INVALID
ADI ADRV9025 GPIO 05

ADI ADRV9025 GPIO INVALID
ADI_ADRV9025 GPIO INVALID
ADI_ADRV9025 GPIO INVALID
ADI_ADRV9025 GPIO INVALID
ADI_ADRV9025 GPIO INVALID
ADI_ADRV9025 GPIO INVALID
ADI_ADRV9025 GPIO INVALID
ADI_ADRV9025 GPIO INVALID
ADI_ADRV9025 GPIO INVALID
ADI_ADRV9025 GPIO INVALID

board.Adrv9025Device.RadioCtrl.StreamGpioConfigSet (streamGpioCfqg)

Rev. 0 | Page 154 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-1721

GAIN CONTROL DATA STRUCTURES

Figure 93 shows the member structure of adi_adrv9025_AgcCfg t, and of its substructures, adi_adrv9025_AgcPeak_t and
adi_adrv9025_AgcPower_t. Each of the parameters are briefly explained in Table 162, Table 163, and Table 164.

adi_adrv9025_AgcCfg_t

+ rxChannelMask

+ agcPeakWaitTime

+ agcRxMaxGainindex

+ agcRxMinGainIndex

+ agcGainUpdateCounter
+ agcRxAttackDelay

+ agcSlowLoopSettlingDelay

+ agcLowThreshPreventGaininc

+ agcGainChangelfThreshHigh

+ agcPeakThreshGainControlMode

+ agcResetOnRxOn

+ agcEnableSyncPulseForGainCounter
+ agcEnableFastRecoveryLoop

+ agcPeak

+ agcPower

adi_adrv9025_AgcPeak_t

adi_adrv9025_AgcPower_t

+ agcUnderRangeLowInterval

+ agcUnderRangeMidinterval

+ agcUnderRangeHighinterval

+ apdHighThresh

+ apdLowGainModeHighThresh

+ apdLowThresh

+ apdLowGainModeLowThresh

+ apdUpperThreshPeakExceededCnt
+ apdLowerThreshPeakExceededCnt
+ apdGainStepAttack

+ apdGainStepRecovery

+ enableHb20verload

+ hb20verloadDurationCnt

+ hb20verloadThreshCnt

+ powerEnableMeasurement

+ powerlnputSelect

+ underRangeHighPowerThresh

+ underRangeLowPowerThresh

+ underRangeHighPowerGainStepRecovery
+ underRangeLowPowerGainStepRecovery
+ powerMeasurementDuration

+ rxTddPowerMeasDuration

+ rxTddPowerMeasDelay

+ overRangeHighPowerThresh

+ overRangeLowPowerThresh

+ powerLogShift

+ overRangeHighPowerGainStepAttack

+ overRangeLowPowerGainStepAttack

+ hb2HighThresh

+ hb2UnderRangeLowThresh

+ hb2UnderRangeMidThresh

+ hb2UnderRangeHighThresh

+ hb2UpperThreshPeakExceededCnt

+ hb2UnderRangeHighThreshPeakExceededCnt
+ hb2GainStepHighRecovery

+ hb2GainStepLowRecovery

+ hb2GainStepMidRecovery

+ hb2GainStepAttack

+ hb20verloadPowerMode

+ hb2ThreshConfig

+ hb2UnderRangeMidThreshPeakExceededCnt

+ hb2UnderRangeLowThreshPeakExceededCnt

22770-092

Figure 93. Member Listing of adi_adrv9025_AgcCfg_t Data Structure

Table 162. adrv9025_AgcCfg_t Structure Definition

Parameter Description Min Value Max Value

rxChannelMask This selects the channels upon which to enable this gain control 0 15
mode. It is a bit mask with each bit corresponding to a channel,
[DO] = Rx1, [D1] = Rx2, [D2] = Rx3, [D3] = Rx4. Therefore, setting the
rxChannelMask = 15 means that all receiver channels are
configured with the same AGC configuration.

agcPeakWaitTime Number of AGC clock cycles to wait before enable peak/overload 0 31
detectors after a gain change.

agcRxMaxGainlndex Maximum gain index allowed in AGC mode. Must be greater than 0 255
agcMinGainindex and be a valid gain index.

agcRxMinGainindex Minimum gain index allowed in AGC mode. Must be less than 0 255
agcRxMaxGainindex and be a valid gain index.

agcGainUpdateCounter Used as a decision period, with the peak detectors reset on this Depends on 4194303
period. Gain changes in AGC mode can also be synchronized to overload AGC_CLK
this period (the expiry of this counter). The full period is a detector cycles
combination of the agcGainUpdateCounter and settings
agcSlowLoopSettlingDelay.

agcRxAttackDelay Hold the duration the AGC must be held in reset when the receiver | 0 63
path is enabled.

Rev. 0 | Page 155 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

Parameter

Description

Min Value

Max Value

agcSlowLoopSettlingDelay

agcLowThreshPreventGain

agcChangeGainlfThreshHigh

agcPeakThreshGainControlMode

agcResetOnRxon

agcEnableSyncPulseForGainCounter

agcEnableFastRecoveryLoop

agcPower

agcPeak

Number of AGC clock cycles to wait after a gain change before the
AGC changes gain again.

Only relevant in peak and power detect AGC operation.

1:1f AGC is in peak power detect mode, gain increments requested
by the power detector are prevented if there are sufficient peaks
(APD/HB2 low threshold exceeded count) above the
apdLowThresh or hb2UnderRangeHighThresh.

0: apdLowThresh and hb2UnderRangeHighThresh are don't cares
for gain recovery.

Applicable in both peak and peak mode and power detect mode.

0: gain changes wait for the expiry of the gain update counter if a high
threshold count has been exceeded on either the APD or HB2
detector.

1: gain changes occur immediately when initiated by HB2. Gain
changes initiated by the APD wait for the gain update to expire.

2: gain changes occur immediately when initiated by APD. Gain
changes initiated by HB2 wait for the gain update to expire.

3: gain changes occur immediately when initiated by APD or HB2
detectors.

1: AGC in peak AGC mode, power-based gain changes are disabled.

0: AGC in peak and power AGC mode where both peak detectors
and power detectors are utilized.

1: AGC state machine is reset when the receiver is disabled. The
AGC gain setting is returned to the maximum gain.

0: AGC state machine maintains its state when the receiver is disabled.

1: Allows synchronization of the AGC gain update counter to the
time slot boundary. GPIO setup required.

0: AGC gain update counter free runs.

1: Enables the fast recovery AGC functionality using the HB2
overload detector. Only applicable in peak detect mode.

0: AGC fast recovery is not enabled.
Structure containing all the power detector settings.

Structure containing all the peak detector settings.

0

Not
applicable
Not
applicable

127

Not
applicable
Not
applicable

Table 163. adrv9025_AgcPeak_t Structure Definition

Parameter

Description

Min Value

Max Value

agcUnderRangelLowlnterval

agcUnderRangeMidInterval

agcUnderRangeHighinterval

This sets the time constant (in AGC clock cycles) that the AGC recovers
when the signal peaks are less than hb2UnderRangeLowThresh.
Only applicable when the fast recovery option is enabled in peak
detect AGC mode.

This sets the time constant (in AGC clock cycles) that the AGC recovers
when the signal peaks are less than hb2UnderRangeMidThresh.
Calculated as (agcUnderRangeMidInterval + 1) X
agcUnderRangeLowInterval.

Only applicable when the fast recovery option is enabled in peak
detect AGC mode.

This sets the time constant (in AGC clock cycles) that the AGC recovers
when the signal peaks are less than hb2UnderRangeHighThresh.
Calculated as (agcUnderRangeHighlinterval + 1) x
agcUnderRangeMidInterval

Only applicable when the fast recovery option is enabled in peak
detect AGC mode.

Depends on
HB2 detector
settings

0

65535

63

63

Rev. 0 | Page 156 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

Parameter

Description

Min Value

Max Value

apdHighThresh

apdLowGainModeHighThresh
apdLowThresh

apdLowGainModeLowThresh
apdUpperThreshPeakExceededCnt

apdLowerThreshPeakExceededCnt

apdGainStepAttack

apdGainStepRecovery

enableHb20verload
hb20verloadDurationCnt

hb20verloadThreshCnt

hb2HighThresh

hb2UnderRangeLowThresh

hb2UnderRangeMidThresh

This sets the upper threshold of the analog peak detector. When
the input signal exceeds this threshold a programmable number
of times (set by its corresponding overload counter) within a gain
update period, the overload detector flags. In AGC modes, the gain
is reduced when this overload occurs. The value is calculated using
the equation: adpdHighThresh (mV) = (apdHighThresh + 1) x 16 mV.
This parameter is not utilized.

This sets the lower threshold of the analog peak detector. When the
input signal exceeds this threshold a programmable number of times
(set by its corresponding overload counter) within a gain update
period, the overload detector flags. In peak AGC mode, the gain is
increased when this overload is not occurring. In power AGC mode,
this threshold can be used to prevent further gain increases if the
agcLowThreshPreventGain bit is set. The value is calculated using the
equation: adpdLowThresh (mV) = (apdLowThresh + 1) X 16 mV.

This parameter is not utilized.

Sets number of peaks to detect greater than apdHighThresh to
cause an APD high overrange event. In AGC modes, this results in a
gain decrement set by apdGainStepAttack.

Sets number of peaks to detect greater than apdLowThresh to
cause an APD low overload event. In peak detect AGC mode, if an
APD low overload event is not occurring, this results in a gain
increment set by apdGainStepRecovery.

The number of indices that the gain index pointer must be
decreased in the event of an APD high overrange in AGC modes.
The step size in dB depends on the gain step resolution of the gain
table (default 0.5 dB per index step).

The number of indices that the gain index pointer must be
increased in the event of an APD underrange event occurring in
peak detect AGC mode. The step size in dB depends on the gain
step resolution of the gain table (default 0.5 dB per index step).

1: HB2 overload detector enabled. 0: HB2 overload detector disabled.

The number of clock cycles (at the HB2 output rate) within which
hb20OverloadThreshCnt must be exceeded for an overload to
occur. An HB2 overload flag is only raised when the number of
these overloads exceeds hb2UpperThreshPeakExceededCnt or
hb2LowerThreshPeakExceededCnt within a gain update period.
The number OfCIOCkS iS 2(hb20verloadDurationCnt+‘\).
Sets the number of individual samples exceeding hb2HighThresh
or hb2LowThresh necessary within hb2OverloadDurationCnt for
an overload to occur. The HB2 overload flag is only raised when
the number of these overloads exceeds
hb2UpperThreshPeakExceededCnt or
hb2LowerThreshPeakExceededCnt within a gain update period.
This sets the upper threshold of the HB2 detector.
(thHigthFSJ
hb2HighThresh =16,384x10° %

This sets the lower threshold of the HB2 underrange threshold
detectors. Used only when the fast recovery option of the peak
detect AGC mode is being utilized.

thUnderRungeLadeFS]

hb2UnderRangeLowThresh =16,384 x 10(20

This sets the middle threshold of the HB2 underrange threshold
detectors. Used only when the fast recovery option of the peak
detect AGC mode is being utilized.

thUnderRangeMiddBFSj

hb2UnderRangeMidThresh =16,384 x 10(20

apdLowThresh

63

apdHighThresh

255

255

31

31

15

16383

16383

16383

Rev. 0| Page 157 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

Parameter

Description

Min Value

Max Value

hb2UnderRangeHighThresh;

hb2UpperThreshPeakExceededCnt

hb2UnderRangeHighThreshExceededCnt

hb2GainStepHighRecovery

hb2GainStepLowRecovery

hb2GainStepMidRecovery

hb2GainStepAttack

hb20verloadPowerMode

hb2ThreshConfig
hb2UnderRangeMidThreshExceededCnt

hb2UnderRangeLowThreshExceededCnt

Peak detect mode: threshold used for gain recovery.

Peak detect with fast recovery mode: this sets the highest
threshold of the HB2 underrange threshold detectors.

Power detect mode: threshold used to prevent further gain
increases if agcLowThreshPreventGain is set.

(thUnderRungeHIgthFS)
hb2UnderRangeHighThresh =16,384x10 20

Sets number of individual overloads greater than hb2HighThresh
(number of times hb20OverloadThreshCnt was exceeded in
hb20verloadDurationCnt) to cause an HB2 high overrrange event.
In AGC modes, this results in a gain decrement set by
hb2GainStepAttack.

Sets number of individual overloads greater than
hb2UnderRangeHighThresh (number of times hb2OverloadThreshCnt
was exceeded in hb20verloadDurationCnt) to cause an HB2
underrange high threshold overload event. In peak detect AGC
mode, not having sufficient peaks to cause the overload is flagged
as an underrange event and the gain is recovered by
hb2GainStepHighRecovery.

The number of indices that the gain index pointer must be
increased in the event of an HB2 underrange high threshold
underrange event.

Only applicable in fast recovery mode of peak detect AGC. This
sets the number of indices that the gain index pointer must be
increased in the event of an HB2 underrange low threshold
underrange event.

Only applicable in fast recovery mode of peak detect AGC. This sets the
number of indices that the gain index pointer must be increased in the
event of an HB2 underrange mid threshold underrange event.

The number of indices that the gain index pointer must be
decreased in the event of an HB2 high threshold overrange event
in AGC modes. The step size in dB depends on the gain step
resolution of the gain table (default 0.5 dB per index step).

Sets the measurement mode of the HB2 detector. If it is set to 0,
the hb2 threshold sample type is signal amplitude. If it is set to 1,
the hb2 threshold sample type is signal power.

Setto 3.

Only applicable in fast recovery mode of peak detect AGC. Sets
number of individual overloads above hb2UnderRangeMidThresh
(number of times hb2OverloadThreshCnt was exceeded in
hb20verloadDurationCnt) to cause an HB2 underrange mid
threshold overload event. In peak detect AGC mode, not having
sufficient peaks to cause the overload is flagged as an underrange
event and the gain is recovered by hb2GainStepMidRecovery.

Only applicable in fast recovery mode of peak detect AGC. Sets the
number of individual overloads greater than
hb2UnderRangeLowThresh (number of times hb2OverloadThreshCnt
was exceeded in hb20verloadDurationCnt) to cause an HB2
underrange low threshold overload event. In peak detect AGC
mode, not having sufficient peaks to cause the overload is flagged
as an underrange event and the gain is recovered by
hb2GainStepLowRecovery.

0

16383

255

255

31

31

31

31

255

255

Table 164. adrv9025_AgcPower_t Structure Definition

Parameter

Description

Min Value | Max Value

powerEnableMeasurement

powerlnputSelect

block disabled.

RFIR output, 1 = HB1 output, 2 = HB2 output.

1: power measurement block enabled. 0: power measurement

This parameter sets the location of the power measurement. 0 =

0 1

Rev. 0 | Page 158 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

Parameter

Description

Min Value

Max Value

underRangeHighPowerThresh

underRangeLowPowerThresh

underRangeHighPowerGainStepRecovery

underRangeLowPowerGainStepRecovery

powerMeasurementDuration

rxTddPowerMeasDuration

rxTddPowerMeasDelay

overRangeHighPowerThresh

overRangeLowPowerThresh

powerLogShift

overRangeHighPowerGainStepAttack

overRangeLowPowerGainStepAttack

Threshold in dBFS (negative sign assumed), which defines the lower
boundary on the stable region of the power detect gain control mode.

Offset (negative sign assumed) from underRangeHighPowerThresh,
which defines the outer boundary of the power based AGC
convergence. Typically, recovery is set to be larger steps than when
the power measurement is less than this threshold.

The number of indices that the gain index pointer must be
increased (gain increase) in the event of the power measurement
being less than underRangeHighPowerThresh but greater than
underRangeLowPowerThresh.

The number of indices that the gain index pointer must be
increased (gain increase) in the event of the power measurement
being less than underRangeLowPowerThresh.

Number of IQ samples on which to perform the power
measurement. The number of samples corresponding to the 4-bit
word is 8 x 2(pmdMeasburation[3:0) Thjs yalue must be less than the AGC
gain update counter.

Following a receiver enable, the power measurement block can be
requested to perform a power measurement for a specific period of
a frame. This is applicable in TDD modes. This parameter sets the
duration of this power measurement. A value of 0 causes the power
measurement to run until the next gain update counter expiry.

Following a receiver enable, the power measurement block can be
requested to perform a power measurement for a specific period of a
frame. This is applicable in TDD modes. This parameter sets the delay
between the receiver enable and the power measurement starting on Rx1.

Threshold in dBFS (negative sign assumed), which defines the
upper boundary on the stable region (no gain change based on
power measurement) of the power detect gain control mode.

Offset (positive sign assumed) from upperOPowerThresh, which
defines the outer boundary of the power based AGC convergence.
Typically, attack is set to be larger steps than when the power
measurement is greater than this threshold.

Enable increase in dynamic range of the power measurement from
40 dB to ~60 dB.

The number of indices that the gain index pointer must be
decreased (gain reduction) in the event of the power measurement
being greater than overRangeHighPowerThresh.

The number of indices that the gain index pointer must be
decreased (gain decrease) in the event of the power measurement
being less than OverRangeHighPowerThresh but greater than
OverRangeLowPowerThresh.

0

127

31

31

31

31

65535 AGC
clock
cycles

65535 AGC
clock
cycles

127

15

31

31

SAMPLE PYTHON SCRIPT—PEAK DETECT MODE WITH FAST ATTACK

The following is a sample python script to enable the AGC in peak detect mode. The user can use this sample script as a starting point to

enable AGC on the evaluation platform.
#Import Reference to the DLL
import System

import clr

from System import Array

clr.AddReferenceToFileAndPath ("C:\\Program Files

Evaluation Software\\adrv9025 dl11.d11l")
from adrv9025 dll import AdiEvaluationSystem

from adrv9025 dll import Types

#Create an Instance of the Class

Rev. 0 | Page 159 of 336

(x86) \\Analog Devices\\ADRV9025 Transceiver

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Link = AdiEvaluationSystem.Instance

connect = False
if (Link.IsConnected() == False):
connect = True

Link.Ads8.board.Client.Connect ("192.168.1.10", 55556)

print "Connecting"

if (Link.IsConnected()) :
adrv9025 = Link.Adrv9025Get (1)

Create an instance of the rxGainMode , agcConfig classes
rxGainMode = Types.adi adrv9025 RxAgcMode t ()
agcConfig = Types.adi adrv9025 AgcCfg t()

General Rx Gain Mode Configuration
rxGainMode.rxChannelMask = OxF
rxGainMode.agcMode = Types.adi adrv9025 RxAgcMode e.ADI ADRV9025 AGCSLOW

General AGC Configuration
agcConfig.rxChannelMask = OxF
agcConfig.agcPeakWaitTime = 4
agcConfig.agcRxMaxGainIndex = 255
agcConfig.agcRxMinGainIndex = 195
agcConfig.agcGainUpdateCounter = 921600
agcConfig.agcRxAttackDelay = 10
agcConfig.agcSlowLoopSettlingDelay = 16
agcConfig.agcLowThreshPreventGainInc = 1
agcConfig.agcChangeGainIfThreshHigh = 1
agcConfig.agcPeakThreshGainControlMode= 1
agcConfig.agcResetOnRxon = 0
agcConfig.agcEnableSyncPulseForGainCounter = 0

agcConfig.agcEnableFastRecoveryLoop = 0

#adi adrv9025 AgcPeak t agcPeak;
agcConfig.agcPeak.agcUnderRangeLowInterval = 205000 / 245;
2;
agcConfig.agcPeak.agcUnderRangeHighInterval = 4;

agcConfig.agcPeak.agcUnderRangeMidInterval

agcConfig.agcPeak.apdHighThresh = 38;
agcConfig.agcPeak.apdLowThresh = 25;
agcConfig.agcPeak.apdUpperThreshPeakExceededCnt

Il
—
o
~

agcConfig.agcPeak.apdLowerThreshPeakExceededCnt

Il
w
~

agcConfig.agcPeak.enableHb20verload = 1;

agcConfig.agcPeak.hb20verloadDurationCnt 1;

agcConfig.agcPeak.hb20verloadThreshCnt = 1;
agcConfig.agcPeak.hb2HighThresh = 11598; #-3dBFS
agcConfig.agcPeak.hb2UnderRangeLowThresh = 8211;

Rev. 0 | Page 160 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

agcConfig.agcPeak.hb2UnderRangeMidThresh = 5813;
agcConfig.agcPeak.hb2UnderRangeHighThresh = 2913;
agcConfig.agcPeak.hb2UpperThreshPeakExceededCnt = 10;
agcConfig.agcPeak.hb2UnderRangeHighThreshExceededCnt = 3;
agcConfig.agcPeak.hb2UnderRangeMidThreshExceededCnt 3;
agcConfig.agcPeak.hb2UnderRangeLowThreshExceededCnt 3;
agcConfig.agcPeak.hb20verloadPowerMode = O;
agcConfig.agcPeak.hb2ThreshConfig = 3;
agcConfig.agcPeak.apdGainStepAttack = 4;
agcConfig.agcPeak.apdGainStepRecovery = 2;
agcConfig.agcPeak.hb2GainStepAttack = 4;
agcConfig.agcPeak.hb2GainStepHighRecovery =2;
agcConfig.agcPeak.hb2GainStepMidRecovery = 4;
agcConfig.agcPeak.hb2GainStepLowRecovery = 8;

#adi adrv9025 AgcPower t agcPower;

agcConfig.
agcConfig.
agcConfig.
agcConfig.
agcConfig.
agcConfig.
agcConfig.
agcConfig.
agcConfig.
agcConfig.
agcConfig.
agcConfig.
agcConfig.
agcConfig.

Make agcConfig and rxGainMode into array types

agcPower.
agcPower.
agcPower.
agcPower.
agcPower.
agcPower.
agcPower.
agcPower.
agcPower.
agcPower.
agcPower.
agcPower.
agcPower.

agcPower.

powerEnableMeasurement = 0;
powerInputSelect = 0;
underRangeHighPowerThresh = 9;
underRangelLowPowerThresh = 2;
underRangeHighPowerGainStepRecovery = 0;
underRangeLowPowerGainStepRecovery = 0;
powerMeasurementDuration = 5;
rxTddPowerMeasDuration = 5;
rxTddPowerMeasDelay = 1;
overRangeHighPowerThresh = 2;
overRangeLowPowerThresh = 0;
powerLogShift = 1; # Force to 1
overRangeHighPowerGainStepAttack = 0;

overRangeLowPowerGainStepAttack = 0;

agcConfigArr = Array[Types.adi adrv9025 AgcCfg t] ([agcConfig])

rxGainModeArr = Array[Types.adi adrv9025 RxAgcMode t] ([rxGainMode])

Write settings to device

adrv9025.Agc.AgcCfgSet (agcConfigArr, 1)

Enable AGC Mode

(necessary for syntax reasons)

adrv9025.Rx.RxGainCtrlModeSet (rxGainModeArr, 1)
print "Finished Programming Device"
else:

print "Not Connected"

if (connect == True):

Rev.0 | Page 161 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Link.Ads8.board.Client.Disconnect ()

print "Disconnecting"

GAIN COMPENSATION, FLOATING POINT FORMATTER AND SLICER

The user has the option of enabling gain compensation in the transceiver. In gain compensation mode, the digital gain block is utilized to
compensate for the analog front-end attenuation. The cumulative gain across the device is therefore 0 dB. For example, if 5 dB analog
attenuation is applied at the front end of the device then 5 dB of digital gain is applied. This ensures that the digital data is representative
of the rms power of the signal at the receiver input port. Any internal front-end attenuation changes made to prevent ADC overloading
are transparent to the baseband processor. In this way, the AGC can be used to react quickly to incoming blockers without the need for
the baseband processor to track the current gain index the level of the received signal at the input to the device for received signal
strength measurements.

The digital gain block is controlled by the gain table, and a compensated gain table is required to operate in this mode. Analog Devices
provides an example compensated gain table in the software package. Such a gain table has a unique front-end attenuator setting with a
corresponding amount of digital gain programmed at each index of the table.

Gain compensation can be used in either AGC mode or MGC mode. The maximum amount of gain compensation is 50 dB. This allows
for compensation of both the internal analog attenuator and an external gain component (such as a DSA or LNA).

Large amounts of digital gain increase the bit width of the path. There are a number of ways in which this expanded bit width data can be
sent to the baseband processor, which are described in the following mode option descriptions. Figure 94 is a block diagram of the gain
compensation portion of the receiver chain, showing the locations of the various blocks.

SLICER OUTPUTS
TO BBP

DIGITAL GAIN/ FLOATING POINT
COMPENSATION SLICER FORMATTER JESD204B/C

22770-093

Figure 94. Gain Compensation, Floating Point Formatter, and Slicer Section of the Receiver Datapath

Mode 1: No Digital Gain Compensation

This is the mode that the chip is configured to by default. In this mode the digital gain block is not used for gain compensation. Instead,
the digital gain block may be utilized to apply small amounts of digital gain or attenuation to provide consistent gain steps in a gain table.
The premise is that because the analog attenuator does not have consistent stops in dB across its range, the digital gain block can be
utilized to even out the steps for consistency (the default table utilizes the digital gain block to provide consistent 0.5 dB steps).

Neither the slicer nor floating point formatter block is utilized. As no gain compensation is applied, there is no bit width expansion of the
digital signal. The signal is provided to the JESD204B and JESD204C port, which sends it to the baseband processor in either 12-bit, 16-
bit, or 24-bit format depending on the use case.

Mode 2: Digital Gain Compensation with Slicer GPIO Outputs

In this mode, gain compensation is used. Load the transceiver with a gain table that compensates for the analog front-end attenuation
applied. As the analog front-end attenuation is increased, an equal amount of digital gain is applied. Considering 16-bit data at the input
to the digital compensation block, as more digital gain is applied, the bit width of the signal is increased. With every 6 dB of gain, the bit
width increases by 1. Figure 95 outlines this effect, with yellow boxes indicating the valid (used) bits in each case.

Rev. 0| Page 162 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-1721

0dB GAIN

comPENSATION | P22] D21]D20 [D19 D18] D17] D16 [D15| D14 [D13 D12 [D11 [D10] D9 [D8 [D7 [D6 [D5 [D4 [D3 [D2 [D1 [DO |

0dB < GAIN

COMPENSATION < 6dB [p22] D21] D20 [D19 [D18] D17 D16 [D15 [D14 [D13 | D12 [D11 [D10| D9 | D8 [D7 [D6 [D5 [D4 | D3 [D2 | D1 | DO |

6dB = GAIN
COMPENSATION < 12dB

22770-094

[p22] p21] D20 [D19 | D18] D17] D16 | D15 [D14 [D13 [D12 [D11] D10 D9 [D8 [D7 [D6 | D5 [D4 [D3 [D2 [D1 [DO |

Figure 95. Bit Width of Received Signal for Increasing Gain Compensation

The slicer is used to attenuate the data after the digital gain block in a way that it can fit into the resolution of the JESD204B and
JESD204C datapath. The slicer then advises the user how much attenuation is being applied in real time, so that the user can compensate
on the baseband processor side. In this mode, the current slicer setting (amount of attenuation) is provided in real time over GPIO pins.

Note that this slicer setting information is not necessarily time aligned to the data at the baseband processor side. As soon as the slicer
value changes, this information is provided on the GPIO pins. However, there is some latency between this and when the corresponding
data arrives across the JESD204B and JESD204C link. It is up to the user to determine an appropriate way of accounting for this latency.

This slicer can be configured for a number of attenuation resolutions, namely 1 dB, 2 dB, 3 dB, 4 dB, 6 dB, or 8 dB steps. Higher resolution
(smaller steps) allows the user to follow the actual signal amplitude with finer resolution, while lower resolution (larger steps) allows for
more compensation range.

The slicer can use up to 4 GPIOs per receiver. The GPIOs used to output the slicer position are shown in Table 165. These GPIOs require
their pins to be enabled as outputs and configured for slicer output mode (see the GPIO Configuration section).

Table 165. GPIOs Used for Slicer Output Mode

Receiver GPIOs Utilized (MSB to LSB)

Rx1 GPIO11, GPIO10, GPIO9, GPIO8
Rx2 GPIO_15, GPIO14, GPIO13, GPI012
Rx3 GPIO7, GP106, GPIO5, GPIO4

Rx4 GPIO3, GP102, GPIO1, GPIO_0

The following example illustrated in Figure 96 explains the operation of the slicer in detail. In this use case, the JESD204B and JESD204C
is configured for 16-bit data resolution. The slicer is configured to 6 dB resolution.

Figure 96 explains the operation. Initially, the analog attenuator is applying no attenuation (0 dB) and, therefore, there is 0 dB digital gain
applied to the signal. The slicer is in its default (0000) position. As the attenuation increases (0 dB to 6 dB), a corresponding amount of
digital gain is applied to the signal. With any digital gain applied to the signal, the bit width of the signal has increased (the ADC can
output 16-bits, and further gain allows a maximum input to go beyond 16-bits). In this case, the signal now has a bit width of 17. The
slicer therefore applies 6 dB of attenuation, and the slicer position information across the GPIOs is updated to advise the user of this
change (in this case 0001). This 6 dB attenuation ensures that the bit width of the signal is 16 again. That is, the 16 MSBs have been
selected (sliced) with the LSB dropped. When the compensation increases beyond 6 dB, it is now possible that the signal resolution in the
digital path can be 18-bit. The slicer then attenuates by 12 dB (or slices the 16 MSBs dropping the 2 LSBs).

SLICER
OUTPUTS
TO BBP
__ 0000
0dB GAIN " .
COMPENSATION | D22[D21 |D20|D19|D18|D17|D16!D15|D14|D13|D12|D11 [p10] Do [D8 [D7 [D6 [D5 [D4 [D3 [D2 [D1 | DO [f f t f
F o o e e e e . 0000
COMPRSAUON < 6 | D22] D21 D20 D19] D18 D17 | D16 | D15 | D14 D13 | D12 [D11 [D10 D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO | EEE

__

__

0000
Compgzg:T?c?rl“N<12dB|D22|D21|D20|D19|D18ID17|D16|D15|D14|D13|D12|D11|D10| Do [D8 [b7 [D6 [D5 [D4 [D3 [D2 D1 [Do | f f t f
s s

22770-095

Figure 96. Slicer Bit Selection with Digital Gain

The baseband processor receives these 16-bits and uses the slicer output to scale the power of the received signal to determine the power
at the input to the device (or at the input to an external gain element if considered part of the digital gain compensation).

Rev. 0 | Page 163 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

The slicer position vs. digital gain for this 6 dB example is described in Table 166. Equivalent tables can be inferred for the other

attenuation options.

Table 166. Slicer GPIO Output vs. Digital Gain Compensation

Digital Gain Compensation (dB)

Slicer Position (Value Output on GPIOs)

0

0 < Dig_Gain< 6

6 <Dig_Gain <12
12 <Dig_Gain< 18
18 < Dig_Gain < 24
24 < Dig_Gain < 30
30 < Dig_Gain < 36
36 < Dig_Gain < 42
42 < Dig_Gain < 48
48 < Dig_Gain <50

0o NO UL AW N = O

o)

Mode 3: Digital Gain Compensation with Embedded Slicer Position

This mode is similar to Mode 2. The slicer is used to select the 16 MSBs based on the amount of digital gain used by the currently selected

gain index in the gain table. However, in this mode the GPIO slicer outputs are not used. Instead, the slicer position (or attenuation

applied) is embedded into the data.

There are a number of permissible ways in which this can be configured, controlled by the intEmbeddedBits API parameter. The options
are to place the slicer setting as 1 bit on both I and Q, or 2 bits on both I and Q. These can be placed at the MSBs or LSBs. For the case
where 2 bits are embedded onto both I and Q data, there are further options of using 3 or 4 slicer bits. If 3 are used, there is another

option of inserting a 0 to fill the 4™ bit, or to insert a parity bit (by adjusting the intParity API parameter). Table 167 shows the various

modes selectable by intEmbeddedBits.

Table 167. adi_adrv9025_RxSlicerEmbeddedBits_e Description

intEmbeddedBits

Description

ADI_ADRV9025_EMBED_1_SLICERBIT_AT_MSB
ADI_ADRV9025_EMBED_1_SLICERBIT_AT_LSB
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_3_BIT_SLICER

ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_3_BIT_SLICER

ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_4_BIT_SLICER
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_4_BIT_SLICER

Embeds 1 slicer bit on both | and Q at the MSB position. See Figure 97.
Embeds 1 slicer bit on both | and Q at the LSB position. See Figure 98.
Embeds 2 slicer bits on both | and Q at the MSB positions. See Figure 99.
Because this is a 3-bit mode, an extra bit is inserted denoted as P in Figure
99. This can either be a parity bit or a zero can always be inserted alternatively.
Embeds 2 slicer bits on both | and Q at the LSB position. See Figure 100.
Given this is a 3-bit mode, an extra bit is inserted denoted as P in Figure 100.
This can either be a parity bit or a zero can always be inserted alternatively.
Embeds 2 slicer bits on both | and Q at the MSB positions. See Figure 101.
Embeds 2 slicer bits on both | and Q at the LSB positions. See Figure 102.

SIGN SLICER
BIT _VALUE

IDATA [s [st1 [p13 [p12 [p11 [p1o | po [b8 [b7 [b6 | b5 [b4 [03 [b2 | b1 | po |

SIGN SLICER
BIT _VALUE

QpATA | s [sto [p13 [p12 [p11 [p1o [pe [o8 [o7 [ps | s | o4 | b3 [p2 | b1 | po |

22770-096

Figure 97. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_1_SLICERBIT_AT_MSB)

SIGN
BIT

SLICER
VALUE

iDATA [s [p13 [p12 [p11 [pto] po [b8 [b7 [b6 [b5 [pa [b3 [b2 [b1 | po [st]

SIGN
BIT

SLICER
VALUE

aQpATA | s [p13 [p12 [p11 [pto | po [o8 | o7 [b6 | p5s | p4 | p3 | p2 | o1 | po [sto |

22770-097

Figure 98. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_1_SLICERBIT_AT_LSB)

Rev. 0 | Page 164 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-1721

SIGN SLICER
BIT VALUE

iIDATA [s | P [st2|p12[p11]pto] po [o8 [b7 [b6 [b5 [b4 [b3 [b2 | o1 | po |

SIGN SLICER
BIT VALUE

apata | s [st1 [sto[p12 [p11 [pto]| po [o8 [o7 [b6 [o5 | p4a [p3 [p2 | b1 | po |

22770-098

Figure 99. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_3_BIT_SLICER)

SIGN SLICER
BIT VALUE

IDATA [s [p12 [p11 [p1o [pes [b8 [b7 [b6 [D5 [p4a [p3 [D2 [D1 [Do [P [st2]

SIGN SLICER
BIT VALUE

QDATA | s [D12 [D11 [1o [Do [b8 [o7 [b6 | b5 | b4 [b3 [b2 | b1 | po [st1] sto|

22770-099

Figure 100. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_3 BIT_SLICER)

SIGN SLICER
BIT VALUE

iIDATA | s [st3 [st2| p12 [p11 [pto] po [b8 [o7 [b6 [ps [b4 [b3 [b2 [b1 [po |

SIGN SLICER
BIT VALUE

aQpATA | s [st1 [sto [p12 [p11 [pto| pe [b8 [o7 | o6 | o5 | p4a | p3 | b2 | b1 | po |

22770-100

Figure 101. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_4_BIT_SLICER)

SIGN SLICER
BIT VALUE

IDATA [s [D12 [D11 [1o [Do [b8 [b7 | D6 [D5 [b4 [D3 [D2 | b1 | Do [si3 | sz

SIGN SLICER
BIT VALUE

apatA | s [p12 [p11 [p1o [oo [b8 [o7 [b6 [ps [pa [b3 [b2 | o1 | po [st1] sto|

22770-101

Figure 102. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_4 BIT_SLICER)

Mode 4: Digital Gain Compensation and Slicer Input

In this mode, the slicer position is controlled by the user. In Mode 2 and Mode 3, the slicer can be viewed as an attenuator, which reduces

the signal level a certain dB with each slicer position step in a way that it can be sent across the JESD204B and JESD204C link. This mode

is similar, except the position (amount of attenuation) is controlled externally. The valid step sizes are between 1 dB and 6 dB and

controlled by the extPinStepSize API parameter, as outlined in Table 168.

Table 168. adi_adrv9025_ExtSlicerStepSizes_e Description

extPinStepSize Slicer Gain Step (dB)
ADI_ADRV9025_EXTSLICER_STEPSIZE_1DB 1
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_2DB 2
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_3DB 3
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_4DB 4
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_6DB 6

The slicer has 3 input pins. The valid options are shown in Table 169. Each channel can be set to any one of the options using the

rx1ExtSlicerGpioSelect, rx2ExtSlicerGpioSelect, rx3ExtSlicerGpioSelect, and rx4ExtSlicerGpioSelect API parameters. The value of these

pins and the step size chosen set the level of slicer attenuation applied to the data before transmission across the JESD204BC link.

Slicer Attenuation = Slicer Input Pin Values x extPinStepSize

For example, if the value on the slicer input pins is 0’b111, and the step size is 2 dB, the slicer applies 14 dB (7 x 2 dB) of attenuation to the data.

Table 169. adi_adrv9025_RxExtSlicerGpioSel_e Description

Value of RxExtSlicerGpioSelect GPIOs Utilized (MSB to LSB)
ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 GPI02, GPIO1, GPIO_0
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 GPIO5, GPIO4, GPIO3

Rev. 0 | Page 165 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Value of RxExtSlicerGpioSelect GPIOs Utilized (MSB to LSB)
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 GPIO8, GPIO7, GPIO6
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 GPIO11, GPIO10, GPIO9
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 GPIO14, GPIO13, GPIO12
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 GPI017, GPIO16, GPIO_15

Mode 5: Digital Gain Compensation and Floating Point Formatting

The floating point formatter offers an alternative way of encoding the digitally compensated data onto the JESD204B link. In this mode,
the data is converted to IEEE754 half precision floating point format (binary 16). There is a slight loss in resolution when using the
floating-point formatter, though resolution is distributed in a way so that smaller numbers have higher resolution.

In binary 16 floating point format the number is composed on a sign bit (S), an exponent (E), and a significand (T). There are a number
of options in terms of the number of bits that can be assigned to the exponent. More bits in the exponent result in a higher range, and
therefore can allow for more digital compensation to the represented, whereas more bits in the significand provides higher resolution.
The available options for the floating point formatter of the device include the following:

e 5-bit exponent, 10-bit significand

e 4-bit exponent, 11-bit significand

e 3-bit exponent, 12-bit significand

e 2-bit exponent, 13-bit significand

It is also possible to pack the data in the following different formats (as shown in Figure 103):

e Sign, exponent, significand
e Sign, significand, exponent

SIGN EXPONENT SIGNIFICAND

BIT MSB LSB MSB LsSB
[] - :

w t

SIGN SIGNIFICAND EXPONENT

BIT MSB LSB MSB LSB
] . :

t W 3

Figure 103. Floating Point Number Representation

In Figure 103, S is the sign bit, E is the value of the exponent, T is the value of the significand, w is the bit width of the exponent, and t is
the bit width of the significand.

Upon receipt of an encoded floating point formatter, the user breaks up the binary 16 number into its constituent parts. For the purposes
of this explanation, consider a 3-bit exponent. In IEEE754, the maximum exponent (0’111 in this case) is reserved for NaN. The
minimum exponent (0’b000) is used for a signed zero (E = 0, T = 0) and subnormal numbers (E = 0, T # 0). To decode a received floating
point sample, the following equations are used:

IfE=0and T =0,

Value=0
IfE=0and T # 0:

Value = (=1)5 x 2E-bisstl 5 (0 + 2P x T)
IfE #0:

Value = (=1) x 2E-b x (1 + 277 x T)

where:
bias is used to convert the positive binary values to exponents which allow for values both less than and greater than the full-scale of the ADC.
p is the precision of the mode (p =t + 1, because the t significand bits are coupled with a sign bit).

Rev. 0 | Page 166 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Table 170 provides the values to use in these equations for the various IEEE754 supported modes.

Table 170. Floating-Point Formatter—Supported IEEE754 Modes

Exponent Bit Width (w) Significand Bit Width (t) Precision (p) Bias
5 10 11 15

4 11 12 7

3 12 13 3

2 13 14 1

Figure 104 provides a visual representation of how the values of a waveform are encoded in floating point format. In this case, the
maximum exponent (E bias) is 3, meaning that data up to 24 dBFS of the ADC can be represented. As the signal reduces, the exponent
required to represent each value differs. This is a different concept to the slicer that instead bit shifted the data solely based on the applied
digital attenuation and had a constant value for a constant digital gain. Instead, the floating-point formatter interprets each data value
after the digital gain compensation separately. Because of the fixed precision of the significand and the sign bit, it can also be interpreted
from this plot that there is higher resolution at lower signal levels than there is at higher signal levels, preserving SNR when the received
signal strength is low.

32.0

EXP: +3

\ — [

EXP: +1

4.0
\ 'l — \‘ 20 EXP:0
§$= 20 !
\ 7 \] i BXPO

\ / \ / 5o %

\ \ S

EXP: -3

-32.0

/ EXP:i-2 S
0.25
ko
-0.25
/ EXP: -2

-0.50
/ EXP: —1
-1.00

Figure 104. Visualization of the Floating-Point Formatter Values

22770-103

The floating-point formatter also supports non-IEEE754 modes, referred to as Analog Devices modes, where the largest exponent is not
used to express NaN in accordance with IEEE754. It is unnecessary for the device to encode NaN because none of the data values can be
NaN and, therefore, using this extra exponent value increases the largest value representable for a given exponent bit width.

Table 171. Exponent Bit Widths of IEEE754 and Analog Devices Modes

Exponent Bit Width IEEE754 Mode Exponent Range (After Unbiasing) | Analog Devices Mode Exponent Range (After Unbiasing)
5 +15to-14 +16to-14

4 +7to -6 +8t0 -6

3 +3to-2 +4to -2

2 +1to-1 +2to -1

Rev. 0| Page 167 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

In the default floating point format, the leading one is inferred and not encoded (for normal numbers). It is possible to enable a mode

where the leading one is encoded and stored in the MSB of the significand. However, this reduces the precision of the values.

If the user knows that the range of attenuation required for the worst case blocker (and therefore the digital gain required to compensate for it)

exceeds the correction range allowed by the exponent width chosen, it is also possible to enable a fixed digital attenuation (from 6 dB to 42 dB) prior
to the floating-point formatter to ensure that the signal never exceeds the maximum range encodable over the JESD204B and JESD204C link.
RECEIVER DATA FORMAT DATA STRUCTURE

The configuration parameters for the floating-point formatter and slicer are set up in a data structure of adi_adrv9025_RxDataFormat_t type.
Table 172. adi_adrv9025_RxDataFormat Definition

Parameter

Comments

rxChannelMask

This selects the channels upon which to enable this gain control mode. It is a bit mask with each bit
corresponding to a channel, [DO] = Rx1, [D1] = Rx2, [D2] = Rx3, [D3] = Rx4. Therefore, setting the
rxChannelMask = 15 means that all receivers are configured with the same agcMode. Data type: uint32.

formatSelect

This selects the format of the data received from the receive path. Data type: adirx9025_RxDataFormatModes_e.

formatSelect

Format

ADI_ADRV9025_GAIN_COMPENSATION_DISABLED
ADI_ADRV9025_GAIN_WITH_FLOATING_POINT

ADI_ADRV9025_GAIN_WITH_INTERNAL_SLICER

ADI_ADRV9025_GAIN_WITH_EXTERNAL_SLICER

ADI_ADRV9025_GAIN_WITH_INTERNAL_SLICER_NOGPIO

No gain compensation (Mode 1)

Gain compensation and floating-point formatter
enabled (Mode 5)

Gain compensation and slicer bits embedded on
JESD204B and JESD204C signal (Mode 3)

Gain compensation and slicer bits output on
GPIOs (Mode 2)

Gain compensation and slicer position input from
GPIOs (Mode 4)

floatingPointConfig

A configuration structure for floating point format (see Table 173). To be used when floating point formatter is
utilized. Data type: adi_adrv9025_FloatingPointConfigSettings_t.

integerConfigSettings

type: adi_adrv9025_IntegerConfigSettings_t.

A configuration structure for the data resolution across the JESD204B and JESD204C link (see Table 174). Data

slicerConfigSettings

A configuration structure for the slicer functionality (see Table 175). Data type: adi_adrv9025_SlicerConfigSettings_t.

externalLnaGain

For use in dual band modes. Not currently supported.

tempCompensationEnable | Not currently supported.

Table 173. adi_adrv9025_FloatingPointConfigSettings_t

Parameter Comments

fpDataFormat This parameter sets the format of the 16-bit output on the JESD204B interface. Data type:
adi_adrv9025_FpFloatDataFormat_e.
fpDataFormat Floating Point Data Format
ADI_ADRV9025_FP_FORMAT_SIGN_EXP_SIGNIFICAND Sign, Exponent, Significand
ADI_ADRV9025_FP_FORMAT_SIGN_SIGNIFICAND_EXP Sign, Significand, Exponent

fpRoundMode This parameter sets the round mode for the significand. The following settings are defined in the IEEE754
specification. For more information, consult Section 4.3 in IEEE 754-2008. Data type: adi_adrv9025_FpRoundModes_e.
fpRoundMode Floating Point Rounding Mode
ADI_ADRV9025_ROUND_TO_EVEN Floating point ties to an even value.
ADI_ADRV9025_ROUNDTOWARDS_POSITIVE Round floating point toward the positive direction.
ADI_ADRV9025_ROUNDTOWARDS_NEGATIVE Round floating point toward the negative direction.
ADI_ADRV9025_ROUNDTOWARDS_ZERO Round floating point toward the zero direction.
ADI_ADRV9025_ROUND_FROM_EVEN Round floating point away from the even value.

fpNumExpBits This parameter indicates the number of exponent bits in the floating-point number. Data type:

adi_adrv9025_FpExponentModes_e.

fpNumExpBits

No. of Exponent Bits

ADI_ADRV9025_2_EXPONENTBITS
ADI_ADRV9025_3_EXPONENTBITS
ADI_ADRV9025_4_EXPONENTBITS
ADI_ADRV9025_5_EXPONENTBITS

2

3
4
5

Rev. 0 | Page 168 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

Parameter

Comments

fpAttenSteps

Attenuates integer data before floating point conversion when floating point mode enabled. Data type:

adi_adrv9025_FpAttenSteps_e.

fpRx1Atten

Attenuation (dB)

ADI_ADRV9025_FPATTEN_ODB 0
ADI_ADRV9025_FPATTEN_MINUS6DB -6
ADI_ADRV9025_FPATTEN_MINUS12DB =12
ADI_ADRV9025_FPATTEN_MINUS18DB -18
ADI_ADRV9025_FPATTEN_24DB 24
ADI_ADRV9025_FPATTEN_18DB 18
ADI_ADRV9025_FPATTEN_12DB 12
ADI_ADRV9025_FPATTEN_6DB 6

fpHideLeadingOne

It is possible to hide the leading one in the significand to be compatible to the IEEE754 specification (IEEE mode).
Alternatively, a leading one can be inserted at the MSB of the significand. Data type: adi_adrv9025_FpHideLeadingOne_e.

fpHideLeadingOne

Setting

ADI_ADRV9025_FP_FORMAT_HIDE_LEADING_ONE_DISABLE
ADI_ADRV9025_FP_FORMAT_HIDE_LEADING_ONE_ENABLE

Leading one at start of significand.
No leading one at start of the significand.

fpEncodeNan

This parameter is used to configure whether the floating-point formatter reserves the highest value of exponent for

not a number (NaN) to be compatible with the IEEE754 specifica
exponent to extend the representable signal range. Data type: a

tion or whether to use the highest value of the
di_adrv9025_FpNanEncode_e.

fpHideLeadingOne

Setting

ADI_ADRV9025_FP_FORMAT_NAN_ENCODE_DISABLE
ADI_ADRV9025_FP_FORMAT_NAN_ENCODE_ENABLE

Do not reserve the highest exponent for NaN.
Reserve highest exponent for NaN.

Table 174. adi_adrv9025_IntegerConfigSettings_t Definition

Parameter

Comments

intEmbdeddedBits

For use in slicer modes. This parameter sets the integer number of embedded slicer bits to embed in receiver data
sample and bit position to embed them (see Mode 3). Data type: adi_adrv9025_RxSlicerEmbeddedBits_e.

intEmbeddedBits

Slicer Bit Embedded position in Data Frame

ADI_ADRV9025_NO_EMBEDDED_SLICER_BITS
ADI_ADRV9025_EMBED_1_SLICERBIT_AT_MSB

ADI_ADRV9025_EMBED_1_SLICERBIT_AT_LSB

ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_3_BIT_SLICER

ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_4_BIT_SLICER

ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_3_BIT_SLICER

ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_4_BIT_SLICER

Disabled all embedded slicer bits.

Embeds 1 slicer bit on | and 1 slicer bit on Q and
the MSB position.

Embeds 1 slicer bit on | and 1 slicer bit on Q and
the LSB position.

Embeds 2 slicer bits on | and 2 slicer bits on Q
and the MSB position in 3-bit slicer mode.
Embeds 2 slicer bits on | and 2 slicer bits on Q
and the LSB position in 3-bit slicer mode.
Embeds 2 slicer bits on | and 2 slicer bits on Q
and the MSB position in 4-bit slicer mode.
Embeds 2 slicer bits on | and 2 slicer bits on Q
and the LSB position in 4-bit slicer mode.

intSampleResolution

This parameter sets the integer sample resolution selecting either 12 bits, 16 bits, or 24 bits data with either twos
complement or signed magnitude. Data type: adi_adrv9025_RxIntSampleResolution_e.

intSampleResolution

Resolution of Integer Sample

ADI_ADRV9025_INTEGER_12BIT_2SCOMP
ADI_ADRV9025_INTEGER_12BIT_SIGNED
ADI_ADRV9025_INTEGER_16BIT_2SCOMP
ADI_ADRV9025_INTEGER_16BIT_SIGNED
ADI_ADRV9025_INTEGER_24BIT_2SCOMP
ADI_ADRV9025_INTEGER_24BIT_SIGNED

12-bit resolution with twos complement.
12-bit resolution with signed magnitude.
16-bit resolution with twos complement.
16-bit resolution with signed magnitude.
24-bit resolution with twos complement.

24-bit resolution with signed magnitude.

Rev. 0 | Page 169 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Parameter Comments

intParity In the embedded 3-bit slicer mode (Mode 3), it is possible to enable a parity mode. The device can support even
parity (whereby the number of 1s in the bit sequence is always even) or odd parity (whereby the number of 1s in the
bit sequence is always odd). Data type: adi_adrv9025_RxIntParity_e.

intParity Setting
ADI_ADRV9025_3BIT_SLICER_EVEN_PARITY Even parity enabled.
ADI_ADRV9025_3BIT_SLICER_ODD_PARITY Odd parity enabled.
ADI_ADRV9025_NO_PARITY Parity disabled.

Table 175. adi_adrv9025_SlicerConfigSettings_t Definition

Parameter Comments

extSlicerStepSize This parameter is used in gain compensation with external slicer control (Mode 4). This parameter sets the slicer
step value that is used with this external control mechanism. Data type: adi_adrv9025_ExtSlicerStepSizes_e.
extSlicerStepSize Slicer Step Size
ADI_ADRV9025_EXTSLICER_STEPSIZE_1DB 1dB
ADI_ADRV9025_EXTSLICER_STEPSIZE_2DB 2dB
ADI_ADRV9025_EXTSLICER_STEPSIZE_3DB 3dB
ADI_ADRV9025_EXTSLICER_STEPSIZE_4DB 4dB
ADI_ADRV9025_EXTSLICER_STEPSIZE_6DB 6dB

intSlicerStepSize This parameter is used in gain compensation with internal (automatic) slicer control (Mode 2). This parameter sets
the slicer step value. Data type: adi_adrv9025_IntSlicerStepSizes_e.
intSlicerStepSize Slicer Step Size
ADI_ADRV9025_INTSLICER_STEPSIZE_1DB 1dB
ADI_ADRV9025_INTSLICER_STEPSIZE_2DB 2dB
ADI_ADRV9025_INTSLICER_STEPSIZE_3DB 3dB
ADI_ADRV9025_INTSLICER_STEPSIZE_4DB 4dB
ADI_ADRV9025_INTSLICER_STEPSIZE_6DB 6 dB
ADI_ADRV9025_INTSLICER_STEPSIZE_8DB 8dB

rx1ExtSlicerGpioSelect | This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx1. The choice must be unique to
Rx1. Data type: adi_adrv9025_RxExtSlicerGpioSel_e.

rx1ExtSlicerGpioSelect GPIOs Utilized
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE

ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_O 2,1,0
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 54,3
ADI_ADRV9025_EXTSLICER_RX_GPIO_8 DOWNTO_6 8,7,6
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11,10,9
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14,13,12
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17,16,15

ADI_ADRV9025_EXTSLICER_RX_GPIO_INVALID

rx2ExtSlicerGpioSelect | This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx2. The choice must be unique to
Rx2. Data type: adi_adrv9025_RxExtSlicerGpioSel_e.

rx2ExtSlicerGpioSelect GPIOs Utilized
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE

ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 2,1,0
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 54,3
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 8,7,6
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11,10,9
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14,13,12
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17,16,15

ADI_ADRV9025_EXTSLICER_RX_GPIO_INVALID

Rev. 0 | Page 170 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Parameter Comments

rx3ExtSlicerGpioSelect | This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx3. The choice must be unique to
Rx3. Data type: adi_adrv9025_RxExtSlicerGpioSel_e.

rx3ExtSlicerGpioSelect GPIOs Utilized
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE

ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 2,1,0
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 54,3
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 8,7,6
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11,10,9
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14,13,12
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17,16,15

ADI_ADRV9025_EXTSLICER_RX_GPIO_INVALID

rx4ExtSlicerGpioSelect | This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx4. The choice must be unique to
Rx4. Data type: adi_adrv9025_RxExtSlicerGpioSel_e.

rx4ExtSlicerGpioSelect GPIOs Utilized
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE

ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 2,1,0
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 54,3
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 8,7,6
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11,10,9
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14,13,12
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17,16,15

adi_adrv9025_RxDataFormatSet(...)

adi adrv9025 RxDataFormatSet (adi adrv9025 Device t* device, adi adrv9025 RxDataFormat t
rxDataFormat[],uint8 t arraySize);

Description
This command configures the receiver data format.

Parameters

Table 176. adi_adrv9025_RxDataFormatSet(...) Parameters

Parameter Description

*device Pointer to device structure.

rxDataFormat[] An array of receiver data format structures.

arraySize The number of receiver data format structures in rxDataFormatarray length of txPaProtectCfg[].

Rev.0 | Page 171 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

DIGITAL FILTER CONFIGURATION

OVERVIEW

This section describes the digital filters within the transceiver and provides a description of each filter in terms of their filter coefficients
and position within the signal chain. The API structures are described and an example profile specific configuration is provided for each
signal chain. The API functions that are used to configure the filters are also described in this section.

RECEIVER SIGNAL PATH

Each receive input has an independent signal path including separate I/Q mixers that feed into programmable analog transimpedance
amplifiers (TIAs) that serve as LPFs in the analog data path. The signals are then converted by the XA ADCs and filtered in half-band
decimation stages and the PFIR. The fixed coefficient half-band filters (FIR1, FIR2, RHB1(HR), RHB1(LP), RHB2, RHB3, and DEC5)
and the PFIR is designed to prevent data wrapping and overrange conditions.

Each receive channel can convert signals down to zero IF real data using either the standard I/Q configuration or a low IF complex data
configuration. The digital filtering stage allows the configuration flexibility and decimation options to operate in either mode.

Figure 105 shows the in-phase (I) and quadrature (Q) signal paths for the Rx1, Rx2, Rx3, and Rx4 signal chain.

DEC5

w

o

el) i) s)) sk

o

IF I

CONVERSION z

— ANDG[KIC-'I“ITAL °

DEC5 g

- S

@

e e M) ey M) -t
1
L2
§

Figure 105. Receive Signal Path
TIA

The receive transimpedance amplifier is an LPF with a single real pole frequency response. The transceiver supports bandwidths up to
200 MHz and each TIA supports a pass-band of 100 MHz on the I and Q paths. The TIA is calibrated during device initialization to
ensure a consistent frequency corner across all devices. The TIA 3 dB bandwidth is set within the device data structure and is profile
dependent. Roll-off within the receive pass band is compensated by the PFIR to ensure a maximally flat pass band frequency response.

Decimation Stages

The signal path can be configured such that either the decimate by 5 filter (DEC5) or the combination of FIR2, FIR1, and RHB3 is used in
the receive digital path. The DEC5 decimates by a factor of 5 while the other filter combination can be configured to decimate by factors
of2,4,o0r8.

DEC5

DECS filter coefficients include the following: +0.000976563, +0.001220703, +0.001953125, +0.001953125, —0.00390625, —0.0078125,
—-0.014648438, —0.018798828, —0.019042969, —0.007568359, +0.010742188, +0.041748047, +0.079101563, +0.1171875, +0.146972656,
+0.165527344, +0.165527344, +0.146972656, +0.1171875, +0.079101563, +0.041748047, +0.010742188, —0.007568359, —0.019042969,
—0.018798828, —0.014648438, —0.0078125, —0.00390625, +0.001220703, +0.001953125, +0.001953125, +0.001220703, and +0.000976563

Finite Impulse Response 2 Filter (FIR2)

The FIR2 filter is a fixed coefficient decimating filter. The FIR?2 filter can decimates by a factor of 2 or the filter can be bypassed.
The FIR2 filter coefficients include the following: 0.0625, 0.25, 0.375, 0.25, and 0.0625.

Finite Impulse Response 1 Filter (FIR1)

The FIRI filter is a fixed coefficient decimating filter. The FIR1 filter can decimate by a factor of 2 or the filter can be bypassed.
The FIRI filter coefficients include the following: 0.0625, 0.25, 0.375, 0.25, and 0.0625.

Receive Half-Band 3 Filter (RHB3)
The RHB3 filter is a fixed coefficient decimating filter. The RHB3 filter decimates by a factor of 2.

The RHB3 filter coefficients include the following: —0.033203125, 0, +0.28125, +0.49609375, +0.28125, 0, and —0.033203125.
Rev.0 | Page 172 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Receive Half-Band 2 Filter (RHB2)
The RHB2 filter is a fixed coefficient decimating filter. The RHB2 filter can decimate by a factor of 2 or the filter can be bypassed.

The RHB2 filter coefficients include the following: —0.000244141, 0, +0.001708984, 0, —0.0078125, 0, +0.026855469, 0, —0.078369141, 0,
+0.30859375, +0.501220703, +0.30859375, 0, —0.078369141, +0, 0.026855469, 0, —0.0078125, 0, +0.001708984, 0, —0.000244141.

Receive Half-Band High Rejection 1 Filter (RHB1 (HR))
The RHB1 (HR) filter is a fixed coefficient decimating filter. The RHB1 (HR) filter can decimate by a factor of 2 or the filter can be bypassed.

RHBI (HR) filter coefficients include the following: +0.000106812, 0, —0.000289917, 0, +0.00062561, 0, —0.001205444, 0, +0.002120972,
0, —0.003494263, 0, +0.005493164, 0, —0.008300781, 0, +0.012207031, 0, —0.01763916, 0, +0.025421143, 0, —0.03717041, 0, +0.057250977,
0, -0.101608276, 0, +0.314498901, +0.495956421, +0.314498901, 0, —0.101608276, 0, +0.057250977, 0, —0.03717041, 0, +0.025421143, 0,
-0.01763916, 0, +0.012207031, 0, —0.008300781, 0, +0.005493164, 0, —0.003494263, 0, +0.002120972, 0, —0.001205444, 0, +0.00062561, 0,
—-0.000289917, 0, +0.000106812.

Receive Half-Band Low Power 1 Filter (RHB1 (LP))
The RHBI (LP) filter is a fixed coefficient decimating filter. The RHB1 (LP) filter can decimate by a factor of 2 or the filter can be bypassed.

RHBI (LP) filter coefficients: —0.002685547, 0, +0.017333984, 0, —0.068359375, 0, +0.304443359, +0.501708984, +0.304443359, 0,
—-0.068359375, 0, +0.017333984, 0, —0.002685547.

Receive PFIR Filter

The receive PFIR filter acts as a decimating filter. The PFIR can decimate by a factor of 1, 2, or 4, or the filter can be bypassed. The RFIR
filter compensates for the roll-off of the TIA LPE The PFIR filter can use 24, 48, or 72 filter taps. The PFIR filter also has programmable
gain settings of +6 dB, 0 dB, -6 dB, or —12 dB.

The maximum number of taps is limited by the FIR clock rate (data processing clock — DPCLK). The maximum DPCLK is 1 GHz. The
DPCLK is the ADC clock rate divided by either 4 or 5. The divider is 4 when using the FIR2, FIR1, and HB3 filters, and the divider is 5 when
using the DECS filter. The DPCLK affects the maximum number of PFIR filter taps that can be used according to the following equation:

Rx PFIR Filter Tapsmax = (DPCLK)/(Rx_IQ_DATARATE) x 24

where:

Rx PFIR Filter Tapsmax is the maximum number of filter taps that can be used for the given clock rate.
DPCLK is the digital filter clock rate.

Rx_IQ_DATARATE is the output data rate of the filter.

IF Conversion

The IF conversion stage provides the ability to change how the received data is presented to the JESD port. Figure 106 shows a block
diagram of the IF conversion stage. There are two parallel paths where data can be processed (Band A and Band B). There are two mixer
stages in the circuitry of each band that allow upshifting or downshifting, interpolation and decimation stages, and a half-band filter with
a pass band of 0.4 x the sample rate.

The half-band filter coefficients in this IF conversion stage include the following: —9.1553 x 107, 0, +2.4414 x 10, 0, —=5.7983 x 107, 0, +0.0012,
0, -0.0023, +0, 0.0040, 0, —0.0065, 0, +0.0103, 0, -0.0157, 0, +0.0236, 0, —0.0357, 0, +0.0563, 0, —0.1015, 0, +0.3168, +0.5000, +0.3168, 0,
-0.1015, 0, +0.0563, 0, —-0.0357, 0, +0.0236, 0, —0.0157, 0, +0.0103, 0, —0.0065, 0, +0.0040, 0, —0.0023, 0, +0.0012, 0, —=5.7983 x 10™*, 0,
+2.4414 x 107, 0, =9.1553 x 10

The following use cases provide examples of the types of functionality supported by this block. Note that currently, only the low IF to zero
IF conversion mode is supported in a released profile.

COMPLEX LOW IF TO ZERO IF

In this use case, the received signal is offset from the LO such that the entire signal of interest is on one side of the LO. The Band A NCO1
downshifts the signal such that the signal is centered at 0 Hz. There is a half-band filter and decimate by 2 stage that decreases the bandwidth and
subsequently the IQ rate if used. This stage reduces the number of JESD lanes required, or the rate that at which the lanes must be run.

Figure 107 shows a conceptual case of a 200 MHz receive bandwidth (IQ rate 245.76 MSPS) profile used to receive a 75 MHz MC-GSM
offset from the LO. The center frequency is 52.5 MHz offset from the LO, such that the band occupies from +15 MHz to +90 MHz. The

Rev. 0| Page 173 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

channel then uses the IF conversion stage to shift the signal to be centered at about 0 Hz, filter with the half-band filter, and decimate the
output by two such that the IQ rate sent over the JESD is 122.88 MSPS.

COMPLEX LOW IF TO REAL IF

In this use case the signal is shifted using NCO1 or NCO2 (or both/none) such that the downconverted signal exists solely on one side of
the LO. The signal no longer needs to be in complex form; only I data is sent across the link and Q data is dropped. The interpolate by 2
stage can also be utilized for this scenario.

BAND A CIRCUITRY

BAND A BAND A
NCO 1 NCO 2

HB FILTER

2 HB FILTER + DEC2 I—, 2 2
DIG GAIN
\ 2 — comP

INT2 + HB FILTER

-

(- Y-S elisinintivinininipisiniotoipinininbpipinintolpintnintpipintntoipininintipintntnipinintutoipintntoiptointntotpintntnbptpintnt

2 ’—‘ INT2 + HB FILTER ’—‘ 2
) 2

2
I—]% DIG GAIN
HB FILTER + DEC2 I—' comp

2 2
HB FILTER
BAND B BAND B
NCO 1 NCO 2
BAND B CIRCUITRY

22770-107

Figure 106. IF Conversion Stage Block Diagram (All Circuitry is Implemented in Quadrature, as Indicated)

ZERO IF TO REAL IF

In this use case, the received signal is centered around the LO. The signal is interpolated by 2 and half-band filtered. The Band A NCO2
upshifts or downshifts the data to generate a signal that is symmetrical to about 0 Hz. The result of this signal is that the spectrum no
longer requires a complex representation, only I data is sent across the link, and the Q data is dropped.

DUAL BAND MODE

In this use case, multiple signals are received (Signal 1 and Signal 2). Band A circuitry can be used to process Signal 1, and Band B
circuitry can be used to process Signal 2. Band A NCOL1 shifts Signal 1 such that the signal is placed within the pass band of the half-band
filter and filters out Signal 2. The decimate by 2 stage can also be used if the final composite bandwidth allows a lower data rate across the
JESD link. The Band A NCO2 stage is then used to offset the signal to the required position in the spectrum. Likewise, the same
procedure is performed on Signal 2. The result of this procedure is that the two signals, originally located far apart in the spectrum and
requiring a high data rate, can be moved closer together with this IF conversion circuitry and represented by a lower IQ rate.

DUAL BAND MODE (REAL IF)

In this use case, the signals are processed separately using Band A and Band B. The NCO?2 stages are used to shift both signals so that the
signals exist on the same side of the LO. At this point, the spectrum no longer needs a complex representation, only I data can be sent
across the link, and Q data is dropped. The interpolate by 2 stage can also be utilized for this scenario.

HB FILTER ONLY MODE

If there is a blocker to one side of the signal, the IF conversion stage can be used to obtain further rejection of the blocker. Band A NCO1
offsets the signal to position the signal close to the edge of the half-band filter pass band, and to position the blocker in the filter transition or
stopband. The Band A NCO2 can be used to position the desired signal to its previous position within the spectrum, if required.

Rev. 0 | Page 174 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-1721

OUTPUT OF HB FILTER AND DEC 2 STAGE
INPUT TO IF CONVERSION STAGE OUTPUT OF BAND A MIXER STAGE 1 AND FINAL OUTPUT

1Q RATE: 245.76MSPS 1Q RATE: 245.76MSPS 1Q RATE: 122.88MSPS

15MHz MC-GSM MC-GSM MC-GSM
> 1 > 1 >

[
0 52.5MHz f 0 f 0 f

BAND A CIRCUITRY

BAND A
NCO 2

HB FILTER

HB FILTER + DEC2

2
2 2 | pIG GAIN
3 7 D y 2 I—] | “comp

INT2 + HB FILTER
2 INT2 + HB FILTER 2

) 2
1 2
DIG GAIN
COMP

HB FILTER + DEC2

HB FILTER
BAND B BAND B .
NCO 1 NCO 2 g
BAND B CIRCUITRY g

Figure 107. IF Conversion Stage in Zero-IF MC-GSM Configuration Block Diagram
RECEIVER SIGNAL PATH EXAMPLE

The TES provides an example that shows how the baseband filtering stages are used in profile configurations for a signal pathway. In this
example, the ADRV9025Init_StdUseCase26_nonLinkSharing profile is selected for the receive channels. This example is a 200 MHz
profile with an IQ rate of 245.76 MSPS.

Figure 108 shows the filter configuration for this example profile. The signal rate after the PFIR block is equal to the profile IQ rate.

@) Rx Signal Chain

DEC5

5xd
JESDZ04
Framer
RHE2 RHB1 PFIR
m . - to—| ‘Wide o— ® ® Rx JESD204

224 24 14 ~ X Formatier [

JESD204
Framer

*) Rx Input Settings
Basic Seftings
Rx Output Sample Rate(MHz) 24576
Rx RF Bandwidth (MHz) 200
Advanced Settings.
TIA Analog Filter 3dB (MHz) 200

Generate Rx Profile

22770-109

Figure 108. Filter Configuration for Receive 200 MHz, IQ Rate 245.76 MSPS

Rev. 0| Page 175 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

The TES also provides a graph of the complete signal chain transfer function for this profile in the Rx tab under the ChipConfig

dropdown (see Figure 109).

©

100~
80-
60-

40-

-40-
60~
-80-

-100-

Magritude (GBFS)

-120-
-140-
-160-
-180-
-200-
-220-
-240-
260
-280-

300+
0

i M‘M

&l

.“““"HI | ”\hﬂl.w MMM M\“h |\|M

I i '
500 1000 1500

Rx Signal Transfer Function

i

il

'\u HH

i‘\m\”\l

' |
2000 2500

Frequency (MHz)

i ' ' '
3000 3500 4000 4500

-

A 1
gt MMA MM
i

M“I\ WMW

22770-110

'
4914.6

Figure 109. Receive Signal Transfer Function

RECEIVER FILTER API STRUCTURE

The filter configuration is stored in the adi_adrv9025_RxProfile_t structure. This structure is stored within the adi_adrv9025_RxSettings
structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). The adi_adrv9025_RxProfile_t structure

parameters are listed in Table 177.

Table 177. adi_adrv9025_RxProfile_t Structure Parameters

Name

Value

Description

channelType

rxFirDecimation
rxDec5Decimation

rhb1Decimation
rhb1WideBandMode
rhb2Decimation
rhb3Decimation
rxFir1Decimation
rxFir2Decimation

rxOutputRate_kHz
rfBandwidth_kHz
rxBbf3dBCorner_kHz
rxAdcBandWidth_kHz

rxFir
rxDdcMode
rxNcoShifterCfg

tiaPowerMode

A value of type adi_adrv9025_RxChannels_e

1,2,4

4 = use a combination of FIR1, FIR2, and/or RHB3

5 =use DEC5

1 =bypass, 2 =in use

0 - HB1 is narrow, 1 — HB1 is wider

1,2
1,2
1,2
1,2

30720 to 368640 (based on currently defined use cases)
20000 to 200000 (based on currently defined use cases)
20000 to 200000 (based on currently defined use cases)
10000 to 100000 (based on currently defined use cases)

A value of type adi_adrv9025_RxFir_t
A value of type adi_adrv9025_RxDdc_e
A value of type adi_adrv9025_RxNcoShifterCfg_t

0,123

Chooses which channel is used to configure the filters
described in Table 178

Receive FIR decimation setting

Set to use either the Dec5 or HB3 and HB2 in the
Observation receive path

Receive HB1 decimation setting

Observation receive and loopback profiles ignore this field
Receive HB2 decimation factor

Receive HB3 decimation factor

Receive FIR1 decimation factor

Receive FIR2 decimation factor, observation receive and
loopback profiles ignore this field

IQ data rate specified in kHz (to the input of the JESD block)
The RF bandwidth specified in kHz
The BBF 3 dB corner frequency specified in kHz

Receive ADC bandwidth tunes the bandwidth of the pass
band and noise transfer functions of the ADC

The receive FIR filter structure is described in Table 179
The receive DDC mode settings are described in Table 180

The receive NCO shifter configuration structure is
described in Table 181

Four options for TIA power reduction modes (Range 0 to 3)

Rev. 0 | Page 176 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Table 178. adi_adrv9025 RxChannels_e Enumeration Definition

adi_adrv9025_RxChannels_e Enumeration Enabled Channels

ADI_ADRV9025_RXOFF No receive or observation receive channels enabled
ADI_ADRV9025_RX1 Rx1 enabled

ADI_ADRV9025_RX2 Rx2 enabled

ADI_ADRV9025_RX3 Rx3 enabled

ADI_ADRV9025_RX4 Rx4 enabled

ADI_ADRV9025_ORX1 ORx1 enabled

ADI_ADRV9025_ORX2 ORx2 enabled

ADI_ADRV9025_ORX3 ORx3 enabled

ADI_ADRV9025_ORX4 ORx4 enabled

ADI_ADRV9025_1LB12 Tx1 or Tx2 internal loopback into ORx1or ORx2channel enabled
ADI_ADRV9025_LB34 Tx3 or Tx4 internal loopback into ORx3 or ORx4 channel enabled
Receive PFIR Settings

The receive PFIR filter is specified in signed coefficients from +32767 to —32768. The gain block allows more flexibility when designing a
digital filter. For example, a FIR can be designed with 6 dB gain in the pass band, and then that block can be set to —6 dB gain to give an
overall 0 dB gain in the pass band. To calculate the gain of the filter coefficients, use the following equation:

B 2 FIR Coefficients

DC Gain e

Table 179. adi_adrv9025_RxFir_t Structure Parameters

Name Value Description

gain_dB -12,-6,0, +6 The setting (in dB) for the gain block within the receive FIR
numFirCoefs 24,48,72 Number of taps to be used in the receive FIR
coefs[ADI_ADRV9025_MAX_RXPFIR_COEFS] A pointer to an array of filter coefficients of size ADI_ADRV9025_MAX_RXPFIR_COEFS

Receive DDC Mode

Receive DDC mode is defined within the adi_adrv9025_RxProfile_t structure as an enumerated type from the adi_adrv9025_RxDdc_e
type definition. Permissible values are listed in Table 180.

Table 180. adi_adrv9025_RxDdc_e Enumeration Definition

adi_adrv9025_RxDdc_e Enumeration Description

ADI_ADRV9025_RXDDC_BYPASS In this mode, the half-band filter and interpolation/decimation stages are bypassed.

ADI_ADRV9025_RXDDC_FILTERONLY In this mode, the half-band filter stage is used, but the interpolation and decimation stages
are bypassed.

ADI_ADRV9025_RXDDC_INT2 In this mode, the interpolate by 2 stage and half-band filter stage are utilized.

ADI_ADRV9025_RXDDC_DEC2 In this mode, the half-band filter stage and decimate by 2 stage are utilized.

ADI_ADRV9025_RXDDC_BYPASS_REALIF In this mode, the half-band filter stage and interpolation/decimation stage are bypassed. Q
data is dropped at the input to the JESD core.

ADI_ADRV9025_RXDDC_FILTERONLY_REALIF | In this mode, the half-band filter stage is used, but the interpolation stage and decimation
stage are bypassed. Q data is dropped at the input to the JESD core.

ADI_ADRV9025_RXDDC_INT2_REALIF In this mode, the interpolate by 2 stage and half-band filter stage are utilized. Q data is
dropped at the input to the JESD core.
ADI_ADRV9025_RXDDC_DEC2_REALIF In this mode, the half-band filter stage and decimate by 2 stage are utilized. Q data is

dropped at the input to the JESD code.

Receive NCO Shifter Configuration

The adi_adrv9025_RxNcoShifterCfg_t structure is contained within the adi_adrv9025_RxProfile_t structure. The adi_adrv9025_
RxNcoShifterCfg_t structure contains the settings of the Band A and Band B NCO stages, as well as the bandwidth and baseband center
frequency of the desired signal(s). These settings allows the API to ensure that the IF conversion stage is properly setup, and that the signal(s)
post NCO shifting falls within the bandwidth provided by the IQ rate utilized and the pass-band bandwidth of the half-band filter, if utilized.

The NCOs can be configured according to the following rules:

e bandwidthDiv2 = (bandAInputBandwidth_kHz/2) x 1000
e inputCenterFreq = (bandAInputCenterFreq_kHz) x 1000

Rev. 0| Page 177 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

e ncolOutputCenterFreq = (bandAInputCenterFreq_kHz + bandANcolFreq_kHz) x 1000
e nco2OutputCenterFreq = ncolOutputCenterFreq + (bandANco2Freq_kHz) x 1000
e outputRateHz = IQ Data rate of the Rx UseCase
e primaryBwHz = Primary Rx signal bandwidth of the Rx UseCase
e ddcHbCorner depends on which of the following modes is used:
e IfRXDDC_FILTERONLY, RXDDC_FILTERONLY_REALIF, RXDDC_INT2, RXDDC_INT2_REALIF at the ddcHbCorner =
outputRateHz x 0.2
e IfRXDDC_DEC2, RXDDC_DEC2_REALIF at the ddcHbCorner = outputRateHz x 0.4

Range Checks
Rule 1: Input Center Frequency Setup
Use the following relationships to ensure the center frequency is setup properly.

e inputCenterFreq + bandWidthDiv2 > primaryBwHz/2
e inputCenterFreq — bandWidthDiv2 < —primaryBwHz/2

Rule 2: Output Center Frequency Setup NCO1 (If DDC HB is Enabled)

Use the following relationships to ensure the NCO1 center frequency is setup properly.
¢ ncolOutputCenterFreq + bandWidthDiv2 > ddcHbCorner
e ncolOutputCenterFreq — bandWidthDiv2 < —ddcHbCorner

Rule 3: Output Center Frequency Setup NCO2

Use the following relationships to ensure the NCO2 center frequency is setup properly.
e nco20utputCenterFreq + bandWidthDiv2 > outputRateHz/2
e nco2OutputCenterFreq — bandWidthDiv2 < —outputRateHz/2

Table 181. adi_adrv9025_RxNcoShifterCfg_t Structure Parameters

adi_adrv9025_RxNcoShifterCfg_t | Description

bandAlnputBandWidth_kHz The bandwidth of the received signal being processed in Band A specified in kHz

bandAlnputCenterFreq_kHz The center frequency, in terms of baseband frequencies, of the received signal being process in
Band A, specified in kHz

bandANco1Freq_kHz The frequency shift to be provided by NCO1 of Band A specified in kHz, positive values shift the
spectrum up in frequency, negative values shift the spectrum down in frequency

bandANco2Freq_kHz The frequency shift to be provided by NCO2 of Band B specified in kHz, positive values shift the
spectrum up in frequency, negative values shift the spectrum down in frequency

bandBlnputBandWidth_kHz The bandwidth of the received signal being processed in Band B specified in kHz

bandBInputCenterFreq_kHz The center frequency, in terms of baseband frequencies, of the received signal being process in
Band B, specified in kHz

bandBNco1Freq_kHz The frequency shift to be provided by NCO1 of Band B specified in kHz, positive values shift the
spectrum up in frequency, negative values shift the spectrum down in frequency

bandBNco2Freq_kHz The frequency shift to be provided by NCO2 of Band B specified in kHz, positive values shift the
spectrum up in frequency, negative values shift the spectrum down in frequency

bandAbCombinedEnable The frequency shift to be provided by the combination of Band A and Band B at output, 1 = combine
dual-band AB, 0 = disable combine dual-band on AB

Note that dual-band mode is selected when the input bandwidths of Band A and Band B are both specified (nonzero). In nondual band
modes, specify Band A settings only with Band B left with zero settings. Likewise, if the NCO stages of both Band A and Band B are not
to be used, provide zero settings for all variables in the adi_adrv9025_RxNcoShifterCfg_t structure.

TRANSMITTER SIGNAL PATH

Each transmitter has an independent signal path including separate digital filters, DACs, analog low-pass filters, and I/Q mixers that drive
the signal outputs. Data is input to the transmit signal path via the JESD high-speed serial data interface at the IQ data rate of the
transmitter profile. The serial data is converted to parallel format through the JESD deframer into I and Q components. The data is
processed through digital filtering and signal correction stages and input to I/Q DACs.

Rev. 0| Page 178 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

The DAC output is low pass filtered by the transmit LPFs and input to the upconversion mixer. The I and Q paths are identical to one
another. Over-ranging is detected in the transmit digital signal path at each stage and limited to the maximum code value to prevent data
wrapping. A block diagram of a transmit signal path is shown in Figure 110. Blocks that are not discussed in this section are faded.

Tx1 SIGNAL PATH, | AND Q CHANNEL

~<(X)= LPF |= IDAC - THE3 TE]; THB2 «-ﬂ:]_ THBA Tﬂ:]_ TFIR Tﬂﬂ QEc Tﬂ:]_ Dgl\ml-

INTS -

~ B3 THe2 |9 | |THBA 7 reR " qec [~ DiGITAL
<(X)={ LpF |=— apAC - - - <T- oI <T

INTS -

JESD204B/C INTERFACE

22770-109

Figure 110. Transmit Signal Path Diagram

Analog LPF

The LPF is a second-order, analog Butterworth LPF with an adjustable 3 dB corner. The transmit chains of the device can support pass-band
bandwidths up to 225 MHz (on I and Q). The LPF is calibrated during device initialization, which results in a consistent frequency corner
across all devices. The LPF bandwidth is set within the device data structure and is profile dependent. Roll-off within the analog LPF pass
band is compensated by the transmitter finite impulse response (TFIR) to ensure a maximally flat pass-band frequency response.

Interpolation By 5 Filter (INT5)

Either the INTS5 filter or any combination of THB3 and THB2 are used in the transmit digital path. The INT5 filter interpolates by a
factor of 5.

The INTS5 filter coefficients include the following: +0.002929688, +0.029052734, —0.029296875, +0.03125, —0.012207031, —0.005859375,
—-0.056640625, +0.051513672, —0.055664063, +0.025390625, +0.020996094, 0.081298828, —0.057617188, +0.072509766, —0.045166016,
—-0.047607422, —0.095947266, +0.030517578, —0.071289063, +0.068603516, +0.093994141, +0.113769531, +0.030761719, +0.055419922,
—-0.103759766, —0.185791016, —0.185302734, —0.136962891, —0.037353516, +0.227050781, +0.518554688, +0.717285156, +0.928466797,
+1.019287109, +0.928466797, +0.717285156, +0.518554688, +0.227050781, —0.037353516, —0.136962891, —0.185302734, —0.185791016,
—-0.103759766, +0.055419922, +0.030761719, +0.113769531, +0.093994141, +0.068603516, —0.071289063, +0.030517578, —0.095947266,
—-0.047607422, —0.045166016, +0.072509766, —0.057617188, +0.081298828, +0.020996094, +0.025390625, —0.055664063, +0.051513672,
-0.056640625, —0.005859375, —0.012207031, +0.03125, —0.029296875, +0.029052734, and +0.002929688.

Transmit Half-Band 3 Filter (THB3)

The THB3 filter is a fixed coefficient, half-band, interpolating filter. The THB3 filter can interpolate by a factor of 2 or the filter can be
bypassed. The THB3 filter coeftficients include the following: 0.125, 0.5, 0.75, 0.5, and 0.125.

Transmit Half-Band 2 Filter (THB2)

The THB2 filter is a fixed coefficient, half-band, interpolating filter. The THB2 filter can interpolate by a factor of 2 or the filter can be
bypassed. The THB2 filter coefficients include the following: —0.08203125, 0, +0.58203125, +1, +0.58203125, 0, —0.08203125.

Transmit Half Band 1 Filter (THB1)

The THBI filter is a fixed coefficient, half-band, interpolating filter. The THB1 interpolates by a factor of 2 or the filter can be bypassed.
The THBI filter coefficients include the following: —0.002319336, 0, +0.003601074, 0, —0.004058838, 0, +0.004119873, 0, —0.006439209,
0, +0.009613037, 0, —0.012023926, 0, +0.014404297, 0, —0.018737793, +0, 0.024291992, 0, —0.030059814, 0, +0.037353516, 0, —0.048156738, 0,
+0.062927246, 0, —0.084350586, +0, 0.122283936, 0, —0.209564209, 0, +0.635925293, +1, +0.635925293, 0, —0.209564209, 0, +0.122283936, 0,
—-0.084350586, 0, +0.062927246, 0, —0.048156738, 0, +0.037353516, 0, —0.030059814, 0, +0.024291992, 0, —0.018737793, 0, +0.014404297,
0, -0.012023926, 0, +0.009613037, 0, —0.006439209, 0, +0.004119873, 0, —0.004058838, 0, +0.003601074, 0, —0.002319336

Programmable TFIR

The TFIR filter acts as an interpolating filter in the transmit path. The TFIR can interpolate by a factor of 1, 2, or 4, or the TFIR can be
bypassed. The TFIR is used to compensate for roll-off caused by the post DAC analog LPE. The TFIR has a configurable number of taps
that can be used including 20, 40, 60, or 80 taps. The TFIR also has a programmable gain setting of +6 dB, 0 dB, —6 dB, or —12 dB.

Rev. 0| Page 179 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

The maximum number of taps is limited by the TFIR clock rate (data processing clock — DPCLK). The maximum DPCLK is 1 GHz. The
DPCLK is the high speed digital clock (HSDIG_CLK) divided by either 4 or 5 depending on the HSDIG_CLK divider setting. The
DPCLK affects the maximum number of TFIR filter taps that can be used according to the following relationship:

Tx PFIR Filter Tapsmax = (DPCLK/Tx_IQ_DATARATE) x 20

where:
Tx PFIR Filter Tapsmax is the maximum number of filter taps that can be used for the given clock rate
Tx_IQ_DATARATE is the input datarate of the filter

TRANSMIT SIGNAL PATH EXAMPLE

The TES provides an example that shows how the baseband filtering stages are used in profile configurations for a signal data path. In this
example, the ADRV9025Init_StdUseCase26_nonLinkSharing profile is selected for the transmit channels. This example is a 200 MHz/450
MHz profile with an IQ rate of 491.52 MSPS.

To explain the terminology of the 200 MHz/450 MHz profile, the 200 MHz refers to the transmit primary signal bandwidth, and the
450 MHz refers to the transmit RF bandwidth.

Figure 111 shows the filter configuration for this example profile. The signal rate after the TFIR block is equal to the profile IQ rate.

&) Tx Signal Chain
THE2 THB1 PFIR
2 f ro— o
Sl L3 254 x4 | 2t st
Q Tx Settings
Basic Settings
T Input Sample Rate(MHz) 491.52
Tx RF Bandwidth (MHz) 450
Tx Primary Signal BW (MHz) 200
Advanced Settings
Analog Baseband Filter 3dB (MHz) 225
Analog DAC Filter 3dB (MHz) 450

22770-112

Generate Tx Profile

Figure 111. Filter Configuration for the Transmit 200 MHz/450 MHz, 491.52 MSPS Profile

The combined transmit signal transfer function can be found in the Tx tab under the ChipConfig dropdown menu, as shown in Figure 112.

Tx Signal Transfer Function

Magritude (cBFS)

il

-100-

-120-

-140-

-160-

-180-

22770-113

-200+ ' 1 1 ' ' ' 1 1 | ' | ' | 1 | ' ! 1 1 '
o 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 1965.8

Ermeiimnns (ML

Figure 112. Transmit Signal Transfer Function

Rev. 0 | Page 180 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

TRANSMITTER FILTER API STRUCTURE

The filter configuration is stored in the adi_adrv9025_TxProfile_t structure. This structure is stored within the adi_adrv9025_TxSettings_t
structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). The adi_adrv9025_TxProfile_t structure

parameters are described in Table 182.

Table 182. adi_adrv9025_TxProfile_t Structure Parameters

Name

Value

Description

txInputRate_kHz

primarySigBandwidth_kHz

rfBandwidth_kHz
txDac3dBCorner_kHz
txBbf3dBCorner_kHz

30720 to 491520 (based on currently defined use cases)
20000 to 200000 (based on currently defined use cases)
100000 to 450000 (based on currently defined use cases)
100000 to 450000 (based on currently defined use cases)
50000 to 225000 (based on currently defined use cases)

IQ data rate at the input to the TFIR specified in kHz
Primary signal bandwidth specified in kHz

RF bandwidth specified in kHz

DAC3 dB corner specified in kHz

BBF3 dB corner frequency specified in kHz

txFirlnterpolation
thb1interpolation
thb2Interpolation
thb3Interpolation
txInt5Interpolation

1,2,4

1 =bypass, 2 =in use
1 =bypass, 2 =in use
1 =bypass, 2 =in use
1 =bypass, 5 =in use

Transmit FIR interpolation setting

Transmit HB1 interpolation setting
Transmit HB2 interpolation setting
Transmit HB3 interpolation setting
Transmit INT5 interpolation setting

txFir A value of type adi_adrv9025_TxFir_t The txFir structure is explained in detail in the
Transmit FIR Settings section
txBbfPowerMode 0to8 The transmit BBF power scaling mode selection

between 0 and 8, where a value of 8 allows the arm to
set the power mode based on the look up tables (LUT)
of power saving

Transmit FIR Settings

The adi_adrv9025_TxFir_t structure is contained within the adi_adrv9025_TxProfile_t structure. The adi_adrv9025_TxFir_t structure
parameters are described in Table 183.

Table 183. adi_adrv9025_TxFir_t Structure Parameters

Name Value Description

gain_dB -12,-6,0,+6 The setting (in dB) for the gain block within the transmit FIR
numpFirCoefs 20, 40, 60, 80 Number of taps to be used in the transmit FIR
coefs[ADI_ADRV9025_MAX_TXPFIR_COEFS] A pointer to an array of filter coefficients of size ADI_ADRV9025_MAX_TXPRIF_COEFS

The transmit FIR is specified in signed coefficients from +32,767 to —32,768. The gain block allows for more flexibility when designing a
digital filter. For example, a FIR can be designed with 6 dB gain in the pass band, and then this block can be set to —6 dB gain to give an
overall 0 dB gain in the pass band. The gain of the filter coefficients can be calculated as follows:
2 FIR Coefficients

2% -1
OBSERVATION RECEIVERS SIGNAL PATH

The transceiver has four observation receiver inputs (ORx1, ORx2, ORx3, and ORx4) that can be used to capture data for DPD
algorithms and other measurements or calibrations that require monitoring the transmitter outputs. The observation receiver can serve as

DC Gain=

an external loopback path to loop back the output of a power amplifier, provided the input level to the observation receiver is below the
full-scale level of the ADC.

The observation channels have separate I and Q mixers. These mixers are identical to the receiver mixers except that the observation
mixers include an LO multiplexer. The LO multiplexer allows either the RF PLL or the AUX PLL to provide the local oscillator signal
source for the observation channel mixers.

The mixer feeds into a programmable TIA that serves as an LPF in the analog data path. The signal is converted by the XA ADC and
filtered in half-band decimation stages and the PFIR. The fixed coefficient half-band filters (FIR1, RHB1(HR), RHB1(LP), RHB2, RHB3,
and DECS5) and the PFIR are designed to prevent data wrapping and overrange conditions.

The IF conversion stage provides the ability to frequency shift or upsample/downsample digital data. Configurations supported for the
observation receivers include real IF (real valued baseband data) configuration and low IF (complex data) configuration.

Rev. 0| Page 181 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

The diagram in Figure 113 shows the signal path for an observation receive signal chain.
Tx1 SIGNAL PATH, | AND Q CHANNEL

THB3 THB2 [~y THB1 =7 1RR QEC DIGITAL
<—®<— LPF |- IDAC <-| <-| T <-| GAIN <T

INTS

THB3 TH2 || [[THBI R QEC *D'G'TA"
<—(X)={ LpF |« apac - 'T - GAIN

INTS il

JESD204B/C INTERFACE

22770109

Figure 113. Observation Receive Signal Path
TIA

The observation receive TIA is an LPF with a single real pole frequency response. The TIA can support pass-band bandwidths up to 225 MHz
(for both I and Q). The TIA is calibrated during device initialization to ensure a consistent frequency corner across all devices. The TIA 3 dB
bandwidth is set within the device data structure and is profile dependent. Roll-off within the observation receive pass band is compensated by
the PFIR to ensure a maximally flat pass-band frequency response.

DECS5 Filter

Either the DECS filter or a combination of RHB3 and FIRI is used in the receive digital path. The DECS5 filter decimates by a factor of 5
or the filter can be bypassed.

The DECS filter coefficients include the following: +0.000732422, +0.001464844, +0.002441406, +0.003417969, +0.003173828,
—0.000732422, —0.005615234, —0.013183594, —0.020507813, —0.022949219, —-0.014648438, +0.003417969, +0.035400391, +0.077392578,
+0.119873047, +0.154541016, +0.176269531, +0.176269531, +0.154541016, +0.119873047, +0.077392578, +0.035400391, +0.003417969,
—-0.014648438, —0.022949219, —0.020507813, —0.013183594, —0.005615234, —0.000732422, +0.003173828, +0.003417969, +0.002441406,
+0.001464844, and +0.000732422.

Finite Impulse Response 1 Filter (FIR1)

The FIRI filter is a fixed coefficient, decimating filter. The FIR1 filter decimates by a factor of 2 or the filter can be bypassed.

The FIR1 filter coefficients include the following: 0.25, 0.75, 0.75, and 0.25.

Receive Half-Band 3 Filter (RHB3)

The RHB3 filter is a fixed coefficient, decimating filter. The RHB3 filter decimates by a factor of 2 or the filter can be bypassed.

The RHB3 filter coefticients include the following: —0.0625, 0.0078125, +0.5625, +0.984375, +0.5625, +0.0078125, and —0.0625.

Receive Half-Band 2 Filter (RHB2)

The RHB2 filter is a fixed coefficient, decimating filter. The RHB2 decimates by a factor of 2 or the filter can be bypassed.

The RHB2 filter coefficients include the following: —0.002929688, +0, 0.018554688, 0, —0.0703125, +0, 0.3046875, +0.500976563,
+0.3046875, 0, —0.0703125, +0, 0.018554688, 0, and —0.002929688.

Receive Half-Band 1 High Rejection Filter (RHB1 (HR))

The RHB1 (HR) filter is a fixed coefficient, decimating filter. The RHBI filter can decimate by a factor of 2 or the filter can be bypassed.
The RHBI filter coefficients include the following: —0.000732422, 0, +0.000732422, 0, —0.001098633, +0, 0.001586914, 0, —0.00213623, 0,
+0.002929688, 0, —0.00378418, 0, +0.004882813, 0, —0.006225586, 0, +0.007873535, 0, —0.009887695, 0, +0.012329102, 0, —0.015380859,
0, +0.019226074, 0, —0.024353027, 0, +0.031555176, 0, —0.042419434, 0, +0.061462402, 0, —0.104797363, 0, +0.317871094, +0.5,
+0.317871094, 0, —0.104797363, 0, +0.061462402, 0, —0.042419434, 0, +0.031555176, 0, —0.024353027, 0, +0.019226074, 0, —0.015380859,
0, +0.012329102, 0, —0.009887695, 0, +0.007873535, 0, —0.006225586, 0, +0.004882813, 0, —0.00378418, 0, +0.002929688, 0, —0.00213623,
0, +0.001586914, 0, —0.001098633, 0, +0.000732422, 0, and —0.000732422.

Receive Half-Band 1 Low Power Filter (RHB1 (LP))

The RHBI (LP) filter is a fixed coefficient, decimating filter. The RHBI filter can decimate by a factor of 2 or the filter can be bypassed.
The RHBI filter coefficients include the following: —0.002685547, 0, +0.017333984, 0, —0.068359375, 0, +0.304443359, +0.501708984,
+0.304443359, 0, —0.068359375, 0, +0.017333984, 0, and —0.002685547.

Rev. 0| Page 182 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-1721

PFIR Filter

The PFIR filter acts as a decimating filter. The PFIR can decimate by a factor of 1, 2, or 4, or the filter can be bypassed. The PFIR filter
compensates for the roll-off of the analog TIA LPF. The PFIR can use 24, 48, or 72 filter taps. The PFIR also has programmable gain
settings of +6 dB, 0 dB, -6 dB, or —12 dB.

The maximum number of taps is limited by the FIR clock rate (data processing clock — DPCLK). The maximum DPCLK is 1 GHz. The DPCLK
is the ADC clock rate divided by either 4 or 5. The divisor is 4 when using the HB2 and HB3 filters, and the divisor is 5 when using the DEC5
filter. The DPCLK affects the maximum number of RFIR filter taps that can be used according to the following relationship:

ORx PFIR Filter Tapsmax = (DPCLK/ORx_IQ_DATARATE) x 24

where:
ORx PFIR Filter Tapsuax is the maximum number of filter taps that can be used for the given clock rate
ORx_IQ_DATARATE is the output datarate of the filter

IF Conversion
Refer to the equivalent Receiver Signal Path section for information on the IF conversion stage.
OBSERVATION RECEIVER SIGNAL PATH EXAMPLE

The TES provides an example that shows how the baseband filtering stages are used in profile configurations for a signal pathway. In this
example, the Observation receive 450 MHz, IQ Rate = 491.52 MSPS profile is selected for the Observation receive channels. This profile is
compatible with the other examples provided in this user guide.

Figure 114 shows the filter configuration for this example profile. The clocking frequencies are noted in blue. The signal rate after the
RFIR block is equal to the IQ Rate of the profile.

Q) ORx Signal Chain
DECS
5xd
JESD204
Framer
Fll —
. e o] P @ P Rx JESD204
2x ¢ 1xd & 9 Formatter Framer
JESD204
Framer
) ORx Input Settings
Basic Settings
ORx Output Sample Rate(MHz) 49152
ORx RF Bandwidth (MHz) 450
Advanced Setiings
TIA Analog Filter 3dB (MHz) 225

Generate ORx Profile

22770-115

Figure 114. Filter Configuration for Observation Receive 450 MHz, IQ Rate = 491.52 MSPS

The Observation receive signal transfer function of the signal chain is in the ORx tab within the ChipConfig dropdown menu, as shown
in Figure 115.

Rev. 0 | Page 183 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

Q)

100-
80-
80—

40-

60 -

Magnitude (dBFS)

-80-
-100-
-120-
-140-
-160-
-180-

-200+
0

‘ORx Signal Transfer Function

i
2500
Frequency (MHz)

I i ' '
500 1000 1500 2000

'
3000

' ' ' '
3500 4000 4500 4914.6

22770116

Figure 115. Observation Receive Signal Transfer Function

OBSERVATION RECEIVER FILTER APl STRUCTURE

The filter configuration is stored in the adi_adrv9025_RxProfile_t structure. This structure is stored within the adi_adrv9025_RxSettings
structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). The adi_adrv9025_RxProfile_t structure contains
the parameters listed in Table 184. For further details, refer to the Receiver Filter API Structure section.

Table 184. adi_adrv9025_RxProfile_t Structure Parameters

Name

Value

Description

channelType

rxFirDecimation
rxDec5Decimation

rhb1Decimation
rhb1WideBandMode
rhb2Decimation
rhb3Decimation
rxFir1Decimation
rxFir2Decimation

rxOutputRate_kHz

rfBandwidth_kHz
rxBbf3dBCorner_kHz
rxAdcBandWidth_kHz

rxFir
rxDdcMode
rxNcoShifterCfg

tiaPowerMode
rxDataFormat

A value of type adi_adrv9025_RxChannels_e

1,2,4
4 = use combination of FIR1, FIR2, and/or RHB3, 5 =
Use Dec5

1 =bypass, 2 =in use
0=HB1 is narrow, 1 = HB1 is wider
1,2

’

1
1/
1

N NN

’

122880 to 491520 (based on currently defined use cases)

112500 to 450000 (based on currently defined use cases)
112500 to 450000 (based on currently defined use cases)
56250 to 225000 (based on currently defined use cases)

A value of type adi_adrv9025_RxFir_t
A value of type adi_adrv9025_RxDdc_e
A value of type adi_adrv9025_RxNcoShifterCfg_t

0,1,23
A value of type adi_adrv9025_RxDataFormat_t

Choose which channel is used to configure the filters
described in Table 178

ORx FIR decimation setting

Setting to use either the DEC5 or the HB3 and HB2 in the
ORx path

ORx HB1 decimation setting

ORx and loopback profiles ignore this field
ORx HB2 decimation factor

ORx HB3 decimation factor

ORXx FIR decimation factor

Receive FIR decimation factor, the ORx and loopback
profiles ignore this field

The 1Q data rate is specified in kHz (to the input of the
JESD block)

The RF bandwidth is specified in kHz
The BBF 3 dB corner frequency is specified in kHz

The receive ADC bandwidth tunes the bandwidth of the
pass band and noise transfer functions of the ADC

The receive FIR filter structure is described in Table 179
The receive DDC mode settings are described in Table 180

The receive NCO shifter configuration structure is
described in Table 181

Four options for TIA power reduction modes (range 0 to 3)

This structure is explained in the Gain Compensation,
Floating Point Formatter and Slicer section and Table 172

Rev. 0 | Page 184 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-1721

DUAL BAND OVERVIEW: DUAL-BAND 2T2R SOLUTION

The normal transceiver configuration uses four transmitters, four receivers, and four observation receivers with either a common LO in
TDD mode or dual LOs in FDD mode configured for a single radio band. Figure 116 shows how the transceiver is configured as a dual-
band 2T2R solution by configuring half of the channels to operate in one band (Band A) and the other half of the device to operate in
another band (Band B).

FDD 2 x 2T, 2R, 20Rx
ANTENNA 3 ANTENNA 2

LO2 LO1
| Tx3 |- (™) (Tx)_» Tx2 a

—>~.—“ M Hean[] R LO2 LO1 R [[[eanH/\] 4@

H mNe) [TR RoT] (xNo) [

ANTENNA 4 ANTENNA 1
H Rx4 LO2 LO1 Rx1 H

[v e o el A N | G TV

LO2 LO1 H
Tx4 |- ™ (Tx)-» Tx1

- LO2 LO1 H
N ORX3/ORx4 |=tO2 LO! = ORX1/ORX2]

SERDES

22770-115

Figure 116. 2 Transmitter, 2 Receiver Dual-Band Mode

Each half of the transceiver can operate as TDD, FDD, or a mix of both. The transceiver contains two independent Los, LO1 and LO2,
where LO1 is asigned to either Band A or Band B and LO2 is assigned to the other band. Reducing the number of LOs by sharing an LO
minimizes the risks of LO to LO coupling issues, which is a major contributor to spurious issues in highly integrated RF ICs. Figure 117
shows one LO shared between the receive and transmit FDD bands.

Rx BOTTOM Rx TOP

LOW IF MODE
FDD SHARE SAME

Rx BAND Tx BAND

22770-116

Figure 117. Dual Band LO Configuration

The frequency planning for the LO frequency selection is flexible. The receiver bandwidth remains at 200 MHz, as specified in the device data
sheet. The transmitter bandwidth has been extended beyond 200 MHz to accomodate 3GPP bands that require larger receiver and
transmitter bandwidths and duplex spacing. The transmitter channels have internal interpolation and NCOs to shift the input carriers beyond
the 200 MHz primary bandwidth. The device data sheet has transmitter QEC performance specifications for operation beyond the 200 MHz
primary bandwidth. Choose the LO frequency necessary to place the transmitter image out of the receiver band so that there is no impact to the
receiver sensitivity. Duplexer rejection of the transmitter image is required to meet transmit emissions specifications. The receiver and
transmitter channels both have NCOs, so the low IF configuration is transparent to the baseband.

The transceiver has three dual-band profiles to choose from that optimize power consumption versus required bandwidths based on user
application. These profiles include the following:

e UC5I1nonLinkSharing, TDD bands with transmit and receive bandwidths greater than 100 MHz and an I/Q data rate of 245.76 MSPS.

e UC54nonLinkSharing, FDD or TDD bands with transmit and receive bandwidths less than 100 MHz and I/Q data rates of 122.88
MSPS. Reduced transmit and receive IQ rates are included to save power consumption and lower cost FPGA solution.

e UC55nonLinkSharing, similar to UC54 except the receive bandwidth is reduced to 160 MHz if additional receive channel filtering
is desired.

LO Assignment

The firmware determines if the device is in dual-band mode when the TX1 and TX2 selected LO is the same as the RX1 and RX2 LO and
different than the LO selected for the TX3, TX4 and RX3, and RX4 channels. The following code is an example how this is setup. Receiver
channels 1 and 2 and transmitter channels 1 and 2 share LO1, and receiver channels 3 and 4 and transmitter channels 3 and 4 share LO2.
It is also acceptable to use the opposite LO in this assignment.

Rev. 0 | Page 185 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

The following init structures are used to make LO assignments:

initStruct = link.platform.board.Adrv9025Device.InitStructGet()

initStruct.clocks.rx12LoSelect = Types.adi_adrv9025_LoSel_e.ADI_ADRV9010_LOSEL_LO1
initStruct.clocks.rx34LoSelect = Types.adi_adrv9025_LoSel_e.ADI_ADRV9010_LOSEL_LO2
initStruct.clocks.tx12LoSelect = Types.adi_adrv9025_LoSel_e.ADI_ADRV9010_LOSEL_LO1
initStruct.clocks.tx34LoSelect = Types.adi_adrv9025_LoSel_e.ADI_ADRV9010_LOSEL_LO2
initStruct.clocks.orx12LoSelect = Types.adi_adrv9025_OrxLoSel_e.ADI_ADRV9025_ORXLOSEL_TXLO
initStruct.clocks.orx34LoSelect = Types.adi_adrv9025_OrxLoSel_e.ADI_ADRV9025_ORXLOSEL_TXLO
postMcsInit = Types.adi_adrv9025_PostMcslInit_t()

postMcsInit.radioCtrlInit.lo1PllFreq_Hz = 1810000000

postMcsInit.radioCtrlInit.lo2PllFreq_Hz = 2593000000

The AUX LO must remain cleared. For observation receivers, only the transmitter LO can be used. The AUX LO provides the source
needed to run tracking calibrations that are controlled by the ARM processor.

For dual-band applications, it is possible for Band A (Channel 1 and Channel 2) to be in real traffic and for Band B (Channel 3 and
Channel 4) to require an LO frequency change. For more information on the procedure to change the LO frequency, see the Calibration
Guidelines after PLL Frequency Changes section. The dual-band considerations include the following:

e Change the LO frequency using the following process:
e Disable all tracking on all four channels.
e Change the LO frequency.
¢ Run the internal path delay initial calibration on the desired channels.
e Run the external LO leakage initial calibration on the desired channels.
e Enable the tracking on all four channels.
e For devices that incorporate crest factor reduction (CFR), change the CFR correction pulses using the following process:
e Disable all tracking on all four channels.
e Load the CFR correction pulses.
e Run the CFR initial calibration.
e Enable the tracking.
e TX_EN,RX_EN, and ORX_CTRL_X can continue toggling when these initial calibrations are called.

DUAL-BAND CONFIGURATION AND EXAMPLE USE CASES

For most bands, the LO can be selected to fall within the transmit band. The widest 3GPP bands are Band 1 and the AWS-1 bands (4, 10,
or 66).

An example frequency plan for Band 1 is shown in Figure 118. An LO frequency of 2015 MHz places the transmit image at the edge of the
receive band so as not to impact receive sensitivity. A transmit NCO frequency of 125 MHz places a 0 Hz centered baseband input at the
proper output RF frequency, which requires 310 MHz of transmit bandwidth. Using a receiver NCO frequency of 65 MHz shifts the
receive band to 0 IE if desired. A DPD correction of 3x requires 430 MHz bandwidth, which is within the 450 MHz available.

An example frequency plan for Band 3 is shown in Figure 119. With these two frequency plans, the transceiver can provide a dual-band
2-transmitter, 2-receiver, 2-observation receiver solution.

Rev. 0 | Page 186 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

Rx BW
95MHz

BAND 1:
LO =2015MHz

o uL
{ DL IMAGE | 1920-1980
¢ 1860-1920

Tx NCO

125MHz

Rx BW
95MHz

DL
2110-2170

5x:11990-2290

2230

Rx BW 190M

| Tx PRIMARY BW 310

| Tx DPD BW 450

Figure 118. Band1 Frequency Plan Example (UL = uplink, DL = downlink)

Rx BW

Tx
47.5MHz 122.5MHz
-+ >

LO = 1757.5MHz

x

i DL IMAGE | 17101785 | 3x:

; 16351710

DL

1805-1880

1730-1955
5x:11655-2030

Rx BW 95M

Tx PRIMARY BW 245

| Tx DPD BW 450

Figure 119. Band 3 Frequency Plan Example

22770-118

22770-117

Band 4, Band 10, and Band 66 have the largest bandwidth from the bottom of the receive bands and the top of the transmit bands. Band 66
is the largest, and Band 4 and Band 10 are subsets of Bands 66. The span from the top of the transmit band to the bottom of receive band is
490 MHz. This range is too wide a bandwidth to share a single LO. Operators in the United States that have an AWS-1 band also have
Band 25. In this case, Band 25 can be paired with these AWS-1 bands (B66 or B4 or B10). Band 2 is also a subset of Band 25. These
frequency plans require less bandwidth than Band 1. Because transmitters and receivers do not share an LO, transmit images do not impact

the receive channel. Band 1 is the most stringent 2T2R use case. A combination of Band 66 and Band 25 can be accomodated using

LO1 (1812.5 MHz) for the Band 66 and Band 25 uplink and LO2 (2042.5 MHz) for the Band 66 and Band 25 downlink.

Rev. 0 | Page 187 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

GPIO CONFIGURATION

The transceiver features 19 digital general purpose input/output (GPIO) pins that can be used for a variety of functions. The transceiver
also features eight analog GPIO (GPIO_ANA_x) pins. The GPIO pins and GPIO_ANA pins provide a real-time interface either for the
baseband processor to control the transceiver or for the transceiver to send information to the baseband processor. An example of baseband
processor control uses rising edges sent by the baseband processor over user assigned GPIO pins to increase or decrease the transmitter
attenuation. An example of the transceiver sending information to the baseband processor is the ability to send overload detection
information from peak detectors in the receiver datapath to advise that the input signal level is too high.

The GPIO_ANA pins serve as the output pins for eight auxiliary digital to analog converter (AUXDAC_x) signals. The AUXDAC can be
used to provide a control voltage to peripheral devices. The AUXDAC is not a precision converter device and is recommended to be used
in applications where high accuracy is not needed. It is recommended to use the AUXDAC in feedback systems rather than in open-loop
control systems.

The digital GPIO supply is the VIF supply voltage. The GPIO_ANA supply is the 1.8V analog supply connected through the VANAx_1p8
pins. IBIS models have been created to assist in the simulation of these interfaces.

DIGITAL GPIO OPERATION

Each digital GPIO pin can be set to either input or output mode. In this section, input and output mode are oriented with respect to the
transceiver device. Input mode allows the baseband processor to drive pins on the transceiver to execute specific tasks. Output mode
allows the device to output various signals.

The digital GPIO pin I/O direction can be set with the following API commands.
adi_adrv9025_GpioInputDirSet(...)

adi adrv9025 GpioInputDirSet (adi adrv9025 Device t* device, uint32 t gpioInputMask)
Description

This command configures pins for input direction.

Parameters

Table 185. adi_adrv9025_GpioIlnputDirSet(...) Parameters

Parameter Description

*device Pointer to the device structure.

gpiolnputMask | Selects the device GPIO pins required to be set as an input in the 0x00000 to 0x7FFFF range. If a bit is set high, the GPIO pin
associated with that bit is set as an input (GPIO_0 corresponds to Bit DO, GPIO_1 corresponds to Bit D1, and so on).

adi_adrv9025_GpioOutputDirSet(...)
adi adrv9025 GpioOutputDirSet (adi adrv9025 Device t* device, uint32 t gpioOutputMask)

Description
This command configures pins for output direction.

Parameters

Table 186. adi_adrv9025_GpioOutputDirSet(...) Parameters

Parameter Description

*device Pointer to the device structure.

gpiolnputMask | Selects the device GPIO pins that are required to be set as an output in the 0x00000 to Ox7FFFF range. If a bit is set high, the
GPIO pin associated with that bit is set as an output (GPIO_0 corresponds to Bit DO, GPIO_1 corresponds to Bit D1, and so
on).

Note that conflicts regarding GPIO usage can occur when using combinations of certain features. Ensure that multiple functions are not
assigned to the same GPIO pin.

Rev. 0 | Page 188 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

Input GPIO Features

The following table provides a list of GPIO input features available that interact with datapath control elements on the device. For the
GPIO features within Table 187, the API automatically sets the I/O direction of the GPIO pins assigned for the feature. More details on
these features are provided in the following subsections.

Table 187. Summary of Input GPIO Features

Feature

Description

GPIO Pins Available for Feature

SPI2

Secondary SPI channel for control and readback of receiver gain index and
transmitter attenuation

API configuration commands are adi_adrv9025_Spi2CfgSet(...) and
adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(...)

GPIO_0: SPI_DIO (input or output)

GPIO_1: SPI_DO (output only)
GPIO_2: SPI_CLK (input)
GPIO_3: SPI_CS (input)

GPIO_4 through GPIO_18: transmit
attenuation state select

Pin Controlled
Receive/ORx Gain
Index Increment
and Decrement

Configure specific GPIO pins to increment or decrement the gain index on
any receive or ORx channel after a rising edge on the assigned pin.

API configuration command is adi_adrv9025_RxGainPinCtrlCfgSet(...)

GPIO_0 through GPIO_15:
receive/ORx gain index increment
pin select

GPIO_0 through GPIO_15:
receive/ORx gain index decrement
pin select

Pin Controlled
Transmit
Attenuation
Increment and
Decrement

Configures specific GPIO pins to increment or decrement attenuation on any
transmit channel after a rising edge on the assigned pin

API configuration command is adi_adrv9025_TxAttenPinCtrlCfgSet(...)

GPIO_0 through GPIO_15: transmit
attenuation increment pin select

GPIO_0 through GPIO_15: transmit
attenuation decrement pin select.

External Slicer Mode

A technique used in some gain compensation applications, the baseband
processor instructs the slicer to attenuate the digital data to fit within a
desired bit width based on the value expressed on the slicer pins (up to
three are available in input mode)

API configuration command is adi_adrv9025_RxDataFormatSet(...)

GPIO_[2:0] = assign to any receive

GPIO_[5:3] = assign to any receive
GPIO_[8:6] = assign to any receive
GPIO_[11:9] = assign to any receive
GPIO_[14:12] = assign to any
receive

GPIO_[17:15] = assign to any
receive

Transmit
Observation
Receiver Select

When using fewer than four ORx channels, the ORx channel requires
information on which transmit channel data is presented to the ORYx, if a pin
interface is required to indicate the transmit to ORx mapping, the following
command sets up the pins, provided that the stream file is generated with
appropriate input settings

API configuration command is adi_adrv9025_StreamGpioConfigSet(...)

GPIO_0 through GPIO_15.

SPI2

A complete description, including descriptions of custom data types, for the SPI2 interface can be found in the SPI2 Description section.

The SPI2 interface acts as a secondary SPI channel that operates on the digital GPIO_[3:0] pins. An optional pin can be configured for

toggling the transmit attenuation between the S1 attenuation state and the S2 attenuation state on the GPIO_4 through GPIO_18 pins.

The SPI12 interface uses the same SPI configuration used on the primary SPI interface. SPI2 can be used to set the gain index on the

receiver and observation receiver channels, read back the gain index on those channels, and set up two distinct transmit attenuation states

that the user can alternate between by switching a GPIO pin. The SPI2 interface cannot access registers available to the primary SPI

interface.

When the SPI2 feature is enabled, the GPIO_[3:0] pin and the pin assigned for transmit attenuation selection (can be GPIO_4 through
GPIO_18 or left unassigned) cannot be used for other purposes. When SPI2 is enabled, it overrides the functionality previously assigned

to the digital GPIO_[3:0] pins. Refer to Table 187 for specific pin mapping details.

Rev. 0 | Page 189 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

adi_adrv9025_Spi2CfgSet(...)
adi adrv9025 Spi2CfgSet (adi adrv9025 Device t* device, uint8 t spiZEnable)
Description

This command enables the SPI2 feature.

Parameters

Table 188. adi_adrv9025_SpiCfgSet(...) Parameters

Parameter Description

*device Pointer to the device structure.

Spi2Enable Sets the state of the SPI2 bus, 1 = enable and 0 = disable.

adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(...)

adi adrv9025 TxAttenSpi2PinCtrlCfgSet (adi adrv9025 Device t* device,
adi adrv9025 TxAttenSpi2PinCfg t txAttenSpi2PinCfg[], uint8 t numTxAttenSpi2PinConfigs)

Description

This command assigns the transmit attenuation select pin.

Parameters

Table 189. adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(...) Parameters

Parameter Description

*device Pointer to the device structure.

txAttenSpi2PinCfg[] Pointer to an array of the adi_adrv9025_TxAttenSpi2PinCfg_t structure that configures the transmit

attenuation SPI2 pin control. Note that multiple transmitters can share an attenuation select pin, if desired.

numTxAttenSpi2PinConfigs | This parameter determines the number of channelized transmit attenuation SPI2 pin configurations passed in
the txAttenSpi2PinCfg array.

Pin-Based Receive Gain Control
A complete description of the pin-based receive gain control feature is provided in the Receiver Gain Control and Gain Compensation section.

Pin-based receive gain control is relevant for applications that require MGC and precise timing for gain change events. The pin-based control
scheme offers a lower latency than SPI-based gain change operations. In pin-based gain control, specific GPIO pins are assigned increment gain
index or decrement gain index functionality for a particular receiver channel. By applying a logic high pulse on the GPIO pin, the gain index for
the corresponding channel is either incremented or decremented, depending on the assigned functionality. The pulse width requirement is
two AGC clock cycles in the logic high state. The gain change because of gain index increment or decrement is programmable (ranges from 1 to
8 gain index steps). Increment and decrement functionality can be assigned to any digital GPIO from GPIO_15 to GPIO_0.

Note that if the user has programmed a gain table that operates in a subset of the full gain table range (that is, using Index 195 to Index 255), the
pin-based receive gain control does not have knowledge of this status. If the gain decrement pulse is applied when the gain index is 195, the gain
index decrements off table. The off-table gain indices (that is, gain indices below 195) can correspond to the maximum gain condition.
Take care when applying pulses when the gain index is at the edge of the useful section gain table, or design the gain table with this in mind.
adi_adrv9025_RxGainPinCtrlCfgSet(...)

adi adrv9025 RxGainPinCtrlCfgSet (adi adrv9025 Device t* device, adi adrv9025 RxChannels e
rxChannel, adi adrv9025 RxGainPinCfg t *rxGainPinCtrlCfg)

Description

This command configures the pin-based receive gain control feature. Note that the device must be in MGC for proper operation.

Parameters

Table 190. adi_adrv9025_RxGainPinCtrlCfgSet(...) Parameters

Parameter Description

*device Pointer to the device structure.

rxChannel This parameter selects which receive channel is used for configuring the pin-based receive gain control.

*rxGainPinCtrICfg | Pointer to the adi_adrv9025_RxGainPinCfg_t structure containing the configuration values for the pin-based receive
gain control.

Rev. 0 | Page 190 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

Table 191 describes the adi_adrv9025_RxGainPinCfg_t data structure used in this command.
Table 191. Description of adi_adrv9025_RxGainPinCfg_t Data Structure

Parameter Data Type Comments

incStep uint8_t An increment in the gain index is applied when the increment gain pin is pulsed. A value
from 0 to 7 applies a step size of 1 to 8.

decStep uint8_t A decrement in the gain index is applied when the increment gain pin is pulsed. A value

from 0 to 7 applies a step size of 1 to 8.

rxGainincPin | adi_adrv9025_GpioPinSel_e | Choose the GPIO used for the increment gain input. ADI_ADRV9025_GPIO_00 to
ADI_ADRV9025_GPIO_15 can be used.

rxGainDecPin | adi_adrv9025_GpioPinSel_e | Choose the GPIO assigned for the decrement gain input. ADI_ADRV9025_GPIO_00 to
ADI_ADRV9025_GPIO_15 can be used.

enable uint8_t Enable or disable the gain pin control. Enable = 1 and disable = 0.

Pin-Based Transmit Attenuation Control
A complete description of transmit attenuation control is provided in the Transmitter Overview and Path Control section.

Pin-based transmit attenuation control, similar to the transmit attenuation select feature of SPI2, provides an interface to make attenuation
adjustments with precise timing control. The pin-based control scheme offers a lower latency than SPI-based attenuation change operations. In
pin-based attenuation control, certain GPIO pins are assigned increment attenuation or decrement attenuation functionality. By applying a
high pulse on the assigned GPIO pin, the attenuation for a specific channel is either incremented or decremented, depending on the
assigned functionality. Increment and decrement functionality can be assigned to any digital GPIO from GPIO_15 to GPIO_0.

A notable difference between SPI2 and pin-based transmit attenuation control is that SPI2 allows switching between the programmed
attenuation states (S1 and S2) and pin-based transmit attenuation control allows multiple increments or decrements of transmit attenuation.

adi_adrv9025_TxAttenPinCtrlCfgSet(...)

adi adrv9025 TxAttenPinCtrlCfgSet (adi adrv9025 Device t* device, adi adrv9025 TxAttenPinCfg t
txAttenPinCfg[],uint8 t numTxAttenPinConfigs)

Description
This command configures the pin-based transmit gain control feature.
Parameters

Table 192. adi_adrv9025_TxAttenPinCtrlCfgSet(...) Parameters

Parameter Description
*device Pointer to the device structure.
txAttenPinCfg[] Pointer to an array of the adi_adrv9025_TxAttenPinCfg_t structure that configures the transmit attenuation pin control.

numTxAttenPinConfigs | This parameter determines the number of channelized transmit attenuation pin configuration passed in the
txAttenPinCfg array.

Table 193 describes the adi_adrv9025_TxAttenPinCfg_t data structure used in this command.
Table 193. Description of adi_adrv9025_TxAttenPinCfg t Data Structure

Parameter Data Type Comments

txChannelMask | uint32_t Choose the bitwise channel mask that the transmit attenuation pin configuration settings
are applied to. [D0] =Tx1, [D1] =Tx2, [D2] = Tx3, [D3] = Tx4.

stepSize uint8_t This parameter sets the change in transmit attenuation for each increment or decrement

signal received in increment and decrement mode with a step size of 0.5dB/LSB. The valid
range is from 0 to 31.

txAttenincPin adi_adrv9025_GpioPinSel_e | Choose the GPIO assigned for the increment attenuation input. ADI_ADRV9025_GPIO_00
to ADI_ADRV9025_GPIO_15 can be used

txAttenDecPin | adi_adrv9025_GpioPinSel_e | Choose the GPIO assigned for the decrement attenuation input. ADI_ADRV9025_GPIO_00
to ADI_ADRV9025_GPIO_15 can be used

enable uint8_t Enable or disable the gain pin control. Enable = 1 and disable = 0.

External Slicer Mode

A complete description of the external slicer use case is provided in the Receiver Gain Control and Gain Compensation section.

Rev. 0| Page 191 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

The receive datapath features a GPIO-based slicer used in conjunction with the digital gain compensation to digitally attenuate data sent
over the JESD204B/JESD204C interface. The digital gain compensation can expand the required number of bits to express data path
samples beyond the interface bit width. The slicer attenuates the data to fit within the interface bit width.

The slicer can be used in a mode where the amount of digital gain compensation at a particular gain index determines the slicer position
(internal slicer). Alternatively, the slicer can be used with GPIOs in an externally driven mode where the baseband processor determines the
slicer position, which controls the amount of digital attenuation applied by the slicer. When using the slicer in the external mode, specific groups
of GPIO pins are assigned to set the slicer position. Three GPIO pins per receiver are utilized. See Table 197 for the valid external slicer pins.

adi_adrv9025_RxDataFormatSet(...)

adi adrv9025 RxDataFormatSet (adi adrv9025 Device t* device, adi adrv9025 RxDataFormat t
rxDataFormat[], uint8 t arraySize)

Description
This command configures the external slicer mode.

Parameters

Table 194. adi_adrv9025_RxDataFormatSet(...) Parameters

Parameter Description

*device Pointer to the device structure.
rxDataFormat(]
arraySize

Pointer to the receive data format configuration structure.

This parameter determines the size of the rxDataFormat array that represents the number of configurations.

Table 195 describes the adi_adrv9025_RxDataFormat_t data structure.

Table 195. Description of adi_adrv9025_RxDataFormat_t Data Structure

Parameter Data Type Comments

uint32_t
adi_adrv9025_RxDataFormatModes_e

rxChannelMask Receive channel mask settings

formatSelect Receive channel format mode select

floatingPointConfig
integerConfigSettings
slicerConfigSettings
externalLnaGain

tempCompensationEnable

adi_adrv9025_FloatingPointConfigSettings_t
adi_adrv9025_IntegerConfigSettings_t
adi_adrv9025_SlicerConfigSettings_t
uint8_t

uint8_t

Receive channel floating point format configuration
Receive channel integer format configuration

Receive channel integer slicer configuration

Selects the slicer to compensate for external dual-band
LNA (0 =disable, 1 = enable)

Selects the slicer to compensate for temperature
variations (0 = disable, 1 = enable)

For external slicer mode, the formatSelect parameter must be set as ADI_ADRV9025_GAIN_WITH_EXTERNAL_SLICER.

Other settings relevant to the external slicer configuration include the adi_adrv9025_SlicerConfigSettings_t data structure described

in Table 196.

Table 196. Description of adi_adrv9025_SlicerConfigSettings_t Data Structure

Parameter

Data Type

Comments

extSlicerStepSize
intSlicerStepSize
rx1ExtSlicerGpioSelect

rx2ExtSlicerGpioSelect
rx3ExtSlicerGpioSelect

rx4ExtSlicerGpioSelect

adi_adrv9025_ExtSlicerStepSizes_e
adi_adrv9025_IntSlicerStepSizes_e
adi_adrv9025_RxExtSlicerGpioSel_e

adi_adrv9025_RxExtSlicerGpioSel_e
adi_adrv9025_RxExtSlicerGpioSel_e

adi_adrv9025_RxExtSlicerGpioSel_e

Enumeration selects the external pin gain step size
Enumeration selects the internal pin gain step size
Enumeration selects the Rx1 Ext Ctrl GPIO
configuration

Enumeration selects the Rx2 Ext Ctrl GPIO
configuration

Enumeration selects the Rx3 Ext Ctrl GPIO
configuration

Enumeration selects the Rx4 Ext Ctrl GPIO
configuration

Rev. 0| Page 192 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

The enum adi_adrv9025_RxExtSlicerGpioSel_e structure provides the list of GPIO groupings available when using external slicer mode,
as shown in Table 197.

Table 197. Description of adi_adrv9025_RxExtSlicerGpioSel_e Enumeration

Enumeration Name Enumeration Value Comments
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE 0 No GPIO assigned to external slicer
ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 | 1 Select receive gain slicer external, GP102, GPIO1, and
GPIO_0
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 | 2 Select receive gain slicer external, GPIO5, GPIO4, and
GPIO3
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 | 3 Select receive gain slicer external, GPIO8, GPIO7, and
GPIO6
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO 9 | 4 Select receive gain slicer external, GPIO11, GPIO10, and
GPIO9
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 | 5 Select receive gain slicer external, GPIO14, GPIO13, and
GPIO12
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 | 6 Select receive gain slicer external, GPIO17, GPIO16, and
GPIO_15

Other members of the adi_adrv9025_RxDataFormatter_t structure are discussed in the Receiver Gain Control and Gain Compensation section.
Transmitter to Observation Receiver Mapping
A full description of transmitter to observation receiver mapping is provided in the Use Cases section.

For initial calibrations and tracking calibrations that require an external transmit to observation receive loopback channel for the
algorithm, the ARM processor must understand the specific mapping of transmit to observation receive at that time. In the use case with
four observation receivers, the mapping is typically static, and it is recommended to use the adi_adrv9025_TxToOrxMappingSet(...) API
command to configure the mapping. In the use case with two observation receivers, each observation receive channel must know which
transmit channel is provided as the input. An alternative to the API command interface is to use a GPIO-based interface to inform the
ARM about the currently mapped transmit channels into the observation receive. To clarify, the baseband processor informs the
transceiver about the channel mapping state by signaling on the GPIO, which executes a stream processor command. This stream
processor command provides the mapping information to the ARM processor, which executes the calibration routines.

The GPIO pins available for this feature range from the GPIO_0 pin to the GPIO_15 pin. Up to four GPIO are required to fully
implement pin-based mapping controls. A partial implementation can be achieved with two GPIO. The partial implementation only
indicates which transmit was mapped to the observation receive (TX_SEL signal) and does not permit the baseband processor to inform
the device that the device must not perform tracking calibrations (TX_EN signal). This additional information is useful if antenna
calibrations are performed while the tracking calibrations that depend on a constant external channel are still enabled.

To set up this feature, the GUI must generate a stream file with the desired GPIO to use for the TX_SEL and TX_EN signals.
adi_adrv9025_StreamGpioConfigSet(...)

adi adrv9025 StreamGpioConfigSet (adi adrv9025 Device t* device,
adi adrv9025 StreamGpioPinCfg t* streamGpioPinCfg);

Description
With the proper stream file, the user can configure the stream processor to listen to the input GPIO with the following command.

Note that this command is called as a part of the adrv9025_RadioctrlInit command, which is called during the
adi_adrv9025_PostMcsInit(...) command.

This function associates a GPIO pin with the stream processor general-purpose inputs and enables the stream trigger functionality if a
valid GPIO (GPIO_0 to GPIO_15) is assigned to the internal streamGpInput path.

There are 16 GPIO inputs available to trigger streams. These GPIO inputs can be mapped to one of the pins GPIO_0 to GPIO_15.
To unmap a GPIO association with a stream general-purpose input, set the GPIO input to ADI_ADRV9025_GPIO_INVALID.

Rev. 0 | Page 193 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727

ADRV3026/ADRV93029

Parameters

Table 198. adi_adrv9025_StreamGpioConfigSet(...) Parameters

Parameter

Description

*device
streamGpioPinCfg

Pointer to the device structure.
Data structure containing the GPIO assignments for the stream processor inputs.

Table 199. Description of the adi_adrv9025_StreamGpioPinCfg_t Data Structure

Member

Data Type

Description

streamGplnput0
streamGplnput1
streamGplnput2
streamGplnput3
streamGplnput4
streamGplnput5
streamGplnput6
streamGplnput7
streamGplnput8
streamGplnput9
streamGplnput10
streamGplnput11
streamGplnput12
streamGplnput13
streamGplnput14

streamGplnput15

adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e
adi_adrv9025_GpioPinSel_e

adi_adrv9025_GpioPinSel_e

Select the desired GPIO pin input to stream the processor general-purpose Input 0
(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.

Select the desired GPIO pin input to stream the processor general-purpose P Input 1
(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.

Select the desired GPIO pin input to stream the processor general-purpose Input 2
(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.

Select the desired GPIO pin input to stream the processor general-purpose Input 3
(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.

Select the desired GPIO pin input to stream the processor general-purpose Input 4
(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.

Select the desired GPIO pin input to stream the processor general-purpose Input 5
(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.

Select the desired GPIO pin input to stream the processor general-purpose Input 6
(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.

Select the desired GPIO pin input to stream the processor general-purpose Input 7
(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.

Select the desired GPIO pin input to stream the processor general-purpose Input 8
(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.

Select the desired GPIO pin input to stream the processor general-purpose Input 9
(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.

Select the desired GPIO pin input to stream the processor general-purpose Input 10
(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.

Select the desired GPIO pin input to stream the processor general-purpose Input 11
(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.

Select the desired GPIO pin input to stream the processor general-purpose Input 12
(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.

Select the desired GPIO pin input to stream the processor general-purpose Input 13
(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.

Select the desired GPIO pin input to stream the processor general-purpose Input 14
(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.

Select the desired GPIO pin input to stream the processor general-purpose Input 15
(valid GPIO_0 GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.

Description

This command sets the source control.

Parameters

Table 200. adi_adrv9025_GpioOutSourceCtrlSet(...) Parameters

Parameter | Description

*device Pointe

gpioSrcCtrl | Selects nibble-based source control. This is a 32-bit value containing 5 nibbles that set the output source control for each set
of four GPIO pins. This parameter is set in 4-bit nibble groupings, as shown in Table 201.

r to device structure.

Table 201. Description of the Nibble Groups Configured Via gpioSrcCtrl

gpioSrcCtrl[bits]

Description

gpioSrcCtrl[d3:d0]
gpioSrcCtrl[d7:d4]
gpioSrcCtrl[d11:d8]
gpioSrcCtrl[d15:d12]
gpioSrcCtrl[d19:d16]

GPIO output source for GPIO_3 to GPIO_0 pins
GPIO output source for GPIO_7 to GPIO_4 pins
GPIO output source for GPIO_11 to GPIO_8 pins
GPIO output source for GPIO_15 to GPIO_12 pins
GPIO output source for GPIO_18 to GPIO_16 pins

Rev. 0 | Page 194 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

The values for these nibble groupings can be formed with the adi_adrv9025_GpioOutputModes_e enumeration. This enumeration is
described in Table 202.

Table 202. Description of adi_adrv9025_GpioOutputModes_e Enumeration

Enumeration Name Enumeration Value | Comments

ADI_ADRV9025_GPIO_BITBANG_MODE 3 Manual mode, API function sets output pin levels and reads input pin
levels

ADI_ADRV9025_GPIO_SLICER_OUT_MODE | 10 Allows slicer position to be output on GPIO pins

Note that if a GPIO is not designated as an output pin, the GPIO can be set as an input pin. For example, consider a use case where three
pins in a 4-pin nibble group are dedicated for slicer output mode. The fourth pin in the group can be set as an input pin for gain control.
As a constraint on customer applications, multiple source control selections cannot be used within a single 4-pin nibble group.

Manual Pin Toggle (Bitbang) Mode

This mode allows control of the logic level of individual GPIO pins.

adi_adrv9025_GpioOutPinLevelSet(...)

adi adrv9025 GpioOutPinLevelSet (adi adrv9025 Device t* device, uint32 t gpioOutPinLevel)
Description

This command sets the output logic level of the GPIO pins after configuring the I/O direction and source control.

Parameters

Table 203. adi_adrv9025_GpioOutPinLevelSet(...) Parameters

Parameter Description

*device Pointer to the device structure.

gpioOutPinLevel Determines the level to output on each GPIO pin. 0 = low output, 1 = high output.
Slicer Output Mode

A general description of this feature is provided in the Mode 2: Digital Gain Compensation with Slicer GPIO Outputs section.
GPIO_ANA OPERATION

The main purpose of the GPIO_ANA_x pins is to serve as control pins for an external control element, such as a DSA or LNA. Other
features can be exposed in future software releases. A high level overview of the GPIO_ANA_x features are provided in Table 204.

Table 204. Summary of GPIO_ANA Features

Feature Description GPIO Pins Available for Feature

Receive Gain The receive gain table includes a column for 2-bit control | GPIO_ANA_1 and GPIO_ANA_0: Rx1 external control word
Table External | of an external gain element. Each receive channel is
Control Word associated with two fixed GPIO_ANA_x pins. The 2-bit
Output value expressed on the pins depends on the gain index
and gain table column. The API function for configuration
is adi_adrv9025_RxGainTableExtCtrlPinsSet(...).
GPIO_ANA_3 and GPIO_ANA_2: Rx2 external control word
GPIO_ANA_5 and GPIO_ANA_4: Rx3 external control word

GPIO_ANA_7 and GPIO_ANA_6:: Rx4 external control word

Gain Table External Control Word

For proper use of this feature, a custom gain table must be created that uses the external control column. When a gain index with a non-
zero value in the external control column of the gain table is selected, the value of the external control column is output on a pair of
GPIO_ANA_x pins. The configuration of the GPIO pins for the gain table external control word is performed with the following API
command.

adi_adrv9025_RxGainTableExtCtrlPinsSet(...)

adi adrv9025 RxGainTableExtCtrlPinsSet (adi adrv9025 Device t* device,
adi adrv9025 RxExtCtrlPinOuputEnable e extCtrlGpioChannelEn)

Rev. 0 | Page 195 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Description
This command configures the GPIO pins for the gain table external control word.

Parameters

Table 205. adi_adrv9025_RxGainTableExtCtrlPinsSet(...) Parameter

Parameter Description

*device Pointer to the device structure.

extCtrlGpioChannelEnable | Determines the adi_adrv9025_RxChannels_e enumeration type to select which set of gain table external
control words to output on analog GPIOs.

Table 206 describes the adi_adrv9025_RxExtCtrlPinOutputEnable_e enumeration.
Table 206. Description of adi_adrv9025_RxExtCtrlPinOuputEnable_e Enumeration

Enumeration Name Comments

ADI_ADRV9025_DISABLE_RX1_RX2_EXT_CTRL_GPIOS Disable Rx1 and Rx2 external control words output on the analog GPIOs

ADI_ADRV9025_ENABLE_RX1_RX2_EXT_CTRL_GPIOS Enable Rx1 and Rx2 external control words output on the analog GPIOs

ADI_ADRV9025_DISABLE_RX3_RX4_EXT_CTRL_GPIOS Disable Rx3 and Rx4 external control words output on the analog GPIOs

ADI_ADRV9025_ENABLE_RX3_RX4_EXT_CTRL_GPIOS Enable Rx3 and Rx4 external control words output on the analog GPIOs

ADI_ADRV9025_DISABLE_RX1_RX2_RX3_RX4_EXT_CTRL_GPIOS | Disable Rx1, Rx2, Rx3 and Rx4 external control words output on the analog
GPIOs

ADI_ADRV9025_ENABLE_RX1_RX2_RX3_RX4_EXT_CTRL_GPIOS | Enable Rx1, Rx2, Rx3 and Rx4 external control words output on the analog
GPIOs

Rev. 0 | Page 196 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

GENERAL-PURPOSE INTERRUPT (GPINT)

The transceiver features two general purpose interrupt (GPINT) pins, GPINT1 and GPINT2. Note that the device data sheet pinout
conventions of GPINT1 and GPINT?2 are referenced within the API as GPINTO0 and GPINT], respectively. In this section, references are
made to the GPINT1 and GPINT2 conventions on the device data sheet pinout except when listed in an API code example. A summary of
API commands relevant to the GPINT functionality is provided in the API Commands for GPINT section.

The GPINTx pins provide an interface that allows the device to inform the baseband processor of an error in normal operation. Examples
of the interrupt sources include PLL unlock events, SERDES link status, a stream processor error, or ARM exception. A full list of
interrupt sources is provided in Table 207. The GPINT?2 pin acts as the high priority interrupt pin, and the GPINT1 pin acts as the low
priority interrupt pin. These pins can be configured with independent bitmasks that control which signals can assert GPINT1 or
GPINT?2. A high level block diagram of the GPINT operation is shown in Figure 120.

ea
ON-CHIP OFF-CHIP
50
GP_INT STATUS REGISTER: D49:D0 GP INT2
gpintStatus[d49:d0] —
gplnt1Mask[d49:d0] +[>o—/—
x50 x50
INTERRUPT SOURCES
D49:D0 GP_INT1
—
gpIntOMask[d49:d0]
x50 x50 2
—-

Figure 120. Block Diagram of GPINT Outputs
The GPINT1 and GPINT2 pins are a bitwise OR of all unmasked GPINT sources. The status register represents all possible interrupt sources that
can assert on the device. Any time the GPINTXx pin asserts, the GPINT status indicates what interrupt source(s) asserted the GPINTx pin.

Note that the GPINT status and the GPINTx pins have different behaviors. The GPINTx pins are real-time indicators of error status. For
example, if a power amplifier protection error occurs when power amplifier protection is configured in the autoclear mode, the GPINTx pin
deasserts when the power returns to normal. The GPINT status bit fields are sticky and remain asserted until the user clears the register. If
the power amplifier protection error occurs and disappears in autoclear mode, the GPINT status still indicates that a power amplifier
protection error occurred until the user manually clears the GPINT status.

A description of the interrupt sources and their bit positions within the 50-bit general purpose interrupt mask is provided in Table 207.

Table 207. GP_INTERRUPT Bitmask Description

Bit Position | Description Subsystem | APl Recovery Action
D49 Deframer IRQ 11: Deframer1 JESD204C CRC error Deframer ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR
D48 Deframer IRQ 10: Deframer1 JESD204C loss of sync
D47 LO1 PLL unlock ADI_COMMON_ACT_ERR_RESET_MODULE
D46 LO2 PLL unlock ADI_COMMON_ACT_ERR_RESET_MODULE
D45 Auxiliary PLL unlock ADI_COMMON_ACT_ERR_RESET_MODULE
D44 Clock PLL unlock ADI_COMMON_ACT_ERROR_RESET_FULL
D43 LO1 PLL charge pump overrange PLL
D42 LO2PLL charge pump overrange ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR
D41 Auxiliary PLL charge pump overrange
D40 Clock PLL charge pump overrange
D39 SERDES PLL unlock ADI_COMMON_ACT_ERROR_RESET_FULL
D38 Deframer IRQ 9: Deframer1 JESD204B quad byte deframer

(QBD) IRQ
D37 Deframer IRQ 8: Deframer1 SYSREF out of phase
D36 Deframer IRQ 7: Deframer1 elastic buffer error Deframer ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR
D35 Deframer IRQ 6: Deframer1 lane FIFO pointer error
D34 Deframer IRQ 5: Deframer0 JESD204C CRC error
D33 Deframer IRQ 4: Deframer0 JESD204C loss of sync

Rev. 0| Page 197 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Bit Position | Description Subsystem | APl Recovery Action

D32 Deframer IRQ 3: Deframer0 JESD204B QBD IRQ

D31 Deframer IRQ 2: Deframer0 SYSREF out of phase

D30 Deframer IRQ 1: DeframerO0 elastic buffer error

D29 Deframer IRQ 0: Deframer0 lane FIFO pointer error

D28 Framer IRQ 8: Framer2 transport not sending data

D27 Framer IRQ 7: Framer2 SYSREF out of phase

D26 Framer IRQ 6: Framer2 lane FIFO pointer error

D25 Framer IRQ 5: Framer1 transport layer not sending data

D24 Framer IRQ 4: Framer1 SYSREF out of phase Framer

D23 Framer IRQ 3: Framer1 lane FIFO pointer error

D22 Framer IRQ 2: FramerQ Transport layer not sending data

D21 Framer IRQ 1: Framer0 SYSREF out of phase

D20 Framer IRQ 0: FramerO lane FIFO pointer error

D19 Power Amplifier Protection Error Tx4 (threshold exceeded)

D18 Power Amplifier Protection Error Tx3 (threshold exceeded) .

D17 Power Amplifier Protection Error Tx2 (threshold exceeded) Transmitter | ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR
D16 Power Amplifier Protection Error Tx1 (threshold exceeded)

D15 ARM has forced interrupt ADI_COMMON_ACT_ERROR_RESET_FULL
D14 ARM watchdog timer timeout ARM ADI_COMMON_ACT_ERROR_RESET_FULL
D13 Slew rate limiter IRQ ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR
D12 ARM system error ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR
D11 ORx3 or ORx4 stream processor error

D10 ORx1 or ORx2 stream processor error

D9 Tx4 stream processor error

D8 Tx3 stream processor error

D7 Tx2 stream processor error

D6 Tx1 stream processor error Ztrfcae”;or ADI_COMMON_ACT_ERROR_RESET_FULL
D5 Rx4 stream processor error

D4 Rx3 stream processor error

D3 Rx2 stream processor error

D2 Rx1 stream processor error

D1 Core stream processor error r

DO Memory ECC error ARM ADI_COMMON_ACT_ERROR_RESET_FULL

Table 207 can be used to form bitmasks for the GPINT2 and GPINT1 pins. Note that in the API, GPINT1 is linked to the GPINT2 pin
and GPINTO is linked to the GPINT1 pin. Further descriptions of these event sources is provided in the following sections.

PLL GPINT SOURCES

The PLL GPINT sources include two types of interrupt for the PLLs, PLL unlock events and PLL charge pump overrange events. Note
that if initial calibrations are run, it is expected that some PLLs are used during this time and a PLL unlock event can appear in the
GPINT status register. PLL unlocks during successful runs of initialization calibrations are expected and are not a concern.

PLL Unlock Event Bits

The PLL unlock event bits, if asserted, indicate that a PLL has unlocked and is not operating properly. The PLLs are designed to maintain
lock over the full temperature range and operation of the device. In extremely rare cases, the PLL can unlock because of external or internal
factors. There are two recovery procedures for PLL unlocks depending on the PLL that unlocks. These procedures include the following:

e Ifthe clock PLL unlocks, reset the device. The device is not expected to recover from the loss of the primary clock within the transceiver.
e Ifthe LO2, LO1, or auxiliary PLL unlocks, call adi_adrv9025_PllFrequencySet(...) to see if the PLL relocks.

e If the unlocked PLL relocks, follow the procedures to rerun certain initialization calibrations as this is effectively a PLL
frequency change procedure. If the user has configured attenuation ramp down/up events to occur based on the PLL lock status,
the attenuation ramp down/up event must be cleared prior to running initial calibrations.

e If the unlocked PLL fails to achieve lock, reset the device.

The real time lock status of the PLL can be verified with the command adi_adrv9025_PllIStatusGet(...).

Rev. 0 | Page 198 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029

UG-17271

Charge Pump Overrange Event Bits

The charge pump overrange event bits must not be unmasked for the GPINTx pins. These bits can assert intermittently but do not

indicate a significant device issue.

JESD204B AND JESD204C GPINT SOURCES

The deframer and framer in both JESD204B and JESD204C modes of operation can send information to the user regarding error events
over the GPINTX pin.

Because of a hardware issue, the JESD204C CRC error can assert when the link is configured for JESD204B mode. Ignore the JESD204C
CRC error when detected in JESD204B use cases. Additionally, do not allow JESD204C errors assert the GPINTx pins when configured in
JESD204B mode because there is no value provided in this configuration.

Table 208 provides additional details regarding the deframer and framer interrupts that can assert the GPINTXx pin. In general, referring

to JESD204B/JESD204C documentation explains these events in more detail as well as possible recovery mechanisms.

Table 208. Framer and Deframer Interrupt List

GP_INT Bits | Brief Description Technical Description Further Actions, If Necessary
D34, D49 Deframer JESD204 A CRC error has been detected on one of the active Log the event. The user must decide how to
CRC error deframer lanes, the transmit data is possibly corrupted. | react to the event.
D33, D48 Deframer JESD204C | The JESD204C link layer has lost sync. This can be Log the event. If the link is down, reestablish
loss of sync because of a loss of sync header alignment or the link.
multiblock alignment. Typically, the link has
dropped and must be reestablished.
D32,D38 Deframer JESD204B | The QBD interrupt request (IRQ) indicates that a Log the event. Call
QBD IRQ deframer IRQ source has asserted. Deframer IRQ adi_adrv9025_DfrmirgSourceGet(...) to
sources include bad disparity (BD), not in table retrieve the specific interrupt that asserted.
(NIT), and unexpected K (UEK). Most errors are Typically, this is an informational interrupt,
considered minor. but some cases can require the link reset.
D31,D37 Deframer SYSREF SYSREF registered at the wrong phase in the link. Log the event. Something is likely incorrect in
out of phase the overall system timing and must be adjusted.
D30, D36 Deframer elastic The phase of lane data in the link with respect to Log the event. Reassess the ImfcOffset value
buffer error global LMFC has shifted such that the buffer is in selection if deterministic latency is required.
protect mode to avoid corrupt data transfer.
Deterministic latency is lost.
D29, D35 Deframer lane FIFO Lane FIFO pointers have moved in the link. This error Log the event. Reset the link.
pointer error may or may not be associated with SYNC going low.
D22,D25, Framer transport The framer is not sending user data. This error Log the event.
and D28 layer not sending occurs if the LMFC from the link layer is out of phase
data with the transport layer LMFC, and forces a relink by
taking SYNC low.
D21, D24, Framer SYSREF out SYSREF is registered at the wrong phase in the Log the event. Something is likely incorrect in
and D27 of phase framer link. If JESD is configured to attempt relink the overall system timing and must be adjusted.
with the new phase, no action is required.
D20, D23, Framer lane FIFO The lane FIFO pointer has changed. Log the event.
and D26 pointer error

These deframer interrupts can be used to assert the rampdown of transmit attenuation as described in the Transmitter Power Amplifier

Protection section.

POWER AMPLIFIER PROTECTION GPINT SOURCES

The power amplifier protection feature must be enabled for these interrupts to assert. The power amplifier protection block refers

specifically to the peak and average power measurement capabilities within the transmit data path and must not be misconstrued for the

general transmit attenuation ramp features.

Power amplifier protection GPINT sources indicate to the user that a peak or average power measurement within the transmit data path

has exceeded the thresholds as configured on the device. When the power measurement exceeds the threshold, this is also referred to as a

power amplifier protection error. Log this event and take appropriate action within the system to resolve the reason for the power

increase in the transmit data path.

Rev. 0 | Page 199 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

The user can configure the power amplifier protection block to enforce a ramp (or increase) of transmit attenuation with the
adi_adrv9025_PaPlIDfrmEventRampDownEnableSet(...) command. Control over whether the attenuation ramp is sticky or autoclears is
determined by the adi_adrv9025_TxAttenuationRampUpStickyModeEnable(...) command. Refer to the Transmitter Power Amplifier
Protection section for more information.

ARM GPINT SOURCES

There are four ARM interrupt sources available.

ARM Has Forced Interrupt

The ARM asserts this interrupt when a fatal error occurs within the firmware. If possible, acquire an ARM memory dump to assist in a
debug. Reset the device.

ARM Watchdog Timer Timeout

The ARM asserts this interrupt when the watchdog timer within the ARM reaches its timeout value. If the ARM is unable to reset this
timer, a fatal error occurs within the ARM. If possible, acquire an ARM memory dump to assist in a debug. Reset the device.

Slew Rate Limiter IRQ

As of SW 2.0.5 versions, this bit represents the SRL error interrupt for the transmit datapaths. If this interrupt asserts, it indicates an SRL
error event has occurred. Check the SRL statistics for each channel to check which channel generated the interrupt.

ARM System Error

The ARM asserts this interrupt when the ARM detects an issue with any calibration or system related issue managed by the ARM. Some
events can be fatal. To acquire more information about the error, call the API command adi_adrv9025_ArmSystemErrorGet(...). This bit
also represents any issues with tracking calibrations.

STREAM PROCESSOR SOURCES

Assertion of any stream processor interrupt bits indicates that a significant problem has occurred within the stream processor. The stream
processor does not have a way to recover from these events. Reset the device if stream processor errors are detected.

MEMORY ECC ERROR

A memory ECC error indicates that a bit error has occurred in a memory circuit within the chip. This is an extremely rare event. Reset
the device if this error is detected.

SOFTWARE PROCEDURES FOR GPINT

Referring to the transceiver programming sequence in adi_adrv9025_daughter_board.c, the GPINT feature setup is one of the last steps
in device initialization and occurs after both the adi_board_adrv9025_JesdBringup(...) and adi_adrv9025_TxRampDownlInit(...)
commands are issued. The GPINT masks for the GPINT2 and GPINT1 pins are stored in the adi_adrv9025_GplnterruptSettings_t
structure and applied to the device during adi_adrv9025_GpIntInit(...). This command configures both GPINTx pins and no further
action is needed for setup.

If it is necessary to reconfigure the GPINT masks after initialization, use the adi_adrv9025_GpIntMaskSet(...) command. The primary
difference between the two GPINT setup commands is that the adi_adrv9025_GpIntMaskSet(...) command allows selection regarding
which pin bitmask to program.

The baseband processor monitors the status of the GPINT2 and GPINT1 pins after configuring the mask bits. If either pin asserts, this indicates
that the transceiver has run into a problem that can require user intervention to resolve. The GPINT handler functions attempts to resolve the
error by reading back the status and then clearing the status bit fields. The bits in the status register are sticky, but the pin is not. The pin
represents whether the interrupt source is active or not. The register indicates which interrupts occurred since the status was last cleared.

The general setup and usage for the GPINT command is as follows:

1. Initialize the device using either the call adi_adrv9025_GpIntInit(...) or adi_adrv9025_GpIntMaskSet(...) command to set up the
GPINT feature.

2. Operate the device. The baseband processor monitors the GPINT2 pin and/or GPINT1 pin for rising edges that indicate an interrupt
occurred.

Rev. 0 | Page 200 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

3. If the GPINT2 pin and/or GPINT1 pin asserts, call their associated interrupt handler API command, either the
adi_adrv9025_GpInt1Handler(...) or adi_adrv9025_GpIntOHandler(...) command, respectively. The interrupt handler returns
information related to the interrupt source to the user. Calling this command can be sufficient to clearing the error. Either handler
function returns a recovery action which suggests further action if necessary.

4. Alternatively, the user can call the adi_adrv9025_GpIntStatusGet(...) command, which only returns the interrupt status bits. The
status word is not maskable and indicates all errors since the previous clearing of the status word.

5. If the device does not need to be reset and the error state has been eliminated, it is necessary to call the
adi_adrv9025_GPIntClearStatusRegister(...) command to clear all error bits asserted in the GPINT status register.

6. Perform recovery action(s).

APl COMMANDS FOR GPINT

The following section outlines API commands for configuring and using the GPINT feature.

adi_adrv9025_GpIntMaskSet(...)

adi adrv9025 GpIntMaskSet (adi adrv9025 Device t* device, adi adrv9025 gpMaskSelect e maskSelect,
adi adrv9025 gp MaskArray t *maskArray)

Description
This command applies the desired bitmasks to the device.

Parameters

Table 209. adi_adrv9025_GpIntMaskSet(...) Parameters

Parameter Description

*device Pointer to the device structure.

maskSelect Sets enumeration indicating which GP_INTERRUPT bitmask (GPINT1 or GPINTO) to write.
*maskArray Pointer to the data structure holding the GP_INTERRUPT bitmasks to write.

Table 210 describes the adi_adrv9025_gpMaskSelect_e enumeration. This parameter describes which pin to write the mask to.

Table 210. Description of adi_adrv9025_gpMaskSelect_e Enumeration

Enumeration Comments

ADI_ADRV9025_GPINTO GPINT1 select (GPINTO bitmask), only adi_adrv9025_gp_MaskArray_t -> gpIntOMask is programmed to the device.
ADI_ADRV9025_GPINT1 GPINT2 select (GPINT1 bitmask), only adi_adrv9025_gp_MaskArray_t -> gpInt1Mask is programmed to the device.
ADI_ADRV9025_GPINTALL | GPINT1 and GPINT2 select, both members of adi_adrv9025_gp_MaskArray_t are programmed to the device.

Table 211 describes the adi_adrv9025_gp_MaskArray_t data structure. Refer to Table 207 for a description of the bitmasks.

Table 211. Description of adi_adrv9025_gp_MaskArray_t Data Structure

DataType | Parameter | Comments

uint64_t gpIntOMask | Bitmask for the GPINT1 pin. If a bit within the mask is set to 1, the associated interrupt source cannot assert the
GPINT1 pin.
uint64_t gpInt1Mask | Bitmask for the GPINT2 pin. If a bit within the mask is set to 1, the associated interrupt source cannot assert the
GPINT2 pin.

When either GPINTX pin asserts, there are interrupt handler API commands to assist with determining the error. The following
commands are the GPINT2 and GPINT1 interrupt handlers.

adi_adrv9025_GpIntlHandler(...)

adi adrv9025 GpIntlHandler (adi adrv9025 Device t* device, adi adrv9025 gpIntStatus t
*gpIntlStatus)

Description

This command sets up the GPINT2 interrupt handler.

Rev. 0 | Page 201 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

Parameters

Table 212. adi_adrv9025_GpIntlHandler(...)

Parameter Description
*device Pointer to the device structure.
*gplInt1Status Pointer to the status readback word that contains the GPINT2 source registers.

adi_adrv9025_GpIntOHandler(...)

adi adrv9025 GpIntOHandler (adi adrv9025 Device t* device, adi adrv9025 gpIntStatus t
*gpIntOStatus)

Description
This command sets up the GPINT1 interrupt handler.

Parameters

Table 213. adi_adrv9025_GpIntOHandler(...) Parameters

Parameter Description
*device Pointer to the device structure.
*gplnt0Status Pointer to the status readback word that contains the GPINT1 source registers.

When either handler command is called, the first step in the procedure is to temporarily modify the interrupt bitmask such that no other
interrupts can assert the GPINT2 pin or GPINT1 pin while the handler is invoked. This masking is followed by retrieval of the GPINT
status. The final step in the handler is to restore the initial bitmask for the GPINT2 pin and GPINT1 pin. In some cases, reading the error
is sufficient to clearing the error, which is the case for short-term, intermittent errors. If the error persists, the status continues to indicate
the interrupt and further intervention is necessary.

adi_adrv9025_GpIntStatusGet(...)
adi adrv9025 GpIntStatusGet (adi adrv9025 Device t* device, uint64 t *gpIntStatus)

Description
This command provides a direct readback of the GPINT status word.

Parameters

Table 214. adi_adrv9025_GpIntStatus(...) Parameters

Parameter Description
*device Pointer to the device structure.
*gplntStatus Pointer to the status readback word. Refer to Table 207 for bitmask descriptions.

adi_adrv9025_GPIntClearStatusRegister(...)
adi adrv9025 GPIntClearStatusRegister (adi adrv9025 Device t *device, uint64 t *gpIntStatus)

Description
This command clears the GPINT status register.

Parameters

Table 215. adi_adrv9025_GPIntClearStatusRegister(...) Parameters

Parameter Description
*device Pointer to the device structure.
*gplntStatus Pointer to the status readback word. Refer to Table 207 for bitmask descriptions.

Rev. 0 | Page 202 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV3026/ADRV93029 UG-17271

AUXILIARY CONVERTERS AND TEMPERATURE SENSOR

The transceiver features auxiliary data converters including eight 12-bit auxiliary digital-to-analog converters (AUXDACs) and two 12-bit
auxiliary analog-to-digital converters (AUXADCs). An integrated diode-based temperature sensor is available to readback the
approximate die temperature of the device. These features are included to simplify control tasks and reduce pin count requirements on
the baseband processor by offloading these tasks to the transceiver. Example usage of the auxiliary converters include static voltage
measurements performed by the AUXADC and flexible voltage control performed by the AUXDAC. This section outlines the operation
of these features along with the API command for configuration and control.

The AUXDAC and AUXADC are not precision data converters. DC offset and gain/slope errors are present and can vary on different
channels. Refer to the specifications in ADRV9029 data sheet. The AUXDAC and AUXADC are best used in feedback systems rather
than in open-loop systems for precision voltage readback or control.

AUXILIARY DAC (AUXDAC)

There are eight independent 12-bit AUXDAC:s integrated on the transceiver. The voltage range of the AUXDAC is from ground (0 V) to
1.8 V. The AUXDAC:S use the enumeration adi_adrv9025_AuxDacs_e when referenced in the APIL The pins used for the AUXDAC
features are listed in Table 216.

Table 216. AUXDAC Pin Mapping and adi_adrv9025_AuxDacs_e Enumeration Description

Auxiliary DAC Number Pin Name Pin Number Enumeration Name Enumeration Value
AUXDAC[0] GPIO_ANA_0O c13 ADI_ADRV9025_AUXDACO 0x01
AUXDAC[1] GPIO_ANA_1 c12 ADI_ADRV9025_AUXDACI1 0x02
AUXDAC[2] GPIO_ANA_2 L16 ADI_ADRV9025_AUXDAC2 0x04
AUXDAC[3] GPIO_ANA_3 L17 ADI_ADRV9025_AUXDAC3 0x08
AUXDAC[4] GPIO_ANA_4 L2 ADI_ADRV9025_AUXDAC4 0x10
AUXDAC[5] GPIO_ANA_5 L1 ADI_ADRV9025_AUXDAC5 0x20
AUXDAC[6] GPIO_ANA_6 a5 ADI_ADRV9025_AUXDAC6 0x40
AUXDAC[7] GPIO_ANA_7 c4 ADI_ADRV9025_AUXDAC7 0x80

The capacitive load of the AUXDAC pins must not exceed more than 100 pF. Otherwise, stability issues can occur.

The AUXDAC uses the GPIO_ANA pins on the device. Conflicts between GPIO_ANA and AUXDAC functionality can occur. In case of
these conflicts, the AUXDAC takes precedence over all other GPIO_ANA functionality when the AUXDAC is enabled for a specific pin.
When the AUXDAC is disabled, the configured GPIO_ANA functionality is applied. The AUXDAC can be enabled one pin at a time to
allow flexibility between AUXDAC and GPIO_ANA functionality.

The AUXDAC is typically used in applications that require analog control signals. The data interface used to set the output level of the
AUXDAC is SPI based. There is no CMOS/LVDS data interface to provide input data to the AUXDAC.

The (ideal) output voltage expressed on the AUXDAC is based on the following equation:

AuxDACValue “
4096

Vaupac = 1.8V

where
Vauxpac is the output voltage.
AuxDacValue is the 12-bit digital code applied to the AUXDAC.

The AUXDAC is not a precision converter and is best used in feedback systems. Figure 121 shows the AUXDAC output voltage vs. the
input codes for a full range code sweep of the AUXDAC. Channel to channel variability in slope and dc offset are expected.

Rev. 0 | Page 203 of 336

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV3026/ADRV93029

— CHANNEL 0]
— CHANNEL 1 p oram
1.6 CHANNEL 2 e
— CHANNEL 3 7
CHANNEL 4 5
1.4 CHANNEL 5 e
= — CHANNEL 6 Yy e
k3 4.2 | —_CHANNEL 7 y
w " //'/
2 o
o
':, 1.0 /;}
o “
> v
o 08
< #
[=) p
X 0.6
2 4
P
/
0.4 —
7
0.2 "%
pey, 4
0 o
0 500 1000 1500 2000 2500 3000 3500 4000 -
AuxDAC CODE]

Figure 121. AUXDAC Channel Comparison over Full Range Code Sweep
AUXDAC Configuration
The AUXDAC is configured and controlled using the commands listed in this section.

adi_adrv9025_AuxDacCfgSet(...)

adi adrv9025 AuxDacCfgSet (adi adrv9025 Device t *device, adi adrv9025 AuxDacCfg t
auxDacConfig[],uint8 t numberOfCfqg)

Description
This command configures the AUXDAC settings. This command must be called when device initialization is complete to use the AUXDACs.
Clears the GPINT status register.

Parameters

Table 217. adi_adrv9025_AuxDacCfgSet(...) Parameters

Parameter Description

*device The pointer to the device settings structure
auxDacConfig[] The pointer to an array of AUXDAC configuration structure
numberOfCfg The number of configurations at the auxDacConfig array

A data structure used in this command is the adi_adrv9025_AuxDacCfg_t data structure. The elements within this structure are
described in Table 218.

Table 218. Description of adi_adrv9025_AuxDacCfg_t Data Structure

Data Type Parameter Name Comments
uint32_t auxDacMask AUXDAC