

ADRV9026/ADRV9029 System Development User Guide
 UG-1727

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

ADRV9026/ADRV9029 Integrated Quad RF Transceiver with Observation Path

PLEASE SEE THE LAST PAGE FOR AN IMPORTANT
WARNING AND LEGAL TERMS AND CONDITIONS. Rev. 0 | Page 1 of 336

SCOPE
This user guide is the main source of information for system engineers and software developers using the Analog Devices, Inc., ADRV902x
family of software defined radio transceivers. This family consists of the ADRV9026 integrated quad RF transceiver and the ADRV9029
integrated quad RF transceiver with digital predistortion (DPD) and crest factor reduction (CFR) capability. The content of the user guide
covers all functions that are common to both devices and some that are unique to the ADRV9029 device. Throughout the user guide, the
term transceiver is used with functions that are common to both devices. Functions that are unique to the ADRV9029 device use
ADRV9029 in the description. This user guide must be used in conjunction with the product data sheets to incorporate all necessary
specifications and descriptions when designing these devices into new equipment.

http://www.analog.com/
https://www.analog.com/adrv9026
https://www.analog.com/adrv9029
https://www.analog.com/adrv9026
https://www.analog.com/adrv9029
https://www.analog.com

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 2 of 336

TABLE OF CONTENTS
Scope .. 1
Revision History ... 4
System Overview .. 5
System Architecture Description .. 6

Software Architecture .. 6
API Folder Structure .. 6
Private vs. Public API functions ... 7
Hardware Abstraction Layer ... 8

Software Integration ... 10
Software Integration Process Overview 10
Software Package Folder Structure Overview 10
API Software Architecture .. 11
Implementing Hardware Abstraction Interface 11
Developing the Application .. 11

Serial Peripheral Interface (SPI) ... 20
SPI Bus Signals .. 20
SPI Data Transfer Protocol .. 20
SPI Configuration Using API Function 21
Timing Diagrams.. 22

System Initialization ... 24
Initialization Sequence... 24

Serializer/Deserializer (SERDES) Interface 25
JESD204B and JESD204C Standard ... 25
Differences Between JESD204B and JESD204C 26
Clock Distribution .. 26
Receiver (ADC) Datapath ... 26
Transmitter (DAC) Datapath .. 37
Supported Deframer Link Parameters 38
API Software Integration ... 48
Implementation Recommendations .. 48
Link Initialization and Debugging ... 49
First Time System Bring Up—Checking Link Integrity 49
Sample Iron Python Code for PRBS Testing 49
PRBS Errors ... 50
Static Phase Offset (SPO) TEST to Verify Eye Width 51
Checking JESD204C Link Status .. 58
Selecting the Optimal LMFC and LEMC Offset for a
Deframer .. 58

Synthesizer Configuration .. 69
Overview ... 69
Connections for External Reference Clock (DEVCLK) 69
External Reference Clock (DEVCLK) Requirements 70
Clock Synthesizer ... 72
RF Synthesizer .. 72
Auxiliary Synthesizer ... 73
Setting the LO Frequencies ... 73
RF PLL Phase Synchronization .. 76

ARM Processor and Device Calibrations 80
ARM State Machine Overview ... 80
System Initialization... 80
Pre-MCS initialization ... 80
Post-MCS initialization ... 81
Device Calibrations .. 81
Initial Calibrations ... 82
System Considerations for Initial Calibrations 85
Tracking Calibrations .. 89
Calibration Guidelines after PLL Frequency Changes 93
Initialization Calibrations to Be Run after Device
Initialization .. 103
Tracking Calibration Timing .. 103
ARM Memory Dump .. 103

Stream Processor and System Control 105
Slice Stream Processors ... 105
System Control ... 105
Use Cases ... 113

Transmitter Overview and Path Control 120
API Commands .. 120
DAC Full Scale Function (DAC Boost) 125
adi_adrv9025_TxChannelCfg API Structure 127

Transmitter Power Amplifier Protection 128
PA Protection Description .. 128

Receiver Gain Control and Gain Compensation 135
Overview ... 135
Receiver DataPath .. 135
Manual Gain Control (MGC) ... 137
Automatic Gain Control .. 139

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 3 of 336

AGC Clock and Gain Block Timing 147
Analog Peak Detector (APD) ... 148
Half-Band 2 Peak Detector ... 149
Power Detector ... 151
API Programming .. 152
AGC Holdover Function ... 153
Receiver Gain Mode Switching Using GPIO 153
Gain Control Data Structures ... 155
Sample Python Script—Peak Detect Mode with Fast Attack
 .. 159
Gain Compensation, Floating Point Formatter and Slicer . 162
Receiver Data Format Data Structure 168

Digital Filter Configuration .. 172
Overview ... 172
Receiver Signal Path ... 172
Complex Low IF to Zero IF .. 173
Complex Low IF to Real IF ... 174
Zero IF to Real IF ... 174
Dual Band Mode .. 174
Dual Band Mode (Real IF) .. 174
HB Filter Only Mode ... 174
Receiver Signal Path Example .. 175
Receiver Filter API Structure .. 176
Transmitter Signal Path ... 178
Transmit Signal Path Example ... 180
Transmitter Filter API Structure .. 181
Observation Receivers Signal path .. 181
Observation Receiver Signal Path Example.......................... 183
Observation Receiver Filter API Structure 184

Dual Band Overview: Dual-Band 2T2R Solution 185
Dual-Band Configuration and Example Use Cases 186

GPIO Configuration .. 188
Digital GPIO Operation .. 188
GPIO_ANA Operation.. 195

General-Purpose Interrupt (GPINT) .. 197
PLL GPINT Sources .. 198
JESD204B and JESD204C GPINT Sources 199
Power Amplifier Protection GPINT Sources 199
ARM GPINT Sources .. 200
Stream Processor Sources ... 200

Memory ECC Error .. 200
Software Procedures for GPINT ... 200
API Commands for GPINT .. 201

Auxiliary Converters and Temperature Sensor 203
Auxiliary DAC (AUXDAC) ... 203
Auxiliary ADC (AUXADC) .. 205
Temperature Sensor .. 207

SPI2 Description ... 208
SPI2 Configuration ... 208
Transmitter Control with SPI2 .. 208
Receiver and Observation Receiver Control with SPI2 210

RF Port Interface Overview ... 212
RF Port Impedance Data .. 212
ADS Setup Using Data Access Component and SEDZ File 215
Transmitter Bias and Port Interface.. 216
General Receiver Path Interface .. 217
Impedance Matching Network Examples 218
Matching Component Recommendations 219

Power Management Considerations ... 222
Supply Capacity ... 222
Power Supply Sequence .. 222
Power Supply Domain Connections 222
Power Supply Architecture .. 226
Current Consumption .. 226

PCB Layout Considerations ... 228
Overview .. 228
PCB Material and Stack Up Selection 228
Fanout and Trace Spacing Guidelines 231
Component Placement and Routing Guidelines 231
RF and JESD Transmission Line Layout 233
Isolation Techniques ... 237
Power Management Layout Design .. 239
Analog Signal Routing Considerations 245
Digital Signal Routing Considerations 246
Unused Pin Instructions .. 247

Transceiver Evaluation Software (TES) Operation 248
Initial Setup .. 248
Hardware Kit ... 248
Requirements ... 248

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 4 of 336

Hardware Setup .. 249
Hardware Operation .. 251
TES Installation .. 251
Starting the Transceiver Evaluation Software 252
Normal Operation .. 253
Transmitter Operation ... 258
Receiver Operation... 260
Scripting ... 261
C Code Generation .. 263
NCO Setup .. 264
Digital Front End Tab Setup ... 265

Digital Predistortion (DPD) .. 268
DFE System Level Overview ... 268
DPD Introduction and Principle of Operation 269
Transceiver DPD Overview .. 270
DPD Algorithm Overview .. 273
Initializing Precalibrated Coefficients During Startup 276
DPD Sample Capture ... 278
DPD Dynamics ... 281
DPD Regularization ... 284
DPD Robustness ... 286
DPD Actuator Gain Monitoring for Robustness 289
DPD Actuator Bypass .. 293
DPD STATUS .. 294
Recommended Sequence for Enabling the DPD Tracking
Calibration ... 294

DPD Stability Metrics Characterization 295
DPD Characterization for Optimizing the M Threshold ... 298
Setting Up the DPD Using the GUI 298

Crest Factor Reduction (CFR) .. 303
CFR Algorithm Overview ... 305
Overview of Blocks Used in CFR ... 306
API Software Integration... 306
Typical Procedure to Set Up CFR Using the GUI 313

Closed Loop Gain Control (CLGC) ... 318
CLGC Overview ... 318
Elements of CLGC ... 318
CLGC Algorithm Overview .. 319
Enabling the CLGC Tracking Calibration 320
CLGC Modes of Operation ... 321
CLGC Measurement .. 322
CLGC Transmit Attenuation Control.................................... 324
CLGC API Summary ... 326
CLGC Configuration Summary ... 326
CLGC Status .. 326
CLGC Errors ... 327
CLGC Capture Errors .. 328
Recommended Sequence for Enabling CLGC Tracking
Calibration... 328
Case Study for Configuring CLGC Batch Sampling Period 328
CLGC Recommendations ... 333

REVISION HISTORY
6/2022—Revision 0: Initial Version

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 5 of 336

SYSTEM OVERVIEW
The ADRV9026 and ADRV9029 are part of a family of highly integrated RF agile transceivers designed for use in small cell, massive
MIMO, and macro base station equipment used in advanced communications systems. The transceiver contains four independently
controlled transmitters, dedicated observation receiver inputs for monitoring transmitter channel outputs, four independently controlled
receivers, integrated synthesizers, and digital signal processing functions to provide a complete transceiver solution. The transceiver
provides the high radio performance and low power consumption demanded by cellular infrastructure applications, such as macro
2G/3G/4G/5G and massive MIMO base stations. This user guide is designed to encompass description of all functions available in the
these transceivers. Note that some variants may be developed for specific design targets that do not encompass all available functions,
therefore, refer to the data sheets for the specific transceiver to determine which features are included. To avoid confusion, the term
transceiver is used throughout this user guide to refer to any variant that employs a specific function. When a function that applies to a
specific device is described, the device part number is used to delineate which transceiver is being described.

These transceivers are designed to operate over the wide frequency ranges of 650 MHz to 6 GHz. The receiver channels support
bandwidth up to 200 MHz with data transfer across (up to) four JESD204B/JESD204C lanes at rates up to 24.33 Gbps (see data sheets for
specifications). The transmitter channels operate over the same frequency range as the receivers. Each transmitter channel supports up to
450 MHz synthesis bandwidth with data input across (up to) four JESD204B/JESD204C lanes. In addition, local oscillator (LO) routing
allows the transmitters to operate at different frequencies than the receivers for additional flexibility. Two observation receiver channels
are included to provide the capability to monitor feedback from the transmitter outputs. The feedback loops can be used to implement
error correction, calibration, and signal enhancing algorithms. These receivers operate in the same frequency range as the transmitter
channels, and they support up to 450 MHz channel bandwidth to match the output synthesis bandwidth of the transmitter channels.
These channels provide digital datapaths to the internal ARM processor for use in calibration and signal enhancement algorithms.

Multiple fully integrated PLLs are included in the transceiver to provide a high level of flexibility and performance. Two are high
performance, low power fractional-N RF synthesizers that can be configured to supply the transmitters and receivers in different
configurations. A third fractional-N PLL supports an independent frequency for the observation receiver channels. Other clock PLLs are
included to generate the converter and digital clocks for signal processing and communication interfaces.

The power supply for each block is distributed across four different voltage supplies, three analog voltage supplies and one digital voltage
supply. The analog supplies are 1.8 V, 1.3 V, and 1.0 V. These supplies are fed directly to the power inputs for some blocks and buffered by
internal low dropout (LDO) regulators for other functions for maximum performance. The digital processing blocks are supplied by a
1.0 V source. In addition, a 1.8 V supply supplies all GPIO and interface ports that connect with the baseband processor.

See the functional block diagram in the respective data sheets for a high level view of the functions in each transceiver. Descriptions of
each block with setup and control details are provided in subsequent sections of this document.

https://www.analog.com/adrv9026?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9029?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 6 of 336

SYSTEM ARCHITECTURE DESCRIPTION
Analog Devices developed a proprietary application programming interface (API) software for the these transceiver devices. However,
this section outlines the overall architecture, folder structure, and methods for using API software on the customer platform, but this
section does not explain the API library functions. Detailed information regarding the API functions is in the doxygen file included with
the API software (adrv9025.chm) located at /c_src/doc. This file can also be viewed in the Help tab on the ADRVTRX transceiver
evaluation software (TES) used for controlling the evaluation platform. Note that ADRV9025 is the generic transceiver reference number
for the ADRV902x family; all API functions use the ADRV9025 number to delineate the product from other transceiver products. With
respect to this user guide, ADRV9025 is interchangeable with ADRV9026 and ADRV9029.

SOFTWARE ARCHITECTURE
Figure 2 illustrates the software architecture for the system evaluation platform.

This architecture can be broadly divided into the following three main layers:

• Hardware abstraction layer: consists of device drivers and device specific code.
• Middleware layer: consists of device APIs and other auxiliary layer functions, and resides in the platform layer.
• Application layer: consists of radio application software running on a baseband processor. The baseband processor can be an

embedded processor or a PC running a digital signal processing application, such as MATLAB®, that processes baseband data.

API FOLDER STRUCTURE
Source files are provided by Analog Devices in the folder structure shown in Figure 1. Note that the baseline device, ADRV9025, is used
in the source file folder structure. Analog Devices understands that each developer may desire to use a different folder structure. Whereas
Analog Devices provides API source code releases in the folder structure shown in Figure 1, the developer can organize the API into a
custom folder organization. Creating a new folder structure, however, does not permit the developer the right to modify the content of
the API source code. Modifying the content of any API source file is not allowed because such modification causes issues with supporting
the API and complicates updates to future API code releases.

22
77

0-
00

1

Figure 1. API Folder Structure

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 7 of 336

22
77

0-
00

2

HARDWARE
ABSTRACTION LAYER

MIDDLEWARE
LAYER

APPLICATION LAYERMATLAB RESIDES IN PC

RESIDES IN PLATFORM

LABVIEWNUNIT TEST (C#)GUI

TRANSPORT LAYER (SERVER AND CLIENT)

TRANSCEIVER WRAPPER LAYER C++

BOARD LEVELADI
COMMON

LAYER
UNIT TEST

(C++)
• HAL
• LOGGING
• ERROR

ADRV902x BOARD SERVER FUNCTION LIST

UTILITY
FUNCTIONS

(INIT)

FPGA DDR MEM
Rx/Tx WAVEFORMS

UIO KERNEL DRIVER

FPGA REGS

UIO KERNEL
DRIVER

TIMER
LINUX rt LIBRARY

NANOSLEEP()

LOGGING
fprintf TO

FILE SYSTEM

PLATFORM LIBRARIES AND HARDWARE ABSTRACTION LAYER

FILE
SYSTEM

TCP/IP
STACK

SPI
SPIDEV
KERNEL
DRIVER

LINUX I2C
DRIVER

ADI DEVICE API (PRIVATE)

ADI DEVICE
API (PUBLIC)

ADI ADRV902x DEVICE AUXILIARY
DEVICES

FPGA
API

POWER
IC API

CLOCK
API

Figure 2. ADRV9025 API Software Architecture (Analog Devices Evaluation Platform)

Devices Folder (/c_src/devices)

The devices folder (/c_src/devices) includes the main API code for the transceiver as well as the Analog Devices clock chip AD9528
(/ad9528 folder). The /adrv9025 folder contains the high level function prototypes, data types, macros, and source code to build the final
user software system. The user is strictly forbidden to modify the files contained in the /adrv9025 and /ad9528 folders. Note that
software support cannot be provided if these files have been modified. Analog Devices maintains this code. The only exception is that the
developer may modify user-selectable #define macros, such as ADI_ADRV9025_VERBOSE mode to enable or disable API logging, and
user configurable macros defined in /adrv9025/public/include/adi_adrv9025_user.h.

Platforms Folder (/c_src/platforms)

The platforms folder, named /c_src/platforms, provides the means for a developer to insert custom platform hardware driver code for
system integration with the API. The adi_platform.c/.h files contain function pointers and the required prototypes necessary for the API
to work correctly. It is important that the function prototypes in adi_platform.c do not change. The developer is responsible for
implementing the code for each adi_platform.c function to insure the correct hardware drivers are called for the platform hardware of
the user. In the example code provided by Analog Devices in adi_platform.c, the function pointers are assigned to call the Analog
Devices ADS9 platform functions used by the evaluation system. To allow for easy platform swapping, Analog Devices maintains a
generic implementation of adi_platform.c. To support another platform, assign the function pointers in adi_platform.c to call the
platform functions specific for the platform hardware of the user.

API doxygen (adrv9025.chm) File (/c_src/doc)

The /c_src/doc folder contains the device API doxygen (adrv9025.chm) file for user reference. It is in compressed HTML format. For
security reasons, .chm files can only be opened from a local drive. If you attempt to open from a network drive, the file may look empty.

PRIVATE vs. PUBLIC API FUNCTIONS
The API is made up of multiple .c and .h files. The API is written in the C computer programming language, so there are no language
modifiers to identify a function as private or public as commonly used in object oriented languages. Per the Analog Devices coding
standard, public API functions are denoted by the function name prepended with adi_adrv9025_FunctionName(). The application layer
is free to use any API function prepended with the adi_adrv9025_ naming. Private helper functions lack the adi_ prefix, and are not
intended to be called by the customer application.

Most functions in the API are prefixed with adi_adrv9025_ and are for public use. However, many of these functions are never called
directly from the application layer of the developer. Utility functions that abstract some common operations, specifically initialization of
the device, are provided in adi_adrv9025_utility.c. For this reason, the majority of the initialization and other helper functions have been
separated from the top level adi_adrv9025.c/adi_adrv9025.h files to help the developer focus on the most commonly and widely used
functions by the application layer program.

https://www.analog.com/ad9528?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/ADS9?doc=ADRV9026_System_Development_User_Guide_UG-1727.pdf
https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 8 of 336

HARDWARE ABSTRACTION LAYER
The hardware abstraction layer (HAL) interface is a library of functions that the transceiver API uses when it must access the target
platform hardware. The implementation of this interface is platform dependent and must be implemented by the end user in adi_platform.c.
The current adi_platform.c provides example code that calls the HAL functions for the ADS9 evaluation platform specific functions.

The adi_platform.c HAL functions are function pointers that must be initialized by creating a customer supplied, platform specific
function and pointing the associated HAL function pointer to the customer supplied function.

The following is a snippet from the adi_platform.c provided for the ADS9 mother board, demonstrating assignment of adi_hal_ function
pointers to ADS9 specific functions:
adi_hal_HwOpen = ads9_HwOpen;

adi_hal_HwClose = ads9_HwClose;

adi_hal_HwReset = ads9_HwReset;

adi_hal_DevHalCfgCreate = ads9_DevHalCfgCreate;

adi_hal_DevHalCfgFree = ads9_DevHalCfgFree;

adi_hal_SpiInit = ads9_SpiInit;

adi_hal_SpiWrite = ads9_SpiWrite_v2;

adi_hal_SpiRead = ads9_SpiRead_v2;

adi_hal_LogFileOpen = ads9_LogFileOpen;

adi_hal_LogLevelSet = ads9_LogLevelSet;

adi_hal_LogLevelGet = ads9_LogLevelGet;

adi_hal_LogWrite = ads9_LogWrite;

adi_hal_LogFileClose = ads9_LogFileClose;

adi_hal_Wait_us = ads9_TimerWait_us;

adi_hal_Wait_ms = ads9_TimerWait_ms;

/* only required to support the ADI FPGA*/

adi_hal_BbicRegisterRead = ads9_BbicRegisterRead;

adi_hal_BbicRegisterWrite = ads9_BbicRegisterWrite;

adi_hal_BbicRegistersRead = ads9_BbicRegistersRead;

adi_hal_BbicRegistersWrite = ads9_BbicRegistersWrite;

Hardware Functions

Access to the SPI controller that communicates with the Analog Devices transceiver is required. The SPI details are illustrated in the
Serial Peripheral Interface (SPI) section. In addition, control of the hardware reset signal that controls the RESET pin is required. This is
usually implemented using a platform processor GPIO. For more details of the RESET pin, refer to the target platform schematic and
transceiver data sheet that can be found in the folder at the following link: ADRV9026 Datasheet and Product Info.

Logging Functions

The API provides a simple logging feature function that may be enabled for debugging purposes. This feature requires an implementation
for the adi_hal_LogWrite function. The APIs optionally call to send debug information to the system via the HAL. The function
adi_hal_LogLevelSet may be used to configure HAL flags to configure how the HAL processes the various message types from the API
layer. The open hardware function, adi_hal_HwOpen, calls adi_hal_LogWrite to set the desired logging operation. Available logging
levels are given by the functions shown in Table 1.

https://www.analog.com/en/products/ADRV9026.html
https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 9 of 336

Table 1. Logging Levels
Function Name Purpose
ADI_COMMON_LOG_NONE All types of log messages not selected
ADI_COMMON_LOG_MSG Log message type
ADI_COMMON_LOG_WARN Warning message type
ADI_COMMON_LOG_ERR Error message type
ADI_COMMON_LOG_API API function entry for logging purposes
ADI_COMMON_LOG_API_PRIV Private API function entry for logging purposes
ADI_COMMON_LOG_BF Bit field function entry for logging purposes
ADI_COMMON_LOG_HAL Analog Devices HAL function entry for logging purposes
ADI_COMMON_LOG_SPI SPI transaction type
ADI_COMMON_LOG_ALL All types of log messages selected

Multiple Device Support

For applications with multiple transceivers, the HAL layer requires a reference to the targeted device and its hardware particulars, such as
SPI chip select and reset signal. The HAL function prototypes first parameter, void* devHalCfg, provides the platform layer functions
with device specific settings, such as SPI chip select and log file names. The devHalCfg pointer is void to the device API layer because the
device API layer has no knowledge of the platform. This allows each platform to use a different devHalCfg structure that properly
represents the specific hardware on the platform.

Note that for the Analog Devices transceiver API, there is a requirement that only one thread may control and configure a specific device
instance at any given time.

devHalInfo

To pass a target device information from the application to the adi_platform.c HAL functions, the API layer passes a void pointer
parameter, called devHalInfo. This void pointer acts as a state container for the relevant hardware information for a particular device.
Note that within the platform layer (adi_platform.h), devHalInfo is the same as devHalCfg.

The API user must define this state container as per system HAL implementation requirements. The user may implement any structure to
pass any hardware configuration information that the hardware requires between the application layer and platform layer. This state
container may be used to transfer device reference information in multithreaded and multitransceiver systems.

The application passes the device state container, devHalInfo, via the API transceiver device structure, for example the adi_adrv9025_Device_t.
The API function does not read or write the (void *) devHalInfo, but passes it as a parameter to all HAL function calls.

Table 2. HAL Interface Functions for User Integration
Function Name Purpose
adi_hal_HwOpen Open and initialize all platform drivers/resources and peripherals required to control the transceiver device (for example, SPI,

timer, and logging)
adi_hal_HwClose Close any resources opened by adi_hal_HwOpen
adi_hal_HwReset Toggle the hardware reset signal for the transceiver device
adi_hal_SpiWrite Write an array of data bytes on a targeted SPI device (address bytes are packed into the byte array before calling this function)
adi_hal_SpiRead Read an array of data bytes from a targeted SPI device (address bytes are provided by a TxData array, which are packed into

the byte array before calling this function)
adi_hal_Wait_us Perform a wait/thread sleep in units of microseconds
adi_hal_Wait_ms Perform a wait/thread sleep in units of milliseconds
adi_hal_LogFileOpen Open a file for logging
adi_hal_LogLevelSet Mask to set the severity of information to write to the log (Error/Warning/Message)
adi_hal_LogLevelGet Get the current log level setting
adi_hal_LogWrite Log a debug message (message, warning, error) from the API to the platform log
adi_hal_LogFileClose Function to close the log file
adi_hal_DevHalCfgCreate This function allows the platform to allocate and configure the devHalCfg structure
adi_hal_DevHalCfgFree This function allows the platform to deallocate the devHalCfg structure
adi_hal_BbicRegisterRead This function is used to communicate with the baseband processor (FPGA)
adi_hal_BbicRegisterWrite This function is used to communicate with the baseband processor (FPGA)
adi_hal_BbicRegistersRead This function is used to communicate with the baseband processor (FPGA)
adi_hal_BbicRegistersWrite This function is used to communicate with the baseband processor (FPGA)

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 10 of 336

SOFTWARE INTEGRATION
The ADRV9025 API package was developed on the Analog Devices ADS9 reference platform utilizing a Xilinx® MicroZed™ running a
Linux variant. This section describes how to use the provided API in a custom hardware/software environment. This is readily
accomplished because the API was developed abiding by ANSI C constructs while maintaining Linux system call transparency. The ANSI
C standard was followed to ensure agnostic processor and operating system integration with the API code.

SOFTWARE INTEGRATION PROCESS OVERVIEW
The following steps can be followed to integrated Analog Devices API into functioning system software:

• Transceiver Device API Integration: The API source code can be integrated into the radio system software deployed on the baseband
processor to control the Analog Devices transceiver operations.

• Integration of Transceiver Specific Files: Platform files which are necessary for the Analog Devices transceiver to function are added
to the system software.

• Integration of Drivers in Hardware Abstraction Layer: The API software provided by Analog Devices communicates with the
transceiver through an SPI interface, accessed via the HAL. The references to the SPI driver must be updated by the user in the HAL.

• Compilation and Programming: When the files required for software integration are available, the device API can be compiled, and
the transceiver specific platform files programmed into the transceiver.

TRANSCEIVER DEVICE
API INTEGRATION

INTEGRATION OF
TRANSCEIVER SPECIFIC

FILES (FW, STREAM,
GAIN TABLES, PROFILE)

INTEGRATION OF
DRIVERS IN THE

HARDWARE
ABSTRACTION LAYER

COMPILATION AND
PROGRAMMING

22
77

0-
00

3

Figure 3. Software Integration Process Steps

SOFTWARE PACKAGE FOLDER STRUCTURE OVERVIEW
The software package delivered follows the structure shown in Figure 4. The software package consists of the following four main folders:

• API—contains the API C source code for the ADRV902x family of transceiver devices.
• Firmware—contains the firmware binaries generated for the embedded ARM processor core in the ADRV902x family devices.
• Gain Tables—contains the receiver gain table, receiver gain compensated gain table, and the transmit path attenuation table used by

the ADRV902x family devices.
• GUI—contains an installation package for the transceiver evaluation software, which can be used to evaluate the transceiver, and

generate important platform files such as the stream and the use case profile used to initialize the device.

22
77

0-
00

4

Figure 4. Software Package Folder Structure

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 11 of 336

API SOFTWARE ARCHITECTURE
The API architecture is implemented as three main layers, as shown in Figure 5. This section describes how to use the API in a custom
embedded software environment. This is readily accomplished because the API was developed abiding by ANSI C constructs while
maintaining Linux system call transparency. The ANSI C standard was followed to ensure agnostic processor and operating system
integration with the ADRV902x transceiver family-based API code.

22
77

0-
00

5

PLATFORM
adi_hal_HwOpen
adi_hal_HwClose
adi_hal_HwReset
adi_hal_DevHalCfgCreate
adi_hal_DevHalCfgFree

LOGGING
adi_hal_LogFileOpen
adi_hal_LogLevelSet
adi_hal_LogLevelGet
adi_hal_LogWrite

TIMER
adi_hal_Wait_us
adi_hal_Wait_ms

SPI

SPIPLATFORM LOGGING TIMER

LOGGINGHAL ERROR

ADI_PLATFORM

PLATFORM LAYER

COMMON

DEVICE LAYER

CUSTOMER
CANNOT
MODIFY

adi_platform
IS AN

INTERFACE
LAYER THAT

THE CUSTOMER
NEEDS TO MAP

TO THEIR HAL
THROUGH THE

FUNCTIONS
POINTERS

HAL
CUSTOMER

IMPLEMENTATION

ADRV902x

HAL LAYER

adi_hal_SpiWrite
adi_hal_SpiRead

Figure 5. Software Integration

IMPLEMENTING HARDWARE ABSTRACTION INTERFACE
Users that develop code to target custom hardware platforms use different drivers for the peripherals, such as the SPI and GPIO compared to the
drivers chosen for the Analog Devices evaluation platform. The Analog Devices HAL interface is a library of functions that the API uses
when it must access the target platform hardware. The Analog Devices HAL is defined by adi_platform.h. The implementation of this
interface is platform dependent and is implemented by the developer in a platform specific subfolder. The prototypes of the required
functions defined in adi_platform.h may not be modified, because this breaks the API. Refer to Table 2 for the functions required by the
HAL interface for integration.

DEVELOPING THE APPLICATION
The /c_src/app/main.c file provides a user example demonstrating top level initialization. The example application was written to
demonstrate initialization of one device, initialize the transmitter, and provide examples of calling the HAL functions and key initialization
functions, such as adi_adrv9025_PreMcsInit_v2. Initialization of the transmitter and loading of the adi_adrv9025_Init_t structure are
omitted from the example code contained here for brevity. The example project also demonstrates how to load the adi_adrv9025_Init_t
structure from a JSON file or using initdata.c files.

The user application must allocate and clear the device and init structures. The adi_adrv9025_Device_t data structure is used to describe
or point to a particular device. The adi_adrv9025_Init_t structure is used to contain the init profile of the user.

An adi_adrv9025_Device_t pointer to the specific device instance is as follows:
typedef struct adi_adrv9025_Device

{

 adi_common_Device_t common;

 adi_adrv9025_Info_t devStateInfo;

 adi_adrv9025_SpiSettings_t spiSettings;

} adi_adrv9025_Device_t;

typedef struct adi_adrv9025_Init

{

 adi_adrv9025_ClockSettings_t clocks;

 adi_adrv9025_GpInterruptSettings_t gpInterrupts;

 adi_adrv9025_RxSettings_t rx;

 adi_adrv9025_TxSettings_t tx;

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 12 of 336

 adi_adrv9025_DataInterfaceCfg_t dataInterface;

} adi_adrv9025_Init_t;

To support multiple devices in a single system, the application layer code must instantiate multiple adi_adrv9025_Device_t structures to
describe each physical device. Multiple devices can have their own adi_adrv9025_Init_t structure instance, or share a common init
structure if they are configured the same.

The devHalInfo is defined as a void pointer and allows the user to define and pass any platform hardware settings to the platform HAL
layer functions. For example, devHalInfo might contain information such as the SPI chip select to be used for the physical device. The
API does not use the devHalInfo member, and therefore does not define the information it contains. Note that the API functions are
shared across all instances of physical devices. The devHalInfo structure defined by the developer identifies which physical device is
targeted (SPI chip select) when a particular API function is called. The developer may need to store other hardware information unique
to a particular device in this structure, such as timer instances, log file information to allow for multithreading. It is expected that only
one thread uses the API to a particular device.

The devStateInfo member is of the adi_adrv9025_Info_t structure type in the C programming and is a runtime state container for the API. The
application layer must allocate memory for this structure, but only the API writes to the structure. The application layer allocates the devStateInfo
structure with all zeroes. The API uses the devStateInfo structure to keep up with the current state of the API (for example, has it been initialized
and ARM loaded), as well as a debug store for any run-time data, such as error codes and error sources. It is not intended for the application layer
to access the devStateInfo member directly, as API functions are provided to access the last error code and source information.

The adi_adrv9025_Init_t structure is used to contain the customer profile initialization settings to configure a device. This init structure
is passed to the API init functions during the initialization phase. This structure contains the receiver/transmitter/observation receiver
profile settings, system clock settings, JESD204B/JESD204C settings, and transceiver specific SPI slave controller settings. The application
layer passes a pointer to an instance of the adi_adrv9025_Init_t structure for a particular device to handle the majority of the device core
initialization. After initialization is complete, the adi_adrv9025_Init_t structure may be disposed of or deallocated if desired.

#include <stdio.h>

#include "adi_platform.h"

#include "adi_adrv9025_utilities.h"

#include "adi_adrv9025.h"

#include "adi_adrv9025_radioctrl.h"

static void adi_LoadADRV9025InitStructUseCase24(adi_adrv9025_Init_t *init);

static int32_t adi_ADRV9025InitExample(adi_adrv9025_Device_t *adrv9025Device);

static int32_t adi_ADRV9025EnableTxExample(adi_adrv9025_Device_t *adrv9025Device);

int main()

{

 int32_t recoveryAction = 0;

 adi_adrv9025_Device_t adrv9025Device = {0} ;

 adi_ADRV9025InitExample(&adrv9025Device);

 adi_ADRV9025EnableTxExample(&adrv9025Device_) ;

 recoveryAction = adi_adrv9025_HwClose(&adrv9025Device);

 if (recoveryAction != ADI_ADRV9025_ACT_NO_ACTION)

 {

 printf("Failed closing platform hardware drivers\n");

 return -1;

 }

 adi_hal_DevHalCfgFree(adrv9025Device.devHalInfo);

 return 0;

}

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 13 of 336

static int32_t adi_ADRV9025InitExample(adi_adrv9025_Device_t *adrv9025Device)

{

 int32_t recoveryAction = 0;

 printf("Example Init sequence for ADRV9025\n");

 if (adrv9025Device == NULL)

 {

 printf("NULL ADRV9025 device pointer\n");

 return -1

 }

 adi_adrv9025_Init_t adrv9025Init = {0};

 /* Platform layer function adi_hal_DevHalCfgCreate allocates platform specific
settings structure for SPI

 driver, logging, etc (per device)*/

 void *adrv9025hal = adi_hal_DevHalCfgCreate((ADI_HAL_INTERFACE_SPI |
ADI_HAL_INTERFACE_LOG |

 ADI_HAL_INTERFACE_HWRESET |
ADI_HAL_INTERFACE_TIMER), 0, "adrv9025Log.txt");

 if (adrv9025hal == NULL)

 {

 printf("Failed allocating platform hardware settings
structure\n");

 return -1;

 }

 adrv9025Device->devHalInfo = adrv9025hal;

 /* Load ADRV9025 init structure */

 adi_LoadADRV9025InitStructUseCase24(&adrv9025Init);

 recoveryAction = adi_adrv9025_HwOpen(adrv9025Device);

 if (recoveryAction != ADI_ADRV9025_ACT_NO_ACTION)

 {

 printf("Failed opening platform hardware drivers\n");

 return -1;

 }

 /* Initialize ADRV9025 */

 recoveryAction = adi_adrv9025_PreMcsInit_v2(adrv9025Device,

 &adrv9025Init,

"/home/analog/adrv9025_server/resources/Tokelau_M4.bin",

 "/home/analog/adrv9025_server/resources/stream_imag
e.bin",

"/home/analog/adrv9025_server/resources/RxGainTable.csv",

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 14 of 336

"/home/analog/adrv9025_server/resources/TxAttenTable.csv");

 recoveryAction = adi_adrv9025_PllFrequencySet(adrv9025Device,
ADI_ADRV9025_LO1_PLL, 3500000000);

 return 0;

}

Include Files

For each major function block, there are generally three files: adi_feature.c, adi_feature.h, and adi_feature_types.h. For core API
functionality, Table 3 shows the mandatory .h header files that must be included in the application layer program. Optional add-on API
functions can be included if the application of the developer requires those features. Note that the API places typedef definitions in files
with _types.h suffixes, such as ADRV9025_types.h. These _types.h files are included within their corresponding .h files and do not need
to be manually included in the application layer code.

Note that the ADRV9025_user.h contains the #defines for API timeouts and SPI read intervals, which may be set as needed by the
customer platform. The user files are the only API files that the developer may change.

Table 3. API Mandatory .h Header Files
Mandatory Include Files Description
adi_adrv9025.h Core init functions
adi_adrv9025_error.h Error extension from common error
adi_adrv9025_arm.h ARM related functions
adi_adrv9025_cals.h Calibration related functions
adi_adrv9025_gpio.h General-purpose input/output (GPIO) related functions
adi_adrv9025_data_interface.h Data interface related functions, JESD204B/JESD204C
adi_adrv9025_hal.h Contains prototypes and macro definitions for transceiver specific HAL wrapper functions
adi_adrv9025_radioctrl.h Functions for controlling the radio
adi_adrv9025_rx.h Receiver related functions
adi_adrv9025_tx.h Transmitter related functions
adi_adrv9025_user.h API timeout and retry definitions
adi_adrv9025_utilities.h Higher level utility functions for init, loading ARM and stream binaries, loading receiver gain table,

transmitter attenuation table (most require file system support)
adi_adrv9025_version.h Version structure

Table 4. API Optional .h Files
Optional (Add On) Include Files Description
adi_adrv9025_agc.h Add-on receiver automatic gain control (AGC) functionality

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 15 of 336

API Error Handling and Debug

Each API function returns an int32_t value representing a recovery action. Recovery actions are divided into the following:

• Warning actions are those that do not have an impact at the time of executing the device API, but can cause performance issues or
logging problems. The value of these actions are positive.

• Error actions are those that cause API not to be able to run and an action is required for API to go back to a good state. The value of
these actions are negative.

The API error structure that is accessed via device.error contains the following various members to narrow the action to be taken:

• errSource: current source of error detected, indicating the source file where the error occurred.
• errCode: current error code
• errLine: line of the source code where the error was returned
• errFunc: function name where the error occurred
• errFile: file name where the error occurred
• varName: variable name which has the error
• errorMessage: error message to describe the error
• lastAction: last action detected
• newAction: new action detected

API functions respond by telling the application layer what action must be taken due to a possible error in the API function call. The
error structure contains further information to take the adequate action. The possible recovery action return values are listed in Table 5.

Table 5. API Recovery Actions
Recovery Action Name Value Description
ADI_COMMON_ACT_WARN_CHECK_PARAM 3 API OK: parameter exceeds the range of values allowed
ADI_COMMON_ACT_WARN_RERUN_FEATURE 2 API OK: rerun device feature (ARM init cals)
ADI_COMMON_ACT_WARN_CHECK_INTERFACE 1 API OK: log not working, this is a warning device programing can continue,

upper layer must decide action to be taken
ADI_COMMON_ACT_NO_ACTION 0 API function completed: no error handling action is required.
ADI_COMMON_ACT_ERR_CHECK_TIMER −1 API OK: timer not working
ADI_COMMON_ACT_ERR_CHECK_PARAM −2 API OK: invalid parameter detected in API
ADI_COMMON_ACT_ERR_RESET_INTERFACE −3 API NG: interface not working, device cannot be program or access,

timer/I2C/SPI/data interface
ADI_COMMON_ACT_ERR_RESET_FEATURE −4 API NG: reset device feature (for example, arm init cals)
ADI_COMMON_ACT_ERR_RESET_MODULE −5 API NG: module of device not working (arm not accessible)
ADI_COMMON_ACT_ERR_RESET_FULL −6 API NG: full system reset required

The actions can be divided into the following different blocks:

• Parameter
• Parameter either passed to function or member of structure
• This action can be assigned to set a feature/module/interface when it is not configured correctly

• Feature (parts of a module or device)
• GPIO control for transmitter attenuation
• General purpose interrupt
• ARM initial calibrations
• ARM tracking calibrations
• ARM control
• AGC control
• Power amplifier protection

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 16 of 336

• Module (individual blocks that are contained in the device that are to contain features)
• ARM
• Caching/merging/streaming

• Interface:
• Device interface
• SPI/I2C/data interface
• Log

• Device:
• Target device

API Recovery Action: ADI_COMMON_ACT_NO_ACTION

The ADI_COMMON_ACT_NO_ACTION API recovery action is returned when an API function completes. There is no recovery action
to be performed.

API Recovery Action: ADI_COMMON_ACT_WARN_RERUN_FEATURE

The ADI_COMMON_ACT_WARN_RERUN_FEATURE recovery action is returned when the API detects a failure in any of the device
features.

If a tracking calibration error is detected, it usually is not a catastrophic error, usually resulting in degraded radio performance. The
application layer attempts to recover by resetting the tracking calibration.

If the API detects an error with the transceiver init calibrations, at this point the error severity is high enough that re-running all init
calibrations is required. A full transceiver device reset is not required. It is also not required to reload the ARM firmware of the device.

The following procedure is the suggested application layer action:

1. Set PA and other RF front-end components in powered down state.
2. Call adi_adrv9025_ErrorCodeGet() to determine the specific ADIHAL error code and verify ADIHAL is the error source. Log error

code and source.
3. Read ARM calibration status to log debug information on calibration failure, call adi_adrv9025_InitCalDetailedStatusGet()
4. Call adi_adrv9025_InitCalsRun() to rerun the init calibrations
5. Call adi_adrv9025_InitCalsWait () and adi_adrv9025_InitCalDetailedStatusGet () to confirm that there is no error in init

calibrations.

API Recovery Action: ADI_COMMON_ACT_WARN_CHECK_INTERFACE

The ADI_COMMON_ACT_WARN_CHECK_INTERFACE API recovery action is returned if the adi_platform has returned an error in
any interface. Further information can be extracted by reading the error structure, which contains extended information about the error.

The following issues are possible scenarios for a check interface action.

Issue: Logging Interface When the Log File Cannot Be Opened Or Written to

The API layer does not return this as an error because it does not directly affect transceiver performance. In addition, this recovery action
does not prevent the API function from completing. Analog Devices suggests that the application layer attempt to close the log file and
reopen to resolve the log file access issue.

Issue: Baseband Processor GPIO Failed to Operate Correctly, but the API Circumvented the Error by Using the SPI Port or
Other Control Mechanism

Because the API was able to complete the API function, the issue is not critical, but the application layer attempts to debug and fix the
issue reported by the adi_common layer with respect to the baseband processor GPIO control. The device.common.error contains the
information for decoding the error, the application layer can use it to debug the root cause of the error further.

Issue: adi_common Returns an Error Reporting that the Timer Is Not Working as Expected

The API uses the timer adi_common functions to perform thread blocking waits to insure that the API does not poll the SPI bus with
100% utilization.

If the timer is reporting an error from the adi_common, it is possible that the API function works correctly, but there may be an impact
on the system due to incorrect usage of system resources.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 17 of 336

Issue: adi_common Layer Reports a HAL Error While Attempting to Control the Baseband Processor GPIO Pins

If the API function cannot circumvent the error, this action is returned. If the API can circumvent the error, only a warning is returned.
Currently, the only baseband processor GPIO pin used in the adi_common is to reset the transceiver device (RESET pin).

If this error is reported, the application layer attempts to reset the baseband processor GPIO pins that are used within the adi_common
layer of code. If the application layer can resolve the GPIO hardware driver issue, normal operation of the API can resume by retrying the
failed API function.

The following are suggested application layer actions:

• Attempt to reset interface.
• Continue use of API monitoring for future check interface recovery action reports.
• If continued reports of ADI_COMMON_ACT_WARN_CHECK_INTERFACE, a system diagnostic may be required for the

particular hardware.

API Recovery Action: ADI_COMMON_ACT_ERR_CHECK_PARAM

The ADI_COMMON_ACT_ERR_CHECK_PARAM API recovery action is returned if an API parameter range check or null parameter
check failed. In the event that this recovery action is returned, the API function did not complete. It is expected that this recovery action
is only found during the debug phase of development. During application software development, this recovery action informs the
developer to double check the value passed into the API function parameters. When the parameters are corrected to be in the valid range,
or null pointers are corrected, recalling the function allows the API function to complete.

For debug, the developer may access further information located in the error structure, like error code, file name, function name or
variable name, a message is stored in the error message variable describing the error in more detail.

If the application software passes the development test but this recovery action is returned in the field, a bug in the application layer is
highly possible, causing an out of range or null pointer error.

API Recovery Action: ADI_COMMON_ACT_ERR_CHECK_DEVICE

The ADI_COMMON_ACT_ERR_CHECK_DEVICE recovery action is returned when the device detected is not compatible with the
API being executed.

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_INTERFACE

The ADI_COMMON_ACT_ERR_RESET_INTERFACE API recovery action is returned if the ADIHAL layer reports a HAL error while
attempting a SPI read or write transaction. If the ADIHAL function returns a timeout error due to SPI hardware being busy or used by
another thread, the API attempts to retry the SPI operation once. If the SPI transaction fails again, the API reports this recovery action.
This action is also returned if an ADIHAL error is returned due to inability to access the driver.

The following recommended sequence is to implement the suggested application layer actions:

1. Call to determine the specific ADIHAL error code and verify that ADIHAL is the error source.
2. Log error code and source.
3. If the ADIHAL error is a timeout, the API function may be retried.
4. If the ADIHAL error is not a timeout, application tries resetting the SPI driver and retrying the function call.
5. If recovery action persists, verify SPI communication with other SPI devices and assess the need for a baseband processor system

reset.

If an API function has detected a condition, only the baseband processor can determine if it is a true error or not. An example is a data
interface error counter threshold overflow. If a data interface counter were to overflow once an hour or once a month, only the baseband
processor can determine if the counter overflow constituted an actual error condition.

The following recommended sequence is to implement the suggested application layer actions:

1. Record the error.
2. Perform any baseband processor determined recovery actions.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 18 of 336

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_FEATURE

The ADI_COMMON_ACT_ERR_RESET_FEATURE API recovery action is returned by the API when an error has been detected that
required the reset of a feature of the device. To reset the feature, perform a reconfiguration of the same feature.

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_MODULE

The ADI_COMMON_ACT_ERR_RESET_MODULE API recovery action is returned if the API detects an issue in any of the following modules:

• ARM processor module that requires a complete reset and reload of the ARM firmware. This type of action may be required if the
communication interface to the ARM processor fails or the ARM watchdog timer reports an error. These events are not expected in
production code, but are failsafe mechanisms in the event of a catastrophic error.
• Issue adi_adrv9025_RxTxEnableSet() to disable transmitter to keep hardware in a safe state. If this fails, a full transceiver reset is

required.
• Set power amplifier and other RF front-end components in powered down state.
• Call adi_adrv9025_ErrorCodeGet() to determine the specific error code and verify the error source.
• Log error code and source.
• Dump ARM memory if necessary for debug.

• Dump SPI registers if necessary for debug.
• Reload the stream processor and ARM binary firmware files.
• Continue with normal init sequence to run init calibrations and enable tracking calibrations.

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_DEVICE

The ADI_COMMON_ACT_ERR_RESET_DEVICE recovery action is returned if an API function cannot complete due to a detected error. If
the API cannot correct or circumvent the error, and the severity of the error requires a complete reset of the transceiver device, this action is returned.

The following is the recommended sequence to implement the suggested application layer actions:

1. Put system hardware in safe state.
a. Set the power amplifier and other RF front-end components in powered down state.
b. Hard reset transceiver device (adi_adrv9025_HwReset())

2. Read API error code information for debug.
a. Dump ARM memory if necessary
b. Dump SPI registers if necessary

3. Reinitialize transceiver using normal full initialization sequence.

Restrictions

Developers may not modify any code located in the /c_src/devices/* folder other than changing the adi_platform.c and adi_platform.h
code bodies for hardware driver insertion. Analog Devices maintains the code in /c_src/devices/adrv9025 and /c_src/devices/ad9528.
Analog Devices provides new releases to fix any code bugs in these folders.

No direct SPI read/write operation is permitted when configuring the transceiver or Analog Devices clock chip device. Only use the high-
level API functions defined in /c_src/devices/ad9528/ad9528.h or other public .h files. Do not directly use any SPI read/write functions in
the application layer code for transceiver configuration or control. Analog Devices does not support any customer code containing SPI
writes reverse-engineered from the original API.

Multiple Thread and Multiple Transceiver Application Considerations

For applications with multiple transceivers, the API requires a reference to the targeted device and its hard and soft particulars (for
example, SPI chip-select, reset, and configuration status). The adi_adrv9025_Device_t structure is used to identify each instance of a
physical transceiver device.

For multithreaded applications, there is a requirement that a particular device may only be controlled and configured by a single thread.
Concurrent thread configuration of the same instance of a physical transceiver device is not supported by the API.

Delays, Waits, and Sleeps

A small number of APIs require some time to allow the hardware to complete internal configurations, for example,
adi_adrv9025_PllFrequencySet(). These APIs request the system to perform a wait or sleep by calling the HAL interface function
adi_hal_Wait_us/adi_hal_Wait_ms. If the HAL interface implementation of the target platform chooses to implement a thread sleep, it is

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 19 of 336

not permitted for the application to call another API targeting the same transceiver device. The application is required to enter wait/sleep
state and the API to complete before continuing with the configuration of the device.

Table 6 lists the wait/sleep period used by the API. They are defined in adi_adrv9025_user.h. The timeout period values are the
recommended period required to complete the operation. Modifying these values is not recommended and may impact performance.
During this timeout period the status of the transceiver is polled. The frequency of polling the status during this timeout period may be
modified by the user by adjusting the value of the polling interval.

Note that these recommendations may change after evaluation of the device is fully complete.

Table 6. API Internal Wait/Sleep Intervals

Wait/Sleep Reference Purpose
Recommended Timeout
Period Per μs

Recommended Poll
Interval Per μs

VERIFY_ARM_CHKSUM_XXX Calculation of arm checksum 200000 5000
CLKPLL_CPCAL_XXX Internal clock and PLL configuration 1000000 100000
CLKPLL_LOCK_XXX Internal clock and PLL locking period 1000000 100000
SETARMGPIO_XXX Update ARM information on GPIOs for

TDD pin control
1000000 100000

SETRFPLL_XXX Configure RF PLL frequency 1000000 100000
GETRFPLL_XXX Retrieve RF PLL frequency 1000000 100000
ABORTINITCALS_XXX Abort initial calibrations 1000000 100000
GETINITCALSTATUS_XXX Retrieving initial calibrations status 1000000 100000
RADIOON_XXXS Enabling radio transmit and receive 1000000 100000
READARMCFG_XXX Reading ARM configurations 1000000 100000
WRITEARMCFG_XXX Updating ARM configurations 1000000 100000
RADIOOFF_XXX Disabling radio transmit and receive 1000000 100000
ENTRACKINGCALS_XXX Enabling tracking calibrations 1000000 100000
RESCHEDULETRACKINGCALS_XXX Schedule a tracking calibration to run 1000000 100000
SETTXTOORXMAP_ Set transmitter to observation

receiver external signal routing
1000000 100000

GETTXLOLSTATUS_ Status of transmitter local oscillator
leakage external tracking cal

1000000 100000

GETTXQECSTATUS_ Status of transmitter QEC tracking cal 1000000 100000
GETRXQECSTATUS_ Status of receiver QEC tracking cal 1000000 100000
GETORXQECSTATUS_ Status of observation receiver QEC

tracking cal
1000000 100000

GETRXHD2STATUS_ Status of receiver HD2 tracking cal 1000000 100000
SENDARMCMD_XXX Sending requests to arm firmware 2000000 100000
GETTEMPERATURE_ Read current temperature 1000000 100000
GETARMBOOTUP_ Waiting for ARM to boot up 1000000 100000

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 20 of 336

SERIAL PERIPHERAL INTERFACE (SPI)
The SPI bus provides the interface for digital control by a baseband processor. Each SPI register is 8 bits wide, and each register contains
control bits, status monitors, or other settings that control all functions of the transceiver. This section is mainly an information only
section meant to give the user an understanding of the hardware interface used by the baseband processor to control the device. All
control functions are implemented using the API detailed within this user guide and in the documentation included with the software
package. This section contains descriptions and parameters that explain the specifics of this interface.

SPI BUS SIGNALS
The SPI bus consists of the four signals described in this section.

CS

CS is the active low chip select that functions as the bus enable signal driven from the baseband processor to the transceiver. This signal is
an input to the SPI_EN pin. CS is driven low before the first SCLK rising edge and is normally driven high again after the last SCLK
falling edge. The transceiver ignores the clock and data signals while CS is high. CS also frames communication to and from the
transceiver and returns the SPI interface to the ready state when it is driven high.

Forcing CS high in the middle of a transaction aborts part or all of the transaction. If the transaction is aborted before the instruction is
complete or in the middle of the first data word, the state machine returned to the ready state. Any complete data byte transfers prior to
CS deasserting are valid, but all subsequent transfers in a continuous SPI transaction are aborted.

SCLK

SCLK is the serial interface reference clock driven by the baseband processor. This signal is an input to the SPI_CLK pin. It is only active
while CS is low. The minimum SCLK frequency is 10 MHz and the maximum SCLK frequency is 25 MHz. These limits are determined
based on the practical timing requirements of the transceiver system and the physical limitations of the transceiver.

SDIO and SDO

When configured as a 4-wire bus, the SPI utilizes two data signals: SDIO and SDO. SDIO is the data input line driven from the baseband
processor. The signal input to the transceiver is the SPI_DIO pin. SDO is the data output from the transceiver to the baseband processor
in this configuration. The output signal is driven by the SPI_DO pin. When configured as a 3-wire bus, SDIO is used as a bidirectional
data signal that both receives and transmits serial data. The SDO port is disabled in this mode.

The data signals are launched on the falling edge of SCLK and sampled on the rising edge of SCLK by both the baseband processor and
the transceiver. SDIO carries the control field from the baseband processor to the transceiver during all transactions, and it carries the
write data fields during a write transaction. In a 3-wire SPI configuration, SDIO carries the returning read data fields from the transceiver
to the baseband processor during a read transaction. In a 4-wire SPI configuration, SDO carries the returning data fields to the baseband
processor.

The SPI_SDO and SPI_SDIO pins transition to a high impedance state when the CS input is high. The transceiver does not provide any
weak pull-ups or pull-downs on these pins. When SPI_SDO is inactive, it is floated in a high impedance state. If a valid logic state on
SPI_SDO is required at all times, add an external weak pull-up/down (10 kΩ value) on the PCB.

SPI DATA TRANSFER PROTOCOL
The SPI is a flexible, synchronous serial communication bus allowing seamless interfacing to many industry standard microcontrollers
and microprocessors. The serial I/O is compatible with most synchronous transfer formats, including both the Motorola SPI and Intel
scalable source routing (SSR) protocols. The control field width for this transceiver is limited to 16 bits, and multibyte IO operation is
allowed. This device cannot be used to control other devices on the bus, it only operates as a slave.

There are two phases to a communication cycle. Phase 1 is the control cycle, which is the writing of a control word into the transceiver.
The control word provides the serial port controller with information regarding the data field transfer cycle, which is Phase 2 of the
communication cycle. The Phase 1 control field defines whether the upcoming data transfer is read or write. It also defines the register
address being accessed.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 21 of 336

Phase 1 Instruction Format

The 16-bit control field contains the information in Table 7.

Table 7. 16-Bit Control Field
MSB D14:D0
R/W A[14:0]

R/W, Bit 15 of the instruction word, determines whether a read or write data transfer occurs after the instruction byte write. Logic high
indicates a read operation, logic zero indicates a write operation.

D14:D0, Bits A[14:0], specify the starting byte address for the data transfer during Phase 2 of the IO operation.

All byte addresses, both starting and internally generated addresses, are assumed to be valid. That is, if an invalid address (undefined
register) is accessed, the IO operation continues as if the address space were valid. For write operations, the written bits are discarded, and
read operations result in logic zeros at the output.

Phase 2 data transfer is performed in 8 bit words. Both single byte and multibyte transfers can be configured using the API, as described
in the SPI Configuration Using API Function section.

SPI CONFIGURATION USING API FUNCTION
SPI operation is configured via calling adi_adrv9025_SpiCfgSet(). This function is called by the adi_adrv9025_Initialize(), which is called
by adi_adrv9025_PreMcsInit_v2().

The input parameters for adi_adrv9025_PreMcsInit_v2() include the init structure, which is of type adi_adrv9025_Init_t. The
adi_ADRV9025InitExample() function shows an example of configuring a hard coded init function, which includes the SPI related parameters.

Users can configure SPI settings for the transceiver with different SPI controller configurations by configuring member values of the
adi_adrv9025_SpiSettings_t data structure. The adi_adrv9025_SpiSettings_t data structure parameters are listed in Table 8. Any value
that is not listed in Table 8 is invalid.
typedef struct adi_adrv9025_SpiSettings

{

 uint8_t msbFirst;

 uint8_t enSpiStreaming;

 uint8_t autoIncAddrUp;

 uint8_t fourWireMode;

 adi_adrv9025_CmosPadDrvStr_e cmosPadDrvStrength;

} adi_adrv9025_SpiSettings_t;

Table 8. SPI Bus Setup Parameters
Structure Member Value Function Default
MSBFirst 0x00 Least significant bit first 0x01

0x01 Most significant bit first
enSpiStreaming 0x00 Enable single-byte data transfer mode. All communication between the baseband processor and the

device uses this mode. Note that this parameter is not implemented in the Analog Devices platform
layer.

0x00

0x01 Enable streaming to improve SPI throughput for indirect data transfer using an internal DMA
controller. Note that this parameter is not implemented in the Analog Devices platform layer.

autoIncAddrUp 0x00 Autoincrement. Functionality intended to be used with SPI streaming. Sets address
autoincrement -> next addr = addr − 4. Note that this parameter is not implemented in the
Analog Devices platform layer.

0x01

0x01 Autodecrement. Functionality intended to be used with SPI streaming. Sets address
autodecrement -> next addr = addr + 4. Note that this parameter is not implemented in the
Analog Devices platform layer.

fourWireMode 0x00 SPI hardware implementation. Use 3-wire SPI (SDIO pin is bidirectional). Figure 8 shows example of
SPI 3-wire mode of operation. Note that Analog Devices FPGA platform always uses 4-wire mode.

0x01

0x01 SPI hardware implementation. Use 4-wire SPI. Figure 6 and Figure 7 show examples of SPI 4-wire
mode of operation. The default mode for Analog Devices FPGA platform is 4-wire mode.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 22 of 336

Structure Member Value Function Default
cmosPadDrvStrength 0x00 5 pF load at 75 MHz. 0x01

0x01 100 pF load at 100 MHz.

Single Byte Data Transfer

When enSpiStreaming = 0, a single byte data transfer is chosen. In this mode, CS goes active low, the SCLK signal activates, and the
address is transferred from the baseband processor to the transceiver. This mode is always used in direct communication between the
baseband processor and the transceiver.

In LSB mode, the LSB of the address is the first bit transmitted from the baseband processor, followed by the next 14 bits in order from
next LSB to MSB. The next bit signifies if the operation is read (set) or write (clear). If the operation is a write, the baseband processor
transmits the next 8 bits LSB to MSB. If the operation is a read, the transceiver transmits the next 8 bits LSB to MSB.

In MSB mode, the first bit transmitted is the R/W bit that determines if the operation is a read (set) or write (clear). The MSB of the
address is the next bit transmitted from the baseband processor, followed by the remaining 14 bits in order from next MSB to LSB. If the
operation is a write, the baseband processor transmits the next 8 bits MSB to LSB. If the operation is a read, the transceiver transmits the
next 8 bits MSB to LSB.

Single byte data transfer can continue in either mode for multiple byte transfers using the transfer format of address followed by data (A
D A D …) until the CS signal is driven high. The address must be written for each data byte transfer when using this mode.

Multiple Byte Data Transfer (SPI Streaming)

Multiple byte data transfer (also called SPI streaming) is not utilized in standard communication between the baseband processor and the
transceiver. When enSpiStreaming = 1, data is transferred in multibyte packets, depending on the streaming mode that is enabled. This
mode is used to transfer data indirectly to internal ARM memory using a direct memory access (DMA) controller.

TIMING DIAGRAMS
The diagrams in Figure 6 and Figure 7 illustrate the SPI bus waveforms for a single register write operation and a single register read
operation, respectively. In Figure 6, the value 0x55 is written to Register 0x00A. In Figure 7, Register 0x00A is read and the value returned
by the transceiver is 0x55. If the same operations are performed with a 3-wire bus, the SDO line in Figure 6 is eliminated, and the SDIO
and SDO lines in Figure 7 are combined on the SDIO line. Note that both operations use MSB first mode and all data is latched on the
rising edge of the SCLK signal.

WRITE TO REGISTER 0x00A, VALUE = 0x55

CS

SDIO

SCLK

SDO

22
77

0-
00

6

Figure 6. Nominal Timing Diagram, SPI Write Operation

READ REGISTER 0x00A, VALUE = 0x55

SDIO

SCLK

SDO

22
77

0-
00

7

CS

Figure 7. Nominal Timing Diagram, SPI Read Operation

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 23 of 336

Table 9 lists the timing specifications for the SPI bus. The relationship between these parameters is shown in Figure 8. This diagram
shows a 3-wire SPI bus timing diagram with the timing parameters marked. Note that this is a single read operation. Therefore, the bus
ready parameter after the data is driven from the transceiver (tHZS) is not shown in Figure 8. Note that the byte to byte delay time (tINT) is
also not shown in Figure 8 because Figure 8 only shows a single byte write operation.

Table 9. SPI Bus Timing Constraint Values
Parameter Min Typ Max Description
tCP 40 ns 100 ns SCLK cycle time (clock period)
tMP 10 ns SCLK pulse width
tSC 4 ns CS setup time to first SCLK rising edge

tHC 0 ns Last SCLK falling edge to CS hold

tS 4 ns SDIO data input setup time to SCLK
tH 0 ns SDIO data input hold time to SCLK
tCO 10 ns 16 ns SCLK falling edge to output data delay (3-wire or 4-wire mode)
tHZM tH tCO (max) Bus turnaround time after baseband processor drives the last address bit
tHZS 3 ns tCO (max) Bus turnaround time after transceiver drives the last data bit
tINT 400 ns Byte to byte delay time during any single read or write operation

SDIO

SCLK

tCP tS

tH

tHZM
tCO

tHCtSC tMP

DON’T CARE

DON’T CARE DON’T CARE

DON’T CARE

22
77

0-
00

9

CS

Figure 8. 3-Wire SPI Timing with Parameter Labels

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 24 of 336

SYSTEM INITIALIZATION
This section provides information about the initialization process for the transceiver utilizing the API developed by Analog Devices. Each
subsection describes the developer preparation requirements and the initialization sequence. This section does not explain the API
library functions. Detailed information regarding the API functions can be found in the API doxygen document (adrv9025.chm) located
at /src/doc. Details about API integration and the hardware abstraction interface can be found in the Software Integration section and the
Hardware Abstraction Layer section.

INITIALIZATION SEQUENCE
The initialization sequence is comprised of API calls intermixed with user defined function calls specific to the hardware platform. The
API functions perform all of the necessary tasks for transceiver configuration, calibration, and control. The user is required to insert the
code into the initialization sequence specific to the hardware platform requirements. These platform requirements include but are not
limited to user clock device, user FPGA\ASIC\baseband processor JESD204B and JESD204C interface, data path control, and various
system checks governed by the application.

The initialization process consists of the following steps. Some of the steps are done by the ARM. All functions before loading the stream
must be write only (use SPI write or bit field write, no SPI read).

The following steps are the pre-multichip synchronization (MCS) initialization sequence:

1. adi_adrv9025_Initialize
a. Set SPI controller settings
b. Set master bias
c. Enable pin pads
d. Set device clock hsdig divider
e. Load PFIRs per channel
f. Load gain tables
g. Load transmitter attenuation tables
h. Load stream binary
i. Load ARM binary
j. Write initialization structure/receiver/transmitter profile info into ARM memory
k. ARM run = 1
l. Wait for ARM boot to complete
m. Verify ARM checksum

2. ARM configuration
a. Receiver/transmitter channel configuration (all half-band filter enables, clock dividers)
b. Clock PLL and SERDES PLL configuration
c. JESD204B and JESD204C configuration
d. ARM switches to clock PLL output after PLL locked

The following steps are the post MCS initialization sequence:

1. MCS:
a. Set ARM run = 0
b. Enable MCS state machine to listen for new SYSREF pulses
c. Customer sends SYSREF pulses
d. When MCS state machine complete, ARM run = 1

2. Run ARM init calibrations
3. Enable tracking cals

a. Enable radio control pin mode or not
b. Setup any GPIO for ARM/streams

The system is now ready.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 25 of 336

SERIALIZER/DESERIALIZER (SERDES) INTERFACE
The transceiver employs a SERDES high speed serial interface based on the JESD204B and JESD204C standards to transfer ADC and
DAC samples between the transceiver and a baseband processor. The transceiver can support high speed serial lane rates up to 24.33
Gbps. An external clock distribution solution provides a device clock and SYSREF to both the transceiver and the baseband processor.
The SYSREF signal ensures deterministic latency between the transceiver and the baseband processor.

Note that the initialization sequence of the device is critical to guarantee deterministic latency. Specifically, the ARM init calibrations
must be run before the SERDES links are established, as described in the Initialization Sequence section. It is also imperative to check the
FIFO depth after the link has been established. Major blocks in the interface include clock distribution, SERDES framer, and SERDES
deframer.

JESD204B AND JESD204C STANDARD
The JESD204B and JESD204C specification defines four key layers that implement the protocol data stream, as shown in Figure 9. The
transport layer maps the conversion between samples and framed, unscrambled octets. The optional scrambling layer scrambles one
direction of data of the octets and descrambles the other direction of data of the octets, spreading the spectral peaks to reduce EMI. The data
link layer handles link synchronization, setup, and maintenance. The data link layer also encodes/decodes the optionally scrambled octets
to/from 10-bit characters in the case of JESD204B (8-bit/10-bit encoding) and 66-bit characters in the case of JESD204C (64-bit/66-bit
encoding). The physical layer is responsible for transmission and reception of characters at the bit rate.

22
77

0-
01

0

Rx
APPLICATION

LAYER

PHYSICAL (PHY)
LAYER

HIGH SPEED SERIAL LANES

TRANSPORT
LAYER

SCRAMBLING
LAYER

DATA LINK
LAYER

Tx
APPLICATION

LAYER

PHYSICAL (PHY)
LAYER

TRANSPORT
LAYER

SCRAMBLING
LAYER

DATA LINK
LAYER

Figure 9. Key Layers of the JESD204B and JESD204C Standard

Figure 10 and Figure 11 illustrate how the JESD204B and JESD204C transmit and receive protocols are implemented.

The data interface blocks in the transceiver can operate in either JESD204B or JESD204C modes. Fewer number of lanes may be needed
when operating in JESD204C, which results in simpler PCB layout and less power consumption.

22
77

0-
01

0SAMPLE
CONSTRUCTION

FRAME
CONSTRUCTION SCRAMBLER

TRANSPORT LAYER LINK LAYER PHYSICAL LAYER

OUTPUT
PROCESSED

SAMPLES
FROM ADC

SERIALIZER
FRAME/LANE
ALIGNMENT
CHARACTER
GENERATION

8B/10B (204B)
64B/66B (204C)

ENCODER

Figure 10 JESD204B and JESD204C Framer (JTX)

22
77

0-
0 1

1DESCRAMBLER

LINK LAYER TRANSPORT LAYER

SAMPLES
TO DAC(s)

INPUT DEFRAMER
FRAME/LANE
ALIGNMENT
CHARACTER
GENERATION

8B/10B (204B)
64B/66B (204C)

DECODER

PHYSICAL LAYER

DESERIALIZER

Figure 11 JESD204B and JESD204C Deframer (JRX)

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 26 of 336

DIFFERENCES BETWEEN JESD204B AND JESD204C
The initial revision of the interface provided supports both single and multiple lanes per converter device. Revision B added programmable
deterministic latency, usage of device clock as main clock source, and data rate up to 12.5 Gbps. In the Revision C specification, the data rate
is increased up to 32 Gbps and three link layers are defined as 8-bit/10-bit, 64-bit/66-bit, and 64B/80B, where the 8-bit/10-bit link layer is
the same as the JESD204B link layer.

In the 8-bit/10-bit link layer, the data is organized into multiframes where in the 64-bit/66-bit link layer data is organized into multiblocks
of 32 blocks where each block contains 8 octets. In the 8-bit/10-bit link layer, phase synchronization is done by the local multiframe clock
(LMFC) where 64-bit/66-bit uses the local extended multiblock clock (LEMC). In the 8-bit/10-bit link layer, LMFC marks multiframe
boundaries where in 64-bit/66-bit link layer LEMC is used to mark extended multiblock boundaries. Deterministic latency can be
achieved by both LMFC or LEMC as per the link layer used.

The 8-bit/10-bit link layer does the alignment between multiple converters by the alignment of their LMFCs to an external signal SYSREF.
In the 64-bit/66-bit link layer, the alignment between multiple converter devices is done by the alignment of the LEMC to an external
signal SYSREF/multireference in Subclass 1. Each converter device can then adjust its LEMC phase to match with the common LEMC of
the logic device. The 64-bit/66-bit link layer only supports Subclass 1-based LEMC alignment. In this case, the release buffer delay (RBD)
adjustment resolution must not be greater than 255 steps, and if more than one multiframe or multiblock per lane fits in the buffer, the
RBD adjustment resolution must be at least 16 steps per multiframe or multiblock. The 64-bit/66-bit link layer also defines a
synchronization header stream, which transmits the information parallel to the user data. This information is encoded using the
synchronization header portion of the 66-bit word block. One synchronization header per block is decoded to a single bit, and 32 of these
bits across a multiblock makes a 32-bit synchronization word. The synchronization word can contain the following information:

• Pilot signal (used to mark the borders of the multiblocks and extended multiblocks)
• CRC-3 signal (used for error detection)
• CRC-12 signal (used for error detection)
• FEC signal (used for error detection and correction)
• Command channel (used for transmitting commands and status information)

With the 8-bit/10-bit link layer, JESD204B uses the SYNC interface for synchronization and error reporting. The 64-bit/66-bit encoding
synchronization headers within the encoded data are used for the synchronization process and the reporting of errors is left to the
application layer.

CLOCK DISTRIBUTION
The clock distribution in the transceiver allows the SERDES to be driven either by the SERDES PLL or the clock PLL depending on the
use case. Analog Devices provides tested predefined profiles with the appropriate settings so that each use case has known working setup
configurations. For other profile configurations, a profile generator application is planned for future release, allowing customers to change
bandwidths and sampling rates for custom configuration support.

RECEIVER (ADC) DATAPATH
Figure 12 is a block diagram of the transceiver receive side (SERDES framer).

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 27 of 336

22
77

0-
01

2

FRAMER 0

SAMPLES TO
LANES

8B10B/64B66B
ENCODE

LANE
XBAR

SYNC
XBAR

ADC

ADC

ADC

ADC

SAMPLE
XBAR

FRAMER 1

SAMPLES TO
LANES

8B10B/64B66B
ENCODE

LANE
XBAR

OR
GATE SERIALIZERS

CLOCK GENERATION
AND SYSREF

RETIMING

SERDOUTA

SERDOUTB

SERDOUTC

SYNCINB1
SYNCINB2
SYNCINB3

SERDOUTD

FRAMER 2

SAMPLES TO
LANES

8B10B/64B66B
ENCODE

LANE
XBAR

SYNC

Figure 12. High Level JESD204B/JESD204C Interface Block Diagram (Receiver Only)

The framers take care of all the encoding functions of the interface and is highly configurable with regard to interface rates and
combinations of RF receiver and observation receiver data streams, either separately or utilizing link sharing (receiver and observation
receiver data time multiplexed on the same lane according to the receiver and transmitter frame timing) for up to four lanes. To assist in
debugging, the framers contain an internal data generator allowing a number of test patterns and PBRS patterns to be sent across the link.

There are three framers in the transceiver to allow flexibility in configuring the output data streams. Data samples from the receivers and
observation receivers can be routed through a cross bar to put specific data on a particular lane. The framer supports separate lanes for
receiver and observation receiver, as well supporting link sharing in TDD mode that reduces the number of physical lanes needed by
putting receiver data on the lanes during the receiver slot and observation receiver data on the same lanes during the transmitter slot.
Figure 13 shows the configuration for use case 83C with link sharing (UC83C-LS) where all the signals are routed into Framer 0. Framer 1
and Framer 2 are not needed and are unused. This profile is a 25G 204C profile.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 28 of 336

UC83C-LS 22
77

0-
01

3

Figure 13. Example Framer Configuration for UC83C-LS

UC26C-NLS

22
77

0-
01

4

Figure 14. Example Framer Configuration for UC26C-NLS

Figure 14 shows a configuration for a non-link sharing use case UC26C-NLS. This profile has a unique configuration where the datalink
on the observation receiver must have the data in a specific format (IIQQ). Framer 0 has more flexibility than the other two framers. For
this case Framer 0 is used to format the observation receiver data as needed, and the other two framers are used to route the receiver data
on the lanes. This is a 16G JESD204C profile.

The transport and link layers for JESD204B/JESD204C are performed in the framers. This transceiver has three JESD204B/JESD204C
framers that get OR’ed together into four serial lanes. There are 20 logical converters to choose from, and samples from any of the logical
converters can be connected to any framer using the sample crossbar. Each framer has its own SYNC signal. This allows links to be
brought up or down for reconfiguration without interrupting the other links.

The three framers are capable of operating at different sample rates. The highest sample rate must be a power of two multiple of the lower
sample rates (2×, 4×, 8×). There are two options to make this work: oversample at the framer input or bit repeat at the framer output.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 29 of 336

Oversample mode samples the same converter samples of the lower sample rate multiple time, essentially oversampling the converter
output. This allows for all serializers to run at the same bit rate. In oversample mode, the baseband processor must decimate the data after
the transport layer to remove the extra samples.

Bit repeat mode repeats each bit at the framer output on the lane or lanes that carry the slower data, before it enters the serializer. Because this is
after the 8B/10B or 64B/66B encoding, it appears as if the lane is running at a slower data rate than the other lanes. This essentially expands the
eye of the signal in the horizontal direction. In bit repeat mode, the baseband processor must be able to configure the lane rates on the individual
lanes independently as the lanes with the slower link must be sampled at a slower lane rate than the lanes with the faster link.

All framers must share the four serializer lanes. Each framer must be configured for 0, 1, 2, or 4 lanes such that at a time all framers
combine for no more than 4 lanes.

Each framer is capable of generating a pseudo-random bit sequence (PRBS) on the enabled lanes. After the PRBS is enabled, errors can be
injected. Enabling the PRBS generator disables the normal JESD204B/JESD204C framing, and causes the link to drop.

The serializers can be configured to adjust the amplitude and preemphasis of the physical signal to help combat bit errors due to various
PCB trace lengths.

Supported Framer Link Parameters

This transceiver supports a subset of possible JESD204B/JESD204C link configurations. The number of virtual converters and the
number of serial lanes implemented in the silicon limit these configurations.

Table 10. JESD204B/JESD204C Framer Parameters
JESD204B/JESD204C Parameter Description
M Number of converters. Framer 0 supports M maximum of 8, Framer 1 and Framer 2 support M maximum of 4.
L Number of lanes (L can be 1, 2, or 4).
S Number of samples per converter per frame cycle (S can be 1, 2, or 4).
N Converter resolution (N can be 12, 16, or 24).
N’ Total number of bits per sample (N’ can be 12, 16, or 24).
CF Number of control words/frame clock. Cycle/converter device.
CS Number of control bits/conversion sample.
K JESD204B only: Number of frames in 1 multiframe, (20 ≤ F × K ≤ 256), F × K must be a multiple of 4.
E JESD204C only: Number of multiblocks in an extended multiblock.

For the JESD204B/JESD204C configuration to be valid, the lane rate must be within the range 3686.4 Mbps to 16220.16 Mbps. The lane
rate is the serial bit rate for one lane of the JESD204B/JESD204C link. The lane rates can be calculated using Equation 1 for JESD204B
configurations and using Equation 2 for JESD204C configurations.

′× × × ÷
10
8

JESD204B Lane Rate = IQ Sample Rate M N L (1)

′× × × ÷
66
64

JESD204C Lane Rate = IQ Sample Rate M N L (2)

Serializer Configuration

The amplitude of the serializer is represented by a 3-bit number that is not linearly weighted. The JESD204B/JESD204C transmitter mask
requires a differential amplitude greater than 360 mV and less than 770 mV.

Table 11. Serializer Amplitude Settings
Serializer Amplitude (Decimal) Average Differential Amplitude (VTT = 1 V)
0 1.00 × VTT
1 0.85 × VTT
2 0.75 × VTT
3 0.50 × VTT

It is always recommended to verify the eye diagram in the system after building a PCB to verify any layout related performance
differences. If possible, verify the eye using an internal eye monitor after the equalizer circuit of the receiver as this shows the true eye that
the receiver circuit receives.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 30 of 336

A three-tap FIR equalizer is implemented in the serializer, as shown in Figure 15. Here, the cursor or largest tap weight multiplying ak is in the
center. There is a precursor tap, b−1, multiplying ak+1 and a postcursor tap, b1, multiplying ak−1 to realize the following difference equation for yk.
Transmit preemphasis is used because it is simpler to realize bit delays with flip flops than trying to implement analog delays at the receiver.

22
77

0-
01

5

FF FF

POST-CURSORPRE-CURSOR CURSOR

FF
ak + 1

yk = b–1ak + 1 + b0ak + b1ak – 1

D
ak

b0 b1b–1

CLK

ak – 1

yk

Figure 15. Serializer Emphasis Implementation

This serializer preemphasis circuit allows boosting the amplitude anytime the serial bit changes state. If no bit transition occurs, the
amplitude is left unchanged. Preemphasis helps open the eye for longer PCB traces or when the parasitic loading of connectors has a
noticeable effect. In most cases, to find the best setting, a simulation or measurement of the eye diagram with a high-speed scope at the
receiver is recommended, or as mentioned above an internal eye monitor after the equalizer is the optimum solution. The serializer
preemphasis is controlled by setting a precursor and a postcursor setting, which are listed in Table 12 and Table 13, respectively.

Table 12. Precursor Amplitude Settings
Emphasis (Decimal) Emphasis (dB)
0 0
1 3
2 6
Table 13. Postcursor Amplitude Settings
Emphasis (Decimal) Emphasis (dB)
0 0
1 3
2 6
3 9
4 12

The adi_adrv9025_SerCfg_t data structure contains the information required to properly configure the serializer. Details of each member
can be found in API documentation (/c_src/doc). The transceiver evaluation software has the option to output example data structures
with values chosen from the configuration tab of the software.
typedef struct adi_adrv9025_SerCfg

{

 uint8_t serAmplitude;

 uint8_t serPreEmphasis;

 uint8_t serPostEmphasis;

 uint8_t serInvertLanePolarity;

} adi_adrv9025_SerCfg_t;

Framer

Each framer receives logical converter samples and maps them to high speed serial lanes. The mapping changes depending on the
JESD204B/JESD204C configuration chosen, specifically the number of lanes, the number of converters, and the number of samples per
converter. Figure 16 provides one valid framer configuration for this device.

The converter samples are passed into the framer through a sample crossbar. The sample crossbar allows any of the 20 logical converters
to be mapped to any input of any framer. For example, this can be used to swap I and Q samples or to mix and match different receivers’
data across different logical lanes. The framer lane data outputs also pass through a lane crossbar. This allows mapping of any framer

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 31 of 336

output lane (internal to the silicon) to any physical JESD204B/JESD204C lane at the package pin. The framer packs the converter samples
into lane data following the JESD204B/JESD204C specification. Figure 16 shows the data packing for M = 2, L = 1, and S = 1 as an example.

22
77

0-
01

6

CONVERTER DEVICE, 2 × 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

LANE 0

OCTET 0

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

CONFIGURATION
DATA:

CF = 0
CS = 0
F = 4
L = 1
M = 2
N = 16
N’ = 16
S = 1

LANE 0

F = 4 OCTETS

TIME

NG 0

WORD 0

SAMPLE 0

OCTET 1

Cr
0

S0
 [1

5:
8]

CONVERTER 0

OCTET 2

NG 1

WORD 1

OCTET 3

SAMPLE 0

CONVERTER 1

Cr
0

S0
 [7

:0
]

Cr
1

S0
 [1

5:
8]

Cr
1

S0
 [7

:0
]

Figure 16. Framer Data Packing for M = 2, L = 1, and S = 1

Other Useful Framer IP Features

PRBS Generator

Each framer has a built in PRBS test pattern generator to aid in debugging the JESD204B/JESD204C serial link. The pattern generator is
capable of generating PRBS7, PRBS9, PRBS15, PRBS23, or PRBS31 patterns. If errors caused by signal integrity exist, it may be difficult to
get the JESD204B/JESD204C framer-to-deframer link to work properly. The PRBS generator built into the framer allows the transceiver
to output serial data even when the link cannot be established. With this mode enabled, the serializer amplitude and preemphasis can be
adjusted to find the best setting to minimize bit errors seen by the PRBS checker at the receiver side of the link. For this mode to be
utilized, the baseband processor must have a PRBS checker to check the PRBS sequence for errors.

The following list is the typical PRBS generator usage sequence:

1. Initialize the device as outlined in the Link Initialization and Debugging section
2. Run the adi_adrv9025_FramerTestDataSet(…) with the required framer, test data source set to desired PRBS order, and injection

point set to serializer input
3. Enable PRBS checker on the baseband processor and reset its error count
4. Wait a specific amount of time to allow an adequate number of samples to be transmitted, and then check the PRBS error count of

the baseband processor.
5. Adjust framer amplitude and preemphasis settings and/or deframer equalization settings and repeat Step 3 and Step 4 to find the

optimum settings.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 32 of 336

Pattern Generator

The framer also has the capability to generate some other patterns that can be used during debug like ramp and checkerboard. There is
also a way the user can load a custom pattern into the framer, which can be verified on the baseband processor. The pattern can be sent
once or be repeated continuously.

API Software Integration

Configuration of the serializer and framers are all handled by the adi_adrv9025_Initialize(…) API function. Set all JESD204B/JESD204C
link options for the framer in the adi_adrv9025_FrmCfg_t data structure before calling adi_adrv9025_Initialize(…). After initialization,
there are some other API functions to aid in debugging and monitoring the status of the JESD204B/JESD204C link.

JESD204B/JESD204C Framer API Data Structures

adi_adrv9025_FrmCfg_t

The adi_adrv9025_FrmCfg_t data structure contains the information required to properly configure each framer. Details of each member
can be found in API documentation. The transceiver evaluation software has the option to output example data structures with values
chosen from the configuration tab of the software.
typedef struct adi_adrv9025_FrmCfg

{

 uint8_t enableJesd204C;

 uint8_t bankId;

 uint8_t deviceId;

 uint8_t lane0Id;

 uint8_t jesd204M;

 uint16_t jesd204K;

 uint8_t jesd204F;

 uint8_t jesd204Np;

 uint8_t jesd204E;

 uint8_t scramble;

 uint8_t externalSysref;

 uint8_t serializerLanesEnabled;

 uint16_t lmfcOffset;

 uint8_t reserved;

 uint8_t syncbInSelect;

 uint8_t overSample;

 uint8_t syncbInLvdsMode;

 uint8_t syncbInLvdsPnInvert;

 uint8_t enableManualLaneXbar;

 adi_adrv9025_SerLaneXbar_t serializerLaneCrossbar;

 adi_adrv9025_AdcSampleXbarCfg_t adcCrossbar;

 uint8_t newSysrefOnRelink;

 uint8_t sysrefForStartup;

 uint8_t sysrefNShotEnable;

 uint8_t sysrefNShotCount;

 uint8_t sysrefIgnoreWhenLinked;

} adi_adrv9025_FrmCfg_t;

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 33 of 336

Table 14. JESD204B/JESD204C Framer Configuration Structure Member Description
Structure Member Valid Values Description
enableJesd204C 0, 1 0 = enable JESD204B framer, 1 = enable JESD204C framer
bankId 0 to 15 JESD204B/JESD204C configuration Bank ID—extension to device ID
deviceId 0 to 255 JESD204B/JESD204C configuration Device ID—link identification number
lane0Id 0 to 31 JESD204B/JESD204C configuration Lane ID—if more than one lane is used, each subsequent

lane increments from this number
jesd204M 0, 1, 2, 4, 8 Number of converters—typically two converters per receive chain
jesd204K 1 to 32 Number of frames in a multiframe—default is 32; F × K must be a multiple of 4
jesd204F 1, 2, 3, 4, 6, 8,

12, 16
Number of octets per frame

jesd204Np 12, 16, 24 Number of bits per sample
Scramble (JESD204B Only) 0, 1 Scrambling enabled
 If scramble = 0, scrambling is disabled
 If scramble = 1, scrambling is enabled
externalSysref 0, 1 External SYSREF enabled
 If externalSysref = 0, use internal SYSREF
 If externalSysref = 1, use external SYSREF
serializerLanesEnabled 0x0 to 0x0F Serializer lane enabled, one bit per lane
serializerLaneCrossbar 0x0 to 0xFF Serializer lane crossbar, two bits per lane
lmfcOffset 0 to 31 LMFC offset, set the local multiframe counter offset value for deterministic latency setting,

such that 0 ≤ lmfcOffset ≤ (K − 1)
reserved

syncinbSelect 0, 1, 2 SYNC selection, selects which SYNC input is connected to the framer

 If syncinbSelect = 0, SYNCIN0 is connected to the framer

 If syncinbSelect = 1, SYNCIN1 is connected to the framer

 If syncinbSelect = 2, SYNCIN2 is connected to the framer

overSample 0, 1 Oversample mode, selects which method is chosen when oversample or bit repeat is needed
 If oversample = 0, bit repeat mode is selected
 If oversample = 1, oversample is selected
enableManualLaneXbar 0, 1 0 = automatic lane crossbar mapping, 1 = manual lane crossbar mapping (using

serializerLaneCrossbar value)
syncbInLvdsMode 0, 1 1 = Enables LVDS input pad, 0 = enables CMOS input pad
syncbInLvdsPnInvert 0, 1 0 = SYNC LVDS polarity not inverted, 1 = SYNC LVDS polarity inverted

newSysrefOnRelink 0, 1 Set the flag to determine if SYSREF is set on relink, where, if >0 = set, 0 = not set
sysrefForStartup 0, 1 1 = framer: require a SYSREF before code group synchronization (CGS) is output from serializer,

0: Allow CGS to output before SYSREF occurs (recommended on framer to allow deframer
clock data recovery (CDR) to lock and equalization to train)

sysrefNShotEnable 0, 1 1 = enable SYSREF NShot (ability to ignore first rising edge of SYSREF to ignore possible runt
pulses)

sysrefNShotCount 0 to 15 Count value of which SYSREF edge to use to reset LMFC phase
sysrefIgnoreWhenLinked 0, 1 When the JESD204B and JESD204C link is up and valid, 1 = ignore any SYSREF pulses

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 34 of 336

JESD204B/JESD204C Framer Enumerated Types

adi_adrv9025_FramerDataSource

The adi_adrv9025_FramerDataSource_e is an enumerated data type to select the framer test data source. The allowable values are listed in Table 15.

Table 15. Framer Data Source Enumeration Description
Enumeration Value Description
FTD_ADC_DATA Framer test data ADC data source, this is used for normal operation
FTD_CHECKERBOARD Framer test data checkerboard data source
FTD_TOGGLE0_1 Framer test data toggle 0 to 1 data source
FTD_PRBS31 Framer test data PRBS31 data source
FTD_PRBS23 Framer test data PRBS23 data source
FTD_PRBS15 Framer test data PRBS15 data source
FTD_PRBS9 Framer test data PRBS9 data source
FTD_PRBS7 Framer test data PRBS7 data source
FTD_RAMP Framer test data ramp data source
FTD_PATTERN_REPEAT Framer test data 16-bit programmed pattern repeat source
FTD_PATTERN_ONCE Framer test data 16-bit programmed pattern executed once source

adi_adrv9025_FramerDataInjectPoint

The adi_adrv9025_FramerDataInjectPoint is an enumerated data type to select the framer test data injection point. The allowable values
are listed in Table 16.

Table 16. Framer Injection Point Enumeration Description
Enumeration Value Description
FTD_FRAMERINPUT Framer test data injection point at framer input
FTD_SERIALIZER Framer test data injection point at serializer input
FTD_POST_LANEMAP Framer test data injection point after lane mapping

adi_adrv9025_FramerSel

The adi_adrv9025_FramerSel is an enumerated data type to select the desired framer. The allowable values are listed in Table 17.

Table 17. Framer Selection Enumeration Description
Enumeration Value Description
ADI_ADRV9025_FRAMER_0 Framer 0 selection
ADI_ADRV9025_FRAMER_1 Framer 1 selection
ADI_ADRV9025_FRAMER_2 Framer 2 selection
ADI_ADRV9025_ ALL_FRAMERS All framers selected

API Functions

adi_adrv9025_FramerSysrefCtrlSet(…)
adi_adrv9025_FramerSysrefCtrlSet(adi_adrv9025_Device_t *device, uint8_t framerSelMask, uint8_t
enable);

This function enables or disables the external SYSREF JESD204B/JESD204C signal connection to the framers.

For the framer to retime its LMFC/local extended multiblock clock (LEMF), a SYSREF rising edge is required. The external SYSREF
signal at the pin can be gated off internally so the framer does not see a potentially invalid SYSREF pulse before it is configured correctly.

By default, the device has the SYSREF signal ungated. However, the multichip synchronization state machine still does not allow the
external SYSREF to reach the framer until the other stages of multichip synchronization have completed. As long as the external SYSREF
is correctly configured before performing MCS, this function may not be needed by the baseband processor, because the MCS state
machine gates the SYSREF to the framer.

Precondition

This function is called after the device has been initialized and the JESD204B/JESD204C framer is enabled.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 35 of 336

Dependencies

device->devHalInfo

Parameters

Table 18. adi_adrv9025_FramerSysrefCtrlSet(…) Parameters
Parameter Description
*device A pointer to the device settings structure
framerSelMask Select framer to enable/disable SYSREF input for (valid for any OR’ed combination of enums ADI_ADRV9025_FRAMER_0,

ADI_ADRV9025_FRAMER_1, ADI_ADRV9025_FRAMER_2, or ADI_ADRV9025_ALL_FRAMERS)
enable = 1 enables SYSREF to framer, 0 disables SYSREF to framer

Return Values

Table 19. General API Function Return Values
Return Value Description
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required

adi_adrv9025_FramerStatusGet(…)
adi_adrv9025_FramerStatusGet(adi_adrv9025_Device_t *device, adi_adrv9025_FramerSel_e framerSel,
adi_adrv9025_FramerStatus_t *framerStatus);

This function reads back the status of the selected framer to determine the state of the JESD204B/JESD204C link. The framer status
return value is an 8-bit status word, as shown in Table 20. It also returns the qbfStateStatus and sync signal used by the selected framer.

Table 20. Framer Status Return Value
framerStatus Description
[7] Reserved
[6] Reserved
[5] Reserved
[4] Reserved
[3] Current SYNCIN level (1 = high, 0 = low)

[2] SYSREF phase error, is set when a new SYSREF has different timing than the first that set the LMFC
timing

[1] SYSREF phase established by framer
[0] Flag indicating that configuration parameters are not supported when set (1)

Precondition

The receiver JESD204B/JESD204C link(s) must be configured and running to use this function

Dependencies

device->devHalInfo

Parameters

Table 21. adi_adrv9025_FramerStatusGet(…) Parameters
Parameter Description
*device is a pointer to the device settings structure
framerSel Read back the framer status of the selected framer (Framer0, Framer1 or Framer2)
framerStatus is the framer status structure read

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 36 of 336

Return Values

See Table 19.

adi_adrv9025_FramerTestDataSet(…)
adi_adrv9025_FramerTestDataSet(adi_adrv9025_Device_t *device, adi_adrv9025_FrmTestDataCfg_t
*frmTestDataCfg);

This function selects the PRBS type and enables or disables the receiver framer PRBS generation. This is a debug function used for debug
of the receiver JESD204B/JESD204C lanes. Receiver data transmission on the JESD204B/JESD204C link(s) is not possible when the
framer test data is activated.

Precondition

This function may be called any time after device initialization.

Dependencies

device->devHalInfo

Parameters

Table 22. adi_adrv9025_FramerTestDataSet(…) Parameters
Parameter Description
*device A pointer to the device settings structure
frmTestDataCfg A pointer to a structure that contains the framer(s) of interest, testDataSource and injectPoint

Return Values

See Table 19.

adi_adrv9025_FramerTestDataInjectError (…)
adi_adrv9025_FramerTestDataInjectError(adi_adrv9025_Device_t *device, adi_adrv9025_FramerSel_e
framerSelect, uint8_t laneMask);

This function injects an error into the framer test data by inverting the data. This is a debug function used for debug of the receiver JESD204B/
JESD204C lanes. Receiver data transmission on the JESD204B/JESD204C link(s) is not possible when the framer test data is activated.

Precondition

This function is called after the framer test data is enabled.

Dependencies

device->devHalInfo

Parameters

Table 23. adi_adrv9025_FramerTestDataInjectError(…) Parameters
Parameter Description
*device A pointer to the device settings structure
framerSelect Select the desired framer ADI_ADRV9025_FRAMER_0, ADI_ADRV9025_FRAMER_1, or ADI_ADRV9025_FRAMER_2
laneMask is a four bit mask allowing selection of lanes 0-3 for the selected framer

Return Values

See Table 19.

adi_adrv9025_FramerLinkStateSet(…)
adi_adrv9025_FramerLinkStateSet(adi_adrv9025_Device_t *device, uint8_t framerSelMask, uint8_t
enable);

This function enables and disables the JESD204B/JESD204C framer. This function is normally not necessary. In the event that the link
must be reset, this function allows a framer to be disabled and reenabled.

Precondition

This function may be called any time after device initialization.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 37 of 336

Dependencies

device->devHalInfo

Parameters

Table 24. adi_adrv9025_FramerLinkStateSet(…) Parameters
Parameter Description
*device A pointer to the device settings structure
framerSelMask Desired framer(s) to set/reset.
enable 0 = disable the selected framers, 1 = enable the selected framer link

Return Values

See Table 19.

TRANSMITTER (DAC) DATAPATH
Figure 17 shows a block diagram of the transceiver transmit side (SERDES deframer).

The SERDES deframer receives the transmitter data from the baseband processor, decodes it, and distributes the data streams to the
transmitters. The transceiver includes two deframers that share up to four lanes that can operate at up to 25G. Figure 18 shows the
configuration for UC26C-NLS that uses Deframer 0 and utilizes four lanes at 16G to support four transmitters at maximum bandwidth.

22
77

0-
01

7

DEFRAMER 0

LANES TO
SAMPLES

8B10B/64B66B
ENCODE

LANE
XBAR

SYNC
XBAR

SYNC

SAMPLE
XBAR

DEFRAMER 1

SAMPLES TO
LANES

8B10B/64B66B
ENCODE

LANE
XBAR

DESERIALIZERS

CLOCK GENERATION
AND SYSREF

RETIMING

SERDOUTA
SERDOUTB
SERDOUTC

SYNCINB1
SYNCINB2

SERDOUTD

DAC

DAC

DAC

DAC

Figure 17. High Level JESD204B/JESD204C Interface Block Diagram (Transmitter Only)

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 38 of 336

UC26C-NLS 22
77

0-
01

8

Figure 18. Example Deframer Configuration for UC26C-NLS

Figure 19 shows the configuration for UC83C-LS that uses Deframer 0. Only two lanes are needed to realize the maximum chip RF
bandwidth (450 MHz) across all four transmitters. This device has two JESD204B/JESD204C deframers that share four physical lanes.
The two deframers feed a sample crossbar that connects to eight DACs. All converters must run at the same sample rate. Likewise, all
lanes must run at the same data rate. Each deframer is capable of receiving a PRBS sequence and accumulating error counts. The
deserializers have adjustable equalization circuits to counteract the insertion loss due to various PCB trace lengths and material.

UC83C-LS 22
77

0-
01

9

Figure 19. Example Deframer Configuration for UC83C-LS

SUPPORTED DEFRAMER LINK PARAMETERS
The product supports a subset of possible JESD204B/JESD204C link configurations. The modes are limited by the number of DACs and
the number of serial lanes implemented in the silicon.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 39 of 336

Table 25. JESD204B/JESD204C Deframer Parameters
JESD204B/JESD204C Parameter Description
M Number of converters (M can be 1, 2, 4 or 8)
L Number of lanes (L can be 1, 2, or 4)
S Number of samples per converter per frame cycle
N Converter resolution (N can be 12 or 16)
N’ Total number of bits per sample (N’ can be 12 or 16)
CF Number of control words/frame clock cycle/converter device
CS Number of control bits/conversion sample
HD High density mode.
K JESD204B only: number of frames in 1 multiframe, (20 ≤ F × K ≤ 256), F × K must be a multiple of 4, K ≤ 32
E JESD204C only: number of multiblocks in an extended multiblock.

For a particular converter sample rate, not all combinations listed in Table 25 are valid. Calculate the JESD204B or JESD204C lane rate
using the equations described in the Supported Framer Link Parameters section.

The deserializer link is allowed to run at a different lane rate than the serializer link, under the condition that both lane rates are possible
with respect to the clock divider settings. Both the deserializer and serializer link rates are derived from the same PLL, but there are
separate dividers to generate the deserializer clock and the serializer clock.

Deserializer Configuration

The deserializer includes a nonadaptive, programmable equalizer. This helps in compensating for signal integrity distortions for each
channel due to PCB trace length and impedance. Table 26 summarizes the amount of insertion loss each equalizer setting can overcome.
Equalizer boost settings can range from 0 (maximum boost) to 3 (default).
Table 26. Deserializer EQ Boost Correction
EQ Boost Settings Boost (dB)
0 0
1 −3
2 −6
3 −12

If the insertion loss is greater than the equalizer boost setting, one of the other settings may be appropriate. Note that any setting can be
used in conjunction with transmitter preemphasis to ensure functionality and/or to optimize for power. The equalizer setting can be
changed in the API using the desEqGainSetting parameter in the adi_adrv9025_DesCfg_t data structure.

The adi_adrv9025_DesCfg_t data structure contains the information required to properly configure the deserializer. Details of each
member can be found in the API documentation. The transceiver evaluation software has the option to output example data structures
with values chosen from the configuration tab of the software.
typedef struct adi_adrv9025_DesCfg

{

 uint8_t desInvertLanePolarity;

 uint8_t desEqBoostSetting;

 uint8_t desEqGainSetting;

 uint8_t desEqFeedbackSetting;

} adi_adrv9025_ DesCfg_t;

In JESD204B mode, the transceiver uses passive equalizer architecture that deemphasizes low frequencies in relation to the high
frequencies and then amplifies the signal. This provides the required equalization, or boost, to properly capture the signal. A brief
description of the data members in adi_adrv9025_DesCfg_t is given in Table 27.
Table 27. Deserializer Equalizer Data Members
Structure Member Description
desInvertLanePolarity Deserializer lane polarity inversion select. Bit 0 = invert polarity of Lane 0, Bit 1 = invert polarity of Lane 1.
desEqBoostSetting It sets how much high frequency attenuation the user is trying to compensate.
desEqGainSetting Gain is setting the number of stages of limiting amplifier. This compensates for the amount of EqBoost added.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 40 of 336

Structure Member Description
desEqFeedbackSetting This is the amount of feedback set for each gain stage. The gain stage works like a basic operational amplifier,

where the feedback network can be tuned depending on the feedback setting in the equalizer. This feedback
setting is applied to each of the limiting amplifiers (depending on number of stages) and can cause peaking in the
total channel response. It is not recommended to tune this data member while compensating for insertion losses.

When operating in JESD204C mode, the equalization is done with a continuous time linear equalizer (CTLE) that is configured during
device initialization with a SERDES INIT calibration.

Deframer

The active deframers receive 8B10B/64B66B encoded data from the deserializer and decode the data into converter samples. The
deserializer-to-converter sample mapping changes depending on the JESD204B/JESD204C link configuration setting. The following is a
list of the functions of the deframer:

• Monitor the health of the JESD204B/JESD204C link
• Control the JESD204B/JESD204C interrupt signal (can output on a GP_INTx pin on the device general purpose interrupt pin) to

signal baseband processor when certain JESD204B/JESD204C error conditions arise.
• Remove character replacement (valid for only JESD204B).
• Perform 8B10B/64B66B decoding.
• Map JESD204B/JESD204C lane data to converter samples.

A lane crossbar provides the ability to reorder the lanes into each deframer input. A sample crossbar provides the ability to reorder the
converter samples at the output of the deframers. The lane and sample crossbars enable flexiblity on which physical lanes are used and
which data is on each link.

The deframer unpacks the converter samples from lane data following the JESD204B/JESD204C specification. Figure 20 shows the data
unpacking for M = 4, L = 2, and S = 1 as an example.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 41 of 336

22
77

0-
02

0

CONVERTER DEVICE, 4 × 16 BITS, 1 SAMPLE PER SINGLE CONVERTER PER FRAME CYCLE

CONFIGURATION
DATA:

CF = 0
CS = 0
F = 4
L = 2
M = 4
N = 16
N’ = 16
S = 1

LANE 0

LANE 1

F = 4 OCTETS

TIME

SAMPLE 0 SAMPLE 0 SAMPLE 0 SAMPLE 0

WORD 0 WORD 2 WORD 3

NG 0 NG 2 NG 3

OCTET 0 OCTET 1 OCTET 2 OCTET 3 OCTET 4 OCTET 6 OCTET 7
Cr

0
S0

 [1
5:

8]

Cr
0

S0
 [7

:0
]

Cr
1

S0
 [1

5:
8]

Cr
1

S0
 [7

:0
]

Cr
2

S0
 [1

5:
8]

Cr
2

S0
 [7

:0
]

Cr
3

S0
 [1

5:
8]

Cr
3

S0
 [7

:0
]

CONVERTER 0 CONVERTER 1 CONVERTER 2 CONVERTER 3

LANE 0 LANE 1

NO CONTROL BITS TO ADD CF = 0 AND CS = 0

OCTET 5

NG 1

WORD 1

Figure 20. JESD204B Deframer Configuration (M = 4, L = 2)

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 42 of 336

Other Useful Deframer IP Features

PRBS Checker

The deframer has a built in PRBS checker. The PRBS checker can self synchronize and check for PRBS errors on a PRBS7, PRBS15, or
PRBS31 sequence. Because this mode works even in the midst of potential bit errors on each lane, the physical link can be debugged even
when the JESD204B/JESD204C link cannot be established. This mode can be used to check the robustness of the physical link during
initial testing and/or factory test. For this mode to be fully utilized, the baseband processor must have a PRBS generator capable of
creating PRBS7, PRBS15, or PRBS31 data.

A typical usage sequence is as follows:

1. Initialize the device as outlined in the Deserializer Configuration section.
2. Enable the PRBS generator on the baseband processor with the desired PRBS sequence.
3. Call the API adi_adrv9025_DfrmPrbsCheckerStateSet(…) passing the actual device being evaluated, the PRBS sequence to check,

and the location at which to check the PRBS sequence.
4. After some amount of time, call the API function to check the PRBS errors. This can be done by calling the API function

adi_adrv9025_DfrmPrbsErrCountGet(…) passing the actual device being evaluated, the counter selection lane to be read and the
error count is returned in the third parameter passed.

To prove an error count of 0 is valid, the baseband processor may have a PRBS error inject feature. Alternatively, the baseband processor
amplitude and emphasis settings can be set to a setting where errors occur. To reset the error count call the API function that clears the
counters: adi_adrv9025_DfrmPrbsCountReset(…).

API Software Configuration

Configuration of the deserializer and deframers are handled by the adi_adrv9025_Initialize(…) API function. Set all JESD204B/JESD204C link
options for the framer in the adi_adrv9025_DfrmCfg_t data structure before calling adi_adrv9025_Initialize(…). After initialization,
there are some other API functions to aid in debug and monitoring the status of the JESD204B/JESD204C link.

JESD204B/JESD204C Deframer API Data Structures

adi_adrv9025_DfrmCfg_t

The adi_adrv9025_DfrmCfg_t data structure contains the information required to properly configure each deframer. Details of each
member can be found in API documentation. The transceiver evaluation software has the option to output example data structures with
values chosen from the configuration tab of the software.
typedef struct adi_adrv9025_DfrmCfg

{

 uint8_t enableJesd204C;

 uint8_t bankId;

 uint8_t deviceId;

 uint8_t lane0Id;

 uint8_t jesd204M;

 uint16_t jesd204K;

 uint8_t jesd204Np;

 uint8_t jesd204E;

 uint8_t scramble;

 uint8_t externalSysref;

 uint8_t deserializerLanesEnabled;

 uint16_t lmfcOffset;

 uint8_t reserved;

 uint8_t syncbOutSelect;

 uint8_t syncbOutLvdsMode;

 uint8_t syncbOutLvdsPnInvert;

 uint8_t syncbOutCmosSlewRate;

 uint8_t syncbOutCmosDriveLevel;

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 43 of 336

 uint8_t enableManualLaneXbar;

 adi_adrv9025_DeserLaneXbar_t deserializerLaneCrossbar;

 adi_adrv9025_DacSampleXbarCfg_t dacCrossbar;

 uint8_t newSysrefOnRelink;

 uint8_t sysrefForStartup;

 uint8_t sysrefNShotEnable;

 uint8_t sysrefNShotCount;

 uint8_t sysrefIgnoreWhenLinked;

} adi_adrv9025_DfrmCfg_t;

Table 28. JESD204B/JESD204C Deframer Configuration Structure Member Description
Structure Member Valid Values Description
enableJesd204C 0, 1 0 = enable JESD204B framer, 1= enable JESD204C framer
bankId 0 to 15 JESD204B/JESD204C Configuration Bank ID (extension to device ID)
deviceId 0 to 255 JESD204B/JESD204C Configuration Device ID (link identification number)
lane0Id 0 to 31 JESD204B/JESD204C Configuration Lane ID (if more than one lane is used, each subsequent

lane increments from this number)
jesd204M 0, 2, 4, 8 Number of converters: 2 converters per transmit chain
jesd204K (JESD204B Only) 1 to 32 Number of frames in a multiframe (default is 32), F × K must be a multiple of 4
jesd204Np 12, 16 Number of bits per sample
jesd204E 0 to 255 JESD204C E parameter
Scramble (JESD204B Only) 0, 1 Scrambling enabled
 If scramble = 0, scrambling is disabled
 If scramble = 1, scrambling is enabled
externalSysref 0, 1 External SYSREF enabled
 If externalSysref = 0, use internal SYSREF
 If externalSysref = 1, use external SYSREF
deserializerLanesEnabled 0x0 to 0xF Deserializer lane enabled: one bit per lane
deserializerLaneCrossbar 0x0 to 0xFF Deserializer lane crossbar: three bits per lane
lmfcOffset 0 to 31 LMFC offset: set the local multiframe counter offset value for deterministic latency setting,

such that 0 ≤ lmfcOffset ≤ (K − 1)
syncbOutSelect 0,1 New SYSREF on relink: flag to indicate that a SYSREF is required to reestablish the link
 If newSysrefOnRelink = 0, no SYSREF is required
 If newSysrefOnRelink = 1, SYSREF is required
enableManualLaneXbar 0, 1 SYNC selection: selects which SYNCOUT output is driven by the deframer

 If syncbOutSelect = 0, the deframer drives SYNCOUT0

 If syncbOutSelect = 1, the deframer drives SYNCOUT1

syncbInLvdsMode 0, 1 0 = automatic lane crossbar mapping, 1 = manual lane crossbar mapping (using
deserializerLaneCrossbar value)

syncbInLvdsPnInvert 0, 1 1 = enables LVDS input pad, 0 = enables CMOS input pad
syncbOutCmosSlewRate 0 to 3 0 = SYNC LVDS PN not inverted, 1 = SYNC LVDS PN inverted

syncbOutCmosDriveLevel 0, 1 0 = fastest rise/fall times, 3 = slowest rise/fall times
newSysrefOnRelink 0, 1 Set the flag to determine if SYSREF is set on relink, 1 = set, 0 = not set
sysrefForStartup 0, 1 1: framer requires a SYSREF before CGS outputs from serializer, 0: allow CGS to output before

SYSREF occurs (recommended on framer to allow deframer CDR to lock and equalization to
train)

sysrefNShotEnable 0, 1 1 = enable SYSREF NShot (ability to ignore first rising edge of SYSREF to ignore possible runt
pulses)

sysrefNShotCount 0 to 15 Count value of which SYSREF edge to use to reset LMFC phase
sysrefIgnoreWhenLinked 0, 1 When the JESD204B and JESD204C link is up and valid, 1 = ignore any SYSREF pulses

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 44 of 336

adi_adrv9025_DataInterfaceCfg _t

The adi_adrv9025_DataInterfaceCfg_t data structure contains the information required to properly configure each framer, each
deframer, the serializers, and deserializers. Details of each structure member can be found in the API documentation (/c_src/doc).
typedef struct adi_adrv9025_DataInterfaceCfg

{

 adi_adrv9025_FrmCfg_t framer[3];

 adi_adrv9025_DfrmCfg_t deframer[2];

 adi_adrv9025_SerCfg_t serCfg[8];

 adi_adrv9025_DesCfg_t desCfg[8];

 uint8_t sysrefLvdsMode;

 uint8_t sysrefLvdsPnInvert;

 adi_adrv9025_LinkSharingCfg_t linkSharingCfg;

} adi_adrv9025_DataInterfaceCfg_t;

Table 29. JESD204B/JESD204C Settings Structure Member Description
Structure Member Valid Values Description
framer0 data structure Framer 0 configuration data structure.
framer1 data structure Framer 1 configuration data structure.
framer2 data structure Framer 2 configuration data structure.
deframer0 data structure Deframer 0 configuration data structure.
deframer1 data structure Deframer 1 configuration data structure.
serAmplitude 0 to 3 Serializer amplitude setting. Default = 1.
serPreEmphasis 0 to 2 Serializer preemphasis setting. Default = 0.
serInvertLanePolarity 0x0 to 0x0F Serializer Lane Polarity Inversion Select. One bit per lane
desInvertLanePolarity 0x0 to 0x0F Deserializer Lane Polarity Inversion Select. One bit per lane
desEqSetting 0 to 3 Deserializer Equalizer setting. Applied to all deserializer lanes.

JESD204B/JESD204C Deframer Enumerated Types

adi_adrv9025_DeframerSel

The adi_adrv9025_DeframerSel is an enumerated data type to select the desired deframer. The allowable values are listed in Table 30.

Table 30. Deframer Selection Enumeration Description
Enumeration Value Description
ADI_ADRV9025_DEFRAMER_0 Deframer 0 selection
ADI_ADRV9025_DEFRAMER_1 Deframer 1 selection
ADI_ADRV9025_DEFRAMER_0_AND_1 Deframer 0 and 1 selection

adi_adrv9025_DeframerPrbsOrder

The adi_adrv9025_DeframerPrbsOrder is an enumerated data type to select the desired deframer PRBS pattern. The allowable values are
listed in Table 31.

Table 31. Deframer PRBS Polynomial Order Enumeration Description
Enumeration Value Description
ADI_ADRV9025_PRBS_DISABLE Deframer PRBS pattern disable
ADI_ADRV9025_PRBS7 Deframer PRBS7 pattern select
ADI_ADRV9025_PRBS15 Deframer PRBS15 pattern select
ADI_ADRV9025_PRBS31 Deframer PRBS31 pattern select

adi_adrv9025_DeframerPrbsCheckLoc

The adi_adrv9025_DeframerPrbsCheckLoc is an enumerated data type to select the desired location within the Deframer to check the PRBS
pattern. The allowable values are listed in Table 32.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 45 of 336

Table 32. Deframer PRBS Check Location Enumeration Description
Enumeration Value Description
ADI_ADRV9025_PRBSCHECK_LANEDATA Check PRBS at deserializer lane output (does not allow JESD204B/JESD204C link to be established)
ADI_ADRV9025_PRBSCHECK_SAMPLEDATA Check PRBS at output of deframer (JESD204B/JESD204C deframed sample)

API Functions

adi_adrv9025_DeframerSysrefCtrlSet(…)
adi_adrv9025_DeframerSysrefCtrlSet(adi_adrv9025_Device_t *device, adi_adrv9025_DeframerSel_e
deframerSel, uint8_t enable)

This function enables or disables the external SYSREF to the deframers of the transceiver.

For the deframer to retime its LMFC/LEMC, a SYSREF rising edge is required. The external SYSREF signal at the input pins on the device
can be gated off internally. Therefore, the deframer does not see a potential invalid SYSREF pulse before it is configured correctly.

By default, the device has the SYSREF signal ungated. However, the multichip synchronization state machine still does not allow the
external SYSREF to reach the deframer until the other stages of multichip synchronization have completed. As long as the external
SYSREF is correctly configured before performing MCS, this function may not be needed by the baseband processor because the MCS
state machine gates the SYSREF to the deframer.

Precondition

This function is called after the device has been initialized and the JESD204B/JESD204C deframer is enabled.

Dependencies

device->devHalInfo

Parameters

Table 33. adi_adrv9025_DeframerSysrefCtrlSet(…) Parameters
Parameter Description
*device Pointer to the device settings structure
deframerSel Select deframer to enable/disable SYSREF input for valid ADI_ADRV9025_DEFRAMER_0, ADI_ADRV9025_DEFRAMER_1, or

ADI_ADRV9025_DEFRAMER_0_AND_1
enable 1 = enable SYSREF to deframer, 0 = disable SYSREF to deframer

Return Values

See Table 19.

adi_adrv9025_DfrmLinkStateSet(…)
adi_adrv9025_DfrmLinkStateSet(adi_adrv9025_Device_t *device, uint8_t deframerSelMask, uint8_t
enable)

This function is normally not necessary. In the event that the link must be reset, this function allows a deframer to be disabled and re-
enabled.

During disable, the lane FIFOs for the selected deframer are also disabled. When the deframer link is enabled, the lane FIFOs for the
selected deframer are reenabled (reset). The baseband processor sends valid serializer data before enabling the link. Therefore, the device
CDR is locked.

Precondition

This function can be called any time after device initialization.

Dependencies

device->devHalInfo

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 46 of 336

Parameters
Table 34. adi_adrv9025_DfrmLinkStateSet(…) Parameters
Parameter Description
*device Pointer to the device settings data structure
deframerSelMask Desired deframer to reset. Valid states are ADI_ADRV9025_DEFRAMER_0, ADI_ADRV9025_DEFRAMER_1, or

ADI_ADRV9025_DEFRAMER_0_AND_1.
enable 0 = disable the selected deframer, 1 = enable the selected deframer link

Return Values

See Table 19.

adi_adrv9025_DeframerStatusGet(…)
adi_adrv9025_DeframerStatusGet(adi_adrv9025_Device_t *device, adi_adrv9025_DeframerSel_e
deframerSel, adi_adrv9025_DeframerStatus_t *deframerStatus)

After bringing up the deframer JESD204B/JESD204C link, the baseband processor can check the status of the deframer for the
parameters shown in Table 35.

Table 35. Deframer Status Parameters
Deframer Status Bit Bit Name Description
7 Valid Checksum = 1 if the checksum calculated by the device matched the checksum sent in the ILAS data.
6 EOF Event This bit captures the internal status of the end of frame event of the deframer. Value =1 if

there is a framing error during ILAS.
5 EOMF Event This bit captures the internal status of the end of multiframe event of the deframer. Value = 1

if there is a framing error during ILAS.
4 FS Lost This bit captures the internal status of the frame symbol event of the deframer. Value = 1 if

there is a framing error during ILAS or user data (invalid replacement characters).
3 Reserved

2 User Data Valid = 1 when in user data (deframer link is up and sending valid DAC data).
1 SYSREF Received Deframer has received the external SYSREF signal.
0 SYNC level Current level of SYNC signal internal to deframer (= 1 means link is up).

Precondition

The transmitter JESD204B/JESD204C link(s) must be configured and running to use this function.

Dependencies

device->devHalInfo

Parameters

Table 36. adi_adrv9025_DeframerStatusGet(…) Parameters
Parameter Description
*device A pointer to the device settings structure
deframerSel Select the deframer to read back the status of ADI_ADRV9025_DEFRAMER_0, ADI_ADRV9025_DEFRAMER_1, or

ADI_ADRV9025_DEFRAMER_0_AND_1
deframerStatus 8 bit deframer status word return value

Return Values

See Table 19.

adi_adrv9025_DfrmPrbsCheckerStateSet(…)
adi_adrv9025_DfrmPrbsCheckerStateSet(adi_adrv9025_Device_t *device, adi_adrv9025_DfrmPrbsCfg_t
*dfrmPrbsCfg)

This function configures and enables or disables the transceiver lane or sample PRBS checker. This is a debug function to be used for
debug of the transmitter JESD204B/JESD204C lanes.

If the checkerLocation parameter is ADI_ADRV9025_PRBSCHECK_LANEDATA, the PRBS is checked at the output of the deserializer.
If the checkerLocation parameter is ADI_ADRV9025_PRBSCHECK_SAMPLEDATA, the PRBS data is expected to be framed

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 47 of 336

JESD204B/JESD204C data and the PRBS is checked after the JESD204B/JESD204C data is deframed. For the sample data, there is only a
PRBS checker on DAC 0 input. The lane PRBS has a checker on each deserializer lane.

Precondition

This function can be called any time after device initialization.

Dependencies

device->devHalInfo

Parameters

Table 37. adi_adrv9025_DfrmPrbsCheckerStateSet(…) Parameters
Parameter Description
*device A pointer to the device settings structure
polyOrder Selects the PRBS type based on enum values (ADI_ADRV9025_PRBS_DISABLE, ADI_ADRV9025_PRBS7,

ADI_ADRV9025_PRBS15, or ADI_ADRV9025_PRBS31)
checkerLocation Check at deserializer (deframer input) or sample (deframer output)

Return Values

See Table 19.

adi_adrv9025_DfrmPrbsCountReset(…)
adi_adrv9025_DfrmPrbsCheckerStateSet(adi_adrv9025_Device_t *device, adi_adrv9025_DfrmPrbsCfg_t
*dfrmPrbsCfg)

This function allows the baseband processor to clear the deframer PRBS counters by resetting the PRBS error counters for all lanes. It is
recommended to clear the error counters after enabling the deframer PRBS checker.

Precondition

The transmitter JESD204B/JESD204C link(s) must be configured to use this function.

Dependencies

device->devHalInfo

Parameters

Table 38. adi_adrv9025_DfrmPrbsCountReset(…) Parameter
Parameter Description
*device A pointer to the device settings structure

Return Values

See Table 19.

adi_adrv9025_DfrmPrbsErrCountGet(…)
adi_adrv9025_DfrmPrbsErrCountGet(adi_adrv9025_Device_t *device,
adi_adrv9025_DfrmPrbsErrCounters_t *counters)

After enabling the deframer PRBS checker and clearing the PRBS error counters, use this function to read back the PRBS error counters.
The lane parameter allows the baseband processor to select which lane error counter to read. Only one lane error counter can be read at a
time. To read error counters for all four lanes, the baseband processor calls this function four times.

In the case that the PRBS checker is set to check at the deframer output sample, there is only a checker on the DAC 0 input. In this case,
the lane function parameter is ignored and the sample 0 PRBS counter is returned. The sample crossbar can be used to switch all
deframer outputs to DAC 0 in turn.

Precondition

The transmitter JESD204B/JESD204C link(s) must be configured to use this function.

Dependencies

device->devHalInfo

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 48 of 336

Parameters
Table 39. adi_adrv9025_DfrmPrbsErrCountGet(…) Parameters
Parameter Description
*device Pointer to the device settings structure
counters Pointer to PRBS error counter structure to be returned

Return Values
See Table 19.

API SOFTWARE INTEGRATION
Configuration of the JESD204B/JESD204C circuitry is handled by the adi_adrv9025_Initialize(…) API function. Set all
JESD204B/JESD204C link options in the adi_adrv9025_Init_t data structure before calling adi_adrv9025_Initialize(…).

JESD204B/JESD204C API Data Structures

adi_adrv9025_DataInterfaceCfg_t

The adi_adrv9025_DataInterfaceCfg_t data structure contains the information required to properly configure each framer, each
deframer, the serializers, and deserializers. Details of each structure member can be found in API documentation (/c_src/doc).
typedef struct adi_adrv9025_DataInterfaceCfg

{

 adi_adrv9025_FrmCfg_t framer[3];

 adi_adrv9025_DfrmCfg_t deframer[2];

 adi_adrv9025_SerCfg_t serCfg[8];

 adi_adrv9025_DesCfg_t desCfg[8];

 uint8_t sysrefLvdsMode;

 uint8_t sysrefLvdsPnInvert;

 adi_adrv9025_LinkSharingCfg_t linkSharingCfg;

} adi_adrv9025_DataInterfaceCfg_t;

Table 40. JESD204B/JESD204C Settings Structure Member Description
Structure Member Valid Values Description
framer0 data structure Framer 0 configuration data structure
framer1 data structure Framer 1 configuration data structure
framer2 data structure Framer 2 configuration data structure
deframer0 data structure Deframer 0 configuration data structure
deframer1 data structure Deframer 1 configuration data structure
serAmplitude 0..3 Serializer amplitude setting. Default = 1.
serPreEmphasis 0..2 Serializer preemphasis setting. Default = 0.
serInvertLanePolarity 0x0 to 0x0F Serializer Lane Polarity Inversion Select. One bit per lane.
desInvertLanePolarity 0x0 to 0x0F Deserializer Lane Polarity Inversion Select. One bit per lane.
desEqSetting 0 to 3 Deserializer Equalizer Setting. Applied to all deserializer lanes.

IMPLEMENTATION RECOMMENDATIONS
The following list contains the recommendations for implementing a JESD204B and JESD204C interface in hardware:

• SYSREF must be dc-coupled. If SYSREF is generated by GPIO pins, for example, both pins being in the low state at startup is not
valid. Ensure that the signals are active and/or in a known valid state prior to enabling the MCS gate.

• For 25G operation, it is recommended to use deframer Lane A and Lane C to minimize crosstalk possibilities.
• Deframer input amplitude is approximately 500 mV p-p to 700 mV p-p if insertion loss is approximately 5 dB at room temperature.
• Minimizing data link uncertainty:

• Ensure setup and hold times are met for each SYSREF/DCLK pair
• Separate the SYSREF/DCLK pairs for each device in the system
• Match the trace length within each pair so that the propagation time is the same

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 49 of 336

LINK INITIALIZATION AND DEBUGGING
Link initialization occurs during the post MCS phase of device initialization. The link bring up procedure follows the steps outlined for
both JESD204B and JESD204C configurations in the JESD204B and JESD204C subsections.

JESD204B

For the deframer side in JESD204B mode, follow these steps:

1. Initialize and bring up the baseband processor framer side.
2. Deframer is held in reset state until INIT command, then deframer issues a synchronization request by asserting the SYNC signal.
3. Framer starts sending K28.5 characters, then deframer is brought out of reset.
4. Deframer identifies four consecutive K28.5 characters then deasserts SYNC and goes into the ILAS phase.
5. If SYNC stays asserted, this indicates that the interface is stuck in the CGS phase. If the link parameters match, check the signal

integrity (refer to the Sample Iron Python Code for PRBS Testing section).

For the framer side, link establishment follows the same procedure. First, the framer is enabled and the baseband processor deframer
synchronizes to the signal.

JESD204C

For the deframer side in JESD204C mode, follow these steps:

1. Initialize and bring up the baseband processor framer side.
2. Send the JESD204C initialization calibration command. This brings the link up because it is now protocol based (no SYNC signal

needed).
3. Enable the JESD204C tracking calibrations. This maintains the link parameters on a 60 second schedule.

For the framer side, link establishment follows the same procedure. First the framer is enabled and then the baseband processor deframer
synchronizes to the signal.

The adi_board_adrv9025_JesdBringup API function is used to configure and establish the data links. The overall detailed sequence,
including the MCS, is in the adi_adrv9025_daughter_board.c file.

FIRST TIME SYSTEM BRING UP—CHECKING LINK INTEGRITY
The following is a list of suggested actions when checking the link integrity during first time system bring up:

1. For ease of debug during bring up, it is recommended to start with a single lane on both sides and with the minimum possible link speed.
2. Check that the parameters are configured the same at both ends of the transceiver and FPGA. The adi_adrv9025_DfrmCfg_t data

structure contains the information required to properly configure each deframer.
3. There is a PRBS checker available that can be used to check signal integrity related issues. Initialize the transceiver as outlined in the

Link Initialization and Debugging section. Enable the PRBS generator on the baseband processor with the desired PRBS sequence.
4. Confirm that the lanes baseband processor is transmitting PRBS on are the actually configured in the transceiver. Start with the

PRBS errors. Ensure baseband processor and the transceiver are both using the same PRBS signal and the transceiver expects the
same PRBS 7 from baseband processor.

5. Call the API adi_adrv9025_DfrmPrbsCheckerStateSet(…) passing the actual device being evaluated, the PRBS sequence to check,
and the location at which to check the PRBS sequence.

6. After some amount of time, call the API function to check the PRBS errors. This can be done by calling the API function
adi_adrv9025_DfrmPrbsErrCountGet(…) passing the actual device being evaluated, the counter selection lane to be read, and the
error count is returned in the third parameter passed.

7. The user can use adi_adrv9025_DeframerSysrefCtrlSet(…) API so that the external SYSREF signal at the pin can be gated off
internally so the deframer does not see a potential invalid SYSREF pulse before it is configured correctly.

8. After bringing up of the JESD204B link or for debugging the deframer, the baseband processor can check the status of the deframer
using adi_adrv9025_DeframerStatusGet(…).

SAMPLE IRON PYTHON CODE FOR PRBS TESTING
The following Iron Python script can be loaded into the Iron Python tab in the GUI to run the PRBS test. To use this code, select File >
New and place this code just after the ##### YOUR CODE GOES HERE ##### note.
#Create an Instance of the Class

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 50 of 336

link = AdiEvaluationSystem.Instance

connect = False

adrv9025 = link.Adrv9025Get(1)

FrmTestDataCfg=Types.adi_adrv9025_FrmTestDataCfg_t()

FrmTestDataCfg.framerSelMask=int(Types.adi_adrv9025_FramerSel_e.ADI_ADRV9025_FRAMER_0)

print FrmTestDataCfg.framerSelMask

FrmTestDataCfg.testDataSource=Types.adi_adrv9025_FramerDataSource_e.ADI_ADRV9025_FTD_PRBS7

FrmTestDataCfg.injectPoint=Types.adi_adrv9025_FramerDataInjectPoint_e.ADI_ADRV9025_FTD_SERIALIZE
R

adrv9025.DataInterface.FramerTestDataSet(FrmTestDataCfg)

#Enable Deserializer

link.platform.board.Fpga.Prbs.PrbsDeserializerEnable(0xF,0x1) #1:PRBS7;2:PRBS9;3:PRBS15;5:PRBS31

link.platform.board.Fpga.Prbs.PrbsDeserializerEnable(0xF,0x1) #1:PRBS7;2:PRBS9;3:PRBS15;5:PRBS31

#clear PRBS error

link.platform.board.Fpga.Prbs.PrbsErrorClear(0xF)

#Read PRBS error

#adrv9025.DataInterface.FramerTestDataInjectError(Types.adi_adrv9025_FramerSel_e.ADI_ADRV9025_FR
AMER_0,0x0)

time.sleep(1)

errCounts=Array[System.UInt32]([0,0,0,0,0,0,0,0])

errCounts=link.platform.board.Fpga.Prbs.PrbsErrorCountsRead(errCounts)[1]

errCounts=[int(data) for data in errCounts]

print errCounts #[0,0,0,0,0,0,0,0]

When this script is run, it results in the number of errors per enabled lane. Note that only the first four positions are valid and the last
four positions are always 0. To create errors as a test, change the 0x1 in the line immediately below the Enable Deserializer comment to
one of the other values indicated. The enabled lanes show errors by enabled lane position.

PRBS ERRORS
When the baseband processor is transmitting PRBS, confirm that the active lanes are also configured properly in the transceiver. Start
with the PRBS errors. Ensure that the baseband processor and the transceiver are both using the same PRBS signal and the transceiver
expects the same PRBS 7 from baseband processor.

If stuck in CGS mode, or if SYNC stays at the logic low level or pulses high for less than four multiframes, take the following steps:

1. Power down the system and check the following:
a. SYSREF and SYNC signaling is dc-coupled.
b. Check that the pull-down or pull-up resistors are not dominating the signaling. For example, if values are too small or shorted

and therefore cannot be driven correctly.
c. Verify that the differential pairs traces are length matched.
d. Verify that differential impedance of the traces is 100 Ω.

2. Power up the system and check the following:
a. If there is a buffer/translator in the SYNC path, make sure it is functioning properly.
b. Check that the SYNC source is properly configured to produce compliant logic levels.

3. Check SYNC signaling using the following actions:
a. If SYNC is static and logic low, the link is not progressing beyond the CGS phase. There is either an issue with the data being

sent or the JESD204B receiver is not decoding the samples properly. Verify /K/ characters are being sent, verify receive
configuration settings, and verify the SYNC source. Consider overdriving the SYNC signal and attempt to force link into ILAS
mode to isolate link receiver vs. transmitter issues.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 51 of 336

b. If SYNC is static and logic high, verify that the SYNC logic level is configured correctly in the source device. Check pull-up and
pull-down resistors.

c. If SYNC pulses high and returns to a logic low state for less than six multiframe periods, the JESD204 Link is progressing
beyond the CGS phase but not beyond ILAS phase. This suggests that the /K/ characters are okay and the basic function of the
CDR is working. Proceed to ILAS troubleshooting.

d. If SYNC pulses high for a duration of more than six multiframe periods, the link is progressing beyond the ILAS phase and is
malfunctioning in the data phase. See the Link Initialization and Debugging for troubleshooting tips.

4. Check serial data using the following actions:
a. Verify that the transmitter data rate and the receiver expected rate are the same.
b. Measure lanes with a high impedance probe (a differential probe, if possible). If characters appear incorrect, ensure lane

differential traces are matched, the return path on the PCB is not interrupted, and devices are properly soldered on the PCB.
CGS characters are easily recognizable on a high speed scope.

c. Verify /K/ characters with a high impedance probe. If /K/ characters are correct, the transmitter side of the link is working
properly. If /K/ characters are not correct, the transmitter device or the board lane signals have an issue.

d. Verify the transmitter CML differential voltage on the data lanes.
e. Verify the receiver CML differential voltage on the data lanes.
f. Verify that the M and L configuration parameters values match between the baseband processor and the transceiver. Otherwise,

the data rates may not match. For example, for M = 2 and L = 2, expect ½ the data rate over the serial interface as compared to
the M = 2 and L = 1 case.

g. Ensure that the device clock is phase locked and at the correct frequency.

If the user is stuck in ILAS mode, or if SYNC pulses high for approximately four multiframes, take the following steps:

1. Link parameter conflicts
a. Verify that ILAS multiframes are transmitting properly and verify the link parameters on the transmitter device, the receiver

device, and those parameters transmitted in the ILAS second multiframe are all valid.
b. Calculate expected ILAS length tFRAME, tMULTIFRAME, and 4 × tMULTIFRAME and verify that ILAS is attempted for approximately four

multiframes.
2. Verify that all lanes are functioning properly. Ensure that there are no multilane/multilink conflicts.

If the interface enters data phase but occasionally the link resets (returns to CGS and ILAS before returning to data phase), look for the
following issues and make adjustments to the link parameter to remove the condition:

• Invalid setup and hold time of periodic or gapped periodic SYSREF or SYNC signal.
• Link parameter conflicts
• Character replacement conflicts
• Scrambling problem, if enabled
• Lane data corruption, noisy or jitter can force the eye diagram to close
• Spurious clocking or excessive jitter on device clock

STATIC PHASE OFFSET (SPO) TEST TO VERIFY EYE WIDTH
High speed data rates present a tougher challenge because signal integrity is required for reliable error free data transfer. See the PCB
Layout Considerations section for differential line layout recommendations.

When debugging lane errors, it can be useful to understand how large the eye of the waveform is to determine how reliable the link is. In the case
of the deframer, in JESD204C mode the channel is estimated during an initialization calibration that configures the CTLE and automatically
adjusts the sampling position on the waveform. To gain confidence in the link stability, the opening of the eye over the operating conditions is
one measure of robustness. A method of determining the opening size is to sweep the sampling position, searching for dead space where no
transitions are occurring. Therefore, the sampling point is in the eye. This is an SPO test that offsets the clocks to move the sampling edge left or
right on the waveform and the resulting dead steps total at least 4 steps left and right from center. The link is considered good overall operating
conditions. The SPO test requires PRBS transmission in the FPGA and setup of the PRBS pattern checker in the transceiver device.

A typical test output report is shown in the SPO Test Example Python Script section. In this case, two lanes are in use. The phase is swept
in 128 steps The resolution is dependent on the lane rate, but in general the result shown is considered good with approximately 16 phase
steps open in the center of the eye, as shown in the resulting output files.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 52 of 336

SPO Test Example Python Script

The SPO test code can be run in the GUI and works for both JESD204B and JESD204C. The user needs to set the first line appropriately
and also configure the output file path to a folder on the PC. Insert these functions in the def section of the new script, as follows:
def FpgaWrite(address, data):

 link.platform.board.Fpga.Hal.RegisterWrite(address, data)

 #print "FPGA Write Address " + hex(address) + ": " + hex(data)

def FpgaRead(address):

 data = link.platform.board.Fpga.Hal.RegisterRead(address, 0)

 print "FPGA Read Address " + hex(address) + ": " + hex(data[1])

def FPGAPRBSSetup(mode_is_204c=0):

 enablePRBS_ch1 = link.platform.board.Fpga.Hal.RegisterRead(0x43400220,0)
 #Read the value in PRBS control register (FPGA ch1 testmodes register)

 disablePRBS = enablePRBS_ch1[1] & 0xF0ffFFFF
 #Zero bits 27-24 without affecting the other bits
in the register.

 enablePRBS7 = disablePRBS | 0x01000000
 #Set the enablePRBS variable bits 27-24 to 0001
to enable PRBS7

 enablePRBS23 = disablePRBS | 0x05000000
 #Set the enablePRBS variable bits 27-24 to 0101 to
enable PRBS23

 for fpgaregister in range (0x43400100, 0x43400900, 0x100):
 #Update all FPGA ch0-7

 if (mode_is_204c == 1):

 FpgaWrite(fpgaregister, 0x00000004)
 #Puts the lane transmit side in reset

 FpgaWrite(fpgaregister + 0x48, 0x20800080)
 #Sets the data and data mask for the DRP write to enable
the buffer and disable the gearbox

 FpgaWrite(fpgaregister + 0x40, 0x0003007C)
 #Initiates the write to the DRP

 FpgaWrite(fpgaregister + 0x10, 0x02015233)
 #Sets the transmit clock source to the PMA clock

 FpgaWrite(fpgaregister + 0x20, enablePRBS7)
 #Write the new value back to the FPGA to enable PRBS7 -
ch1(fpga) to ch7 =serdinA to H

 if (mode_is_204c):

 FpgaWrite(fpgaregister, 0x00000000)
 #Remove reset

 print "PRBS7 is enabled", hex(disablePRBS), hex(enablePRBS7), hex(enablePRBS23)

 ErrorCount = Types.adi_adrv9025_DfrmPrbsErrCounters_t()

 dfrmPrbsCfg = Types.adi_adrv9025_DfrmPrbsCfg_t()

 dfrmPrbsCfg.deframerSel = dfrm_sel

 dfrmPrbsCfg.polyOrder = Types.adi_adrv9025_DeframerPrbsOrder_e.ADI_ADRV9025_PRBS7

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 53 of 336

 dfrmPrbsCfg.checkerLocation =
Types.adi_adrv9025_DeframerPrbsCheckLoc_e.ADI_ADRV9025_PRBSCHECK_LANEDATA

 adrv9025.DataInterface.DfrmPrbsCheckerStateSet(dfrmPrbsCfg)

 #check config matches what you've written

 dfrmPrbsCfgRead = Types.adi_adrv9025_DfrmPrbsCfg_t()

 adrv9025.DataInterface.DfrmPrbsCheckerStateGet(dfrmPrbsCfgRead)

 print "PRBS config setup, Poly, location,drmrSel", dfrmPrbsCfgRead.polyOrder,
dfrmPrbsCfgRead.checkerLocation, dfrmPrbsCfgRead.deframerSel

 adrv9025.DataInterface.DfrmPrbsCountReset()

 adrv9025.DataInterface.DfrmPrbsErrCountGet(ErrorCount) #api method to read error
counters + flags

 for lanes in range(len(ErrorCount.laneErrors)):

 print "Initial laneError count for lane", lanes, "is :", ErrorCount.laneErrors[lanes]

 print "Initial ErrorStatus for lane", lanes, "is :", ErrorCount.errorStatus[lanes] #Bit
0 = Lane inverted, bit 1 = invalid data flag, bit 2 = sample/lane error flag

 if ErrorCount.laneErrors[0] == 0:

 print "No Errors detected as expected in PRBS7 mode. Will switch to PRBS23 now"

 else:

 print "Errors detected!! Link not good, please check link"

 for fpgaregister in range (0x43400100, 0x43400900, 0x100):
 #Update all FPGA ch0-7

 link.platform.board.Fpga.Hal.RegisterWrite(fpgaregister + 0x20, enablePRBS23)
 #Write to the FPGA to enable PRBS23 on all Ch

 print "Changing to PRBS23"

 adrv9025.DataInterface.DfrmPrbsCountReset()

 adrv9025.DataInterface.DfrmPrbsErrCountGet(ErrorCount)

 for lanes in range(len(ErrorCount.laneErrors)):

 print "PRBS23 laneError count for lane", lanes, "is :", ErrorCount.laneErrors[lanes]

 print "PRBS23 ErrorStatus for lane", lanes, "is :", ErrorCount.errorStatus[lanes]

 if ErrorCount.laneErrors[0] != 0:

 print "Errors detected as expected with PRBS mismatch. Will switch back to PRBS7 now"

 else:

 print "Errors not detected with PRBS mismatch !! Please verify PRBS generator in FPGA"

 for fpgaregister in range (0x43400100, 0x43400900, 0x100):
 #Update all FPGA ch0-7

 link.platform.board.Fpga.Hal.RegisterWrite(fpgaregister + 0x20, enablePRBS7)

 print "PRBS7 is enabled again on all channels"

 adrv9025.DataInterface.DfrmPrbsCountReset()

 adrv9025.DataInterface.DfrmPrbsErrCountGet(ErrorCount)

 if ErrorCount.laneErrors[0] == 0:

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 54 of 336

 print "No Errors detected after switching back to PRBS7 mode. Will move onto phase/amp
eye sweep"

 else:

 print "Errors detected!! please check setup - may need to reboot"

Insert the following in the Iron Python tab after the line: ##### YOUR CODE GOES HERE ##### (approximately Line 40). See Figure 21 for
the SPO test measurement result.

mode_is_204c = 0 # need to setup FPGA differently for 204c vs. 204b mode, so
set this bit appropriately.

foldername = "C:\\tmp"

errorTimeDuration = 0.001 #time duration to allow PRBS errors to accumulate

LaneErrorFlag = [] #containers to store ErrorFlag Data for each lane to print
to file

LaneErrorCntr= []

dfrmPrbsCfg = Types.adi_adrv9025_DfrmPrbsCfg_t()

ErrorCount = Types.adi_adrv9025_DfrmPrbsErrCounters_t()

dfrm_sel = Types.adi_adrv9025_DeframerSel_e.ADI_ADRV9025_DEFRAMER_0

FPGAPRBSSetup(mode_is_204c) #Setup PRBS TestMode on FPGA side

dfrmPrbsCfg.deframerSel = dfrm_sel

dfrmPrbsCfg.polyOrder = Types.adi_adrv9025_DeframerPrbsOrder_e.ADI_ADRV9025_PRBS7 #can
configure PRBS mode on Madura

dfrmPrbsCfg.checkerLocation =
Types.adi_adrv9025_DeframerPrbsCheckLoc_e.ADI_ADRV9025_PRBSCHECK_LANEDATA

adrv9025.DataInterface.DfrmPrbsCheckerStateSet(dfrmPrbsCfg)

adrv9025.DataInterface.DfrmPrbsCountReset()

adrv9025.DataInterface.DfrmPrbsErrCountGet(ErrorCount) #Run initial PRBS error check -
should have zero errors initially

for lanes in range(len(ErrorCount.laneErrors)):

 print "Initial laneError count for lane", lanes, "is :", ErrorCount.laneErrors[lanes]

 print "Initial ErrorStatus for lane", lanes, "is :", ErrorCount.errorStatus[lanes] #Bit 0 =
Lane inverted, bit 1 = invalid data flag, bit 2 = sample/lane error flag

for phase in range (64,192,1):

 phase = phase % 128 #Offset the phase to centre the eye

 spiWrite(0x6805, 0xD) # Write the serdes submap addr

 spiWrite(0x6808, phase | 0x80) # Write the phase data

 spiWrite(0x6806, 0x0F) # Latch in phase data for all lanes

 spiWrite(0x6806, 0x00) #clear latch

 adrv9025.DataInterface.DfrmPrbsCountReset()

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 55 of 336

 time.sleep(errorTimeDuration) #Set a wait time to allow errors
to accumulate

 adrv9025.DataInterface.DfrmPrbsErrCountGet(ErrorCount)

 for lanes in range(len(ErrorCount.laneErrors)): #readback errors from each lanes
and store in an array

 LaneErrorFlag.append(int(ErrorCount.errorStatus[lanes] >> 2) & 0x1)

 LaneErrorCntr.append(ErrorCount.laneErrors[lanes])

Print ErrorFlag & ErrorCounter data to files

filename = "{0}\\eyedata_lane.txt".format(foldername)

filename2 = "{0}\\cntrdata_lane.txt".format(foldername)

with open(filename, 'w') as f1, open(filename2, 'w') as f2:

 f1.write("LaneErrorFlag[0]\tLaneErrorFlag[1]\tLaneErrorFlag[2]\tLaneErrorFlag[3]\n")

 f2.write("LaneErrorCntr[0]\tLaneErrorCntr[1]\tLaneErrorCntr[2]\tLaneErrorCntr[3]\n")

 for i in range(0, len(LaneErrorFlag),4): #print out the eye diagram ascii
symbols to file

 f1.write("{0}\t{1}\t{2}\t{3}\n".format(LaneErrorFlag[i],
LaneErrorFlag[i+1],LaneErrorFlag[i+2],LaneErrorFlag[i+3]))

 f2.write("{0}\t{1}\t{2}\t{3}\n".format(LaneErrorCntr[i],
LaneErrorCntr[i+1],LaneErrorCntr[i+2],LaneErrorCntr[i+3]))

22
77

0-
02

1

Figure 21. SPO Test Measurement Result

The test reported in Figure 21 was run on UC14C-LS on the evaluation board platform with the result indicating that initially there are no
PRBS errors. Then errors are injected with the resulting error counts, and the eye sweep is run with no errors being reported. In this case,
only two deframer lanes are in use, Lane A and Lane C. Data for the unused lanes are 0.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 56 of 336

Two files are also generated by the script: cntrdata_lane.txt and eyedata_lane.txt.

The cntrdata_lane.txt indicates the number of errors counted as the phase is adjusted, and the count goes to 0 in the center of the eye.

In the eyedata_lane.txt file, errors are represented by 1 and the eye indicated by 0. Similarly, the 0s occur toward the center of the
waveform, indicating an acceptable eye width. Figure 22 and Figure 23 show excerpts from the center of the files.

22
77

0-
02

2

Figure 22. cntrdata_lane.txt Showing PRBS Error Counts About the Eye Center

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 57 of 336

22
77

0-
02

3

Figure 23. eyedata_lane.txt Showing Center of the Eye

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 58 of 336

CHECKING JESD204C LINK STATUS
JESD204C link status can be examined by using SPI commands to read the following address locations:

• Address 0x6B2B to Address 0x6B2E are for Deframer 0 for Lane A, Lane B, Lane C, and Lane D, respectively
• Address 0x6D2B to Address 0x6D2E are for Deframer 1 for Lane A, Lane B, Lane C, and Lane D, respectively

It is only necessary to check as many lanes as the deframer is using. For example, if both deframers are in use and each one uses two lanes,
it is only necessary to check the first two registers in each deframer, not all four.

Table 41. Deframer Register Bit Function Assignments
Bits Name Description
7:3 Reserved Reserved
2:0 Jrx_dl_204c_state Current Lock State

Table 42. Deframer Register State Options
Bits[2:0] Description
0 Reset
1 Unlocked
2 Block (blocks aligned)
3 M_Block (lanes aligned)
4 E_M_Block (multiblock aligned)
5 FEC_BUF
6 FEC_READY (good state)
7 Reserved

SELECTING THE OPTIMAL LMFC AND LEMC OFFSET FOR A DEFRAMER
This section describes how to set the LMFC/LEMC offset for a deframer, how to read back the corresponding elastic buffer depth, and
how to select the optimal LMFC/LEMC offset value for a given system.

Deterministic Latency in JESD204B Mode

In JESD204B mode, the transceiver digital data interface follows the JESD204B Subclass 1 standard, which has provisions to ensure
repeatable latencies across the link from power-up to power-up or over link reestablishment by using the SYSREF signal.

To achieve this deterministic latency, the transceiver deframers include elastic buffers for each of their lanes. The elastic buffers are also
used to deskew each lane before aligning them with the LMFC signal. The depth of the elastic buffers can therefore be different for each
lane of a given deframer.

A deframer starts outputting data out of its elastic buffers on the next LMFC (that is, multiframe) boundary following the reception of the
first characters in the ILA sequence by all the active lanes. It is therefore possible to adjust when the data is output from the elastic buffers,
and how much data is stored in those buffers (called buffer depth), by adjusting the phase relationship between the external SYSREF
signal and the internally generated LMFC signal. This phase relationship is adjustable by using the LMFC offset parameter, which is
programmable for each of the deframers. This is shown in Figure 24 and Figure 25.

22
77

0-
02

4

ELASTIC
BUFFER

LANES MAY NOT BE
ALIGNED WITH

EACH OTHER HERE

ALL LANES ARE ALIGNED
WITH EACH OTHER AND
WITH LMFC/LEMC HERE.

DEFRAMER
LANE INPUT 0

DESKEWED AND
LMFC/LEMC
ALIGNED DEFRAMER
LANE 0

ELASTIC
BUFFERDEFRAMER

LANE INPUT 1

DESKEWED AND
LMFC/LEMC
ALIGNED DEFRAMER
LANE 1

ELASTIC
BUFFER

DEFRAMER
LANE INPUT L-1

DESKEWED AND
LMFC/LEMC
ALIGNED DEFRAMER
LANE L-1

Figure 24. Elastic Buffers in the Deframers

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 59 of 336

22
77

0-
02

5

L TRANSMIT
LANES

SYSREF

SYSREF

SYNC~

SYNC~

Tx
DEVICE

Rx
DEVICE

LMFC

MULTIFRAME

R D DK

DETERMINISTIC
DELAY FROM SYSREF

SAMPLED HIGH TO
LMFC ZERO-CROSSING

Tx ILA BEGINS ON FIRST LMFC ZERO-CROSSING AFTER SYNC~ IS DEASSERTED

K K K K K K K K K K K K K K K D D A R Q C D DC D A R D D D D A

EARLIEST
LANE

ARRIVAL
LATEST

LANE
ARRIVAL

ELASTIC BUFFER
OUTPUT ON
ALL LANES

(LMFC OFFSET = N)

ELASTIC BUFFER
OUTPUT ON
ALL LANES

(LMFC OFFSET = N + 1)

DATA STORED IN ELASTIC BUFFER FOR
EARLIEST LANE WHEN LMFC OFFSET = N

LMFC
(LMFC OFFSET = N)

LMFC
(LMFC OFFSET = N + 1)

K R D D D D A R Q C D D AC D R D D D D A

KK K KKK R D D D D A R Q C D D AC D R D D D D A

D D A R Q C D D AC D R D D D D A

SYNC~RISING EDGE WHEN LMFC OFFSET = N
SYNC~RISING EDGE WHEN LMFC OFFSET = N + 1

DATA STORED IN ELASTIC BUFFER FOR
EARLIEST LANE WHEN LMFC OFFSET = N + 1
DATA STORED IN ELASTIC BUFFER FOR
LATEST LANE WHEN LMFC OFFSET = N
DATA STORED IN ELASTIC BUFFER FOR
LATEST LANE WHEN LMFC OFFSET = N + 1

DETERMINISTIC DELAY FROM Tx ILA OUTPUT
TO Rx ILA OUTPUT WHEN LMFC OFFSET = N

DETERMINISTIC DELAY FROM Tx ILA OUTPUT
TO Rx ILA OUTPUT WHEN LMFC OFFSET = N + 1

KK K KKK D DR

D D A R Q C D D AC D R D D D D AKK K KKKK D DR

DETERMINISTIC DELAY FROM SYSREF SAMPLED HIGH TO LMFC ZERO-CROSSING FOR LMFC OFFSET = N

DETERMINISTIC DELAY FROM SYSREF SAMPLED HIGH TO LMFC ZERO-CROSSING FOR LMFC OFFSET = N + 1

Figure 25. Impact of LMFC Offset on Elastic Buffer Depth in JESD204B Mode

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 60 of 336

Deterministic Latency in JESD204C Mode

In JESD204C mode, deterministic latency can also be achieved because of the elastic buffers in the deframers. The elastic buffers are still
used to de-skew each lane before aligning them with the LEMC signal. The depth of the elastic buffers can, therefore, be different for each
lane of a given deframer.

A deframer starts outputting data from its elastic buffers on the next LEMC boundary following the reception of the first multiblock in an
extended multiblock by all the active lanes. As a result, it is possible to adjust when the data is output from the elastic buffers and,
therefore, how much data is stored in those buffers (the buffer depth) by adjusting the phase relationship between the external SYSREF
signal and the internally generated LEMC signal. This phase relationship is adjustable by using the LEMC offset parameter, which is
programmable for each of the deframers. This is shown in Figure 24 and Figure 26.

Note that the size of each elastic buffer is 512 octets. When the JESD204C E parameter (number of multiblocks in an extended
multiblock) is bigger than 2, the elastic buffer is not able to store enough data for some LEMC offset values.

22
77

0-
02

60 1 31 0 1 31 0 1 31

0 1

MB 0 MB 0MB E-1

MB 0 MB 0MB E-1

31 0 1 31 0 1 31

0 1 31 0 1 31 0 1 31

0 1

MB 0 MB 0MB E-1

MB 0 MB 0MB E-1

DATA STORED IN ELASTIC BUFFER FOR
EARLIEST LANE WHEN LMFC OFFSET = N

ELASTIC BUFFER OUTPUT
ON ALL LANES

(LEMC OFFSET = N)

EARLIEST LANE
ARRIVAL

LEMC
(LEMC OFFSET = N + 1)

LEMC
(LEMC OFFSET = N)

SYSREF

DETERMINISTIC DELAY FROM SYSREF SAMPLED HIGH TO LEMC ZERO-CROSSING
FOR LMFC OFFSET = N + 1

DETERMINISTIC DELAY FROM SYSREF SAMPLED HIGH TO LEMC ZERO-CROSSING
FOR LMFC OFFSET = N

1 EXTENDED MULTIBLOCK (EMB)
= E × 1 MULTIBLOCK (MB)
= E × 256 OCTETS
= K × F OCTETS

EARLIEST LANE
ARRIVAL

ELASTIC BUFFER OUTPUT
ON ALL LANES

(LEMC OFFSET = N)

DATA STORED IN ELASTIC BUFFER FOR
EARLIEST LANE WHEN LMFC OFFSET = N + 1

DATA STORED IN ELASTIC BUFFER FOR
LATEST LANE WHEN LMFC OFFSET = N

DATA STORED IN ELASTIC BUFFER FOR
LATEST LANE WHEN LMFC OFFSET = N + 1

31 0 1 31 0 1 31

Figure 26. Impact of LEMC Offset on Elastic Buffer Depth in JESD204C Mode

Programming the LMFC Offset for a Deframer

The following are three ways to program the LFMC offset for a given deframer:

• Modify the profile file being used
• Use the adi_adrv9025_DfrmCfg data structure
• Write directly to the relevant SPI registers

Setting the LMFC/LEMC Offset in the Profile File

There is a lmfcOffset field for each of the two deframers in the profile file. This field corresponds to the LMFC offset in JESD204B mode,
and corresponds to the LEMC offset in JESD204C mode. The lmfcOffset field can be set to a decimal value between 0 and (K × S) − 1
(where K is the number of frames per multiframe/extended multiblock, and S is the number of samples per converter per frame cycle).
For example, for the ADRV9025Init_StdUseCase26C_nonLinkSharing.profile file, the lmfcOffset field is located around Line 189 for
Deframer 0 and around Line 229 for Deframer 1 (see Figure 27).

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 61 of 336

22
77

0-
02

7

Figure 27. Deframer 0 lmfcOffset Field for the ADRV9025Init_StdUseCase26C_nonLinkSharing.profile File

Note that the device must be reprogrammed after changing an LMFC/LEMC offset in the profile file and loading it into ARM memory
for the change to take effect. Also note that if the goal is to sweep the LMFC/LEMC offset values for test purposes without any need for
RF performance (for example, to determine the optimal LMFC/LEMC value), it is not necessary to run the initialization calibrations
when programming the transceiver. Not running the init calibrations makes the programming process quicker.

Setting the LMFC/LEMC Offset in the adi_adrv9025_DfrmCfg Data Structure

An alternative way of programming the LMFC/LEMC offset consists of using the lmfcOffset field of the adi_adrv9025_DfrmCfg data
structure for the relevant deframer (see Figure 28). Note that the device must be reprogrammed after changing the LMFC/LEMC offset
for a given deframer in the adi_adrv9025_DfrmCfg data structure for the change to take effect. Also note that if the goal is to sweep the
LMFC/LEMC offset values for test purposes without any need for RF performance (for example, to determine the optimal LMFC/LEMC
value), it is not necessary to run the init cals when programming the transceiver. Not running the init cals makes the programming
process quicker.

22
77

0-
02

8

Figure 28. LMFC Offset Field in adi_adrv9025_DfrmCfg Data Structure

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 62 of 336

Setting the LMFC/LEMC Offset Through SPI Registers Controls

It is possible to set the LMFC/LEMC offset value by writing to the Deframer 0 and Deframer 1 SPI registers using the following steps:

Deframer 0:

• Register 0x6A8E, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the LMFC/LEMC phase adjustment 16-bit word for Deframer 0.
The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per multiframe/extended multiblock,
and S is the number of samples per converter per frame cycle).

• Register 0x6A8F, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the LMFC/LEMC phase adjustment 16-bit word for Deframer 0.
The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per multiframe/extended multiblock,
and S is the number of samples per converter per frame cycle).

Deframer 1:

• Register 0x6C8E, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the global LMFC/LEMC phase adjustment 16-bit word for
Deframer 1. The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle).

• Register 0x6C8F, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the global LMFC/LEMC phase adjustment 16-bit word for
Deframer 1. The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle).

Note that a SYSREF pulse must be applied and then the link between the JESD204B and JESD204C framer and JESD204B and JESD204C
deframer of the transceiver must be reestablished after changing the LMFC/LEMC offset through SPI writes for a given deframer for the
change to take effect.

It is also possible to set the LMFC/LEMC offset value by writing to the following SPI registers:
Deframer 0:

• Register 0x6A50, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the LMFC/LEMC phase adjustment 16-bit word for deframer 0.
The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per multiframe/extended multiblock,
and S is the number of samples per converter per frame cycle).

• Register 0x6A51, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the LMFC/LEMC phase adjustment 16-bit word for deframer 0.
The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per multiframe/extended multiblock,
and S is the number of samples per converter per frame cycle).

Deframer 1:

• Register 0x6C50, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the global LMFC/LEMC phase adjustment 16-bit word for
deframer 1. The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle).

• Register 0x6C51, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the global LMFC/LEMC phase adjustment 16-bit word for
deframer 1. The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle).

Reading Back the Buffer Depths for Each Deframer Lanes

It is possible to read back the depths of the elastic buffers for each deframer lane in the Deframer 0 and Deframer 1 SPI registers of the
device. The corresponding registers for Deframer 0 and Deframer 1 are:
Deframer 0:

• Register 0x6A8A, Bits[7:0]: buffer depth for Lane 0 of Deframer 0
• Register 0x6A8B, Bits[7:0]: buffer depth for Lane 1 of Deframer 0
• Register 0x6A8C, Bits[7:0]: buffer depth for Lane 2 of Deframer 0
• Register 0x6A8D, Bits[7:0]: buffer depth for Lane 3 of Deframer 0
Deframer 1:

• Register 0x6C8A, Bits[7:0]: buffer depth for Lane 0 of Deframer 1
• Register 0x6C8B, Bits[7:0]: buffer depth for Lane 1 of Deframer 1
• Register 0x6C8C, Bits[7:0]: buffer depth for Lane 2 of Deframer 1
• Register 0x6C8D, Bits[7:0]: buffer depth for Lane 3 of Deframer 1

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 63 of 336

In JESD204B mode, the unit of the values read back in those registers is 4 octets. In other words, an increment of the buffer depth value
read back by 1 unit corresponds to an actual increment by 4 octets. The values read back range from 0 to (K × F)/4 (where K is the
number of frames per multiframe, and F is the number of octets per lane in a frame cycle).

In JESD204C mode, the unit of the values read back in those registers is 8 octets. In other words, an increment of the buffer depth value
read back by 1 unit corresponds to an actual increment by 8 octets. The values read back range from 0 to E × 32 (where E is the number of
multiblocks in an extended multiblock). Note that the size of the elastic buffer is 512 octets. When E > 2, the maximum buffer depth
values read back are therefore limited to 64, which corresponds to 512 octets.

Note that the values reported in each of those registers correspond to a value based on the positions of the elastic buffer read and write
pointers. The value has a fixed offset and does not represent the exact number of octets in the elastic buffer.

Buffer Protection

By default, an automatic buffer protection is enabled for the elastic buffers. This automatic buffer protection prevents the read and write
pointers from being too close, which can lead to corrupted data being read out of the elastic buffers, because data can be read at the same
time it is being written. When the automatic buffer protection detects that the read and write pointers are too close to each other for any
of the elastic buffers, a predetermined buffer depth is used, the data out of the elastic buffer no longer aligns to the LMFC/LEMC output
signal, and deterministic latency is lost.

Checking if the Buffer Protection is Active

It is possible to read back the elastic buffers if the buffer protection is active in the Deframer 0 and Deframer 1 SPI registers.

Table 43. Deframer 0, Register 0x6A89, Bit 7: jrx_tpl_buf_protection
Bit Setting Description
0 Buffer protection not active for Deframer 0
1 Buffer protection active for Deframer 0. Buffer read and write pointers are too close with the chosen LMFC/LEMC

offset setting. A predetermined buffer depth is used. Deterministic latency is lost.

Table 44. Deframer 1, Register 0x6C89, Bit 7: jrx_tpl_buf_protection
Bit Setting Description
0 Buffer protection not active for Deframer 1.
1 Buffer protection active for Deframer 1. Buffer read and write pointers are too close with the chosen LMFC/LEMC

offset setting. A predetermined buffer depth is used. Deterministic latency is lost.

Disabling the Automatic Buffer Protection

It is possible to disable the automatic buffer protection by using the Deframer 0 and Deframer 1 SPI register bits.

Table 45. Deframer 0, Register 0x6A89, Bit 6: jrx_tpl_buf_protection_en
Bit Setting Description
0 Automatic buffer protection disabled for Deframer 0
1 Automatic buffer protection enabled for Deframer 0

Table 46. Deframer 1, Register 0x6C89, Bit 6: jrx_tpl_buf_protection_en
Bit Setting Description
0 Automatic buffer protection disabled for Deframer 1
1 Automatic buffer protection enabled for Deframer 1

Figure 29 shows an example that corresponds to the elastic FIFO buffer depths for Lane 0 and Lane 1 vs. the LMFC offset setting
measured for Deframer 0 on an ADI customer evaluation board with the ADRV9025Init_StdUseCase50_nonLinkSharing profile. In this
example, the buffer protection activated for LMFC offset values between 23 and 26 and the buffer depths were fixed to values between 7
and 9 independently of the LMFC offset. For other LMFC offset values, the buffer depths read back change with the LMFC offset.

During the measurement, the link between the JESD204B framer and JESD204B deframer of the transceiver is reestablished 10 times
(with application of a new SYSREF pulse each time) for each LMFC offset value and each time the buffer depth is read. That is why
several buffer depth values can be seen for a given LMFC offset. This variation in buffer depth is due to the variance in, for example,
synchronization delays and physical lane skews during the JESD204B link establishments that the elastic buffers are to correct.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 64 of 336

22
77

0-
02

9

UC50-NLS - DEV CLOCK = 245.76MHz
S = 1, M = 8, N’ = 16, K = 32, L = 2, F = 8, Tx IQ RATE = 122.88MHz

BUFFER PROTECTION ENABLED
BU

FF
ER

 D
EP

TH

BU
FF

ER
 P

RO
TE

CT
IO

N
AC

TI
VE

 B
IT

LMFC OFFSET

68
66
64
62
60
58
56
54
52
50
48
46
44
42
40
38
36
34
32
30
28
26
24
22
20
18

8
6
4
2
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

–2
–4

1

0

16
14
12
10

LANE 0
BUFFER DEPTH
(REGISTER 0×6a8a)

LANE 1
BUFFER DEPTH
(REGISTER 0×6b8b)

BUFFER
PROTECTION
BIT

Figure 29. Buffer Depths for Lane 0 and Lane 1 vs. LMFC Offset on the Customer Evaluation Board with the ADRV9025Init_StdUseCase50_nonLinkSharing Profile and

Buffer Protection Enabled
Selecting the Optimal LMFC/LEMC Offset for a System

The buffer depths are expected to be slightly different after power cycling the system or from one link establishment to another due to the
variance in parameters such as synchronization delays and physical lane skews. Buffer depths are also expected to slightly change from
system to system due to process, voltage, and temperature (PVT) variations.

Therefore, it is recommended to select an LMFC/LEMC offset value resulting in optimal buffer depths to account for those variations and
maintain deterministic latency on all boards for a given system. The LMFC/LEMC offset to be selected depends on whether buffer
protection is enabled or not.
Selecting the Optimal LMFC Offset for a System in JESD204B Mode with Buffer Protection Enabled

To ensure deterministic latency when buffer protection is enabled, it is recommended to select an LMFC offset value that gives buffer
depth values as close as possible to the center of the linear part of the buffer depth vs. LMFC offset plot for all the lanes used. To find the
LMFC offset corresponding to those optimal buffer depths, read back the buffer depth values for all the used lanes for all LMFC offset
values with buffer protection enabled on a sample board for a given system. Measuring the buffer depths per LMFC offset for 10 power
cycles or link establishments (with application of a new SYSREF pulse each time) provides a good indication of the buffer depths spread
for each LMFC offset value. Select an LMFC offset value that results in buffer depths as close as possible to the center of the linear part of
the buffer depth vs. the LMFC offset plot the user creates for all the used lanes.

Figure 29 shows this process using the customer evaluation board programmed with the ADRV9025Init_StdUseCase50_nonLinkSharing
profile, with automatic buffer protection enabled. In that example, an LMFC offset value of 9 is optimal because it results in a buffer depth
around 37 or 38 for each lane, which is in the middle of the linear part of the plot and, therefore, guarantees deterministic latency.

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LMFC
offset value that results in buffer depths as small as possible. In that case, an LMFC offset value above the highest LMFC offset resulting in
the automatic buffer protection being active with some additional headroom to account for PVT variations can be selected. In that
situation, carry out thorough system testing over all possible temperature, supply, and board variations to ensure that the automatic buffer
protection never gets activated and that deterministic latency is maintained in all possible operating conditions for the system.

Avoid LMFC offset values with large buffer depths (that is, near a value of (K × F)/4) because, for some combinations of JESD204B
parameters, it can lead to the write and read pointers being too close and, therefore, can result in data corruption.

Selecting the Optimal LMFC Offset for a System in a JESD204B Mode with Buffer Protection Disabled

When buffer protection is disabled, it is recommended to select an LMFC offset value that has buffer depths as close as possible to (K ×
F)/8 to account for variations and maintain deterministic latency on all boards for a given system.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 65 of 336

To find the LMFC offset corresponding to the optimal buffer depth, read back the buffer depth values for all LMFC offset values for all
the used lanes with buffer protection disabled on a sample board for a given system. Measuring the buffer depths per LMFC offset for
10 power cycles or JESD204B link establishments (with application of a new SYSREF pulse each time) provides an accurate indication of
the buffer depth spread for each LMFC offset value.

Select an LMFC offset value that results in buffer depths as close as possible to (K × F)/8 for all lanes.

Figure 30 illustrates this process using the same customer evaluation board with the ADRV9025Init_StdUseCase50_nonLinkSharing
profile example with automatic buffer protection disabled.

22
77

0-
03

0

UC50-NLS - DEV CLOCK = 245.76MHz
S = 1, M = 8, N’ = 16, K = 32, L = 2, F = 8, Tx IQ RATE = 122.88MHz

BUFFER PROTECTION DISABLED

BU
FF

ER
 D

EP
TH

LMFC OFFSET

68
66
64
62
60
58
56
54
52
50
48
46
44
42
40
38
36
34
32
30
28
26
24
22
20
18

8
6
4
2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0

16
14
12
10

LANE 0
BUFFER DEPTH
(REGISTER 0×6a8a)

LANE 1
BUFFER DEPTH
(REGISTER 0×6b8b)

Figure 30. Buffer Depths Read Back for Lane 0 and Lane 1 vs. LMFC Offset on the Customer Evaluation Board with ADRV9025Init_StdUseCase50_nonLinkSharing

Profile and Buffer Protection Disabled
In this example, an LMFC offset value of 6 or 7 is an optimal choice because the result is buffer depths around 31 and 34 for all the used
lanes, guaranteeing deterministic latency with no chance of data corruption due to the read and write pointers being too close.

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LMFC
offset value that results in buffer depths as small as possible but still above a small number (for example, 10 or 12) to avoid data corruption
due to the read and write pointers being too close. Note that in that situation, carry out thorough system testing over all possible
temperature, supply, and board variations to ensure that data corruption never occurs in all possible operating conditions for the system.

Avoid LMFC offset values that results in a large buffer depth (that is, near a value of (K × F)/4) because, for some combinations of
JESD204B parameters, it can lead to the write and read pointers being too close and, therefore, can result in data corruption.
Selecting the Optimal LEMC Offset for a System in JESD204C Mode When E ≤ 2 with Buffer Protection Enabled

In JESD204C mode, when E ≤ 2, it is also recommended to select an LEMC offset that results in buffer depth values as close as possible to
the center of the linear part of the buffer depth vs. LEMC offset plot for all the lanes used. To find that LEMC offset, read back the buffer
depth values for all the used lanes for all LEMC offset values with buffer protection enabled on a sample board for a given system.
Measuring the buffer depths per LEMC offset for 10 power cycles or JESD204C link establishments (with application of a new SYSREF
pulse each time) provides an optimal indication of the buffer depths spread for each LEMC offset.

Figure 31 illustrates this process using the customer evaluation board programmed with the ADRV9025Init_StdUseCase26C_nonLinkSharing
profile, with automatic buffer protection enabled.

In this example, LEMC offset values between 36 and 40 are optimal choices because the result is a buffer depth around 24 for each lane,
which is in the middle of the linear part of the plot and, therefore, guarantees deterministic latency.

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LEMC offset
value that results in buffer depths as small as possible. In that case, an LEMC offset value above the highest LEMC offset resulting in the
automatic buffer protection being active with some additional headroom to account for PVT variations can be selected. In that situation,

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 66 of 336

carry out thorough system testing over all possible temperature, supply, and board variations to ensure that the automatic buffer
protection never gets activated and that deterministic latency is maintained in all possible operating conditions for the system.

Avoid LEMC offset values that result in large buffer depths (near a value of E × 32) because, for some combinations of JESD204C
parameters, it can lead to the write and read pointers being too close and, therefore, can result in data corruption.

22
77

0-
03

1

MADURA - UC26C-NLS - DEV CLOCK = 245.76MHz
S = 1, M = 8, N’ = 16, K = 64, L = 4, F = 4, E = 1, Tx IQRATE = 491.52MHz

BUFFER PROTECTION ENABLED

BU
FF

ER
 D

EP
TH

BU
FF

ER
 P

RO
TE

CT
IO

N
AC

TI
VE

 B
IT

LEFC OFFSET

38
36
34
32
30
28
26
24
22
20
18

8
6
4
2
0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

–2
–4

1

0

16
14
12
10

LANE 0
BUFFER DEPTH
(REGISTER 0x6a8a)

LANE 1
BUFFER DEPTH
(REGISTER 0×6a8b)

LANE 2
BUFFER DEPTH
(REGISTER 0×6a8c)

LANE 3
BUFFER DEPTH
(REGISTER 0×6a8d)

BUFFER
PROTECTION
BIT

Figure 31. Buffer Depths for Lane 0, Lane 1, Lane 2, and Lane 3 vs. LEMC Offset on the Customer Evaluation Board with the

ADRV9025Init_StdUseCase26C_nonLinkSharing Profile and Buffer Protection Enabled

Selecting the Optimal LEMC Offset for a System in JESD204C Mode When E ≤ 2 with Buffer Protection Disabled

When buffer protection is disabled, it is recommended to select an LEMC offset value that results in buffer depths as close as possible to
(E × 32)/2 to account for variations and maintain deterministic latency on all boards for a given system. To find the LEMC offset
corresponding to that optimal buffer depth, read back the buffer depth values for all LEMC offset values for all the used lanes with buffer
protection disabled on a sample board for a given system. Measuring the buffer depths per LEMC offset for 10 power cycles or JESD204C
link establishments (with application of a new SYSREF pulse each time) provides an accurate indication of the buffer depth spread for
each LEMC offset value. Select an LEMC offset value that results in buffer depths as close as possible to (E × 32)/2 for all lanes.

Figure 32 shows this process using the same customer evaluation board with the ADRV9025Init_StdUseCase26C_nonLinkSharing profile
and automatic buffer protection disabled.

In this example, an LEMC offset value between 21 and 24 is an optimal choice because it results in buffer depths around 16 for all the
used lanes, guaranteeing deterministic latency with no chance of data corruption due to the read and write pointers being too close.

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LEMC
offset value that results in buffer depths as small as possible but still above a small number (for example, 10 or 12) to avoid data
corruption due to the read and write pointers being too close. Note that in that situation, carry out thorough system testing over all
possible temperature, supply, and board variations to ensure that data corruption never occurs in all possible operating conditions for the
system.

Avoid LEMC offset values giving a large buffer depth (near a value of E × 32) because, for some combinations of JESD204C parameters, it
can lead to the write and read pointers being too close and, therefore, can result in data corruption.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 67 of 336

22
77

0-
03

2

UC26C-NLS - DEV CLOCK = 245.76MHz
S = 1, M = 8, N’ = 16, K = 64, L = 4, F = 4, E = 1, Tx IQRATE = 491.52MHz

BUFFER PROTECTION DISABLED
BU

FF
ER

 D
EP

TH

BU
FF

ER
 P

RO
TE

CT
IO

N
AC

TI
VE

 B
IT

LEFC OFFSET

38

36

34

32

30

28

26

24

22

20

18

8

6

4

2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62
0

1

0

16

14

12

10

LANE 0
BUFFER DEPTH
(REGISTER 0×6a8a)

LANE 1
BUFFER DEPTH
(REGISTER 0×6a8b)

LANE 2
BUFFER DEPTH
(REGISTER 0×6a8c)

LANE 3
BUFFER DEPTH
(REGISTER 0×6a8d)

Figure 32. Buffer Depths for Lane 0, Lane 1, Lane 2, and Lane 3 vs. LEMC Offset on the Customer Evaluation Board with the

ADRV9025Init_StdUseCase26C_nonLinkSharing Profile and Buffer Protection Disabled

Selecting the Optimal LEMC Offset for a System in JESD204C Mode When E > 2

The size of each elastic buffer is 512 octets. When E is bigger than 2, there are some LEMC offset values for which more than 512 octets
are required to be stored in the elastic buffer to be able to release the data on the next LEMC edge. Because this is not possible due to the
elastic buffer size, buffer protection gets activated for such LEMC offset values when it is enabled. Therefore, it is recommended to have
buffer protection enabled when E > 2.

In JESD204C mode, when E > 2, it is recommended to select an LEMC offset that results in buffer depth values as close as possible to the
center of the linear part of the buffer depths vs. LEMC offset plot in Figure 33 for all the lanes used.

To find that LEMC offset, read back the buffer depths values for all the used lanes for all LEMC offset values with buffer protection enabled
on a sample board for a given system. Measuring the buffer depths per LEMC offset for 10 power cycles or JESD204C link establishments
(with application of a new SYSREF pulse each time) provides an accurate indication of the buffer depths spread for each LEMC offset.

Select an LEMC offset value that results in buffer depths as close as possible to the center of the linear part of the buffer depth vs. LEMC
offset plot for all the used lanes.

Figure 33 illustrates this process using a customer evaluation board programmed with the ADRV9025Init_StdUseCase14C_LinkSharing
profile, with automatic buffer protection enabled.

In this example, LEMC offset values between 87 and 89 are optimal choices because they result in a buffer depth around 41 for each lane,
which is in the middle of the linear part of the Figure 33 and, therefore, guarantees deterministic latency.

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LEMC
offset value giving buffer depths as small as possible. In that case, an LEMC offset value above the highest LEMC offset resulting in the
automatic buffer protection being active with some additional headroom to account for PVT variations can be selected. In that situation,
carry out thorough system testing over all possible temperature, supply, and board variations to ensure that the automatic buffer
protection never gets activated and that deterministic latency is maintained in all possible operating conditions for the system.

Avoid LEMC offset values giving large buffer depths (near a value of 64) because, for some combinations of JESD204C parameters, it can
lead to the write and read pointers being too close and, therefore, can result in data corruption.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 68 of 336

22
77

0-
03

3

UC14C-LS - DEV CLOCK = 245.76MHz
S = 1, M = 8, N’ = 12, K = 128, L = 2, F = 6, E = 3, Tx IQRATE = 491.52MHz

BUFFER PROTECTION ENABLED

BU
FF

ER
 D

EP
TH

BU
FF

ER
 P

RO
TE

CT
IO

N
AC

TI
VE

 B
IT

LEMC OFFSET
0 1281241201161121081041009692888480767268646056524844403632282420161284

1

0

LANE 0
BUFFER DEPTH
(REGISTER 0×6a8a)

LANE 1
BUFFER DEPTH
(REGISTER 0×6a8b)

BUFFER
PROTECTION
BIT

68
66
64
62
60
58
56
54
52
50
48
46
44
42
40
38
36
34
32
30
28
26
24
22
20
18

8
6
4
2

–4
–2

0

16
14
12
10

Figure 33. Buffer Depths for Lane 0 and Lane 1 vs. LEMC Offset on the Customer Evaluation Board with the ADRV9025Init_StdUseCase14C_LinkSharing Profile and

Buffer Protection Enabled

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 69 of 336

SYNTHESIZER CONFIGURATION
OVERVIEW
The transceiver employs four phase-locked loop (PLL) synthesizers, clock, RF (×2), and auxiliary. Each PLL is based on a fractional-N
architecture and consists of a common block made up of a reference clock divider, phase frequency detector, charge pump, loop filter,
feedback divider, digital control block, and either a 1 or 4 core voltage-controlled oscillator (VCO). The auxiliary PLL and clock PLL VCO
have a tuning range of 6.5 GHz to 13 GHz. The RFPLL1 and RFPLL2 VCO have a tuning range of 6.4 GHz to 12.8 GHz. Each PLL drives
its own local oscillator (LO) generator, RF LO generator, auxiliary LO generator, and clock generator The output of the LOGEN block is a
divided version of the VCO frequency. No external components are required to cover the entire frequency range of the transceiver. This
configuration allows the use of any convenient reference frequency for operation on any channel with any sample rate. The reference
frequency for the PLL is scaled from the reference clock applied to the device. Figure 35 illustrates the common PLL block used in the
transceiver.

CONNECTIONS FOR EXTERNAL REFERENCE CLOCK (DEVCLK)
The external clock is used as a reference clock for the clock synthesizer, two RF synthesizers, and auxiliary synthesizer in the transceiver
and, therefore, must be a very clean clock source with respect to noise. Connect the external clock inputs to the DEVCLK+ pin (C8) and
DEVCLK− pin (C9) via ac coupling capacitors and terminate them with 100 Ω close to the device, as shown in Figure 34. The device
clock receiver is a noise sensitive differential RF receiver. The frequency range of the DEVCLK signal must be between 10 MHz and
1 GHz. Ensure that the external clock peak to peak amplitude is not less than 50 mV or greater than 1 V.

22
77

0-
03

4

C8 DEVCLK+

100Ω

100nf

100nf
C9 DEVCLK–

Figure 34. Reference Clock Input Connections

REF CLK IN±

ORx3, ORx4

ORx1, ORx2

Rx1, Rx2

Tx1, Tx2

Rx3, Rx4

Tx3, Tx4CLK PLL
REF

RF PLL1
REF

RF PLL2
REF

AUX PLL
REF

REF CLK
DISTRIBUTION

CLOCK
SYNTHESIZER

RF
SYNTHESIZER2

RF
SYNTHESIZER2

AUXILLARY
SYNTHESIZER

CLOCK RATE
GENERATOR

RF LO1
GENERATOR

RF LO2
GENERATOR

AUX LO
GENERATOR

LOGIC,ADCs,
DACs, ETC...

DIGITAL CLOCK
DISTRIBUTION

22
77

0-
03

5

Figure 35. Synthesizer Interconnection, Clock, and LO Distribution Block Diagram

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 70 of 336

EXTERNAL REFERENCE CLOCK (DEVCLK) REQUIREMENTS
Each RF synthesizer takes a lower frequency reference and multiplies it up to a higher frequency. The phase noise performance at the final
frequency subsequently has some dependency on the phase noise of the input reference clock. This section discusses the impact of the
reference (DEVCLK input) on the phase noise performance of the RF synthesizers. In general, the reference clock requirements are
derived from the desired LO frequencies, PLL loop bandwidths, and somewhat on the phase margin.

The phase noise plots provided in the ADRV902x family data sheets are taken with a nearly ideal reference clock. An example is shown in Figure 36. Any
noise on the reference is an additional noise source and can be root square sum (RSS) added to the phase noise specified in the data sheets.

LO
PH

AS
EN

O
IS

E
(d

Bc
/H

z)
–80

–150

–140

–130

–110

–100

–120

–90

100 1k 10k 100k 1M 10M 22
77

0-
03

6

Figure 36. LO Phase Noise vs. Frequency Offset, FLO =2600 MHz, Loop Bandwidth = 500 kHz, Phase Margin = 60°, DEVCLK Supplied by a Wenzel VCXO

The LO frequency is related to the reference clock by the following equation:

fLO = N × fREF

DEVCLK Noise Gain = 20 × log10(N) × H(s)

where
N is the multiplier applied to the reference clock frequency (fREF) to generate the desired LO frequency
H(s) is the PLL loop transfer function

Noise power from the reference experiences a multiplication factor equal to the 20 × log10(N) term. Outside the loop bandwidth, the
multiplied reference noise is attenuated by the loop filter. This means the reference phase noise is typically only a contributor for close-in
offsets less than the loop bandwidth. The loop bandwidth and phase margin are provided in the caption of the phase noise figures
provided in the product data sheet (as shown in Figure 36).

Figure 37 illustrates several closed loop responses with different loop bandwidths and phase margins listed. Each response is normalized
to 0 dB using the loop gain calculation value for each to factor in the amount of gain that each response shifts. For example, for an fLO of
2600 MHz and an fREF of 245.76 MHz, the gain is 20.5 dB. The total noise can be calculated with the reference clock noise, the RF LO
phase noise, and this transfer function.

10

–70

–50

–60

–40

–20

0

–30

–10

100 1k 10k 100k 1M 10M
FREQUENCY (Hz)

50k, 80°C
100k, 60°C
500k, 60°C

22
77

0-
03

7

NO
RM

AL
IZ

ED
 L

O
OP

 G
AI

N
(d

B)

Figure 37. Normalized PLL Closed Loop Response

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 71 of 336

A 245.76 MHz reference with relatively high noise content is shown in Figure 38. This can be used to calculate the reference clock noise
impact to the RF PLL using the following process:

• Multiply the phase noise of the reference clock by the PLL closed loop transfer function.
• RSS add the result of multiplying the phase noise of the reference clock by the PLL closed loop transfer function to the

corresponding RF PLL phase noise response for the given LO frequency provided in the data sheet.

The result of this process using the example data in Figure 36 through Figure 38 is shown in Figure 40. Note that the data sheet reference
information has much better phase noise at low frequency because it was measured during device characterization testing using an
extremely low phase noise VCXO as the reference clock. The phase noise of the AD9528 is included in Figure 40 for reference. The
AD9528 clock device is used on the evaluation board for all clock generation. Therefore, measured phase noise is dominated by the
AD9528.

100 1k 10k 100k 1M
FREQUENCY OFFSET (Hz)

–70

–80

–90

–100

–110

–120

–130

–140

–150

–160

–170

CA
RR

IE
R

PO
W

ER
 (d

Bm
)

RAW
SMOOTHED

22
77

0-
03

8

Figure 38. Phase Noise Plot for a Noisy 245.76 MHz Reference Clock

100 1k 10k 100k 1M 10M

LE
VE

L
(d

Bc
)

OFFSET FREQUENCY (Hz)

DATA SHEET
MEASURED NOISE
CALCULATED NOISE

22
77

0-
03

9

Figure 39. Measured and Calculated Phase Noise vs. Offset Frequency

https://www.analog.com/ad9528?doc=adrv9026-system-development-user-guide-ug-1727.pdf
https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 72 of 336

–180

–170

–160

–150

–140

–130

–120

–100

–110

–90

–80

–70

–60

–50

100 1k 10k 100k 1M 10M

LE
VE

L
(d

Bc
)

OFFSET FREQUENCY (Hz) 22
77

0-
34

0

Figure 40. AD9528 Phase Noise Using a High Phase Noise Reference Clock

CLOCK SYNTHESIZER
The clock synthesizer is used to generate all the clocking signals necessary to run the transceiver. The synthesizer uses a single core VCO block.
The reference frequency for the clock PLL is scaled from the device clock by the reference clock generator. Although the clock PLL is a fractional-
N architecture, the signal sampling relationships to the JESD204B and JESD204C interface rates typically require that the synthesizer operates in
integer mode. Profiles that are included in the Transceiver Evaluation Software configure the clock synthesizer appropriately. Reconfiguration of
the clock synthesizer is typically not necessary after initialization. The most direct approach to configuration is to follow the recommended
programming sequence and utilize provided API functions to set the clock synthesizer to the desired mode of operation. The clock generation
block of the clock synthesizer provides clock signals for the high speed digital clock, receiver ADC sample and interface clocks, observation
receiver ADC sample and interface clocks, and the transmitter DAC sample and interface clocks.

RF SYNTHESIZER
The transceiver contains two RF PLLs. Each RF PLL uses the PLL block common to all synthesizers in the transceiver and employs a 4 core VCO
block, which provides a 6 dB phase noise improvement over the single core VCO. As with the other synthesizers in the transceiver, the reference
for RF PLL 1 and RF PLL 2 are sourced from the reference generation block of the transceiver. The RF PLLs are also fractional-N architectures
with a programmable modulus. The default modulus of 8386560 is programmed to provide an exact frequency on at least a 2 kHz raster using
reference clocks that are integer multiples of 122.88 MHz. More details of the divider options are given in Table 47.

The RF LO frequency is derived by dividing down the VCO output in the LOGEN block. The tunable range of the RF LO is 400 MHz to 6400 MHz. The
LO divider boundaries are given in Table 48. Note that it is recommend rerunning the initialization calibrations when crossing a divide by 2 boundary or
when changing the LO frequency by ±100 MHz or more from the frequency at which the initialization calibrations were performed.

Table 47. RF Synthesizer Divider Ranges
LO Frequency Limits (MHz)

Lower
Limit

Upper
Limit

Lower
Limit

Upper
Limit

Lower
Limit

Upper
Limit

Lower
Limit

Upper
Limit

Lower
Limit

Upper
Limit

Divide By 32 16 8 4 2
Auxiliary PLL 203.125 406.25 406.25 812.5 812.5 1625 1625 3250 3250 6500
RF PLL1 and RF
PLL2

200 400 400 800 800 1600 1600 3200 3200 6400

Table 48. RF Synthesizer LO Boundaries

DEV_CLK_IN
(MHz)

PLL
PFD
(MHz)

Desired LO Frequency Ranges (MHz)
Lower
Limit

Upper
Limit

Lower
Limit

Upper
Limit

Lower
Limit

Upper
Limit

Lower
Limit

Upper
Limit

Lower
Limit

Upper
Limit

200 400 400 800 800 1600 1600 3200 3200 6400
LO Step Size
(Hz)

491.52,
245.76

245.76 0.92 1.83 3.66 7.33 14.65

307.2 307.2 1.14 2.29 4.58 9.16 18.32

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 73 of 336

DEV_CLK_IN
(MHz)

PLL
PFD
(MHz)

Desired LO Frequency Ranges (MHz)
Lower
Limit

Upper
Limit

Lower
Limit

Upper
Limit

Lower
Limit

Upper
Limit

Lower
Limit

Upper
Limit

Lower
Limit

Upper
Limit

200 400 400 800 800 1600 1600 3200 3200 6400
122.88 122.88 0.46 0.92 1.83 3.66 7.33
153.6 153.6 0.57 1.14 2.29 4.58 9.16

Exact
Decimal
Frequency
Raster (Hz)

491.52,
245.76

245.76 250 500 1000 2000 4000

307.2 307.2 312.5 625 1250 2500 5000
122.88 122.88 125 250 500 1000 2000
153.6 153.6 156.25 312.5 625 1250 2500

A switching network is implemented in the transceiver to provide flexibility in LO assignment for the two RF LO sources. The switching
network is diagrammed in Figure 41. Note that it is not recommended to set RFLO1 = RFLO2, which can cause unwanted coupling
between the two PLLs. To set RFLO1 = RFLO2, set either RFPLL1 or RFPLL2 to the desired frequency and mux that PLL to both the
TXLO and RXLO. That is, set either TXLO = RXLO = RFLO1 or TXLO = RXLO = RFLO2 and power down the unused RFLO.

AUXILIARY SYNTHESIZER
An auxiliary synthesizer is integrated to generate the signals necessary to calibrate the transceiver. This synthesizer utilizes a single core
VCO. The reference frequency for the auxiliary synthesizer is scaled from the device clock via the reference clock generation system. The
output signal is connected to a switching network and injected into the various circuits to calibrate filter bandwidth corners, or into the
receiver signal chain as an offset LO. Calibrations are executed during the initialization sequence at startup. There is no signal present at
the receiver or observation receiver input during tone calibration time. Calibrations are fully autonomous. During the calibration, the
auxiliary synthesizer is controlled solely by the internal ARM processor and does not require any user interactions. The auxiliary LO
signal is also available as an LO source for the observation receiver mixers.

EXT LO1

Tx1, Tx2

EXT LO2RF LO1 RF LO2

AUX LO

Tx1, Tx2
SWITCH

ORx1, ORx2
SWITCH

ORx3, ORx4
SWITCH

Tx3, Tx4

Tx3, Tx4
SWITCH

Rx1, Rx2

Rx1, Rx2
SWITCH

Rx3, Rx4

Rx3, Rx4
SWITCH

ORx1, ORX2 ORx3, ORX4

22
77

0-
04

0

Figure 41. LO Switching Network

SETTING THE LO FREQUENCIES
There are two commands that the user can execute to select the LO frequency in the transceiver. One command is used when the user
does not have special phase requirements between the transmitter LO and the auxiliary LO. The other command is used when the user
has special phase requirements. When no phase requirements exist, the user can run the following API command.
int32_t adi_adrv9025_PllFrequencySet(adi_adrv9025_Device_t* device, adi_adrv9025_PllName_e
pllName, uint64_t pllLoFrequency_Hz)

If the user has special phase requirements, relies on their own LOL/QEC tracking calibrations, or requires a faster lock time, the user can
use the following function, which provides more control over these settings.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 74 of 336

int32_t adi_adrv9025_PllFrequencySet_v2(adi_adrv9025_Device_t* device, adi_adrv9025_PllConfig_t
*pllConfig)

An example of this situation involves placing the auxiliary LO at a user defined offset from the transmitter LO that is typically defaulted to
+(bandwidth/2 + 5) MHz. If the user has no specific requirements on the phase or frequency of the auxiliary LO, use the
adi_adrv9025_PllFrequencySet(…) command. More details about these commands are in the API Functions section.

Both commands can be run any time after device initialization, and neither command has any prerequisite commands or requirements.
The structures and enumerators for these API commands are detailed in Table 49 through Table 53.

Table 49. adi_adrv9025_PllConfig_t Structure
Data Type Parameter Range Description
PllName_e pllName Table 50 Name of the PLL the user wants to control.
PllModeSel_e pllModeSel Table 51 The user can select between slow locking or fast locking mode.
PllAuxLoResyncSel_e pllAuxLoResyncSel Table 52 The user can select between resyncing and not resyncing the auxiliary LO

to the transmitter LO after a frequency change.
PllAuxLoOffsetProgSel pllAuxLoOffsetProgSel Table 53 The user can select whether the auxiliary LO frequency is changed to be

+(bandwidth/2 + 5) MHz or to not be changed after a frequency change.
Uint64_t pllLoFrequency_Hz 400 × 106 to

6000 × 106
The LO frequency that the customer wants to set in Hz.

Table 50. adi_adrv9025_PllName_e Enumerator
Enumerator Enumerator Values Description
PllName_e ADI_ADRV9025_LO1_PLL Selects LO1 PLL for transmitter/receiver/observation receiver.
 ADI_ADRV9025_LO2_PLL Selects LO2 PLL for transmitter/receiver/observation receiver.
 ADI_ADRV9025_AUX_PLL Selects auxiliary PLL for observation receiver.

Table 51. adi_adrv9025_Pll_ModeSel_e Enumerator
Enumerator Enumerator Values Description
pllModeSel_e ADI_ADRV9025_PLL_SLOW_MODE Slow lock mode. This mode skips some calibrations to lock the PLL faster.

Table 52. adi_adrv9025_pllAuxLoResyncSel_e Enumerator
Enumerator Enumerator Values Description
pllAuxLoResyncSel_e ADI_ADRV9025_PLL_AUX_LO_RESYNC_ENABLE Resyncs the auxiliary LO to the transmitter LO after a frequency

change.
 ADI_ADRV9025_PLL_AUX_LO_RESYNC_DISABLE Does not resync the auxiliary LO to the transmitter LO after a

frequency change.

Table 53. adi_adrv9025_pllAuxLoOffsetProgSel_e Enumerator
Enumerator Enumerator Values Description
pllAuxLoOffsetProgSel_e ADI_ADRV9025_PLL_AUX_LO_OFFSET_PROG_ENABLE Programs the auxiliary LO to be +(bandwidth/2 + 5)

MHz from the transmitter LO after every frequency
change.

 ADI_ADRV9025_PLL_AUX_LO_OFFSET_PROG_DISABLE Does not set the auxiliary LO after a frequency
change.

API Functions

adi_adrv9025_PllFrequencySet(…)
int32_t adi_adrv9025_PllFrequencySet(adi_adrv9025_Device_t* device, adi_adrv9025_PllName_e
pllName, uint64_t pllLoFrequency_Hz)

Description

This function sets the LO frequency of the chosen PLL.

Precondition

Device initialization is the only precondition.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 75 of 336

Parameters

Table 54. adi_adrv9025_PllFrequencySet(…)
Parameter Description
*device Pointer to device structure.
pllName The PLL selected for setting the frequency.
pllLoFrequency_Hz Frequency of the LO the user wants to set in Hz.

adi_adrv9025_PllFrequencyGet(…)
int32_t adi_adrv9025_PllFrequencyGet(adi_adrv9025_Device_t* device, adi_adrv9025_PllName_e
pllName, uint64_t *pllLoFrequency_Hz)

Description

This function gets the LO frequency of the chosen PLL.

Precondition

Device initialization is the only precondition.

Parameters

Table 55. adi_adrv9025_PllFrequencyGet(…) Parameters
Parameter Description
*device Pointer to device structure.
pllName The PLL selected for getting the frequency.
*pllLoFrequency_Hz Pointer to the frequency of the LO the user wants to set in Hz.

adi_adrv9025_PllFrequencySet_v2(…)
int32_t adi_adrv9025_PllFrequencySet_v2(adi_adrv9025_Device_t* device, adi_adrv9025_PllConfig_t
*pllConfig);

Description

Use this function when the user has special phase constraints that must be put on certain PLLs to meet system requirements.
adi_adrv9025_PllFrequencySet_v2(…) is equivalent to adi_adrv9025_PllFrequencySet(…) with the parameters in Table 56 set in the
adi_adrv9025_PllConfig_t structure.

Table 56. adi_adrv9025_PllConfig_t Structure Parameters
Parameter Description
pllModeSel ADI_ADRV9025_PLL_SLOW_MODE
pllAuxLoResyncSel ADI_ADRV9025_PLL_AUX_LO_RESYNC_ENABLE
pllAuxLoOffsetProgSel ADI_ADRV9025_PLL_AUX_LO_OFFSET_PROG_ENABLE

Precondition
Device initialization is the only precondition.

Parameters

Table 57. adi_adrv9025_PllFrequencySet_v2(…) Parameters
Parameter Description
*device Pointer to device structure.
*pllConfig Pointer to PLL configuration structure.

adi_adrv9025_PllLoopFilterSet(…)
int32_t adi_adrv9025_PllLoopFilterSet(adi_adrv9025_Device_t* device, adi_adrv9025_PllName_e
pllName, adi_adrv9025_PllLoopFilterCfg_t *pllLoopFilterConfig);

Description
This function allows the user to set the PLL loop filter bandwidth, phase margin, and power scale of the device.

Precondition
Device initialization is the only precondition.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 76 of 336

Parameters

Table 58. adi_adrv9025_PllLoopFilterSet(…) Parameters
Parameter Description
*device Pointer to device structure.
pllName PLL selected for changing settings.
*pllLoopFilterConfig Pointer to loop filter configuration structure passed to the device.

adi_adrv9025_PllLoopFilterGet(…)
int32_t adi_adrv9025_PllLoopFilterGet(adi_adrv9025_Device_t* device, adi_adrv9025_PllName_e
pllName, adi_adrv9025_PllLoopFilterCfg_t *pllLoopFilterConfig);

Description

This function allows the user to get the PLL loop filter bandwidth, phase margin, and power scale of the device.

Precondition

Device initialization is the only precondition.

Parameters

Table 59. adi_adrv9025_PllLoopFilterGet(…) Parameters
Parameter Description
*device Pointer to device structure.
pllName PLL selected for getting settings.
*pllLoopFilterConfig Pointer to loop filter configuration structure passed to the device, returns the current configuration.

RF PLL PHASE SYNCHRONIZATION
This function allows the internally generated LO to be phase synchronized and aligned to the applied reference clock. In multiple
transceiver systems, this function allows all devices to align the RF PLL to the same point. Therefore, the phase between each device is
aligned at startup so that phasing between transceivers is repeatable and fixed. At startup, the standard JESD204B multichip
synchronization (MCS) mechanism implemented with the device clock (DEVCLK) and system reference signal (SYSREF) are used to
reset the data converter clocks and all other clocks at the baseband rate. These same signals are also used to initialize an on-chip counter,
which is later used during PLL programming to synchronize the LO phase. No additional signals are required to take advantage of the LO
phase synchronization mechanism. From the on-chip counter and PLL fractional word programming, a digital representation of the
desired LO phase can be computed at each PLL reference clock edge and is remembered in the digital phase accumulator (DPA).

The LO phase synchronization hardware operates by directly sampling the LO signal (in quadrature) using the PLL reference clock signal
(DEVCLK). Averaging is required to increase the accuracy of the LO phase measurement. Therefore, at every sample, the observed LO
phase is derotated by the digitally desired phase. Derotating is done by performing a vector multiplication of the complex conjugate of the
digital phase. The result is a vector representing the phase difference between the LO and the digitally desired phase, and these vectors
can be averaged over many DEVCLK cycles to obtain an accurate measurement of the phase adjustment required.

After the phase difference has been measured, the adjustment can be applied into the first stage Σ-Δ modulator (SDM) of the PLL by
adding it to the first stage modulator input. The total adjustment amount is added over many reference clock cycles to stay within the PLL
loop bandwidth and not cause the PLL to come unlocked. To counteract temperature effects after calibration, a PLL phase tracking mode
can be activated. Figure 42 is a block diagram of the phase synchronization system.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 77 of 336

LPF
LO GEN

÷2kPFD

REF_CLK_IN

REFCLK

SDM NCO

FREQUENCY TUNING WORD

MULTI CHIP SYNC

N

PHASE
SYNCHRONIZER

VCO

MAIN RFPLL LOOP AND RFLO GEN

÷N

I
CAPTURE

Q
CAPTURE

CONTROL

Σ (LOI × NCOI + LOQ × NCOQ)
APD

Σ (LOI × NCOI – LOQ × NCOQ)

22
77

0-
04

1

Figure 42. LO Phase Synchronization Functional Diagram

System Level Considerations

Overall phase synchronization is determined by a number of factors, including the printed circuit board (PCB) level clock routing (tCLK),
the on-chip reference path routing (tREFPATH), the PLL and LO divider path (tPLL), and the RF and antenna paths (tRF). These time delays are
shown in Figure 43. In a beam forming/MIMO system, there is a system level antenna calibration that is performed to equalize the sum of
these paths between all channels. The following list is the goals of this transceiver mechanism:

• Reduce the complexity of the antenna calibration by initializing to a more consistent startup condition with deterministic PLL phase
and LO divider state

• Reduce the temperature dependence of the system phase synchronization to allow the antenna calibration to run less frequently
during operation

• Allow transceivers to be stopped and started in an operational system and hot synchronize with the other transceiver elements

The LO phase synchronization method addresses the initial PLL phase and LO divider state and reduces their temperature dependence to
a negligible amount compared to other sources of phase drift in the system.

LO GEN
÷2k

PLL

CLOCK
CHIP

∆tRF∆tPLL∆tREFPATH∆tCLK

LO GEN
÷2k

PLL

LO GEN
÷2k

PLL

22
77

0-
04

2

Figure 43. High Level Contributions to System Phase Per Antenna

Enabling the RF PLL Phase Synchronization Function Using the API

To enable the LO phase synchronization function, peform the following steps:

1. Set the phase synchronization bit in the initialization data structure.
2. Perform MCS to set the JESD204B and JESD204C deterministic latency using SYSREF pulses as normal. LO phase synchronization

uses existing signaling and SYSREF to accomplish LO phase synchronization. The following structure definition describes the
parameters needed for this process.

adi_adrv9025_Init_t deviceInitStruct =

{

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 78 of 336

 { // clocks

 245760, // deviceClock_kHz

 9830400, // clkPllVcoFreq_kHz

 9830400, // serdesPllVcoFreq_kHz

 0, // ldoSelect

 0, // extLoFreq1_kHz

 0, // extLoFreq2_kHz

 ADI_ADRV9025_INTLO_NOOUTPUT, // rfPll1LoMode

 ADI_ADRV9025_INTLO_NOOUTPUT, // rfPll2LoMode

 0, // rfPll1LoOutDivider

 0, // rfPll2LoOutDivider

 ADI_ADRV9025_RFPLLMCS_INIT_AND_CONTTRACK, // rfPllPhaseSyncMode

Possible enumerator values are shown in the following code:
/**

 * \brief Enumerated list of RFPLL phase synchronization modes

 *

 * RFPLL Phase sync requires extra time to sync each time the RFPLL frequency

 * is changed. If RFPLL phase sync is not required, it may be desired to

 * disable the feature to allow the RFPLL to lock faster.

 *

 * Depending on the desired accuracy of the RFPLL phase sync, several options

 * are provided.

 */

typedef enum adi_adrv9025_RfPllMcs

{

 ADI_ADRV9025_RFPLLMCS_NOSYNC = 0, /*!< Disable RFPLL phase
synchronization */

 ADI_ADRV9025_RFPLLMCS_INIT_AND_SYNC = 1, /*!< Enable RFPLL phase sync init
only */

 ADI_ADRV9025_RFPLLMCS_INIT_AND_CONTTRACK = 2 /*!< Enable RFPLL phase sync init and
track continuously */

} adi_adrv9025_RfPllMcs_e;

RF PLL Phase Synchronization Demo Setup

A vector network analyzer is used to measure the phase difference between two transmitter outputs, LO1 and LO2, with the same
frequency assigned to each transmitter output. The test setup is shown in Figure 44. It is important to use the same clock reference for all
the equipment in the setup. In this diagram, all equipment is locked to the same 10 MHz reference.

EVB VNA
2

10MHz
1

TX2
TX3

122.88MHz
REFERENCE
OSCILLATOR 22

77
0-

04
3

Figure 44. RFPLL Phase Sync Test Setup

Users can edit specific use case files (also referred to as JSON files or profiles) to set the RF PLL phase synchronization using the
parameters shown here under rfPllPhaseSyncMode Options and Clock Options. When using the evaluation board system, the
Transceiver Evaluation Software must be restarted for these changes to take effect.

rfPllPhaseSyncMode Options (parameter in use case block below is bold):

0: Disable RFPLL phase synchronization

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 79 of 336

1: Enable RFPLL phase sync init only

2: Enable RFPLL phase sync init and track continuously

Clock Options:

 "deviceClock_kHz": 245760,

 "clkPllVcoFreq_kHz": 9830400,

 "serdesPllVcoFreq_kHz": 9830400,

 "ldoSelect": 0,

 "extLoFreq1_kHz": 0,

 "extLoFreq2_kHz": 0,

 "rfPll1LoMode": 0,

 "rfPll2LoMode": 0,

 "rfPll1LoOutDivider": 0,

 "rfPll2LoOutDivider": 0,

 "rfPllPhaseSyncMode": 2,

Figure 45 shows five power cycles of the same device with the phase synchronization function beginning in the disabled state. At each
power up, the phase difference between the two LOs is a random value. This diagram also shows initialization and tracking results, which
brings initial random phase to a repeatable value.

22
77

0-
04

4

200

150

100

50

0

0 500 1000 1500 2000 2500 3000 3500 4000 4500

50

–100

–150

–200

SERIES 1
SERIES 2
SERIES 3
SERIES 4
SERIES 5

INIT+TRACKING
CONTINUOUSLYINIT ONLY

RF PLL PHASE SYNC

DISABLED

Figure 45. RF PLL Phase Sync Transitions from Disabled through Inititialization and into Tracking Mode (5 Independent Power Up Sequences Shown)

Figure 46 shows a close up view of the transition from initialization to continuosly tracking.

22
77

0-
04

5

1603 2103 2603 3103 3603 4103 4603

–152.0

–152.5

–153.0

–153.5

–154.0

–154.5

–155.0

SERIES 1
SERIES 2
SERIES 3
SERIES 4
SERIES 5

INIT+TRACKING
CONTINUOUSLYINIT ONLY

RF PLL PHASE SYNC

Figure 46. RF PLL Phase Synchronization Initialization to Tracking Results

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 80 of 336

ARM PROCESSOR AND DEVICE CALIBRATIONS
The transceiver is equipped with a built in ARM M4 processor. The firmware for this ARM processor is loaded during the initialization
process. The firmware memory size is 224 kB, and the ARM has access to another 160 kB of data memory to utilize. The ARM is tasked
with configuring the transceiver for the selected use case, performing initial calibrations of the signal paths, and maintaining device
performance over time through tracking calibrations.

ARM STATE MACHINE OVERVIEW

STATE 0:
POWER UP/RESET

STATE 1:
READY/IDLE

BOOT SEQUENCE
SYSTEM INITIALIZATION

ALL COMMANDS ACCEPTED IN THIS STATE.
INITIAL CALIBRATRIONS CAN BE RUN.

TRACKING CALIBRATIONS CAN BE RUN. 22
77

0-
04

6

Figure 47. ARM State Machine

When the arm core is powered up, the ARM moves into its power-up/reset state, shown as State 0 in Figure 47. The ARM firmware image
is loaded at this point. When the ARM image has been loaded, the ARM is enabled and begins its boot sequence.

After the arm has been booted, it enters its ready/idle state, shown as State 1 in Figure 47. In this state, it can receive configuration settings
or commands (instructions), such as performing the initial calibrations or enabling tracking calibrations.

SYSTEM INITIALIZATION
This section provides a detailed description of the initialization procedure. There are three main sections to the initialization procedure.

Pre-MCS initialization initializes the device up to the multichip synchronization procedure. The pre-MCS initalization is split into two
commands that the application layer function calls. These commands are adi_adrv9025_PreMcsInit_v2(…) and
adi_adrv9025_PreMcsInit_NonBroadCast(…). The adi_adrv9025_PreMcsInit_v2(…) command is a broadcastable command that can
simultaneously issue commands to multiple transceivers to save time during system initialization for systems with multiple transceivers.
ARM and stream binaries are programmed to the chip during this step. The broadcast functionality is realized by issuing SPI write
commands only. The adi_adrv9025_PreMcsInit_NonBroadCast(…) command verifies that the ARM is programmed properly by
verifying the ARM checksum and that the ARM is in the ready/idle state.

The multichip synchronization (MCS) step uses SYSREF pulses to synchronize internal clocks within the transceiver, which is required
for deterministic latency.

Post-MCS initalization continues initialization following MCS. The application layer command that performs the post-MCS initialization
is adi_adrv9025_PostMcsInit(…). This command programs the PLLs, configures the radio control initialization structure, and instructs
the ARM to perform initialization calibrations.

PRE-MCS INITIALIZATION
This section explains the ARM related function calls in adi_adrv9025_PreMcsInit_v2(). Run adi_adrv9025_PreMcsInit_v2(…) as part of
the initialization sequence.
adi_adrv9025_PreMcsInit_v2(adi_adrv9025_Device_t *device,

 adi_adrv9025_Init_t *init,

 const char *armImagePath,

 const char *streamImagePath,

 adi_adrv9025_RxGainTableFile_t rxGainTableFileArr[],

 uint8_t rxGainTableFileArrSize,

 adi_adrv9025_TxAttenTableFile_t txAttenTableFileArr[],

 uint8_t txAttenTableFileArrSize);

An important system from the perspective of the ARM is the armImagePath, a file system location where the ARM binary is stored,
which is required for the ARM to be loaded.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 81 of 336

The adi_adrv9025_PreMcsInit_v2(…) function is in the adi_adrv9025_utilities.c/h file. This function performs a sizeable part of the full chip
initialization. From the point of view of the ARM, it performs a number of tasks. The first step is to load the ARM image,
adi_adrv9025_ArmImageLoad(device, armImagePath), where device is the transceiver device structure. The armImagePath is the path to the
ARM image binary passed as a parameter to adi_adrv9025_PreMcsInit_v2(). The ARM image is provided in the Resources/ArmFiles folder of
the GUI installation folder.

Following the ARM firmware image being loaded, the next step is to load the device configuration into data memory using
adi_adrv9025_ArmProfileWrite(adi_adrv9025_Device_t *device, const adi_adrv9025_Init_t *init).

*init is the initialization settings data structure.

The ARM is then started and begins its boot sequence. This process is initiated by adi_adrv9025_ArmStart(adi_adrv9025_Device_t
*device, const adi_adrv9025_Init_t *init).

As part of the boot sequence, the ARM configures the device for the required profile (transmitter/receiver/observation receiver path
configuration as determined by the use case), configures and enables the clock PLL (the device starts initialization on the device clock),
and configures the JESD204B and JESD204C framers and deframers. The ARM also computes a checksum for the ARM firmware image
loaded, for each of the streams loaded, and the profiles loaded (determining if they are valid profiles). The following API function waits for
the ARM boot to complete and compares the computed checksums during booth to precomputed checksums. For example, comparing
the ARM firmware checksum vs. the ARM checksum that is calculated after compilation of the ARM firmware and stored within the
ARM firmware image adi_adrv9025_ArmStartStatusCheck(adi_adrv9025_Device_t *device, uint32_t, timeout_us), where timeout_us is
a timing parameter that dictates the longest time that the function waits for arm booting to complete.

If a checksum is found to be not valid, this function returns an error.

POST-MCS INITIALIZATION
After the MCS sequence has been completed, the ARM is ready to configure the radio, perform its initialization calibrations, and bring up
the JESD204B and JESD204C link. When complete, the tracking calibrations can be enabled. The RF data paths can then be enabled using
either the SPI or pin modes.

Note that there is no absolute requirement to follow this sequence. The initialization calibrations and tracking calibrations do not have to be run
for the paths to be enabled in the device. It is ultimately up to the user to ensure that the paths have been correctly configured prior to operation.

DEVICE CALIBRATIONS
The ARM is tasked with performing calibrations for the transceiver to achieve its performance specifications. These calibrations are split
into two categories: initial calibrations, which are run either before the transceiver is operational or after LO frequency change, and
tracking calibrations, which are used to maintain performance during runtime.

A number of transmitter calibrations use an observation path to observe the signal at the output of the transmitter. For the most part,
these calibrations use an internal loopback path from transmitter to observation receiver. The exception is the external LOL initialization
and tracking algorithms that require the use of an external path connection between the transmitter output and an observation input.

A requirement for this device is that the observation receiver channel used to calibrate a transmitter channel must be on the same side of
the chip as that transmitter channel. Table 60 provides the possible feedback combinations. For example, it is not possible for LO leakage
tracking to calibrate Tx4 by providing its output to ORx1 or ORx2.

Table 60. External Feedback Path Possibilities
Channel Available Feedback Channels
Tx1 ORx1 or ORx2
Tx2 ORx1 or ORx2
Tx3 ORx3 or ORx4
Tx4 ORx3 or ORx4

Figure 48 shows an example of four feedback paths, each transmitter going back to an observation receiver, obeying the principle of each
transmitter being fed back to an observation receiver on the same side of the device. It is also possible to have both Tx1 and Tx2 going
back to a single observation receiver input (either ORx1 or ORx2) through a switch. Similarly, Tx3 and Tx4 can go back to a single
observation receiver input (either ORx3 or ORx4).

Note that for the diagrams outlining the operation of individual calibrations, the transmitter and observation receiver inputs are not numbered.
Instead, it is assumed that the principle of a transmitter being fed back to an observation receiver on the same side of the device is being obeyed.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 82 of 336

Tx3

Rx3

ORx3/ORx4

Rx4

Tx4

Tx2

Rx2

ORx1/ORx2

Rx1

Tx1

SERDES

BALUN

BALUN

BALUN

BALUN

BALUN

BALUN

BALUN

BALUN

BALUN

BALUN

BALUN

BALUN

PA

PA

LNA

LNA

ANTENNA 3

ANTENNA 4

ANTENNA 2

ANTENNA 1

PA

PA

LNA

LNA

22
77

0-
04

7

Figure 48. External Feedback for Transmitter Tracking Calibrations

INITIAL CALIBRATIONS
The ARM processor in the transceiver is tasked with scheduling/performing initial calibrations to optimize the performance of the signal
paths prior to device operation. These calibrations are run as part of the utility API function adi_adrv9025_PostMcsInit(). To correctly
perform the initial calibrations, this utility function must be called. This section also provides details of the procedure invoked in
adi_adrv9025_PostMcsInit() to perform the initial calibrations, principally for further information, but also in case there is a need to run
initial calibrations outside of the post-MCS initialization procedure. The API function definition for the post-MCS initialization is:
adi_adrv9025_PostMcsInit(adi_adrv9025_Device_t *device, adi_adrv9025_PostMcsInit_t *utilityInit)

*utilityInit is a structure containing a structure determining the initial calibrations to be run as part of the post-MCS initialization routine.

In some cases, it is required to run an initial calibration outside of adi_adrv9025_PostMcsInit(…). This following command instructs the
ARM to perform the requested calibrations:
adi_adrv9025_InitCalsRun(adi_adrv9025_Device_t *device, adi_adrv9025_InitCals_t *initCals)

*initCals is the initial calibration structure, passed to adi_adrv9025_PostMcsInit as part of utilityInit, that informs the ARM processor
which calibrations to run on which enabled path. initCals is composed of a uint32_t calMask and a uint8_t channelMask. calMask
indicates which calibrations are to run in this call of adi_adrv9025_InitCalsRun().

Table 61 shows the bit assignments of the calibration mask. Note that Table 61 provides a full list of initialization calibrations for the
device. Some initial calibrations are not available for certain transceivers and applications.

The channelMask parameter, a member of the adi_adrv9025_InitCals_t structure, advises which channels the selected calibrations run. Each bit
of the bitmask refers to an individual channel, as shown in Table 62. The mask is universally applied to all calibrations selected in the current call
of adi_adrv9025_initCalsRun(), regardless of the paths for which the calibrations are being run. For example, if 0xF is chosen as a mask and both
receiver and transmitter calibrations are selected in the calMask, when the ARM runs a receiver calibration it then does so on all four receiver
channels. Likewise, when the ARM runs a transmitter calibration, the calibration is run on all four transmitter channels.

Table 61. calMask Bit Assignments
Bits Corresponding Enumerator Calibration Description
D0 ADI_ADRV9025_TX_BB_FILTER Transmitter

baseband filter
calibration

This is used to tune the corner frequency of the transmitter
baseband filter.

D1 ADI_ADRV9025_ADC_TUNER ADC tuner
calibration

This is used to configure the ADC for the required profile
bandwidth.

D2 ADI_ADRV9025_RX_TIA Receiver TIA filter
calibration

This is used to tune the corner frequency of the receiver TIA
filter.

D3 ADI_ADRV9025_ORX_TIA Observation
receiver TIA filter
calibration

This is used to tune the corner frequency of the observation
receiver TIA filter.

D4 ADI_ADRV9025_LBRX_TIA Loopback receiver
TIA filter calibration

This is used to tune the corner frequency of the loopback
receiver TIA filter.

D5 ADI_ADRV9025_RX_DC_OFFSET Receiver dc offset
calibration

This is used to correct for dc offset within the receiver chain.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 83 of 336

Bits Corresponding Enumerator Calibration Description
D6 ADI_ADRV9025_ORX_DC_OFFSET Observation

receiver dc offset
calibration

This is used to correct for dc offset within the observation
receiver chain.

D7 ADI_ADRV9025_LBRX_DC_OFFSET Loopback receiver
dc offset calibration

This is used to correct for dc offset within the loopback
receiver chain.

D8 ADI_ADRV9025_FLASH_CAL ADC flash calibration This is used to optimally configure the ADC flash converters.
D9 ADI_ADRV9025_INTERNAL_PATH_DELAY Internal path delay

calibration
This computes the transmitter to internal loopback path delay,
which is required for the TxQEC initial calibration and tracking.

D10 ADI_ADRV9025_TX_LO_LEAKAGE_ INTERNAL Transmitter LO
leakage initial
calibration

This performs an initial LO leakage calibration for the
transmitter path. It utilizes the transmitter path and the
internal loopback path (see Figure 51).

D11 ADI_ADRV9025_TX_LO_LEAKAGE_EXTERNAL Transmitter LO
leakage external
initial calibration

This performs an initial external LO leakage calibration for
the transmitter path. It utilizes the transmitter path, a
required external loopback path, and the observation
receiver path (see Figure 52). The external loop must be
enabled such that the transmitter output is observable by
the observation receiver.

D12 ADI_ADRV9025_TX_QEC_INIT Transmitter QEC
initial calibration

This performs an initial QEC calibration for the transmitter path.
It utilizes the transmitter path and an internal loopback path
(see Figure 51).

D13 ADI_ADRV9025_LOOPBACK_RX_LO_DELAY Loopback receiver
LO delay
calibration

This is used to perform an LO delay calibration for the
loopback path.

D14 ADI_ADRV9025_LOOPBACK_RX_RX_QEC_INIT Loopback receiver
QEC initial
calibration

This performs an initial QEC calibration for the receiver path.

D15 ADI_ADRV9025_RX_LO_DELAY Receiver LO delay
calibration

This is used to perform an LO delay calibration for the
receiver path.

D16 ADI_ADRV9025_RX_QEC_INIT Receiver QEC initial
calibration

This performs an initial QEC calibration for the receiver path.

D17 ADI_ADRV9025_ORX_LO_DELAY Observation
receiver LO delay
calibration

This is used to perform an LO delay calibration for the
observation receiver path.

D18 ADI_ADRV9025_ORX_QEC_INIT Observation
receiver QEC initial
calibration

This performs an initial QEC calibration for the observation
receiver path.

D19 ADI_ADRV9025_TX_DAC Transmitter DAC
initial calibration

This performs a calibration of the transmitter DAC.

D20 Reserved
D21 ADI_ADRV9025_EXTERNAL_PATH_DELAY External

transmitter to
observation
receiver path delay
initial calibration

This acquires an estimation of the transmitter to observation
receiver path delay (not required if CLGC tracking is not
used).

D22 Reserved
D23 ADI_ADRV9025_HD2 HD2 initial

calibration
This performs an initial calibration of the HD2 product in the
receiver path (typically required only in GSM applications).

D24 ADI_ADRV9025_TX_ATTENUATION_DELAY Transmitter
attenuation delay
calibration

This is used to calculate the path delay between the transmitter
analog and digital attenuation blocks. This delay is then used to
delay the onset of transmitter analog attenuation when the
transmitter attenuation changes. This synchronizes the
attenuation change at the transmitter output.

D25 ADI_ADRV9025_TX_ATTEN_TABLE Transmitter
attenuation table
linearization
calibration

This is used to correct for phase changes between different
attenuation indices in the transmitter attenuation table.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 84 of 336

Bits Corresponding Enumerator Calibration Description
D26 ADI_ADRV9025_RX_GAIN_DELAY Receiver gain delay

calibration
This is used to calculate the path delay between the receiver
analog and digital attenuation blocks. This delay is then used
to delay the onset of receiver analog attenuation when the
receiver gain index is changed. This synchronizes the gain
change in the baseband data. This calibration does not check
the status of the DDC filter, so if the NCO is enabled it may
cause the calibration to fail with no warning if the calibration
tone is placed outside the pass band. The NCO must not be
used when doing this calibration.

D27 ADI_ADRV9025_RX_GAIN_PHASE Receiver gain
phase calibration

This is used to correct for phase changes between different
gain indices in the receiver gain table.

D28 Reserved
D29 ADI_ADRV9025_CFR_INIT CFR initialization

calibration
This performs an initialization calibration for the transceiver
CFR hardware (ADRV9029 only).

D30 ADI_ADRV9025_SERDES_INIT SERDES
initialization cal

This performs an initialization calibration for the JESD204C
data interface.

D31 Reserved

Table 62. channelMask Bit Assignments
Bits Channel
D0 Channel 1 (either Rx1/Tx1/ORx1 depending on calibration being performed)
D1 Channel 2 (either Rx2/Tx2/ORx2 depending on calibration being performed)
D2 Channel 3 (either Rx3/Tx3/ORx3 depending on calibration being performed)
D3 Channel 4 (either Rx4/Tx4/ORx4 depending on calibration being performed)

The ARM sequences the initial calibrations as required, not necessarily in the bit order presented in Table 61. It is mandatory that the user
wait for calibrations to complete before continuing with the initialization of the device. The following API command is used to verify that
the initial calibrations are complete:
adi_adrv9025_InitCalsWait(adi_adrv9025_Device_t *device, uint32_t timeoutMs, uint8_t *errorFlag)

timeoutMs is the time in milliseconds (ms) that the function must wait for the calibrations to complete before returning an error.
errorFlag indicates if there is an ARM error when running the initialization calibrations.

This function implements a blocking wait until the initial calibrations have been completed. An alternative function can be used instead,
which determines if the initial calibrations are still running using the following API command:
adi_adrv9025_InitCalsCheckCompleteGet(adi_adrv 9025_Device_t *device, uint8_t *areCalsRunning,

uint8_t *errorFlag);

*areCalsRunning is a value to indicate if calibrations are still running (0 = initial calibrations have completed, 1 = initial calibrations are
still running). errorFlag indicates if there is an ARM error when the running the initialization calibrations.

In the case when an initial calibration error occurs, information about the error can be obtained with the following command:
adi_adrv9025_InitCalsDetailedStatusGet(adi_adr v9025_Device_t *device,

adi_adrv9025_InitCalStatus_t *initStatus);

*initStatus is a pointer to a data structure that contains initial calibration status information. The adi_adrv9025_InitCalStatus_t data
structure details are described in Table 63.

Table 63. Definition of adi_adrv9025_InitCalStatus_t
Parameter Interpretation
initErrCode Returns the object ID and error code reported for the initialization calibration failure. The object ID is contained

within Bits[D15:D8] and error bits are contained within Bits[D7:D0].
initErrCal Returns the object ID of the calibration reporting an error.
calsDurationUsec Time duration in microseconds of the most recent InitCalsRun invocation.
calsSincePowerUp[4] A 4-element array indicating the bitmask of initial calibrations run after power up. Each element of the array

corresponds to calibrations performed on each channel.
calsLastRun[4] A 4-element array indicating the bitmask of initial calibrations run in the most recent invocation of InitCalsRun. Each

element of the array corresponds to calibrations performed on each channel.

https://www.analog.com/ADRV9029?doc=ADRV9026-System-Development-User-Guide-UG-1727.pdf
https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 85 of 336

SYSTEM CONSIDERATIONS FOR INITIAL CALIBRATIONS
Figure 49 through Figure 52 show how the transceiver is configured for notable calibrations with external system requirements, such as
the QEC and LOL calibrations. In all diagrams, gray lines and blocks are not active in the calibration. Lines showing the path of the LOs
are shown in color to distinguish them from the signal paths. A brief explanation of the calibration is provided. Note that as the ARM
performs each of the calibrations, it is tasked with configuring the device as per Figure 49. For example, with respect to enabling/disabling
paths. No user input is required in this regard.

It is important that the user ensures that external conditions are met, such as having the PA off for all calibrations other than the external
LOL initialization calibration, or having the receiver input properly terminated for a receiver QEC initialization calibration.

Receiver QEC Initial Calibration

The receiver QEC initialization calibration algorithm is utilized to improve the receiver path QEC performance. The receiver QEC
calibration routine sweeps a number of internally generated test tones across the desired frequency band, measuring quadrature performance
and calculating correction coefficients. Tone generation is performed by the calibration PLL (CAL PLL), which is the auxiliary PLL.
When the receiver QEC initialization calibration runs, the ARM configures the receiver to the maximum gain index (255).

It is a system requirement that the input port must be isolated from incoming signals or the calibration may fail to complete. The calibration
tones appear on the receiver pins and, therefore, must be prevented from reaching the antenna through the receiver port being properly
terminated into a 50 Ω load. If an LNA is present at the receiver input, it is recommended to disable the LNA during the calibration.

QEC
BLOCK

JE
SD

20
4B

/C
 IN

TE
RF

AC
E

ADRV902x

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

ADC

ADCLPF

CAL
PLL Rx LO

LPF
Rx
INPUT

50Ω

22
77

0-
04

8

Figure 49. Receiver QEC Initial Calibration System Configuration

Observation Receiver QEC Initial Calibration

The observation receiver QEC calibration functions by sweeping a number of internally generated test tones across the band measuring
quadrature performance and calculating correction coefficients. The ARM determines which PLL is free for use as a calibration source
given the LO selections. In Figure 50, the transmitter LO is the LO source for the observation receiver channel and the auxiliary PLL acts
as the calibration PLL.

It is a system requirement that for optimum performance, it is recommended to set the internal observation receiver attenuation to 10 dB
for TXLO ≤ 2.8 GHz or 14 dB to 16 dB for TXLO > 2.8 GHz.

Isolate the observation receiver input from incoming signals and be properly terminated into a 50 Ω load while the calibration is running.
The calibration tones appear on the observation receiver pins and, therefore, must be prevented from reaching the antenna.

Receiver/Observation Receiver TIA Initial Calibration

The receiver/observation receiver TIA calibration is used to calibrate the corner frequency of the analog baseband TIA filter in the
receiver/observation receiver signal path. The signal path used for this calibration is the same as the receiver QEC initialization calibration
shown in Figure 49. The calibration applies two tones sequentially, one in-band and another at the TIA corner frequency, and compares the
amplitude of both of these signals to ensure that the corner frequency produces the appropriate roll-off.

It is a system requirement to isolate the input port from incoming signals or the calibration may fail to complete.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 86 of 336

QEC
BLOCK

JE
SD

20
4B

/C
 IN

TE
RF

AC
E

ADRV902x

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

ADC

ADCLPF

CAL
PLL Tx LO

LPF
ORx
INPUT

50Ω

22
77

0-
04

9

Figure 50. Observation Receiver QEC Initial Calibration System Configuration

Internal Transmitter LO Leakage and Transmitter QEC Initial Calibrations

The transmitter LO leakage and transmitter QEC initial calibrations utilize the internal loopback path and the baseband section of the
observation receiver path to calculate its initial correction factors. During these calibrations, test signals (tones and wideband signals) are
output. These appear at the transmitter output, so it is important that the PA connected to the transceiver output be switched off. Both
calibrations sweep through a series of attenuation values, creating a table of initial calibration values over attenuation. Then during
operation and upon application of a new transmitter attenuation setting, the corresponding QEC and LOL correction values are applied
to the transmitter channel by the ARM. The transceiver configuration for this calibration is shown in Figure 51.

It is a system requirement that the PA in the transmitter path must be powered off during these calibrations to prevent potential damage
to the PA. When the PA is disabled, ensure the load seen at the transmitter output is 50 Ω.

QEC
BLOCK

JE
SD

20
4B

/C
 IN

TE
RF

AC
E

ADRV902x

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

SIGNAL
GEN

DAC

DACLPF

Tx LO

LPF

Tx
OUTPUT

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

ADC

ADCLPF

CAL
PLL

AUX LO

LPF

ORx
INPUT

FEEDBACK
PATH

ATTENUATOR

PA

PA POWERED OFF

COUPLER

22
77

0-
05

0

Figure 51. Device Path Configuration for Transmitter LOL and QEC Initial Calibrations

External Transmitter LO Leakage Initial Calibration

The external LOL initialization calibration requires that the PA be enabled such that a full external loop is made between the transmitter
outputs and the observation receiver inputs. The purpose of this calibration is to obtain a good estimate (gain/phase) of the external loop
channel conditions prior to operation. The transceiver configuration is shown in Figure 52. The calibration utilizes a pseudorandom noise
signal to estimate the channel conditions. This is a broadband signal with a nominal level of −78 dBFS out of the DAC.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 87 of 336

It is important that a suitable attenuator be chosen between the PA output and the observation receiver input. This is to prevent transmitter
data from saturating the observation receiver input. This is also necessary from the perspective of digital predistortion (DPD) operation.

Note that if the observation receiver receives an input signal larger than the ADC full scale, the channel overloads and calibration results
are poor. The arm does not issue a warning or error condition in this case. Similarly, the arm does not issue a warning if the physical
transmitter to observation receiver mapping does not match the programmed transmitter to observation receiver mapping.

It is a system requirement that the output of the transmitter channel to be calibrated must be routed to the utilized observation receiver
path to properly observe the calibration signal. If there is a PA in the path, it must be enabled during this calibration. The transmitter to
observation receiver mapping must be configured (via API or GPIO) prior to the calibration to indicate which transmitter is routed back
to which observation receiver (see the Transmitter to Observation Receiver Feedback section).

Choose the combined external coupler plus attenuation to provide a peak input power close to PHIGH (as specified in the device’s
datasheet) at the observation receiver input pin so that the peak power is close to −2 dBFS at the digital output with the programmed
internal attenuation. For optimal external LOL initial calibration and LOL tracking calibration, it is recommended to set the internal
observation receiver attenuation to 10 dB for TXLO ≤ 2.8 GHz or 14 dB to 16 dB for TXLO > 2.8 GHz.

QEC
BLOCK

JE
SD

20
4B

/C
 IN

TE
RF

AC
E

ADRV902x

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

SIGNAL
GEN

DAC

DACLPF

Tx LO

LPF

Tx
OUTPUT

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

ADC

ADCLPF

CAL
PLL

AUX LO

LPF

ORx
INPUT

FEEDBACK
PATH

ATTENUATOR

PA

PA POWERED OFF

COUPLER

22
77

0-
05

0

Figure 52. External LOL System Configuration (Grayed Out Circuitry Not in Use)

Receiver Gain Delay Initial Calibration

The receiver datapath features an analog and a digital gain/attenuation element. If the analog and digital gain changed simultaneously, the
received baseband data shows a two-step change in the gain index. The first gain change seen in the baseband is from the digital gain
change and the second gain change is from the analog gain change. This is due to the nonzero data path latency between the analog and
digital gain/attenuation elements.

The receiver gain delay calibration measures the latency between the analog and digital gain/attenuation elements to delay the onset of
digital gain. This ensures that when the analog and digital gain change, the baseband data shows a single coordinated gain change
between these two elements. Because the analog gain change is not delayed, there are no consequences to automatic gain control (AGC)
timing due to this calibration.

Receiver Gain Phase

The receiver gain phase calibration is used to minimize the phase differences between different gain indices. This calibration scans the
gain table for unique analog attenuation settings and applies a phase shift for each setting to minimize the phase difference between gain

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 88 of 336

index settings. The auxiliary PLL is used to transmit a tone at the receiver input and measure the phase difference. The phase shift is
introduced by a digital phase shifting element.
Transmitter Attenuation Phase Initial Calibration

This calibration is called ADI_ADRV9025_TX_ATTEN_TABLE in the API enumerations. This calibration corrects for phase differences
between different attenuation settings in the transmitter attenuation table. A tone is transmitted during this calibration at −12 dBFS and it
is advised to disable the PA during this calibration. No external loopback is necessary during the operation of this calibration.

Run this calibration run prior to any LO leakage initial calibrations. When combined in the initial calibration mask with LO leakage
calibrations, the ARM sequences this calibration before LO leakage initial calibrations.

The attenuation phase calibration supports up to 20 dB of attenuation. This calibration has known performance issues below 1 GHz LO
frequency operation.
Transmitter Attenuation Delay

Similar to the receiver, the transmitter datapath features an analog and digital gain/attenuation element. The transmitter attenuation delay
calibration helps to ensure that when a change in attenuation occurs in both analog and digital, the transmitter output only sees a single
change in output power rather than a two-step effect. This is done by delaying the onset of the analog attenuator change, unlike the
receiver gain delay calibration, which delays the onset of digital gain or attenuation changes.
Transmitter to Observation Receiver Feedback

For the external transmitter LO leakage initial calibration to complete, the ARM must be advised of the current transmitter to observation
receiver feedback paths through the external circuitry. Specify this path at initialization, through the adi_adrv9025_PostMcsInit_t structure
that is passed to adi_adrv9025_PostMcsInit(). In this structure, there are four variables that indicate which transmitter is being fed back
to each observation receiver. These variables are shown in Table 64.
Table 64. Definition of adi_adrv9025_TxToOrxMappingConfig_t
Observation Receiver Maps Permissible Values
orx1Map ADI_ADRV9025_MAP_NONE_ORX1
 ADI_ADRV9025_MAP_TX1_ORX1
 ADI_ADRV9025_MAP_TX2_ORX1
orx2Map ADI_ADRV9025_MAP_NONE_ORX2
 ADI_ADRV9025_MAP_TX1_ORX2
 ADI_ADRV9025_MAP_TX2_ORX2
orx3Map ADI_ADRV9025_MAP_NONE_ORX3
 ADI_ADRV9025_MAP_TX3_ORX3
 ADI_ADRV9025_MAP_TX4_ORX3
orx4Map ADI_ADRV9025_MAP_NONE_ORX4
 ADI_ADRV9025_MAP_TX3_ORX4
 ADI_ADRV9025_MAP_TX4_ORX4

Note that in the case of multiple transmitter channels being fed back to a single observation receiver, a multiple pass is required for the
external transmitter LO leakage initial calibration. During the first pass when adi_adrv9025_PostMcsInit() is called, the current feedback
paths must be advised to the device. When the external LOL initial calibration is run, the ARM performs the calibration on transmitter
paths that have a feedback path to an observation receiver. In a second pass, the feedback paths are modified and advised to the device,
and the external LOL initial calibration must be called again.
Note Regarding Auxiliary LO Settings During Initialization Calibrations

For users that intend to use an auxiliary LO frequency other than the default auxiliary LO frequency for their given use case, note that
initial calibrations must run with the default auxiliary PLL frequency. Therefore, the user must use a procedure if a nondefault auxiliary
PLL frequency is used in their application. This procedure is as follows:

1. Set the transmitter PLL frequency to the desired frequency.
a. If the user uses adi_adrv9025_PllFrequencySet(…), the auxiliary PLL is configured to the default offset frequency when the

transmitter PLL is programmed.
b. If the user uses adi_adrv9025_PllFrequencySet_v2(…), the auxiliary PLL is configured to the default offset frequency if the

adi_adrv9025_PllConfig_t-> pllAuxLoOffsetProgSel parameter is set to ADI_ADRV9025_PLL_AUX_LO_OFFSET_PROG_ENABLE.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 89 of 336

2. Run initialization calibrations.
3. After all initialization calibrations are complete, the user can set the auxiliary PLL frequency to the desired application frequency.

If the user sets the auxiliary PLL to a different frequency and requires initial calibrations to be rerun, follow this same procedure.

Summary of Initial Calibration Requirements

Table 65 summarizes initial calibration requirements and other related details.

Table 65. Recommended Initial Calibrations
Initial Calibration Recommended Values
Receiver QEC ADI_ADRV9025_MAP_NONE_ORX1
 ADI_ADRV9025_MAP_TX1_ORX1
 ADI_ADRV9025_MAP_TX2_ORX1
Receiver TIA ADI_ADRV9025_MAP_NONE_ORX2
 ADI_ADRV9025_MAP_TX1_ORX2
 ADI_ADRV9025_MAP_TX2_ORX2
Observation Receiver TIA ADI_ADRV9025_MAP_NONE_ORX3
 ADI_ADRV9025_MAP_TX3_ORX3
 ADI_ADRV9025_MAP_TX4_ORX3
orx4Map ADI_ADRV9025_MAP_NONE_ORX4
 ADI_ADRV9025_MAP_TX3_ORX4
 ADI_ADRV9025_MAP_TX4_ORX4

TRACKING CALIBRATIONS
The ARM processor is tasked with ensuring that QEC and LOL (and HD2 for GSM applications) corrections are optimal throughout device
operation over time, attenuation, and temperature. The ARM processor achieves this optimization by performing calibrations at regular intervals.
These calibrations are termed tracking calibrations, and they utilize normal traffic data to update the path correction coefficients.

The following API function enables the tracking calibrations in the ARM:
adi_adrv9025_TrackingCalsEnableSet(adi_adrv9025_Device_t *device, uint32_t enableMask,
adi_adrv9025_TrackingCalEnableDisable_e enableDiasbleFlag)

enableMask is a mask that informs the ARM processor which tracking calibrations to run (Table 66 shows the bit assignments of the
enable mask (presently only receiver/observation receiver QEC calibrations are available)). enableDiasbleFlag is an enable or disable
parameter (valid enumerators are shown in Table 67). Based on the enumerator chosen for enableDiasbleFlag, the selected tracking
calibrations in enableMask are enabled or disabled.

Table 66. Tracking Calibrations Enable Mask Bit Assignments
Calibration Mask Bits Function
D0 Rx1 QEC Tracking
D1 Rx2 QEC Tracking
D2 Rx3 QEC Tracking
D3 Rx4 QEC Tracking
D4 ORx1 QEC Tracking
D5 ORx2 QEC Tracking
D6 ORx3 QEC Tracking
D7 ORx4 QEC Tracking
D8 Tx1 LOL Tracking
D9 Tx2 LOL Tracking
D10 Tx3 LOL Tracking
D11 Tx4 LOL Tracking
D12 Tx1 QEC Tracking
D13 Tx2 QEC Tracking
D14 Tx3 QEC Tracking
D15 Tx4 QEC Tracking

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 90 of 336

Table 67. adi_adrv9025_TrackingCalEnableDisable_e Definition
Enumerator Description
ADI_ADRV9025_TRACKING_CAL_DISABLE When used, the selected tracking calibrations in enableMask are disabled upon the call to

adi_adrv9025_TrackingCalsEnableSet.
ADI_ADRV9025_TRACKING_CAL_ENABLE When used, the selected tracking calibrations in enableMask are enabled upon the call to

adi_adrv9025_TrackingCalsEnableSet.

The arm is tasked with the scheduling of the tracking calibrations. No user input is required to initiate a tracking calibration.

System Considerations for Tracking Calibrations

This section describes the operation of the tracking calibrations. Diagrams are used to show how the transceiver is configured for each
calibration, and a brief explanation of the calibration is provided. In all configuration diagrams, grayed-out lines and blocks are not active
in the calibration. Lines showing the path of the LOs are shown in color to distinguish them from the signal paths. As the ARM performs
each of the calibrations, it is tasked with configuring the feedback path or observation receiver input as per the following set of diagrams.
No user input is required in this regard. However, for external LOL tracking the user must ensure that the feedback path is available to
use.

The calibration description sections show the requirements for GPIO and enable pins during each of the tracking calibrations. These
calibrations may need many milliseconds of observation to calculate an update. The ARM reduces the total time needed by splitting up
this time into batches in a way so that observations do not have to be continuous. The ARM algorithms are optimized to process batches
of 100 µs, but smaller batches are acceptable.

The receiver/observation receiver tracking algorithms run while the channels are in normal use, using the data in the channel to calculate
updates to the correction coefficients. The transmitter correction algorithms utilize the observation receiver path when run, feeding back
transmission data for observation to calculate updates to the correction coefficients. Therefore, observation receiver paths must be time
shared with other uses of the observation receiver path.

Because the transceiver has two observation paths, the expectation is that the calibrations always have access to a single observation
receiver path and an equal amount of time for observation receiver paths on either side of the device (that is, an equal amount of time on
ORx1/ORx2 and ORx3/ORx4). When an observation receiver on one side of the device is being assigned to calibrations, the other
observation receiver(s) on the other side of the device are available to the user for observation.

Receiver QEC Tracking Calibration

The receiver QEC tracking algorithm improves the receiver path QEC performance during operation. The receiver QEC utilizes normal
traffic data to calculate updated corrected coefficients. The receiver QEC runs continuously while the receivers are active.

It is a system requirement that the receiver channels must be enabled. For example, in TDD mode, receiver QEC tracking only runs
during receiver periods. If only one channel is enabled, the receiver QEC only runs on this channel. Note that in FDD modes, receiver
enable is high at all times. Receiver enable refers to the enable of any of Rx1 to Rx4.

QEC
BLOCK

JE
SD

20
4B

/C
 IN

TE
RF

AC
E

ADRV902x

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

ADC

ADCLPF

CAL
PLL Rx LO

LPF
Rx
INPUT

50Ω

22
77

0-
05

2

Figure 53. Receiver QEC Tracking

Tx TxRx

RxQEC

AIR TIME

Rx ENABLE

PERIODS WHERE
RxQEC

COULD RUN
RxQEC

Rx

22
77

0-
05

3

Figure 54. Timing Diagram Showing When Receiver QEC can Run in TDD Mode

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 91 of 336

Observation Receiver QEC Tracking Calibration

The observation receiver QEC tracking algorithm improves the observation receiver path QEC performance during operation. The
observation receiver QEC tracking calibration utilizes normal traffic data to calculate updated corrected coefficients. The observation
receiver QEC tracking calibration runs continuously in the background while the observation receiver is active.

It is a system requirement that observation receiver channels must be enabled. For example, in TDD mode, observation receiver QEC
tracking only runs during observation receiver periods. If only one channel is enabled, the observation receiver QEC only runs on this
channel.

Do not change the observation receiver gain index while the tracking calibration runs. If the observation receiver gain index changes,
rerun the observation receiver QEC initial calibration.

QEC
BLOCK

JE
SD

20
4B

/C
 IN

TE
RF

AC
E

ADRV902x

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

ADC

ADCLPF

CAL
PLL Rx LO

LPF
Rx
INPUT

50Ω

22
77

0-
05

2

Figure 55. Observation Receiver QEC Tracking

Tx TxRx

ORxQEC ORxQEC

RxAIR TIME

ORx ENABLE

PERIODS WHERE
RxQEC

COULD RUN

22
77

0-
05

3

Figure 56. Timing Diagram Showing when Observation Receiver QEC can Run in TDD Mode (Observation Receiver Enable Refers to the Internal Enable Control of

ORx1 to ORx4)

Transmitter QEC Tracking Calibration

The transmitter QEC tracking is an online calibration that is run to improve the QEC performance using transmit data. It utilizes the
loopback (feedback) path for operation. Therefore, the transmit QEC tracking must be interleaved with normal other captures that utilize
the observation receiver path. This tracking determines optimal coefficients for the current gain setting, updating the table stored during
the transmitter QEC initialization to ensure this table has the best values for the current operating conditions. Figure 57 shows the
transceiver configuration for transmitter QEC tracking calibration.

It is a system requirement that the transmitter channel(s) must be enabled. To run, the observation receiver path must be available for the
ARM to use (observation receiver enable low). That means the required observation receiver path cannot be required by the user for
other (or voltage standing wave radio (VSWR)) captures.

Note that in FDD modes, transmitter enable is high at all times. Transmitter enable refers to the enable of any Tx1 to Tx4. Observation
receiver enable refers to the internal enable signal for the selected observation receiver channel.

QEC tracking uses an offset LO on the feedback path during tracking. This ensures that the quadrature errors of the transmitter path are
not aligned with those of the observation receiver path. This frequency is set to

fOFFSET = (Primary Transmitter Bandwidth/4) + 5 MHz

Continuous wave tones placed at ±fOFFSET, or 2× (±fOFFSET), show reduced QEC performance. However, modulated signals centered at these
frequencies do not have reduced performance.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 92 of 336

QEC
BLOCK

JE
SD

20
4B

/C
 IN

TE
RF

AC
E

ADRV902x

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

SIGNAL
GEN

DAC

DACLPF

Tx LO

LPF

Tx
OUTPUT

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

ADC

ADCLPF

CAL
PLL

AUX LO

LPF

ORx
INPUT

FEEDBACK
PATH

ATTENUATOR

PA

PA POWERED OFF

COUPLER

22
77

0-
05

6

Figure 57. Transmitter QEC Tracking Calibration Configuration

Tx TxRx

TxQEC

RxAIR TIME

Tx ENABLE

ORx ENABLE

PERIODS WHERE
TxQEC

COULD RUN

22
77

0-
05

7

Figure 58. Timing Diagram Showing When Transmitter QEC can Run in TDD Mode

Transmitter LOL Tracking Calibration

The transmitter LO leakage tracking calibration uses an external path between the transmitter output and observation receiver input to
measure LO leakage and calculate correction factors. This calibration is run while user data is being transmitted (with the PA operational).
For this calibration, the auxiliary LO is used in the observation receiver path to offset the transmitter LO leakage from the observation
receiver LO. Figure 59 shows the transceiver configuration for the transmitter LO leakage tracking calibration with the transmitter output
looped back to the observation receiver input (an observation receiver on the same side of the chip as the transmitter being calibrated).

Note that if the observation receiver receives an input signal larger than the ADC full scale, the channel overloads and calibration results
are poor. The ARM does not issue a warning or error condition in this case.

It is a system requirement that the transmitter channel(s) must be enabled. The observation receiver path must be available for the ARM
to use (that is, not required by the user for DPD (or VSWR) captures). The observation receiver path must be connected to the appropriate
transmitter to be calibrated, and the ARM must be advised which transmitter output has a connection to which observation receiver.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 93 of 336

A proper channel estimate is required for optimal LOL tracking performance. A new initial channel estimate must be acquired when the
LO frequency changes or the observation receiver gain index changes. The following are two options to achieve a proper channel
estimate, but it is highly recommended to follow the first option:

1. Run external transmitter LO leakage initialization calibration. Ensure that mapping is set up properly, PA is enabled, and all tracking
calibrations are disabled.

2. If not running external transmitter LO leakage initialization calibration, follow this procedure:
a. Run transmitter LOL tracking calibration. If external transmitter LOL initial calibration is skipped, change LO frequency or

observation receiver attenuation and disable transmitter LOL tracking (if it is running).
b. If transmitter traffic has content at dc, disable data transmission. If data is offset from dc it can be left on.
c. Reset the desired channels using the ExtTxLolchannelReset() command.
d. Call TrackingCalTxLolStatusGet() and note the value of iterCount.
e. Enable transmitter LOL tracking.
f. Call TrackingCalTxLolStatusGet() again and note the value of iterCount
g. If the iterCount value has increased by at least 1, enable transmitter data transmission

QEC
BLOCK

JE
SD

20
4B

/C
 IN

TE
RF

AC
E

ADRV902x

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

SIGNAL
GEN

DAC

DACLPF

Tx LO

LPF

Tx
OUTPUT

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

ADC

ADCLPF

CAL
PLL

AUX LO

LPF

ORx
INPUT

FEEDBACK
PATH

ATTENUATOR

PA

PA POWERED OFF

COUPLER

22
77

0-
05

8

Figure 59. Transmitter LOL Tracking Configuration

CALIBRATION GUIDELINES AFTER PLL FREQUENCY CHANGES
Some applications require changing the PLL frequency for transmitter, receiver, or observation receiver signal paths after the transceiver
has started normal operation and tracking calibrations have improved performance. Some tracking calibrations require rerunning initial
calibrations after the PLL frequency change to relearn the new channel conditions. It is important that certain procedures are followed to
maintain proper operation of the tracking calibrations.

The LO frequency changes fall into one of two types. Type 1 is the LO frequency change that is described by both of the following criteria:

• The LO frequency change is less than 100 MHz.
• The LO frequency change does not step over an LO divider boundary, as explained in the Synthesizer Configuration section.

Type 2 is the LO Frequency change that is described by either of the following criteria:

• The LO frequency change is greater than 100 MHz.
• The LO frequency change steps over an LO divider boundary.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 94 of 336

Type 1 Frequency Change Procedure

If the LO frequency change falls into Type 1 described in the Calibration Guidelines after PLL Frequency Changes section, implement the
following procedure:

1. Disable all tracking calibrations
2. Disable all RF channels. If TX_EN/RX_EN/ORX_CTRL pins cannot stop toggling, put the transceiver into command control mode

via adi_adrv9025_RadioCtrlCfgSet(…), then call adi_adrv9025_RxTxEnaleSet(…) to disable all channels.
3. Rerun the following initial calibrations. Ensure to follow system considerations as described in System Considerations for Initial

Calibrations. Ensure that INTERNAL_PATH_DELAY is run prior to TX_QEC_INIT if calibrations are run one at a time. The ARM
sequences the calibrations properly when the following is true:
a. ADI_ADRV9025_INTERNAL_PATH_DELAY (if transmitter QEC tracking is used)

ADI_ADRV9025_LO_LEAKAGE_EXTERNAL. This step is optional but highly recommended. The PA must be enabled in this
step. Ensure that the external calibration is run for all transmitter to observation receiver mappings used in the application. If
the previous step is not executed, it is mandatory to call the adi_adrv9025_ExtTxLolChannelReset(…) command for each
transmitter channel. It must be called one transmitter channel at a time. Then a special procedure must be followed to relearn
the channel estimate described in the Transmitter LOL Tracking Calibration section.

b. Enable relevant tracking calibrations.
c. Transition back to pin control mode, if necessary.

Type 2 Frequency Change Procedure

If the LO frequency change falls into Type 2 as described in the Calibration Guidelines after PLL Frequency Changes section, implement a
similar procedure to the Type 1 frequency change procedure while adding the ADI_ADRV9025_LOOPBACK_RX_LO_DELAY and
ADI_ADRV9025_TX_QEC_INIT calibrations.

Initialization Calibrations Durations

To achieve best performance, the transceiver features autonomous internal calibrations that are performed during device initialization.
The calibrations are run in the post-MCS part of device initialization. The majority of the calibrations are run with a single API call after
the calibration structure is set. These are the internal calibrations that utilize internal loopback paths. Those that utilize external paths
(such as the external transmitter LOL calibration) are run separately afterward.

All of the calibrations are overseen and scheduled by the ARM processor, therefore the user does not have to be concerned about what
order the calibrations are run. The sequence is defined in a way so that those calibrations that depend on others are scheduled
appropriately. The amount of time it takes for the calibrations to complete are related to the internal high speed clock and the resulting IQ
rates of the receiver, transmitter, and observation receiver paths. The ARM clock is derived from the clock PLL.

In the Figure 60, the slices show the relative timing of each common initialization calibration relative to the total time. Some of the
calibrations are very short and mostly involve, for example, loading coefficients and initializing for operation, or measuring the delay of
the calibration path. Some other calibrations require observation of either internally generated calibration tones or pseudorandom noise
to calculate the required coefficients that are used to define the characteristics of the channel. However, other calibrations, for example the
transmitter QEC calibration, use an algorithm to determine the correction factors that can be influenced by the actual load conditions to
which the transmitter is connected. For these reasons, the amount of time each of the calibrations require to complete may vary slightly.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 95 of 336

TX_BB_FILTER
ADC_TUNER

TX_QEC_INIT
9%

TX_DAC

FLASH_CAL
3%

RX_TIA
1%

ORX_TIA
1%

LBRX_TIA
1%
RX_DC_OFFSET
3%

ORX_DC_OFFSET
7%

LBRX_DC_OFFSET

LOOPBACK_RX_LO_DELAY
5%

RX_QEC_INIT
23%

ORX_QEC_INIT
23%

INTERNAL_PATH_DELAY

TX_LO_LEAKAGE_INTERNAL
26%

22
77

0-
05

9

Figure 60. Relative Time Distribution of Initialization Calibrations

Table 68 through Table 97 are measured calibration times of the transceiver for a number of different use cases using the standard
calibration mask of 0xD73FF. These results can be used as guidelines as to what the typical expected times are for a particular
configuration. Table 68 through Table 97 are listed in pairs. The first of each pair lists the relevant bandwidths and sample rates. The
second table of each pair lists the calibration timing results in milliseconds for 1, 2, 3, and 4 enabled receiver or transmitter channels. In
the case of observation receiver calibrations, because there are just two shared paths, the entries for ORX_DC_OFFSET are different for 1
and 2 channels enabled, but remain the same for 3 and 4 channels enabled. Other observation receiver calibrations show differences from
1 to 4 channels because the paths from each of the transmitters are calibrated individually.

Table 68. ADRV9025Init_StdUseCase13_nonLinkSharing

Use Case
Transmitter
Bandwidth

Transmitter
Input Rate

Transmitter
DAC Rate

Observation
Receiver
Bandwidth

Observation
Receiver
Output Rate

Observation
Receiver
ADC Rate

Receiver
Bandwidth

Receiver
Output
Rate

Receiver
ADC Rate

UC13_NLS 225 MHz 245.76 MHz 1.966 GHz 225 MHz 245.76 MHz 4.915 GHz 100 MHz 122.88 MHz 1.966 GHz

Table 69. ADRV9025Init_StdUseCase13_nonLinkSharing Calibration Durations
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
TX_DAC 4 8 12 17
TX_BB_FILTER 2 2 4 5
ADC_TUNER 1 1 1 1
FLASH_CAL 219 263 324 365
RX_TIA 84 125 166 207
ORX_TIA 64 86 108 128
LBRX_TIA 64 86 107 129
RX_DC_OFFSET 451 451 451 451
ORX_DC_OFFSET 451 899 899 899
LBRX_DC_OFFSET 8 14 14 14
LOOPBACK_RX_LO_DELAY 175 345 510 679

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 96 of 336

Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
RX_QEC_INIT 756 1508 2262 3013
ORX_QEC_INIT 787 1570 2354 3137
INTERNAL_PATH_DELAY 1 1 3 3
TX_LO_LEAKAGE_INTERNAL 892 1781 2671 3560
TX_QEC_INIT 584 1162 1730 2323

Total Calibration Time 4545 8302 11616 14932

Table 70. ADRV9025Init_StdUseCase14_LinkSharing

Use
Case

Transmitter
Bandwidth

Transmitter
Input Rate

Transmitter
DAC Rate

Observation
Receiver
Bandwidth

Observation
Receiver
Output Rate

Observation
Receiver
ADC Rate

Receiver
Bandwidth

Receiver
Output
Rate

Receiver
ADC Rate

UC14_LS 450 MHz 491.52 MHz 1.966 GHz 450 MHz 491.52 MHz 4.915 GHz 200 MHz 245.76 MHz 4.915 GHz

Table 71. ADRV9025Init_StdUseCase14_LinkSharing Calibration Durations
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
TX_DAC 4 9 12 17
TX_BB_FILTER 1 2 4 4
ADC_TUNER 1 1 1 1
FLASH_CAL 219 263 324 365
RX_TIA 64 85 106 126
ORX_TIA 54 65 76 88
LBRX_TIA 54 65 77 87
RX_DC_OFFSET 451 451 451 450
ORX_DC_OFFSET 467 899 898 899
LBRX_DC_OFFSET 7 14 14 14
LOOPBACK_RX_LO_DELAY 163 324 484 644
RX_QEC_INIT 787 1570 2354 3138
ORX_QEC_INIT 785 1566 2347 3127
INTERNAL_PATH_DELAY 1 2 2 3
TX_LO_LEAKAGE_INTERNAL 876 1748 2622 3494
TX_QEC_INIT 293 595 908 1197

Total Calibration Time 4226 7658 10680 13654

Table 72. ADRV9025Init_StdUseCase14C_LinkSharing

Use Case
Transmitter
Bandwidth

Transmitter
Input Rate

Transmitter
DAC Rate

Observation
Receiver
Bandwidth

Observation
Receiver
Output Rate

Observation
Receiver
ADC Rate

Receiver
Bandwidth

Receiver
Output Rate

Receiver
ADC Rate

UC14C_LS 450 MHz 491.52 MHz 1.966 GHz 450 MHz 491.52 MHz 4.915GHz 200 MHz 245.76 MHz 4.915 GHz

Table 73. ADRV9025Init_StdUseCase14C_LinkSharing Calibration Durations
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
TX_DAC 3 6 11 15
TX_BB_FILTER 2 3 3 4
ADC_TUNER 1 1 1 1
FLASH_CAL 219 262 325 368
RX_TIA 64 85 105 126
ORX_TIA 54 65 76 87
LBRX_TIA 55 65 76 87
RX_DC_OFFSET 451 451 450 451
ORX_DC_OFFSET 450 899 899 899
LBRX_DC_OFFSET 7 15 14 14
LOOPBACK_RX_LO_DELAY 166 325 484 645

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 97 of 336

Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
RX_QEC_INIT 786 1569 2354 3138
ORX_QEC_INIT 784 1567 2350 3130
INTERNAL_PATH_DELAY 1 2 2 2
TX_LO_LEAKAGE_INTERNAL 876 1749 2622 3495
TX_QEC_INIT 307 593 902 1188

Total Calibration Time 4226 7657 10674 13649

Table 74. ADRV9025Init_StdUseCase23C_LinkSharing

Use Case
Transmitter
Bandwidth

Transmitter
Input Rate

Transmitter
DAC Rate

Observation
Receiver
Bandwidth

Observation
Receiver
Output Rate

Observation
Receiver
ADC Rate

Receiver
Bandwidth

Receiver
Output
Rate

Receiver
ADC Rate

UC23C_LS 337.5 MHz 368.64 MHz 1.475 GHz 337.5 MHz 368.64 MHz 3.686 GHz 150 MHz 184.32 MHz 3.686 GHz

Table 75. ADRV9025Init_StdUseCase23C_LinkSharing Calibration Durations
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
TX_DAC 4 5 9 11
TX_BB_FILTER 1 2 3 5
ADC_TUNER 1 1 1 1
FLASH_CAL 285 343 426 482
RX_TIA 84 111 139 172
ORX_TIA 72 86 100 114
LBRX_TIA 72 85 100 115
RX_DC_OFFSET 450 451 451 451
ORX_DC_OFFSET 451 899 898 898
LBRX_DC_OFFSET 7 14 14 15
LOOPBACK_RX_LO_DELAY 210 419 628 835
RX_QEC_INIT 863 1728 2583 3443
ORX_QEC_INIT 861 1718 2574 3430
INTERNAL_PATH_DELAY 1 2 3 4
TX_LO_LEAKAGE_INTERNAL 883 1765 2645 3526
TX_QEC_INIT 401 800 1192 1607

Total Calibration Time 4645 8429 11767 15108

Table 76. ADRV9025Init_StdUseCase26C_LinkSharing

Use Case
Transmitter
Bandwidth

Transmitter
Input Rate

Transmitter
DAC Rate

Observation
Receiver
Bandwidth

Observation
Receiver
Output Rate

Observation
Receiver
ADC Rate

Receiver
Bandwidth

Receiver
Output Rate

Receiver
ADC Rate

UC26C_LS 450 MHz 491.52 MHz 1.966 GHz 450 MHz 491.52 MHz 4.915 GHz 200 MHz 245.76 MHz 4.915 GHz

Table 77. ADRV9025Init_StdUseCase26C_LinkSharing Calibration Durations
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
TX_DAC 4 7 10 15
TX_BB_FILTER 1 2 3 4
ADC_TUNER 1 1 1 1
FLASH_CAL 220 263 324 367
RX_TIA 64 84 106 125
ORX_TIA 54 66 76 88
LBRX_TIA 55 65 75 86
RX_DC_OFFSET 451 450 451 450
ORX_DC_OFFSET 451 900 899 899
LBRX_DC_OFFSET 7 14 14 14
LOOPBACK_RX_LO_DELAY 163 323 485 645
RX_QEC_INIT 787 1571 2354 3137

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 98 of 336

Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
ORX_QEC_INIT 783 1564 2346 3125
INTERNAL_PATH_DELAY 1 2 2 3
TX_LO_LEAKAGE_INTERNAL 876 1748 2622 3494
TX_QEC_INIT 291 597 892 1201

Total Calibration Time 4210 7657 10660 13654

Table 78. ADRV9025Init_StdUseCase26C_nonLinkSharing

Use Case
Transmitter
Bandwidth

Transmitter
Input Rate

Transmitter
DAC Rate

Observation
Receiver
Bandwidth

Observation
Receiver
Output Rate

Observation
Receiver
ADC Rate

Receiver
Bandwidth

Receiver
Output
Rate

Receiver
ADC Rate

UC26C_NLS 450 MHz 491.52 MHz 1.966 GHz 450 MHz 491.52 MHz 4.915 GHz 200 MHz 245.76 MHz 4.915 GHz

Table 79. ADRV9025Init_StdUseCase26C_nonLinkSharing Calibration Durations
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
TX_DAC 3 7 13 14
TX_BB_FILTER 1 2 3 4
ADC_TUNER 1 1 1 1
FLASH_CAL 220 261 324 368
RX_TIA 64 85 105 125
ORX_TIA 54 65 77 87
LBRX_TIA 54 65 76 87
RX_DC_OFFSET 451 451 451 451
ORX_DC_OFFSET 450 899 899 899
LBRX_DC_OFFSET 7 14 14 15
LOOPBACK_RX_LO_DELAY 164 325 485 645
RX_QEC_INIT 786 1570 2355 3138
ORX_QEC_INIT 785 1565 2346 3128
INTERNAL_PATH_DELAY 1 1 2 2
TX_LO_LEAKAGE_INTERNAL 876 1749 2621 3494
TX_QEC_INIT 293 598 891 1192

Total Calibration Time 4211 7658 10663 13649

Table 80. ADRV9025Init_StdUseCase50_LinkSharing

Use
Case

Transmitter
Bandwidth

Transmitter
Input Rate

Transmitter
DAC Rate

Observation
Receiver
Bandwidth

Observation
Receiver
Output Rate

Observation
Receiver
ADC Rate

Receiver
Bandwidth

Receiver
Output
Rate

Receiver
ADC Rate

UC50_LS 450 MHz 122.88 MHz 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 100 MHz 122.88 MHz 1.966 GHz

Table 81. ADRV9025Init_StdUseCase50_LinkSharing Calibration Durations
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
TX_DAC 5 7 12 13
TX_BB_FILTER 1 2 3 4
ADC_TUNER 1 1 1 1
FLASH_CAL 218 261 324 369
RX_TIA 85 126 166 207
ORX_TIA 54 65 76 88
LBRX_TIA 54 66 75 87
RX_DC_OFFSET 451 452 451 452
ORX_DC_OFFSET 450 899 899 899
LBRX_DC_OFFSET 7 15 14 14
LOOPBACK_RX_LO_DELAY 172 342 506 663
RX_QEC_INIT 793 1583 2373 3161
ORX_QEC_INIT 784 1564 2347 3126
INTERNAL_PATH_DELAY 1 2 2 3

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 99 of 336

Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
TX_LO_LEAKAGE_INTERNAL 876 1749 2621 3494
TX_QEC_INIT 299 588 899 1186

Total Calibration Time 4251 7721 10771 13766

Table 82. ADRV9025Init_StdUseCase50_nonLinkSharing

Use Case
Transmitter
Bandwidth

Transmitter
Input Rate

Transmitter
DAC Rate

Observation
Receiver
Bandwidth

Observation
Receiver
Output Rate

Observation
Receiver
ADC Rate

Receiver
Bandwidth

Receiver
Output
Rate

Receiver
ADC Rate

UC50_LS 450 MHz 122.88 MHz 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 100 MHz 122.88 MHz 1.966 GHz

Table 83. ADRV9025Init_StdUseCase50_nonLinkSharing Calibration Durations
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
TX_DAC 4 8 10 15
TX_BB_FILTER 1 3 3 4
ADC_TUNER 1 1 1 1
FLASH_CAL 219 262 324 367
RX_TIA 84 125 167 208
ORX_TIA 54 65 77 87
LBRX_TIA 54 66 76 87
RX_DC_OFFSET 451 451 451 452
ORX_DC_OFFSET 451 899 899 898
LBRX_DC_OFFSET 7 14 15 14
LOOPBACK_RX_LO_DELAY 174 343 507 663
RX_QEC_INIT 757 1508 2261 3012
ORX_QEC_INIT 785 1564 2347 3129
INTERNAL_PATH_DELAY 1 1 2 2
TX_LO_LEAKAGE_INTERNAL 875 1749 2622 3494
TX_QEC_INIT 301 605 890 1200

Total Calibration Time 4219 7663 10651 13634

Table 84. ADRV9025Init_StdUseCase51_LinkSharing

Use
Case

Transmitter
Bandwidth

Transmitter
Input Rate

Transmitter
DAC Rate

Observation
Receiver
Bandwidth

Observation
Receiver
Output Rate

Observation
Receiver
ADC Rate

Receiver
Bandwidth

Receiver
Output
Rate

Receiver
ADC Rate

UC51_LS 450 MHz 245.76 MHz 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 200 MHz 245.76 MHz 4.915 GHz

Table 85. ADRV9025Init_StdUseCase51_LinkSharing Calibration Durations
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
TX_DAC 3 9 11 13
TX_BB_FILTER 1 3 3 4
ADC_TUNER 1 1 1 1
FLASH_CAL 219 262 324 367
RX_TIA 63 84 105 126
ORX_TIA 54 65 76 87
LBRX_TIA 54 64 75 87
RX_DC_OFFSET 450 451 451 451
ORX_DC_OFFSET 451 898 899 899
LBRX_DC_OFFSET 7 14 14 14
LOOPBACK_RX_LO_DELAY 165 328 488 647
RX_QEC_INIT 786 1571 2353 3139
ORX_QEC_INIT 783 1564 2347 3126
INTERNAL_PATH_DELAY 1 1 2 2
TX_LO_LEAKAGE_INTERNAL 873 1742 2612 3482
TX_QEC_INIT 291 598 921 1191

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 100 of 336

Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
Total Calibration Time 4203 7656 10682 13637

Table 86. ADRV9025Init_StdUseCase51_nonLinkSharing

Use Case
Transmitter
Bandwidth

Transmitter
Input Rate

Transmitter
DAC Rate

Observation
Receiver
Bandwidth

Observation
Receiver
Output Rate

Observation
Receiver
ADC Rate

Receiver
Bandwidth

Receiver
Output
Rate

Receiver
ADC Rate

UC51_NLS 450 MHz 245.76 MHz 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 200 MHz 245.76 MHz 4.915 GHz

Table 87. ADRV9025Init_StdUseCase51_nonLinkSharing Calibration Durations
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
TX_DAC 4 9 10 16
TX_BB_FILTER 2 2 3 5
ADC_TUNER 1 1 1 1
FLASH_CAL 219 263 325 367
RX_TIA 64 85 106 127
ORX_TIA 54 65 77 87
LBRX_TIA 54 65 76 87
RX_DC_OFFSET 451 450 451 450
ORX_DC_OFFSET 451 899 898 898
LBRX_DC_OFFSET 7 14 14 14
LOOPBACK_RX_LO_DELAY 164 326 486 646
RX_QEC_INIT 790 1573 2358 3142
ORX_QEC_INIT 783 1564 2346 3128
INTERNAL_PATH_DELAY 1 1 2 3
TX_LO_LEAKAGE_INTERNAL 872 1743 2612 3482
TX_QEC_INIT 293 600 921 1210

Total Calibration Time 4210 7659 10686 13664

Table 88. ADRV9025Init_StdUseCase54_nonLinkSharing

Use Case
Transmitter
Bandwidth

Transmitter
Input Rate

Transmitter
DAC Rate

Observation
Receiver
Bandwidth

Observation
Receiver
Output Rate

Observation
Receiver
ADC Rate

Receiver
Bandwidth

Receiver
Output
Rate

Receiver
ADC Rate

UC54_NLS 450 MHz 122.88 MHz 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 200 MHz 122.88 MHz 4.915 GHz

Table 89. ADRV9025Init_StdUseCase54_nonLinkSharing Calibration Durations
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
TX_DAC 86 89 92 97
TX_BB_FILTER 83 84 85 86
ADC_TUNER 82 81 82 81
FLASH_CAL 301 344 560 603
RX_TIA 146 167 228 250
ORX_TIA 136 147 199 210
LBRX_TIA 136 147 199 210
RX_DC_OFFSET 532 532 980 980
ORX_DC_OFFSET 532 980 1428 1877
LBRX_DC_OFFSET 89 96 102 109
LOOPBACK_RX_LO_DELAY 99 115 283 447
RX_QEC_INIT 870 1655 2440 3223
ORX_QEC_INIT 865 1647 2430 3211
INTERNAL_PATH_DELAY 82 83 85 84
TX_LO_LEAKAGE_INTERNAL 957 1850 2703 3576
TX_QEC_INIT 447 724 1022 1326

Total Calibration Time 5443 8742 12917 16370

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 101 of 336

Table 90. ADRV9025Init_StdUseCase55_nonLinkSharing

Use Case
Transmitter
Bandwidth

Transmitter
Input Rate

Transmitter
DAC Rate

Observation
Receiver
Bandwidth

Observation
Receiver
Output Rate

Observation
Receiver
ADC Rate

Receiver
Bandwidth

Receiver
Output
Rate

Receiver
ADC Rate

UC55_NLS 450 MHz 122.88 MHz 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 160 MHz 122.88 MHz 4.915 GHz

Table 91. ADRV9025Init_StdUseCase55_nonLinkSharing Calibration Durations
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
TX_DAC 86 89 93 119
TX_BB_FILTER 83 84 85 86
ADC_TUNER 81 82 81 81
FLASH_CAL 300 344 561 604
RX_TIA 146 166 227 248
ORX_TIA 136 160 199 209
LBRX_TIA 136 146 199 210
RX_DC_OFFSET 533 532 981 982
ORX_DC_OFFSET 532 980 1428 1877
LBRX_DC_OFFSET 89 96 103 110
LOOPBACK_RX_LO_DELAY 99 115 284 449
RX_QEC_INIT 656 1229 1799 2370
ORX_QEC_INIT 866 1658 2431 3211
INTERNAL_PATH_DELAY 82 83 84 85
TX_LO_LEAKAGE_INTERNAL 958 1831 2703 3576
TX_QEC_INIT 404 720 1017 1336

Total Calibration Time 5186 8315 12274 15552

Table 92. ADRV9025Init_StdUseCase61_LinkSharing

Use
Case

Transmitter
Bandwidth

Transmitter
Input Rate

Transmitter
DAC Rate

Observation
Receiver
Bandwidth

Observation
Receiver
Output Rate

Observation
Receiver
ADC Rate

Receiver
Bandwidth

Receiver
Output
Rate

Receiver
ADC Rate

UC61_LS 300 MHz 368.64 MHz 1.843 GHz 337.5 MHz 368.64 MHz 3.686 GHz 300 MHz 368.64 MHz 3.686 GHz

Table 93. ADRV9025Init_StdUseCase61_LinkSharing Calibration Durations
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
TX_DAC 7 11 15 20
TX_BB_FILTER 4 5 6 8
ADC_TUNER 2 3 3 3
FLASH_CAL 292 342 435 491
RX_TIA 73 88 102 117
ORX_TIA 74 88 103 118
LBRX_TIA 74 88 103 117
RX_DC_OFFSET 453 453 452 453
ORX_DC_OFFSET 453 901 901 902
LBRX_DC_OFFSET 11 21 22 21
LOOPBACK_RX_LO_DELAY 242 480 721 967
RX_QEC_INIT 861 1718 2573 3430
ORX_QEC_INIT 862 1717 2574 3431
INTERNAL_PATH_DELAY 4 5 5 7
TX_LO_LEAKAGE_INTERNAL 885 1763 2642 3521
TX_QEC_INIT 403 807 1231 1631

Total Calibration Time 4701 8489 11889 15236

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 102 of 336

Table 94. ADRV9025Init_StdUseCase82C_LinkSharing

Use Case
Transmitter
Bandwidth

Transmitter
Input Rate

Transmitter
DAC Rate

Observation
Receiver
Bandwidth

Observation
Receiver
Output Rate

Observation
Receiver
ADC Rate

Receiver
Bandwidth

Receiver
Output
Rate

Receiver
ADC Rate

UC82C_LS 450 MHz 491.52 MHz 1.966 GHz 450 MHz 491.52 MHz 4.915 GHz 200 MHz 245.76 MHz 4.915 GHz

Table 95. ADRV9025Init_StdUseCase82C_LinkSharing Calibration Durations
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
TX_DAC 5 7 10 15
TX_BB_FILTER 2 2 3 5
ADC_TUNER 1 1 1 1
FLASH_CAL 219 263 324 366
RX_TIA 63 84 105 127
ORX_TIA 54 65 76 87
LBRX_TIA 54 65 76 87
RX_DC_OFFSET 451 451 450 451
ORX_DC_OFFSET 451 899 899 898
LBRX_DC_OFFSET 7 14 14 14
LOOPBACK_RX_LO_DELAY 166 330 485 650
RX_QEC_INIT 787 1569 2354 3138
ORX_QEC_INIT 785 1564 2346 3126
INTERNAL_PATH_DELAY 1 2 2 3
TX_LO_LEAKAGE_INTERNAL 876 1749 2622 3495
TX_QEC_INIT 302 589 907 1188

Total Calibration Time 4224 7654 10676 13652

Table 96. ADRV9025Init_StdUseCase83C_LinkSharing

Use Case
Transmitter
Bandwidth

Transmitter
Input Rate

Transmitter
DAC Rate

Observation
Receiver
Bandwidth

Observation
Receiver
Output Rate

Observation
Receiver
ADC Rate

Receiver
Bandwidth

Receiver
Output
Rate

Receiver
ADC Rate

UC83C_LS 337.5 MHz 368.64 MHz 1.475 GHz 337.5 MHz 368.64 MHz 3.686 GHz 200 MHz 368.64 MHz 3.686G Hz

Table 97. ADRV9025Init_StdUseCase83C_LinkSharing Calibration Durations
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms)
TX_DAC 2 5 8 13
TX_BB_FILTER 1 3 3 5
ADC_TUNER 1 1 1 1
FLASH_CAL 285 343 425 483
RX_TIA 71 84 99 112
ORX_TIA 71 85 99 115
LBRX_TIA 71 85 100 114
RX_DC_OFFSET 451 451 450 451
ORX_DC_OFFSET 450 899 898 899
LBRX_DC_OFFSET 7 14 14 14
LOOPBACK_RX_LO_DELAY 208 416 625 830
RX_QEC_INIT 547 1094 1638 2184
ORX_QEC_INIT 860 1717 2572 3437
INTERNAL_PATH_DELAY 1 2 3 4
TX_LO_LEAKAGE_INTERNAL 883 1764 2645 3525
TX_QEC_INIT 419 818 1202 1639

Total Calibration Time 4328 7781 10782 13826

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 103 of 336

INITIALIZATION CALIBRATIONS TO BE RUN AFTER DEVICE INITIALIZATION
The transceiver requires a few additional initialization calibrations to be run after the standard set because they require external signal
routing. An external transmitter LOL initialization calibration is available where the observation point is moved from inside the device to
the selected observation receiver input. In this case, the transmitter channel is typically connected to a directional coupler after the PA in
the antenna path. This configuration results in the best possible performance because the correction observation point is moved to the PA
output. The calibration is run on each transmitter individually after the correct observation input path has been set. Similarly, crest factor
reduction (CFR) calibrations are also run separately and sequentially. Refer to Table 61 for the appropriate calibration mask.

Table 98 addresses the typical times for these initialization calibrations. Note that the CFR initialization calibration is mostly coefficient
setting and, therefore, completes quickly.

Table 98. Post Initialization Transmitter Calibrations
Initialization Calibration Time
TX_LO_LEAKAGE_EXTERNAL 122.88 MHz IQ Rate 320 ms
TX_LO_LEAKAGE_EXTERNAL 245.76 MHz IQ Rate and Higher 230 ms
Crest Factor Reduction (ADRV9029 only) <1 ms

TRACKING CALIBRATION TIMING
Tracking calibrations are provided to maintain performance over the device operating conditions. The ARM processor periodically runs
the enabled tracking calibrations according to the tracking calibration scheduler.

On the receive side, there are receiver QEC, observation receiver QEC, and on some devices, receiver HD2 tracking calibrations. These
calibrations, when enabled, constantly observe the receiver (or observation receiver) spectrum and update the correction parameters
while the computations are completed. They are triggered on a 7 ms schedule, but are essentially running continuously in the background
whenever the channel is enabled.

The transmitter tracking calibrations include transmitter LOL, transmitter QEC, and some versions of the device also include closed-loop
gain control (CLGC) tracking calibration. When the tracking calibrations are enabled on the transmitter, the spectrum is observed based
upon the available observation path, and correction parameters are applied to each transmitter as the computations are completed.

Transmitter LOL tracking calibration runs on a 6 second schedule. The samples are collected in batches of 20 µs durations for a total
sample size of approximately 30 ms. The transmitter QEC runs on a 30 sec schedule and also collects batches in 20 μs durations. The
transmitter QEC captures as many batches as necessary to obtain acceptable correlator results. The time to finish can vary and can be
from 100 μs to 55 ms. However, because the calibration batches run in the background, the absolute time is not of concern to the user.
Even though these calibrations run at fixed intervals (6 seconds and 30 seconds), any change in transmitter attenuation causes both
calibrations to be restarted. This is done to quickly correct any channel impairments.

The CLGC tracking calibration runs on a 1 second schedule with similar batch sizes. In the case of JESD204C, an additional tracking
calibration is run to maintain the link parameters on a 60 second schedule.

ARM MEMORY DUMP
The contents of the ARM firmware memory and ARM data memory can be captured for debugging purposes by using the
adi_adrv9025_ArmMemDump(…) API function.

adi_adrv9025_ArmMemDump(…)
adi_adrv9025_ArmMemDump(adi_adrv9025_Device_t *device, const char *binaryFilename)

Description

This utility function reads the ARM memory and writes the binary byte array directly to a binary file. The first 224 kB correspond to the
program memory. The following 160 kB correspond to the data memory. The binaryFilename file is opened before reading the ARM
memory to verify that the file has valid write access. A file IO exception is thrown if the file does not have valid write access.

Precondition

Device initialization is the only precondition.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 104 of 336

Parameters

Table 99. adi_adrv9025_ArmMemDump(…) Parameters
Parameter Description
*device Pointer to device structure.
*binaryFilename File opened by the API to store ARM memory contents. Total size must be 384 kB.

Whenever it is necessary to debug an issue, an ARM memory dump can be captured, and the resulting binaryFilename file can be sent to
Analog Devices for analysis. To correctly capture the ARM memory content, the adi_adrv9025_ArmMemDump(…) API function must
set the ARM processor into an exception state. After calling the adi_adrv9025_ArmMemDump(…) API function, the device must be
reinitialized to put the ARM back into its normal operating condition.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 105 of 336

STREAM PROCESSOR AND SYSTEM CONTROL
A stream processor is a processor within the transceiver tasked with performing a series of configuration tasks based on some event. After
a request from the user, the stream processor performs a series of predefined actions that are loaded into the stream processor during
device initialization. This processor takes full advantage of the speed of the internal register buses for efficient execution of commands.
The stream processor can access and modify registers independently, avoiding the need for ARM interaction.

The stream processor executes streams, or series of tasks, for the following:

• Tx1/Tx2/Tx3/Tx4 enable/disable
• Rx1/Rx2/Rx3/Rx4 enable/disable
• ORx1/ORx2/ORx3/ORx4 enable/disable

The transceiver flexibility is maintained by implementing the stream processors with similar flexibility. The stream processor image
changes with configuration, similar to how the initialization structures change with the selected profiles. For example, the stream that
enables the receivers differs depending on the JESD204B and JESD204C interface configuration. For this reason, it is necessary to save a
stream image for each device configuration. When the user saves the configuration files (.c) using the GUI, a stream binary image is
generated automatically. Use this stream file when initializing the transceiver with the profile in question.

The following are examples of how the stream files can differ:

• The framer choices for observation receiver and receiver
• For link sharing purposes
• If floating point formatting is being used on receiver and observation receiver paths, the stream image can change

Eleven separate stream processors exist in the transceiver, which are each responsible for the execution of some dedicated functionality
within the device. These stream processors can be divided into two broad categories, slice stream processors and the core stream processor.

SLICE STREAM PROCESSORS
There are ten slice stream processors, one each for the four transmitter and four receiver data paths, and two for the observation receiver
data paths. Note that even though there are four distinct RF front ends for the observation receiver, the transceiver only supports two
digital data paths, one shared between Observation Receiver 1 and Observation Receiver 2 and another shared between Observation
Receiver 3 and Observation Receiver 4. These observation receiver data paths are also shared with the internal transmitter channel
loopback paths to facilitate data collection during the various transmitter calibrations. The existence of individual slice stream processors
for each data path enables true real-time parallel operation of all unique transmitter and receiver data paths. The observation receiver
data paths still must be managed based on the various system operation use cases detailed in this section.

Because each slice stream processor is limited to some dedicated part of the transceiver, a given slice stream processor may only access the
digital register sub maps corresponding to its specific functionality. For example, the transmitter slice stream processors can only access
the transmitter digital sub maps.

Core Stream Processor

There is also a core stream processor that has access to the entire transceiver. The core stream processor services GPIO pin-based streams
and any custom streams that are cross domain.

SYSTEM CONTROL
The signal paths within the transceiver can be controlled by either the API or through pin control. In the case of API control, control
relies on the SPI communication bus and its inherent unpredictable timing with respect to register access. For critical time alignment
when powering on or off signal chains, pin control is recommended. The device defaults to API mode upon power up.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 106 of 336

API Control

adi_adrv9025_RxTxEnableSet(…)
adi_adrv9025_RxTxEnableSet(adi_adrv9025_Device_t *device, uint32_t rxChannelMask, uint32_t
txChannelMask)

Description

This API controls and configures the transmitter and receiver data paths.

Parameters

Table 100. adi_adrv9025_RxTxEnableSet(…) Parameters
Parameter Description
*device Pointer to device structure.
rxChannelMask The desired receiver/observation receiver signal chain to power up. See Table 101 for the list of enumerators.
txChannelMask The desired transmitter signal chain to power up. See Table 102 for the list of enumerators.

The enumerators are used (OR’ed) to create a value for the channel masks that determine the paths enabled when this API is called. The
selected channels remain active until further instruction from this API command. It is important to note that if an observation receiver
channel is enabled continuously and not returned to ADI_ADRV9025_RXOFF for any time, the transmitter tracking calibrations are able
to function.

Table 101. adi_adrv9025_RxChannels_e Enumerator Definition
adi_adrv9025_RxChannels_e Enum Enabled Channels
ADI_ADRV9025_RXOFF No receiver or observation receiver channels enabled
ADI_ADRV9025_RX1 Rx1 enabled
ADI_ADRV9025_RX2 Rx2 enabled
ADI_ADRV9025_RX3 Rx3 enabled
ADI_ADRV9025_RX4 Rx4 enabled
ADI_ADRV9025_ORX1 ORx1 enabled
ADI_ADRV9025_ORX2 ORx2 enabled
ADI_ADRV9025_ORX3 ORx3 enabled
ADI_ADRV9025_ORX4 ORx4 enabled
ADI_ADRV9025_LB12 Tx1 or Tx2 internal loopback into ORx1/2 channel enabled
ADI_ADRV9025_LB34 Tx3 or Tx4 internal loopback into ORx3/4 channel enabled

Table 102. adi_adrv9025_TxChannels_e Enumerator Definition
adi_adrv9025_TxChannels_e Enum Enabled Channels
ADI_ADRV9025_TXOFF No transmitter channels enabled
ADI_ADRV9025_TX1 Tx1 enabled
ADI_ADRV9025_TX2 Tx2 enabled
ADI_ADRV9025_TX3 Tx3 enabled
ADI_ADRV9025_TX4 Tx4 enabled
ADI_ADRV9025_TXALL All transmitters enabled

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 107 of 336

Pin Control

The individual channels can also be controlled using a series of enable pins. In pin control mode, the receiver and transmitter signal
chains are controlled using dedicated pins, one RX_ENABLE pin per receiver and one TX_ENABLE pin per transmitter. When these pins
are toggled high, the relevant signal chain is enabled. When these pins are toggled low, the relevant signal chain is disabled.

The observation receiver paths can be controlled in various modes, as indicated in Table 103.

Table 103. Observation Receiver Select Mechanisms
Observation
Receiver Pin
Mode

Observation Receiver Select Mechanism

Single Channel
1-Pin Mode

In this mode, a single channel is selected through the API (over SPI). ORX_CTRL_A is the enable/disable control pin.
When high, the selected observation receiver is enabled, and when low, all observation receiver paths are disabled.
Figure 61 shows single Channel 1 pin mode. Note that ORx1 has been shown in this example. However, any of ORx1 to
ORx4 can be chosen.

Single Channel
2-Pin Mode

In this mode, ORX_CTRL_A is the enable/disable control pin. When high, the selected observation receiver is enabled,
and when low, all observation receiver paths are disabled. The ORX_CTRL_B pin is used to select the observation
receiver path, allowing the user to choose between two different observation receiver paths. These paths are
predetermined through the API (over SPI), with one path selected when ORX_CTRL_B is high and another when it is
low. This mode is shown in Figure 62. Note where ORx2 on and ORx3 on are shown in Figure 62. Any of the other
observation receivers can be configured to turn on at this time instead of ORx2 or ORx3.

Single Channel
3-Pin Mode

ORX_CTRL_A is the enable/disable control. Observation receiver select is accomplished by ORX_CTRL_B and
ORX_CTRL_C. The mapping of which path is selected is as follows.

 ORX_CTRL_C ORX_CTRL_B Path Selected
 0 0 ORx1
 0 1 ORx2
 1 0 ORx3
 1 1 ORx4
 This mode is shown in Figure 63.
Dual Channel

2-Pin Mode
In this mode, ORX_CTRL_A and ORX_CTRL_C are the enable/disable control, allowing the user to choose between two
different observation receiver paths. These paths are predetermined through the API (over SPI). This mode is shown in
Figure 64.

Dual Channel
4-Pin Mode

In this mode, ORX_CTRL_A and ORX_CTRL_C are the enable/disable controls while ORX_CTRL_B and ORX_CTRL_D
select which channel is to be enabled, allowing the user to choose between four different observation receiver paths.
This mode is shown in Figure 65.

ORX_CTRL_A

ORx1
ON

ALL
ORx
OFF

ALL
ORx
OFF

ALL
ORx
OFF

ALL
ORx
OFF

ALL
ORx
OFF

ALL
ORx
OFF

ORx1
ON

22
77

0-
06

0

Figure 61. Single-Channel 1-Pin Mode

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 108 of 336

ORX_CTRL_A

ORX_CTRL_B

ORx2
ON

ALL
ORx
OFF

ALL
ORx
OFF

ALL
ORx
OFF

ALL
ORx
OFF

ORx3
ON

ORx2
ON

ORx3
ON

22
77

0-
06

1

Figure 62. Single-Channel 2-Pin Mode

ORX_CTRL_A

ORX_CTRL_C

ORx2
ON

ALL
ORx
OFF

ALL
ORx
OFF

ALL
ORx
OFF

ALL
ORx
OFF

ORx2
ON

ORx3
ON

ORx4
ON

ORX_CTRL_B

22
77

0-
06

2

Figure 63. Single-Channel 3-Pin Mode

ORX_CTRL_C

ORX_CTRL_A

ORx1/ORx2
OFF

ORx1/ORx2
ON

ORx1/ORx2
OFF

ORx1/ORx2
ON

ORx1/ORx2
OFF

ORx1/ORx2
ON

ORx1/ORx2
OFF

ORx1/ORx2
ON

ORx3/ORx4
ON

ORx3/ORx4
OFF

ORx3/ORx4
ON

ORx3/ORx4
OFF

ORx3/ORx4
ON

ORx3/ORx4
OFF

ORx3/ORx4
ON

ORx3/ORx4
OFF

22
77

0-
06

3

Figure 64. Dual-Channel 2-Pin Mode

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 109 of 336

ORX_CTRL_B

ORX_CTRL_A

ORX_CTRL_D

ORx4
ON

ORx3 AND
ORx4
OFF

ORx3 AND
ORx4
OFF

ORx3 AND
ORx4
OFF

ORx3
ON

ORx4
ON

ORx3
ON

ORx1
ON

ORx1 AND
ORx2
OFF

ORx1 AND
ORx2
OFF

ORx1 AND
ORx2
OFF

ORx2
ON

ORx1
ON

ORx2
ON

ORX_CTRL_C

ORx1
ON

ORx4
ON

22
77

0-
06

4

Figure 65. Dual-Channel 4-Pin Mode

The user can set the channel control mode (API/pin) with the post multichip sequence API function.

adi_adrv9025_PostMcsInit(…)
adi_adrv9025_PostMcsInit(adi_adrv9025_Device_t *device, adi_adrv9025_PostMcsInit_t *utilityInit)

Description

This API sets the channel control mode (API or pin).

Parameters

Table 104. adi_adrv9025_PostMcsInit(…) Parameters
Parameter Description
*device Pointer to device structure.
*utilityInit Structure of type adi_adrv9025_PostMcsInit_t containing all relevant settings for the post MCS initialization routines.

This command contains a structure of type adi_adrv9025_RadioctrlInit_t for setting up how the device is controlled. Inside this structure
is the structure adi_adrv9025_RadioCtrlModeCfg_t that contains the radio control mode configuration for the transmitter, receiver, and
observation receiver channels.

This structure is defined in Table 105 and, depending on how the user configures this structure before the call to
adi_adrv9025_PostMcsInit(), the device is configured in either pin or API mode.

Table 105. adi_adrv9025_RadioCtrlModeCfg_t Definition
Member Name Description
txRadioCtrlModeCfg Transmitter signal path enable mode configuration. See Table 106 for description.
rxRadioCtrlModeCfg Receiver signal path enable mode configuration. See Table 107 for description.
orxRadioCtrlModeCfg Observation receiver signal path enable mode configuration. See Table 108 for description.

Table 106. adi_adrv9025_TxRadioCtrlModeCfg_t Definition
Member Name Value Description
txEnableMode A value of type adi_adrv9025_TxEnableMode_e options are
 ADI_ADRV9025_TX_EN_SPI_MODE Setting this mode selects API (or SPI) mode to control

the transmitter signal path.
 ADI_ADRV9025_TX_EN_PIN_MODE Setting this mode does not modify the currently set

mode to control the transmitter signal path.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 110 of 336

Member Name Value Description
 ADI_ADRV9025_TX_EN_INVALID_MODE Setting this mode selects no mode to control the

transmitter signal path.
txChannelMask Bit mask, one bit per channel ([D0] = Tx1, [D1] = Tx2, [D2] =

Tx3, [D3] = Tx4). For example, to apply this to all four
transmitters, txChannelMask is set to 15.

Set this to the transmitter channels desired to configure
with the selected txEnableMode.

Table 107. adi_adrv9025_RxRadioCtrlModeCfg_t Definition
Member Name Value Description
rxEnableMode A value of type adi_adrv9025_RxEnableMode_e, options are

ADI_ADRV9025_RX_EN_SPI_MODE Setting this mode selects API (or SPI) mode to control
the receiver signal path

ADI_ADRV9025_RX_EN_PIN_MODE Setting this mode selects the pin mode to control the
receiver signal path

ADI_ADRV9025_RX_EN_INVALID_MODE Setting this mode does not modify the currently set
mode to control the receiver signal path

rxChannelMask Bit mask, one bit per channel ([D0] = Rx1, [D1] = Rx2, [D2] =
Rx3, [D3] = Rx4). For example, to apply this to all four
receivers, rxChannelMask is set to 15.

Set this to the receiver channels you want to configure
with the selected rxEnableMode

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 111 of 336

Table 108. adi_adrv9025_ORxRadioCtrlModeCfg_t Definition
Member Name Value Description
orxEnableMode A value of type adi_adrv9025_OrxEnableMode_e, options are

ADI_ADRV9025_ORX_EN_SPI_MODE Setting this mode selects API
(or SPI) mode to control the
observation receiver signal path

ADI_ADRV9025_ORX_EN_SINGLE_CH_3PIN_MODE Setting this mode puts the
device in Single Channel 3
pin mode, as described in
Table 103

ADI_ADRV9025_ORX_EN_SINGLE_CH_2PIN_MODE Setting this mode puts the
device in Single Channel 2
pin mode, as described in
Table 103

ADI_ADRV9025_ORX_EN_SINGLE_CH_1PIN_MODE Setting this mode puts the
device in Single Channel 1
pin mode, as described in
Table 103

ADI_ADRV9025_ORX_EN_DUAL_CH_4PIN_MODE Setting this mode puts the
device in Dual Channel 4
pin mode, as described in
Table 103

ADI_ADRV9025_ORX_EN_DUAL_CH_2PIN_MODE Setting this mode puts the
device in Dual Channel 2
pin mode, as described in
Table 103

ADI_ADRV9025_ORX_EN_INVALID_MODE Setting this mode does not
modify the currently set mode
to control the observation
receiver signal path

orxPinSelectSettlingDelay_armClkCycles Minimum value: 0, maximum value: 16 Amount of time for the
firmware to wait before
sampling pins used for
observation receiver selection,
minimum is 2 ARM clock
cycles, maximum is 18 ARM
clock cycles

singleChannel1PinModeOrxSel A value of type adi_adrv9025_
SingleChannelPinModeOrxSel_e, options are

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX1_FE Selects ORx1 when in Single
Channel 1 pin observation
receiver enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX2_FE Selects ORx2 when in Single
Channel 1 pin observation
receiver enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX3_FE Selects ORx3 when in Single
Channel 1 pin observation
receiver enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX4_FE Selects ORx4 when in Single
Channel 1 pin observation
receiver enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_INVALID_ORX_SEL Does not modify the current
mode of the observation
receiver when in Single Channel
1 pin observation receiver
enable mode

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 112 of 336

Member Name Value Description
singleChannel2PinModeLowOrxSel A value of type

adi_adrv9025_SingleChannelPinModeOrxSel_e, options are

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX1_FE Selects ORx1 when the
ORX_CTRL_B pin is low in Single
Channel 2 pin observation
receiver enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX2_FE Selects ORx2 when the
ORX_CTRL_B pin is low in Single
Channel 2 pin observation
receiver enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX3_FE Selects ORx3 when the
ORX_CTRL_B pin is low in Single
Channel 2 pin observation
receiver enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX4_FE Selects ORx4 when the
ORX_CTRL_B pin is low in Single
Channel 2 pin observation
receiver enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_INVALID_ORX_SEL Does not modify the current
mode of the observation
receiver when the ORX_CTRL_B
pin is low in Single Channel 2
pin observation receiver
enable mode

singleChannel2PinModeHighOrxSel A value of type
adi_adrv9025_SingleChannelPinModeOrxSel_e, options are

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX1_FE Selects ORx1 when the
ORX_CTRL_B pin is high in
Single Channel 2 pin observation
receiver enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX2_FE Selects ORx2 when the
ORX_CTRL_B pin is high in
Single Channel 2 pin observation
receiver enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX3_FE Selects ORx3 when the
ORX_CTRL_B pin is high in
Single Channel 2 pin observation
receiver enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX4_FE Selects ORx4 when the
ORX_CTRL_B pin is high in
Single Channel 2 pin observation
receiver enable mode

ADI_ADRV9025_SINGLE_CH_PIN_MODE_INVALID_ORX_SEL Does not modify the current
mode of the observation
receiver when the ORX_CTRL_B
pin is high in Single Channel 2
pin observation receiver
enable mode

dualChannel2PinModeOrxSel A value of type adi_adrv9025_DualChannelPinModeOrxSel_e,
options are

 ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX1_ORX3_SEL Selects ORx1 and ORx3 when
the device is in Dual Channel 2
pin mode

 ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX1_ORX4_SEL Selects ORx1 and ORx4 when
the device is in Dual Channel 2
pin mode

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 113 of 336

Member Name Value Description
 ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX2_ORX3_SEL Selects ORx2 and ORx3 when

the device is in Dual Channel 2
pin mode

 ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX2_ORX4_SEL Selects ORx2 and ORx4 when
the device is in Dual Channel 2
pin mode

 ADI_ADRV9025_DUAL_CH_PIN_MODE_INVALID_ORX_SEL Does not modify the current
mode of the observation
receiver when the device is in
Dual Channel 2 pin mode

ADC Crossbar Control

There are two control modes for the ADC crossbar (Xbar) switches that feed the JESD204B and JESD204C interface serializers during
link sharing mode. In the default mode, the receiver channel is connected to the serializer when the enable pin of the channel is active,
and the observation receiver channel is connected to the serializer when the ORX_CTRL pins are driven to select the observation receiver
channel. A second mode called ADC crossbar toggling exists that assigns the path control solely to the observation receiver channel
control signals.

When ADC crossbar toggling is enabled, the ADC sample crossbar connects the desired observation receiver channel to the serializer
when that channel is enabled using the ORX_CTRL pins. When the ORX_CTRL pins disable the observation receiver channel, the
receiver channel is automatically connected to the serializer. This allows the system to keep the receiver channel enabled during link
sharing operation and limit toggling to the ORX_CTRL inputs.

ADC crossbar control can be enabled in a stream file by selecting ADC Xbar control in the TES Stream Settings window before
generating the stream. The appropriate selection is shown in Figure 66.

22
77

0-
06

5

Figure 66. Stream Settings Window for Selecting ADC Xbar Control Mode

USE CASES
This section details example use cases for the transceiver that show how the device is typically operated to ensure that calibrations are run.

4 Transmitter/4 Receiver/2 Observation Receiver Input Use Case

In the 4 transmitter/4 receiver/2 observation receiver use case, the transceiver is configured in a way so that two transmitters feed back
into one observation receiver for each side of the device. The ORX_CTRL signals are configured in Single Channel 2 pin mode, with
ORX_CTRL_A and ORX_CTRL_B used to determine which observation receiver is enabled and selected for the observation purposes of
the user. ORX_CTRL_A is high at all times, because an observation receiver path is always being used. When ORX_CTRL_A goes low,
regardless of the state of ORX_CTRL_B, no observation receiver channel is enabled. ORX_CTRL_B determines which observation
receiver channel the user is observing. For this example, ORx2 and ORx3 are being used. Note that ORx1 can be used in place of ORx2, or
ORx4 can be used in place of ORx3. At least one observation receiver from each side of the device must be used. Therefore, either ORx1
or ORx2 must be used for calibrations on Tx1 and Tx2. The observation receiver from one side of the device cannot be used to calibrate
the transmitter on the other side of the device. That is, ORx1 or ORx2 cannot be used to calibrate Tx3 and Tx4.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 114 of 336

The ORX_TX_SEL and ORX2_TX_EN signals are used to indicate the external routing of the feedback paths, allowing the ARM to know
which transmitter is being looped back to which observation receiver at a given time, and whether a calibration may be run or not.
Because a transmitter is always available at an observation receiver on its own side of the chip, ORX2_TX_EN and ORX3_TX_EN are
defaulted high over SPI while they remain fixed. ORX2_TX_SEL and ORX3_TX_SEL indicate the external routing of a transmitter to a
given observation receiver. When ORX2_TX_SEL is low, it indicates that the Tx1 path is routed back to ORx2. Likewise, when
ORX2_TX_SEL is high, this indicates that the Tx2 path is routed back to the ORx2 input. This is similar for ORX3_TX_SEL, in a way that
when this signal is low, it indicates that the Tx3 path is routed back to the ORx3 input. Likewise, when ORX3_TX_SEL is high, the Tx4
path is routed back to the ORx3 input.

For this use case, internal calibrations can be performed on the inactive observation receiver channel while an external calibration is
running on the active channel. In the first time slot of the timing diagram in Figure 68, it is shown that ORx2 is enabled by the user. PA1
and PA3 have been routed back to ORx2 and ORx3, respectively. The transceiver can perform an external LOL tracking calibration for
Tx3 via ORx3, or a QEC tracking calibration on Tx3 or Tx4, while the system is performing calculations for PA1. The QEC tracking
calibration is performed via an internal routing between each transmitter channel and its corresponding observation receiver channel.
The external LOL tracking calibration, however, can only be performed when an external loopback path is available. In the second time
slot in Figure 68, ORx2 is still enabled for the user with PA2 and PA4 made available to ORx2 and ORx3. The system can perform calculations
for PA2 via ORx2 while performing a QEC tracking calibration on Tx3 or Tx4, or an external LOL tracking calibration on Tx4.

Note that calibrations are not automatically run in a designated time slot. The ARM scheduler of the device schedules which calibrations
run at any given time. For more information on the scheduler, refer to the ARM Processor and Device Calibrations section. Also, the
same JESD204B and JESD204C link can be used for ORx2 and ORx3 in this scenario because only one observation receiver is used at any
given time.

Tx3

Rx3

ORx3/ORx4

Rx4

Tx4

GPIO_Y GPIO_X

Tx2

Rx2

ORx1/ORx2

Rx1

Tx1

SERDES

BALUN

BALUN

BALUN

BALUN

BALUN

PA

PA

ORx3_Tx_SEL

LNA

LNA

ANTENNA 3

ANTENNA 4

SWITCH

BALUN

BALUN

BALUN

BALUN

BALUN

PA

PA

LNA

LNA

ANTENNA 2

ANTENNA 1

SWITCH

LO1

LO1

LO1

LO1

LO1

LO1

LO1

LO1

LO1

LO1

ORx2_Tx_SEL

MACRO TDD/MASSIVE MIMO
4T, 4R, 2ORx

22
77

0-
06

6

Figure 67. 4 Transmitter/4 Receiver/2 Observation Receiver Configuration

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 115 of 336

ORX_CTRL_B

ORX_CTRL_A

PA OUTPUT
TO ORx JESD

ORx3_Tx_SEL

ORx2_Tx_EN
ORx3_Tx_EN

ORx2

PA1 PA2

PA4PA3

PA1 PA2

PA4PA3

PA1 PA2 PA4PA3 PA1 PA2 PA4PA3 PA1 PA2 PA4PA3

ORx2 ORx3 ORx3 ORx2 ORx2 ORx3 ORx3 ORx2 ORx2 ORx3 ORx3

ORx2_Tx_SEL

ORx2 USAGE

ORx3 USAGE

PA1 PA2 CALIBRATIONS
Tx1/Tx2 PA1 PA2 CALIBRATIONS

Tx1/Tx2 PA1 PA2 CALIBRATIONS
Tx1/Tx2

PA3 PA4PA3 PA4CALIBRATIONS
Tx3/Tx4

CALIBRATIONS
Tx3/Tx4

CALIBRATIONS
Tx3/Tx4

DEFAULTED TO HIGH OVER SPI
1

PA3 PA4

22
77

0-
06

7

Figure 68. Observation Receiver Enable and Transmitter Select Signals: 4 Transmitter/4 Receiver/2 Observation Receiver Configuration

4 Transmitter/4 Receiver/4 Observation Receiver Input Use Case

In this use case, each transmitter is routed back to its own observation receiver input. The transceiver is configured in Single Channel 3
pin mode for this use case. ORX_CTRL_A is principally high all the time, meaning an observation receiver path is always being used.
ORX_CTRL_B and ORX_CTRL_C determine what observation receiver channel is enabled and selected for the observation purposes of
the user. Refer to Table 109 for how each observation receiver is selected via the two observation receiver select signals.

Table 109. Observation Receiver Select Logic
Logic of ORX_CTRL_C (MSB) and ORX_CTRL_B (LSB) Observation Receiver Selected
00 ORx1
01 ORx2
10 ORx3
11 ORx4

Because each transmitter is routed back to a separate observation receiver input, there is no need for external switching in this use case
and each of the ORX_TX_SEL signals can be set to a default value via the SPI. ORX2_TX_SEL and ORX4_TX_SEL are both defaulted to
a high state, and ORX1_TX_SEL and ORX3_TX_SEL are both defaulted to a low state. ORX1_TX_EN, ORX2_TX_EN, ORX3_TX_EN,
and ORX4_TX_EN are all defaulted to a high state.

The first time slot in the timing diagram in Figure 70 shows that the ORX_CTRL_B and ORX_CTRL_C signals are set to a 00 value,
enabling ORx1 to the user. In this scenario, calculations can be performed on PA1. ORx2 is on this side of the chip. Therefore, the device
cannot use it for any calibrations during this time slot. The other side of the chip can be utilized via ORx3/ORx4 for calibrations. Note
that calibrations can be performed on either Tx3 or Tx4 and it is up to the scheduler to determine what calibration for which transmitter

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 116 of 336

is to run in a given time slot. Because each transmitter is permanently routed back to its own observation receiver, the external path always exists
for external LOL tracking to run.

Because only one observation receiver is used at any given time, the same JESD204B and JESD204C link for ORx1, ORx2, ORx3, and
ORx4 can be used in this scenario.

Tx3

Rx3

ORx3/ORx4

Rx4

Tx4

Tx2

Rx2

ORx1/ORx2

Rx1

Tx1

SERDES

LO1

LO1

LO1

LO1

LO1

LO1

LO1

LO1

LO1

LO1

MACRO TDD/MASSIVE MIMO
4T, 4R, 4ORx

BALUN

BALUN

BALUN

BALUN

BALUN

BALUN

PA

PA

LNA

LNA

ANTENNA 3

ANTENNA 4

BALUN

BALUN

BALUN

BALUN

BALUN

BALUN

ANTENNA 2

ANTENNA 1

PA

PA

LNA

LNA

22
77

0-
06

8

Figure 69. 4 Transmitter/4 Receiver/4 Observation Receiver Configuration

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 117 of 336

ORX_CTRL_B

ORX_CTRL_A

PA OUTPUT
TO ORx JESD

ORx1_Tx_EN
ORx3_Tx_EN

PA1 PA2 PA4PA3 PA1 PA2 PA4PA3 PA1 PA2 PA4PA3

ORx2_Tx_SEL

ORx1 USAGE

ORx3 USAGE

PA1 Tx1
CALIBRATIONS PA1 Tx1

CALIBRATIONS PA1 Tx1
CALIBRATIONS

ORx2 USAGE PA1 Tx2
CALIBRATIONS PA1 Tx2

CALIBRATIONS PA1 Tx2
CALIBRATIONS

PA3PA3Tx3
CALIBRATIONS

Tx3
CALIBRATIONS

Tx3
CALIBRATIONS

DEFAULTED TO LOW OVER SPI
0

ORx1_Tx_EN
ORx2_Tx_EN
ORx3_Tx_EN
ORx4_Tx_EN DEFAULTED TO HIGH OVER SPI

1

ORx2_Tx_EN
ORx4_Tx_EN

DEFAULTED TO HIGH OVER SPI
1

PA3

ORx4 USAGE PA4PA4Tx4
CALIBRATIONS

CALIBRATIONS
Tx3/Tx4

Tx4
CALIBRATIONS PA4

PA1 PA2 PA1 PA2

ORx1 ORx2 ORx3 ORx4 ORx1 ORx2 ORx3 ORx4 ORx1 ORx2 ORx3 ORx4

22
77

0-
06

9

Figure 70. Observation Receiver Enable and Transmitter Select Signals: 4 Transmitter/4 Receiver/4 Observation Receiver Configuration

4 Transmitter/4 Receiver/2 Observation Receiver Input – Single Point of Feedback from 4 Transmitter to Observation
Receiver Use Case

This use case shows an example where all the observation receiver paths are shared through one common feedback point. Because there
are two sides to the device from a calibration perspective, the user must route Tx1 and Tx2 to either ORx1 or ORx2, respectively.
Similarly, Tx3 and Tx4 need a path back to ORx3 or ORx4 for the purpose of calibrations. To allow calibrations to run in parallel with PA
observation captures, the opposite side of the device to that required for calibrations is used to capture observation data. Therefore, if Tx2
is being fed back through this single feedback point, ORx2 is used for transceiver calibrations and ORx3 can be used to capture
observation data. A resistive splitter is used to route the signal to both sides of the device.

For this use case, use Single Channel 2 pin mode. ORX_CTRL_A is set high all the time because an observation receiver path is always
being used. ORX_CTRL_B selects which observation receiver the user is observing in a given time slot. For this example, ORx2 and ORx3 are
used. ORx3 is selected for observation when ORX_CTRL_B is high and ORx2 is selected for observation when ORX_CTRL_B is low.

ORX2_TX_SEL and ORX2_TX_EN together tell the ARM which external path (either Tx1 or Tx2) is routed back to ORx2. When
ORX2_TX_SEL and ORX2_TX_EN are both high, the PA2 path is routed back to both ORx2 and ORx3. When ORX2_TX_SEL is low
and ORX2_TX_EN is high, the PA1 path is routed back to both ORx2 and ORx3. When ORX2_TX_EN is low, this tells the transceiver

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 118 of 336

that there is no external feedback path between this observation receiver input and a transmitter on the same side of the device. In this
scenario, the external LOL calibration cannot be performed. Likewise, the ORX3_TX_SEL and ORX3_TX_EN perform the same
function for the Tx paths on the other side of the chip. If ORX3_TX_SEL is low and ORX3_TX_EN is high, the PA3 path is routed back
to both ORx2 and ORx3. If ORX3_TX_SEL and ORX3_TX_EN are both high, the PA4 path is routed back to both ORx2 and ORx3.
Finally, if ORX3_TX_EN is low, this tells the transceiver that there is no external feedback path between this observation receiver input
and a transmitter on the same side of the device. In this scenario, the external LOL calibration cannot be performed.

Unlike the other use cases previously described, the transceiver can perform both calculations on a given PA and calibrations with the
other observation receiver input for the same side of the chip. Though the transmitter calibrations must be performed with an
observation receiver from the same side of the chip, the PA calculations do not have that constraint. The first time slot in Figure 72 shows
that calculations are being performed on PA1 via ORx3 while calibrations are performed on Tx1/Tx2 via ORx2. Note at the first time slot
in Figure 72 that the external LOL calibration can be performed for Tx1 as the path is routed back to ORx2. In time slot two, the external
LOL calibration can be performed for Tx2, but not Tx1 because there is no external feedback path. QEC calibrations are performed
though an internal feedback path and do not require an external feedback path to run. It is up to the ARM scheduler to determine what
calibration is due to run in any given slot. The same JESD204B and JESD204C link can be used for ORx2 and ORx3 in this scenario
because only one observation receiver is used at any given time.

Tx1

Tx2

ORx2

ORx3

Tx3

Tx4

ADRV902x

ORx2_Tx_EN

ORx3_Tx_EN

ORx_CTRL_A

ORx_CTRL_B

ORx_CTRL_C

ORx2_Tx_SEL

ORx3_Tx_SEL

PA1

PA2

PA3

PA4
22

77
0-

07
0

Figure 71. Observation Receiver Channel Routing: 4 Transmitter to 2 Observation Receiver Channels

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 119 of 336

ORX_CTRL_B

ORX_CTRL_A

PA OUTPUT
TO ORx JESD

ORx3_Tx_SEL

ORx3_Tx_EN

ORx3

PA1 PA2

PA4PA3

PA1 PA2 PA4PA3 PA1 PA2 PA4PA3 PA1 PA2 PA4PA3

ORx3 ORx2 ORx2 ORx3 ORx3 ORx2 ORx2 ORx3 ORx3 ORx2 ORx2

ORx2_Tx_SEL

ORx2_Tx_EN

ORx2 USAGE

ORx3 USAGE

CALIBRATIONS
Tx1/Tx2

CALIBRATIONS
Tx1/Tx2

CALIBRATIONS
Tx1/Tx2

PA3/PA4

PA1/PA2

PA3 PA4 PA3 PA4 PA3 PA4

PA1 PA2 PA2 PA2CALIBRATIONS
Tx3/Tx4 PA1 CALIBRATIONS

Tx3/Tx4 PA1 CALIBRATIONS
Tx3/Tx4

22
77

0-
07

1

Figure 72. Observation Receiver Enable and Transmitter Select Signals: 4 Transmitter to 2 Observation Receiver Multiplexed Configuration

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 120 of 336

TRANSMITTER OVERVIEW AND PATH CONTROL
The transceiver uses an accurate and efficient method of transmit power control (transmitter attenuation control) that involves a
minimum of interaction with the baseband processor. The power control in the transmit chain is implemented with two variable
attenuations, one in the digital domain and one in the analog domain. Furthermore, the maximum output level of the transmitter can be
adjusted between two levels, allowing a tradeoff between linearity and LOL performance.

There are three different modes available to control the attenuation setting of the transmitter. The attenuation can be set immediately via
the API, incremented or decremented using GPIO pins to trigger the increment or decrement, or set through an SPI2 mode that enables
real time operation using a GPIO pin. The choice of attenuation mode is set by the API attenMode.

The attenuation is controlled via a lookup table, which is programmed into the product during initialization. The lookup table maps a
desired value in dB to the appropriate analog and digital attenuation settings to be applied in the datapath. The default table provides a
range of 0 dB to 41.95 dB of attenuation, with a step size of 0.05 dB, resulting in 840 available attenuation settings.

The transmitter path allows the maximum output of the DAC to be increased by 3 dB adjusting the parameter dacFullScale. This results
in the baseband signal (the desired signal) increasing by 3 dB while RF output components (such as LO leakage) remain unchanged,
resulting in a net improvement of 3 dB in LOL performance. There is a reduction in linearity performance in this mode. Therefore, the
setting is a trade-off based on the system requirements of the user.

The transmitter datapath can be configured to automatically ramp the attenuation to the maximum level under certain conditions, such
as the JESD204B and JESD204C link dropping (rampJesdDfrm) or the transmitter PLL unlocking (disTxDataIfPllUnlock), to prevent
spurious transmission in the event of these types of system errors.

Test tones may be generated digitally in the transmitter baseband path. This function is useful for testing/debugging before the JESD204B
and JESD204C link has been established. The frequency can be set from –(Transmitter Input Rate)/2 to +(Transmitter Input Rate)/2. The
transmitter attenuation is manually overridden when this function is enabled. When test tones are selected as the transmitter input, the
analog portion of the transmitter attenuation is set to 0 dB (maximum output power), and the digital portion is set by the API
txToneGain.

API COMMANDS
Several API commands are available to adjust the transmitter paths after initialization and during normal operation. The API descriptions
in this section detail these commands and how they are used.

adi_adrv9025_TxAttenCfgSet
adi_adrv9025_TxAttenCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025_TxAttenCfg_t
txAttenCfg[], uint8_t attenCfgs);

Description

This command configures transmitter power control.

Parameters

Table 110. adi_adrv9025_TxAttenCfgSet(…) Parameters
Parameter Description
*device Pointer to device structure.
txAttenCfg[] An array of structures of type adi_adrv9025_TxAttenCfg_t detailed in Table 111.
attenCfgs The number of configurations passed in the array.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 121 of 336

Table 111. adi_adrv9025_TxAttenCfg_t Parameters
Parameter Comments
txChannelMask This selects the channels upon which the API acts. It is a bit mask with each bit corresponding to a channel. The

desired mask can be generated by OR’ing the desired channel enumerators as listed below. Data type: uint32_t

Parameter Transmitter Channel
ADI_ADRV9025_TXOFF No transmitter channels selected.
ADI_ADRV9025_TX1 Tx1 channel selected.
ADI_ADRV9025_TX2 Tx2 channel selected.
ADI_ADRV9025_TX3 Tx3 channel selected.
ADI_ADRV9025_TX4 Tx4 channel selected.
ADI_ADRV9025_TXALL All transmitter channels selected.

txAttenStepSize This parameter sets the attenuation step size, Data type: adi_adrv9025_TxAttenStepSize_e.

Parameter Step Size (dB)
ADI_ADRV9025_TXATTEN_0P05_DB 0.05
ADI_ADRV9025_TXATTEN_0P1_DB 0.1
ADI_ADRV9025_TXATTEN_0P2_DB 0.2
ADI_ADRV9025_TXATTEN_0P4_DB 0.4

disTxDataIfPllUnlock Option to ramp transmit attenuation to maximum if the RFPLL unlocks. Data type: adi_adrv9025_TxDataIfUnlock_e.

Parameter Action
ADI_ADRV9025_TXUNLOCK_TX_NOT_DISABLED Do not alter transmitter attenuation in an unlock

event.
ADI_ADRV9025_TXUNLOCK_TX_RAMP_DOWN_TO_MIN_ATTEN Ramp transmitter attenuation to maximum in an

unlock event.
rampJesdDfrm Ramp up attenuation when a deframer link unlocks. Note that this field is not being used actively. If the user enables

at least one deframer event with adi_adrv9025_PaPllDfrmEventRampDownEnableSet, the gain ramp down on the
deframer event is automatically enabled. Data type: adi_adrv9025_TxDataIfUnlock_e.

attenMode Selects the transmitter attenuation mode. Data type: adi_adrv9025_TxAttenMode_e.

Parameter Mode
ADI_ADRV9025_TXATTEN_BYPASS_MODE Transmitter attenuation mode. Bypass: zero total

attenuation.
ADI_ADRV9025_TXATTEN_SPI_MODE Transmitter attenuation set by 10-bit index

programmed over SPI.
ADI_ADRV9025_TXATTEN_GPIO_MODE Transmitter attenuation is

incremented/decremented using GPIO pins.
ADI_ADRV9025_TXATTEN_SPI2_MODE Attenuation is controlled using the SPI2 mode.

dacFullScale Sets the full scale of the transmitter DAC. Data type: adi_adrv9025_DacFullScale_e.

Parameter Description
ADI_ADRV9025_TX_DACFS_0DB No full scale boost.
ADI_ADRV9025_TX_DACFS_3DB Full scale boost = 3 dB.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 122 of 336

adi_adrv9025_TxAttenCfgGet
adi_adrv9025_TxAttenCfgGet(adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e txChannel,
adi_adrv9025_TxAttenCfg_t *txAttenCfg)

Description

This command reads transmitter power control configuration one channel at a time.

Parameters

Table 112. adi_adrv9025_TxAttenCfgGet(…) Parameters
Parameter Description
*device Pointer to device structure.
txChannel The transmitter channel to be read back using an enumerator as described in Table 111.
*txAttenCfgs The pointer to the readback structure of the queried transmitter channel as defined in Table 111.

adi_adrv9025_TxAttenSet
adi_adrv9025_TxAttenSet(adi_adrv9025_Device_t* device, adi_adrv9025_TxAtten_t txAttenuation[],
uint8_t numTxAttenConfigs);

Description

This command sets transmitter attenuation when transmitter attenuation mode is set to ADI_ADRV9025_TXATTEN_SPI_MODE.

Parameters

Table 113. adi_adrv9025_TxAttenSet(…) Parameters
Parameter Description
*device Pointer to device structure.
txAttenuation[] An array of structures of type adi_adrv9025_TxAtten_t detailed in Table 114.
numTxAttenConfigs The number of configurations passed in the array.

Table 114. adi_adrv9025_TxAtten_t Parameters
Parameter Comments
txChannelMask This selects the channels upon which the API acts. It is a bit mask with each bit corresponding to a channel. The

desired mask can be generated by ORing the desired channel enumerators as listed below. Data type: uint32_t.

Parameter Transmitter Channel
ADI_ADRV9025_TXOFF No transmitter channels selected.
ADI_ADRV9025_TX1 Tx1 channel selected.
ADI_ADRV9025_TX2 Tx2 channel selected.
ADI_ADRV9025_TX3 Tx3 channel selected.
ADI_ADRV9025_TX4 Tx4 channel selected.
ADI_ADRV9025_TXALL All Tx channels selected.

txAttenuation_mdB This parameter specifies the attenuation in mdB. Data type: uint16_t.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 123 of 336

adi_adrv9025_TxAttenGet
adi_adrv9025_TxAttenGet(adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e txChannel,
adi_adrv9025_TxAtten_t* txAttenuation)

Description

This command reads transmitter attenuation when the transmitter attenuation mode is set to ADI_ADRV9025_TXATTEN_SPI_MODE
or ADI_ADRV9025_TXATTEN_GPIO_MODE.

Parameters

Table 115. adi_adrv9025_TxAttenGet(…) Parameters
Parameter Description
*device Pointer to device structure.
txChannel The transmitter channel to be read back using an enumerator as described in Table 114.
*txAttenuation Pointer to the readback structure of the queried transmitter channel as defined in Table 114.

adi_adrv9025_TxAttenModeSet
adi_adrv9025_TxAttenModeSet(adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e txChannel,
adi_adrv9025_TxAttenMode_e *txAttenMode);

Description

This command sets the transmitter attenuation mode independent of the initialization structure.

Parameters

Table 116. adi_adrv9025_TxAttenModeSet(…) Parameters
Parameter Description
*device Pointer to device structure.
txChannel Transmitter channel upon which the API acts as described in Table 117.
*txAttenMode Pointer to the desired mode of attenuation using an enum as described in Table 117.

Table 117. adi_adrv9025_TxAttenModeSet Parameters
Parameter Comments
txChannelMask This selects the channels upon which the API acts. It is a bit mask with each bit corresponding to a channel. The desired

mask can be generated by ORing the desired channel enums as listed below. Data type: uint32_t.

Parameter Transmitter Channel
ADI_ADRV9025_TXOFF No transmitter channels selected.
ADI_ADRV9025_TX1 Tx1 channel selected.
ADI_ADRV9025_TX2 Tx2 channel selected.
ADI_ADRV9025_TX3 Tx3 channel selected.
ADI_ADRV9025_TX4 Tx4 channel selected.
ADI_ADRV9025_TXALL All transmitter channels selected.

txAttenMode Selects the transmitter attenuation mode. Data type: adi_adrv9025_TxAttenMode_e.

Parameter Mode
ADI_ADRV9025_TXATTEN_BYPASS_MODE Transmitter attenuation mode. Bypass: zero total

attenuation.
ADI_ADRV9025_TXATTEN_SPI_MODE Transmitter attenuation set by 10-bit index programmed

over SPI.
ADI_ADRV9025_TXATTEN_GPIO_MODE Transmitter attenuation is incremented/decremented using

GPIO pins.
ADI_ADRV9025_TXATTEN_SPI2_MODE Attenuation is controlled using the SPI2 mode.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 124 of 336

adi_adrv9025_TxTestToneSet
adi_adrv9025_TxTestToneSet(adi_adrv9025_Device_t* device, adi_adrv9025_TxTestToneCfg_t
txNcoTestToneCfg[], uint8_t arraySize);

Description

This command generates test tones in the transmitter baseband path.

Parameters

Table 118. adi_adrv9025_TxTestToneSet(…) Parameters
Parameter Description
*device Pointer to device structure.
txNcoTestToneCfg[] An array of structures of type adi_adrv9025_TxAttenCfg_t as detailed in Table 119.
arraySize The number of configurations passed in the array.

Table 119. adi_adrv9025_TxTestToneCfg_t Parameters
Parameter Comments
txChannelMask This selects the channels upon which the API acts. It is a bit mask with each bit corresponding to a channel. The desired

mask can be generated by OR’ing the desired channel enums as listed below. Data type: uint_8.

Parameter Transmitter Channel
ADI_ADRV9025_TXOFF No transmitter channels selected.
ADI_ADRV9025_TX1 Tx1 channel selected.
ADI_ADRV9025_TX2 Tx2 channel selected.
ADI_ADRV9025_TX3 Tx3 channel selected.
ADI_ADRV9025_TX4 Tx4 channel selected.
ADI_ADRV9025_TXALL All transmitter channels selected.

enable Sets whether the test tones are enabled or disabled. Data type: uint_8.

Parameter Mode
0 Test tones disabled
1 Test tones enabled

txToneFreq_Hz Sets the frequency of the test tone in Hz. Range is ±245.76 MHz. Data type: uint_32.
txToneGain Sets the amplitude of the test tone in dBFS. Data type: adi_adrv9025_TxNcoGain_e.

Parameter Gain
ADI_ADRV9025_TX_NCO_NEG18_DB −18 dBFS test tone
ADI_ADRV9025_TX_NCO_NEG12_DB −12 dBFS test tone
ADI_ADRV9025_TX_NCO_NEG6_DB −6 dBFS test tone
ADI_ADRV9025_TX_NCO_0_DB 0 dBFS test tone

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 125 of 336

DAC FULL SCALE FUNCTION (DAC BOOST)
The DAC full scale function is an analog 3 dB gain stage that can be used primarily to help systems that have marginal system
performance to the transmitter LO leakage (transmitter LOL) specification. As shown in Figure 73, the gain is realized in the DAC output
but before the transmitter predistortion (LPF) filters, which is where the majority of the flicker noise observed on the transmitter LOL is
added to the signal chain. When enabled, it provides an additional 3 dB of signal gain. By increasing the signal level by 3 dB, this function
provides an additional 3 dB of separation to the noise and transmitter LOL. The 3 dB gain factor is achieved by shifting the bias point of
the DAC.

Increasing the signal level through the chain can potentially result in reduced linearity and spurious. Therefore, the user is cautioned
when transmitting signals with very low PAR. When the mode is enabled, signal PAR does not allow the DAC to be driven above
−3 dBFS. Normally, however, for LTE signals or similar signals with PAR of about 12 dB, the signal chain has enough headroom for
minimal performance impact, shown in the data in Table 120, Table 121, and Table 122.

Because the transmitter signal level is increased when enabled, the configuration must be done prior to device initialization so that the
internal calibrations see the appropriate gain through the signal chain. It is not possible to change internal calibrations after the device has
been configured.

The transmitter predistortion low pass filters (LPF) are the main contributors of flicker noise to the transmitter signal chain. Because the
gain occurs before them, the amount of transmitter LOL emitted from the device is not changed by enabling the 3 dB mode. The
transmitter attenuators follow the filters in the signal chain. For this reason, transmitter LOL reduces at the output with each attenuator
step, dB for dB. The transmitter LOL measurement for both enabled and disabled modes along with the margin gained when the function
is enabled is presented in Figure 73.

–82.0

–86.0

–85.5

–85.0

–84.5

–84.0

–83.5

–83.0

–82.5

0 2 4 6 8 10

Tx
 L

O
L

(d
Bm

/M
Hz

)

TX ATTENUATOR (dB) 22
77

0-
07

2

TxLOL dBFs 3dB
TxLOL dBFs 0dB

Figure 73. Transmitter LO Leakage with dacFullScale Enabled/Disabled

22
77

0-
07

3
THB3

LPF

THB2

INT5

THB1 TFIR QEC DIG
GAIN

THB3

LPF

THB2

INT5

THB1 TFIR QEC JE
SD

20
4B

 IN
TE

R
FA

CE

DIG
GAIN

IDAC

dacFullScale
(DAC BOOST)

3dB BIAS

QDAC
3dB BIAS

Figure 74. Transmitter Datapath with dacFullScale Function

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 126 of 336

The transmitter LOL specification is defined in terms of dBFS and is measured in a 1 MHz bandwidth. Transmitter LOL in dBFS is
determined by applying a known signal level (−12 dBFS tone in this case) and then measuring the resulting output power to determine
0 dBFS. Then the difference in power levels results in transmitter LOL (dBFS).

The improvement shown in Table 120 is close to the 3 dB gain added. There is a small amount of variability due to the effects of flicker
noise and the stability/accuracy of measuring the noise.

To meet the performance levels requirements in the device data sheet, adjust the input signal to compensate for the 3 dB increase so that
the resulting power levels are equivalent and, therefore, the OIP3 is equivalent as well. This is presented in Table 121. In general, the OIP3
is only slightly affected by enabling the boost with the same input tone levels (both tones level= −15 dBFS). Typical performance is
approximately 30 dBm, and measurements of the transceiver in both modes are consistent. Impact on linearity is shown in Table 121.

EVM was measured with boost in 0 dB mode and with boost in 3 dB mode. There is no significant impact to EVM as a result of enabling
the 3 dB mode. The impact on EVM is presented in Table 122.

It is a system requirement that the desired DAC boost mode must be configured prior to device initialization. The transmitter signal level
is increased, which impacts internal calibrations. Therefore, DAC boost mode settings cannot be modified during device operation.

Table 120. dacFullScale Transmitter LOL and Transmitter Output Power Comparison 0 dB Mode and 3 dB Mode

DAC Full Scale
Setting

Transmitter
Attenuation
(dB)

Transmitter LOL
(dBm/MHz)

Tone
Power
(dBm) 0 dBFS in dBm

Transmitter LOL
(dBFS)

Improvement (dB)
Relative to 0 dB Setting

dacFullScale 0 dB
Mode

0 −77.2 −6 6 −83.2

5 −81.6 −10.8 1.2 −82.8

10 −86.5 −16 −4 −82.5

dacFullScale 3 dB
Mode

0 −76.6 −2.8 9.2 −85.8 2.6
5 −81.5 −7.8 4.2 −85.7 2.9
10 −85.9 −13 −1 −84.9 2.4

Table 121. dacFullScale Transmitter Linearity 0 dB Mode and 3 dB Mode

F1 Tone MHz
F2 Tone MHz,
(F1 + 5 MHz)

OIP3 dBm, 0 dB Mode,
Tones = −15 dBFS

OIP3 dBm, 3 dB Mode, Tones = −18 dBFS
(Data Sheet Equivalent Output Power)

OIP3 dBm, 3 dB Mode,
(Tones = −15 dBFS)

10 15 32.6 36.0 33.1
30 35 35.3 34.9 36.0
50 55 38.0 37.7 40.0
70 70 33.9 34.8 33.2
90 95 35.7 31.1 30.0

Table 122. dacFullScale EVM vs. Mode Selection

Transmitter Attenuator (dB)
0 dB Mode 3 dB Mode

Signal Power (dBm) EVM (dB) Signal Power (dBm) EVM (dB)
0 −17.9 −45.28 −15.0 −45.86
5 −22.9 −45.09 −20.0 −45.72
10 −27.9 −43.73 −25.0 −44.97
15 −32.8 −43.38 −30.0 −43.06
20 −37.8 −43.08 −34.9 −43.64

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 127 of 336

ADI_ADRV9025_TXCHANNELCFG API STRUCTURE
The dacFullScale enum is stored in the adi_adrv9025_TxChannelCfg structure. This structure is stored within the
adi_adrv9025_TxSettings_t structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). The parameters
are described in Table 123 and Table 124. The dacFullScale parameter is also found in the json (profile) file.

Table 123. adi_adrv9025_TxChannelCfg Structure Parameters
Data Fields Description
adi_adrv9025_TxProfile_t profile
adi_adrv9025_DacFullScale_e dacFullScale

Table 124. adi_adrv9025_DacFullScale_e Enumerator Parameters
Data Fields Description Value
ADI_ADRV9025_TX_DACFS_0DB DAC full scale = 0 dB (default mode) 0x0
ADI_ADRV9025_TX_DACFS_3DB DAC full scale = 3 dB 0x1

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 128 of 336

TRANSMITTER POWER AMPLIFIER PROTECTION
The transceiver features four transmitters with independent power amplifier (PA) protection circuitry. The PA protection circuitry
operates in conjunction with other interrupt sources within the transceiver. This section describes both PA protection and the other
interrupt sources that can trigger a transmitter attenuation ramp to set the transmitter attenuation to 40 dB to protect the PA device.

Note that it is recommended to use these features in conjunction with the GP_INTERRUPT feature so that the baseband processor
receives information over GP_INTERRUPT pins that an attenuation ramp down may have occurred. This is achieved by unmasked
relevant GP_INTERRUPT sources described in Table 207.

PA PROTECTION DESCRIPTION
The PA protection circuitry is designed to alert the user that the digital signal power within the transmitter datapath exceeds a programmable
threshold. The GPINT1 and GPINT2 pins can be configured to assert when the PA protection block detects an error. In this context,
error means that a power threshold has been exceeded. If PA protection is used, it is recommended that the user unmask the PA protection
interrupts for one of the GPINTx pins to give the baseband processor an indication that a PA protection error has occurred. Set up the
power thresholds at a level appropriate for the system given the PA damage power level and transmitter RF attenuation.

The following are the two types of thresholds in the PA protection circuit:

• Peak power threshold: when the peak signals detected by PA protection exceed the peak power threshold (peakThreshold) a
programmable number of times (peakCount) within a period (peakDuration), this leads to a peak power threshold error
(peakPowerErr = 1).

• Average Power Threshold: When the signal power calculated by PA protection exceeds the programmable average power threshold
(powerThreshold) within a period (avgDuration), this leads to an average power threshold error (avgPowerErr = 1).

When PA protection is enabled and a PA protection error occurs, a ramp down of the transmitter attenuation can be executed. The
attenuation is set to 40 dB after the ramp down, if enabled. This feature can be used to protect PA devices in scenarios where the baseband
processor executes algorithms that affect the power of the transmitted signal. The attenuation ramp down is configured with the
adi_adrv9025_PaPllDfrmEventRamp DownEnableSet(…) command.

PA Protection Configuration

The PA protection feature is setup with the adi_adrv9025_TxPaProtectionCfgSet(…) API command.

adi_adrv9025_TxPaProtectionCfgSet(…)
adi_adrv9025_TxPaProtectionCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025_TxPaProtectCfg_t
txPaProtectCfg[], uint8_t arraySize);

Description

This command sets up the PA protection feature.

Parameters

Table 125. adi_adrv9025_TxPaProtectionCfgSet(…) Parameters
Parameter Description
*device Pointer to device structure.
txPaProtectCfg[] An array of PA protection configurations of data type adi_adrv9025_TxPaProtectCfg_t. This data structure is explained in

further detail in Table 126.
arraySize The array length of txPaProtectCfg[].

Table 126. adi_adrv9025_TxPaProtectCfg_t Data Structure Parameters
Parameter Name Data Type Parameter Description
txChannel adi_adrv9025_TxChannels_e Transmitter channel select based on adi_adrv9025_TxChannel_e. PA

protection configuration is applied to channels selected by this
parameter

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 129 of 336

Parameter Name Data Type Parameter Description
avgDuration uint8_t Sets the duration for which average power is accumulated and compared

with powerThreshold. Range = 0 to 15. Duration in time is given by
(sample rate in Hz, duration in seconds):

2 5avgDuration
avgDuration

Lt
txSampleRate

= × +

peakDuration uint8_t Sets the duration for which peaks are compared against peakThreshold.
At the end of this duration, the number of counted peaks resets to zero.
Range = 0 to 15. Duration in time is given by (sample rate in Hz, duration
in seconds):

1 2 5peakDuration
peakDurationt

txSampleRate
= × +

powerThreshold uint16_t Sets the powerThreshold for average power measurements. If the
average power exceeds this threshold, the avgPowerErr signal is asserted.

10
8192dBFS

powerThresholdpowerThreshold log  =  
 

peakCount uint8_t Sets a limit for the number of peaks detected within a peakDuration.
When this limit is exceeded, the PA protection peakPowerErr signal is
asserted.

peakThreshold uint16_t Sets the peak threshold power limit for counting a peak. If a peak
exceeds this threshold, it is counted. When this counter value exceeds
peakCount, peakPowerErr signal is asserted.

10
8192dBFS

peakThresholdpeakThreshold log  =  
 

avgPowerEnable uint8_t When set = 1, the PA protection average power measurement block is
enabled. Allows avgPowerErr signal assertion.

 When set = 0, the PA protection average power measurement block is
disabled.

peakPowerEnable uint8_t When set = 1, the PA protection peak power measurement block is
enabled. Allows peakPowerErr signal assertion.

 When set = 0, the PA protection peak power measurement block is
disabled.

inputSel adi_adrv9025_PaProtectionInputSel_e Determines the data path location for peak and average power
measurement. Options are given by the enumeration described in
Table 127.

avgPeakRatioEnable uint8_t When set = 1, this enables the average to peak power ratio block.
avgPowerEnable and peakPowerEnable must be enabled.

 When set = 0, average to peak power calculations are not performed.

Table 127 describes the adi_adrv9025_PaProtectionInputSel_e enumeration. These measurement locations are shown in Figure 75.

Table 127. adi_adrv9025_PaProtectionInputSel_e Enumeration Options
Enumeration Enumeration Value Description
ADI_ADRV9025_COMPLEX_MULT_OUTPUT 0 Input data to PA protection block comes from the complex multiplier

output.
ADI_ADRV9025_TXQEC_ACTUATOR_OUTPUT 1 Input data to PA protection block comes from the transmitter QEC

actuator output. This selection is only valid when the clear required
mode is not set.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 130 of 336

CFRDPD
HB

LPF IDAC

JE
SD

20
4B

/C
 IN

TE
R

FA
CE

COMPLEX
MULT

DPD
ACTSRLQECTFIRTHB

1
THB

2
THB

3

INT 5

COMPLEX
MULT

PA PROTECTION

CFRDPD
HB

LPF QDAC DPD
ACTSRLQECTFIRTHB

1
THB

2
THB

3

INT 5

22
77

0-
07

4

Figure 75. Transmitter Datapath Showing PA Protection Measurement Locations

PA Protection Run Time Commands

This section describes commands that can be used to check the status of the PA protection blocks. The GP_INTERRUPT represents a real
time interface to notify the baseband processor that a PA protection error has occurred. When the interrupt asserts, call the
GP_INTERRUPT handler command. If it is indicated that a PA protection error has occurred, the commands in this section describe
what the user can do to acquire more information or clear the error.

adi_adrv9025_TxPaProtectionErrFlagsGet(…)
adi_adrv9025_TxPaProtectionErrFlagsGet(adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e
txChannel, adi_adrv9025_TxPaProtectionErr_t* errorFlags);

Description

This command gets information about which PA protection error flag has been asserted and the associated power level. Do not call this
command before adi_adrv9025_TxPaProtectionCfgSet(…).

Parameters

Table 128. adi_adrv9025_TxPaProtectionErrFlagsGet(…) Parameters
Parameter Description
*device Pointer to device structure.
txChannel The transmitter channel mask that selects which transmitter to retrieve error flag information from.
errorFlags A data structure containing the error flag information for selected transmitter channel.

Table 129. adi_adrv9025_TxPaProtectionErr_t Data Structure Parameters

Data Type Parameter Name Parameter Description
uint8_t peakPowerErr If value = 1, the peak power error bit is asserted. If value = 0, the peak power error is not asserted. This bit

is sticky depending on the configuration applied in
adi_adrv9025_TxAttenuationRampUpStickyModeEnable(…).

uint8_t avgPowerErr If value = 1, the average power error bit is asserted. If value = 0, the average power error is not asserted.
This bit is sticky depending on the configuration applied in
adi_adrv9025_TxAttenuationRampUpStickyModeEnable(…).

uint16_t powerErr When avgPowerErr asserts, this parameter contains the average power level that triggered the error condition.

Clearing PA Protection Error Flags

In the case when a PA protection error has occurred, it is useful to obtain specific information whether it is a peak power error or an average
power error. To obtain information about which PA protection error flag has been asserted, use adi_adrv9025_TxPaProtectionStatusGet(…).
After this information has been obtained and the cause of the error has been resolved, the user must clear the error flag manually when the errors
are configured in sticky mode. This can be done with the adi_adrv9025_PaPllDfrmEventClear(…) command or the
adi_adrv9025_TxPaProtectionErrFlagsReset(…) command. Note that adi_adrv9025_PaPllDfrmEventClear(…) can clear a PA protection error,
a PLL unlock interrupt, or a deframer interrupt. The adi_adrv9025_TxPaProtectionErrFlagsReset(…) command is specific to only PA protection
errors.

adi_adrv9025_TxPaProtectionErrFlagsReset(…)
adi_adrv9025_TxPaProtectionErrFlagsReset(adi_adrv9025_Device_t* device,
adi_adrv9025_TxChannels_e txChannel, adi_adrv9025_TxPaProtectErrFlags_e errorFlags);

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 131 of 336

Description

This command clears PA protection error flags for specified channels.

Parameters

Table 130. adi_adrv9025_TxPaProtectionErrFlagsReset(…) Parameters
Parameter Description
*device Pointer to device structure.
txChannel The transmitter channel mask that selects which transmitter to clear/reset PA protection errors.
errorFlags An enumerated data type describing which error flags must be cleared.

Table 131 describes the adi_adrv9025_TxPaProtectErrFlags_e enumeration.

Table 131. adi_adrv9025_TxPaProtectErrFlags_e Enumeration Options
Enumeration Enumeration Value Meaning
ADI_ADRV9025_TXPA_PROTECT_FLAGS_AVG_POWER_ERR 1 Reset average power error flag
ADI_ADRV9025_TXPA_PROTECT_FLAGS_PEAK_POWER_ERR 2 Reset peak power error flag
ADI_ADRV9025_TXPA_PROTECT_FLAGS_ALL 3 Reset both average and peak power error flags

adi_adrv9025_TxPaProtectionStatusGet(…)

The PA protection status data structure provides information regarding the power in the datapath. After the PA protection configuration
has been applied, the following command can be called:
adi_adrv9025_TxPaProtectionStatusGet(adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e
txChannel, adi_adrv9025_TxPaProtectStatus_t* status);

Description

This command reads back the transmitter average IQ sample power.

Parameters

Table 132. adi_adrv9025_TxPaProtectionStatusGet(…) Parameters
Parameter Description
*device Pointer to device structure.
txChannel The transmitter channel mask that selects from which transmitter to retrieve PA protection status information.
status A data structure containing the PA protection status information for selected transmitter channel.

The data structure type adi_adrv9025_TxPaProtectStatus_t is described in Table 133.

Table 133. adi_adrv9025_TxPaProtectStatus_t Data Structure Parameters
Data
Type

Parameter
Name Parameter Description

uint16_t avgPower Result of the most recently completed average power measurement. Result in dBFS is provided by the formula:

1610
2AVG

avgPowerP log  =  
 

uint16_t avgPeakRatio Measurement describing the average to peak ratio as measured by PA protection. Enable peak and average
power measurement for meaningful results.

1510
2

avgPeakRatioPAR log  =  
 

uint16_t avgErrorPower When avgPowerErr asserts, this parameter contains the average power level that triggered the error
condition. This parameter only updates when an average power error occurs.

1610
2avgErrPow

avgErrorPowerP log  =  
 

adi_adrv9025_PaPllDfrmEventRampDownEnableSet(…)
adi_adrv9025_ PaPllDfrmEventRampDownEnableSet(adi_adrv9025_Device_t* device, uint32_t
txChannelMask, uint32_t irqMask, uint8_t enable);

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 132 of 336

Description

This command configures which interrupts can trigger a transmitter attenuation ramp down event.

Parameters

Table 134. adi_adrv9025_PaPllDfrmEventRampDownEnableSet(…) Parameters
Parameter Description
*device Pointer to device structure.
txChannelMask The transmitter channel mask for selecting which transmitters to configure based on adi_adrv9025_TxChannels_e enumeration.
irqMask The bit mask that selects which interrupts are enabled or disabled based on the enable parameter. If a bit within this

mask is set, the value of enable is applied for each bit set. The value must not be zero. A description of the irqMask bit
field is provided in Table 135.

enable Bit that controls ramp down for the events selected by irqMask. If set to 0, the function is disabled for all selections.

Table 135. Bit Descriptions of irqMask
Bit Position Description Command to Clear Interrupt
D7 PA protection error flag has been asserted. If slew

rate limiter (SRL) interrupt (IRQ) has been
enabled, this bit also allows attenuation ramp
down based on the SRL IRQ.

adi_adrv9025_adrv9025_PaPllDfrmEventClear(…) or
adi_adrv9025_adrv9025_TxPaProtectionErrFlagsReset(…)

D6 SERDES PLL Unlock. adi_adrv9025_adrv9025_PaPllDfrmEventClear(…)
D5 RF PLL 2 Unlock.
D4 RF PLL 1 Unlock.
D3 Auxiliary PLL Unlock.
D2 CLK PLL Unlock.
D1 Deframer 1 Interrupt/IRQ.
D0 Deframer 0 Interrupt/IRQ.

Although the irqMask is a uint32_t data type value, the enumeration adi_adrv9025_PaPllDfrmRampDownEnSel_e can be used to form
the irqMask.

Sticky Control for Transmitter Attenuation Ramp Down

If a transmitter attenuation ramp down interrupt is asserted, there are two modes of interrupt behavior pertaining to when attenuation is
restored. The following behavior modes control how the attenuation level ramp up is performed.

• Sticky interrupt (default operation): the attenuation ramp down remains in effect until the API command
adi_adrv9025_PaPllDfrmEventClear(…) is called and the interrupt is no longer asserted. These two conditions must be true for
attenuation to return to its former level before the interrupt. This mode requires user intervention.

• Auto clear interrupt: the attenuation ramp down remains in effect until the interrupt is no longer asserted. This mode only depends
on the status of the interrupt.

The user can select between these modes using the adi_adrv9025_TxAttenuationRampUpStickyModeEnable API command.

adi_adrv9025_TxAttenuationRampUpStickyModeEnable(…)
adi_adrv9025_ TxAttenuationRampUpStickyModeEnable(adi_adrv9025_Device_t* device, uint32_t
channelMask, uint8_t txPllJesdProtClrReqd, uint8_t txPaProtectionAvgpowerErrorClearRequired,
uint8_t txPaProtectionPeakpowerErrorClearRequired)

Description

This command configures transmitter attenuation ramp up sticky mode for the selected transmitter channel.

Parameters

Table 136. adi_adrv9025_TxAttenuationRampUpStickyModeEnable(…) Parameters
Parameter Description
*device Pointer to device structure.
channelMask The transmitter channel mask for selecting which transmitters to configure based

on adi_adrv9025_TxChannels_e enumeration.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 133 of 336

Parameter Description
txPllJesdProtClrReqd Determines if the user is required to manually clear PLL/deframer attenuation

ramp down events after assertion. Setting 1 requires the user to clear. Setting 0
does not require the user to clear.

txPaProtectionAvgpowerErrorClearRequired Determines if the user is required to manually clear PA protection average power
error flag after assertion. Setting 1 requires the user to clear. Setting 0 does not
require the user to clear.

txPaProtectionPeakpowerErrorClearRequired Determines if the user is required to manually clear PA protection peak power
error flag after assertion. Setting 1 requires the user to clear. Setting 0 does not
require the user to clear.

The command adi_adrv9025_adrv9025_PaPllDfrmEventClear(…) can be used to clear the error.

Determining the Interrupt Source of an Attenuation Ramp Down

The GPINT1 and GPINT2 pins can be configured to alert the baseband processor that a PA protection error, PLL unlock event, or deframer
interrupt has occurred. When the interrupt has occurred, the user is expected to call adi_adrv9025_GpInt1Handler or
adi_adrv9025_GpInt0Handler depending on which GPINTx pin has asserted. GpInt1Handler is linked to the GPINT2 pin and GPInt0Handler
is linked to the GPINT1 pin. The handler returns information relevant to which interrupts have been asserted. This is one method to determine
which interrupts have asserted. However, note that the GP_INTERRUPT bitmask description does not specify whether a peak or average power
PA protection error has occurred. To obtain more specificity regarding the error source, call adi_adrv9025_PaPllDfrmEventGet(…).

adi_adrv9025_PaPllDfrmEventGet(…)
adi_adrv9025_PaPllDfrmEventGet (adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e
txChannelSelect, uint8_t eventBits);

Description

This command reads the status of events causing transmitter attenuation ramp down rather than any signal that has asserted GP_INTERRUPT.

Parameters

Table 137. adi_adrv9025_PaPllDfrmEventGet(…) Parameters
Parameter Description
*device Pointer to device structure.
txChannelSelect The transmitter channel mask for selecting which transmitters to configure based on adi_adrv9025_TxChannels_e enumeration.
eventBits Selects which interrupt source to clear based on the bit description in Table 138. If a bit position in this value is set high,

the associated interrupt has asserted to cause a transmitter attenuation ramp down.

The command adi_adrv9025_adrv9025_PaPllDfrmEventClear(…) can be used to clear the error.

Table 138. Bit Descriptions of eventBits Parameter
Bit Position Description
D3 to D7 Unused
D2 Any PLL unlock or deframer error
D1 PA protection peak power error
D0 PA protection average power error

Clearing Transmitter Attenuation Ramp Down Events

There are two commands available to clear attenuation ramp down events. In the case that the interrupts are configured as sticky
interrupts, the user must call the appropriate function to clear the error. Note that these commands do not execute corrective measures to
remove the error source. For example, calling adi_adrv9025_TxPaProtectionErrFlagsReset(…) after a PA protection average power error
does not mean that the cause of the error is gone. If the datapath power is still greater than the PA protection average power threshold
after this command is called, then the interrupt persists. In some cases, the baseband processor must take an action to resolve the
interrupt/error. The adi_adrv9025_PaPllDfrmEventClear command can be used to clear such interrupts.

adi_adrv9025_PaPllDfrmEventClear(…)
adi_adrv9025_PaPllDfrmEventClear(adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e
txChannelSelect, uint8_t eventBits);

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 134 of 336

Description

This command clears the transmitter attenuation ramp down interrupts caused by the deframer or PLL unlock events.

Parameters

Table 139. adi_adrv9025_PaPllDfrmEventClear(…) Parameters
Parameter Description
*device Pointer to device structure.
txChannelSelect The transmitter channel mask for selecting which transmitters to configure based on adi_adrv9025_TxChannels_e

enumeration.
eventBits Selects which interrupt source to clear based on the bit description in Table 138. If a bit position in this value is set high,

the command attempts to clear the interrupt.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 135 of 336

RECEIVER GAIN CONTROL AND GAIN COMPENSATION
OVERVIEW
The transceiver has four receivers (Rx1/Rx2/Rx3/Rx4) that feature automatic and manual gain control modes, allowing for flexible gain
control in a wide array of applications. Automatic gain control (AGC) allows for receivers to autonomously adjust the receiver gain
depending on variations of the input signal, such as the onset of a strong interferer that can overload the receiver datapath. AGC controls
the gain of the device based on the information from a number of signal detectors (peak and power detectors). The AGC can control the
gain with very fine resolution if required. The receivers are also capable of operating in manual gain control (MGC) mode where changes
in gain are initiated by the baseband processor. The gain control blocks are configured by means of the API data structures, and several
API functions exist to allow for user interaction with the gain control mechanisms.

The AGC is highly flexible and can be configured in a number of ways. For base station receivers, the received signal is a multicarrier
signal in most cases. Perform a gain change only under large overrange or underrange conditions. Gain changes typically do not occur
very often for typical 3G/4G operation. Therefore, the peak detect mode operation is sufficient. Nevertheless, if an asynchronous blocker
does appear, a fast attack mode exists that is able to reduce the gain at a fast rate.

Alternatively, to manage GSM blockers and radar pulses that have fast rise and rapid fall times, a mode with fast attack, fast recovery, and
peak detect only is provided. This mode can recover receiver gain quickly in addition to the fast attack capability mentioned previously.

This section contains a full description of the gain control functionality available in the transceiver. Some features may not be available
depending on the software revision.

RECEIVER DATAPATH
Figure 76 shows the receiver datapath and gain control blocks. The receivers have front-end attenuators prior to the mixer stage that are
used to attenuate the signal in the RF domain to ensure that the signal does not overload the receiver chain. In the digital domain, there is
the option of digital attenuation or digital gain. This digital gain block is also utilized for gain compensation.

The receiver chain also has multiple observation elements that can monitor the incoming signal. These can be used in either MGC mode
or AGC mode. First, an analog peak detector (APD) exists prior to the ADC. This peak detector is located after the transimpedance
amplifier (TIA) filter, so it receives signals first in the analog domain and also has blocker signal visibility, which can overload the ADC.
The second peak detector is called the Half-Band 2 (HB2) overload detector because it monitors the data at the HB2 filter in the digital
processing section of the receiver chain.

A power measurement detection block is also provided in the receiver chain, which takes the rms power of the received signal over a
configurable period. The power measurement location in the datapath is user configurable.

This transceiver can also control an external gain element through use of the receiver gain table and the GPIO_ANA pins.

22
77

0-
07

5
DDC
HB

DC
CORR.

DIGITAL GAIN/
COMPENSATION

POWER
MEASUREMENT

BLOCK

GAIN CONTROL BLOCK
(AGC, MGC)

HB2
OVERLOAD
DETECTOR

FLOATING POINT
FORMATTERRFIR

SLICER OUTPUT
TO BBP

HB1 SLICER

JE
SDHB2

SPI GPIOs

DEC5

HB3FIR1FIR2APD ADCTIA

FRONT
END

ATTENUATOR

EXTERNAL
GAIN

ELEMENT

ADRV901x

GPIOs

Figure 76. Receiver Data Path and Gain Control Blocks

The gain control block is shown in Figure 77 with multiple inputs providing information. Overload (peak) detectors are shown in red and
the power measurement block is shown in blue. The gain control block controls the gain of the signal chain using a gain table.
A gain table is user programmable, and each row of the table provides a combination of front-end attenuator, external gain element (if
used), and digital gain settings. Based on the row of this table selected, either by the user in MGC mode or automatically by the device in
AGC mode, the gain control block updates the variable gain elements depicted by the green arrows. Finally, the user can control the gain
control block using the SPI bus (configuration of AGC and MGC) and GPIOs.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 136 of 336

Table 140 shows a sample gain table.

Table 140. Sample Rows from the Default Receiver Gain Table

Gain Table Index
Front-End Attenuator,
7 Bits

External Gain Control,
3 Bits TIA/ADC Gain

Signed Digital
Gain/Attenuation[10:0] Phase Offset

255 0 0 0 0 0
254 14 0 0 0 0
253 28 0 0 0 0

The gain table index is the reference for each unique combination of gain settings in the programmable gain table. It is possible to have
different gain tables for each receiver, but typically the same one is used. The possible range of the gain table is 255 to 0, but typically only
a subset of this range is used. The gain table must be assigned in order of decreasing gain, starting with the highest gain in the maximum
gain index, such as 255, and the lowest gain in the minimum gain index.

The front-end attenuator has an 8-bit control word. The amount of attenuation applied depends on the value set in the front-end
attenuator column of the selected gain table index. The following equation provides an approximate relationship between the internal
attenuator and the front-end attenuation value programmed in the gain table, N:

10
256

() 20 log
256

N
Attenuation dB

− 
=  

 

The external gain control column controls two analog GPIOs for each receiver. Table 141 shows which analog GPIOs are used for which
receiver.

Table 141. Analog GPIOs for External Gain Element Control
Receiver GPIO Pins to Control External Gain Element
Rx1 GPIO_ANA[1:0]
Rx2 GPIO_ANA[3:2]
Rx3 GPIO_ANA[5:4]
Rx4 GPIO_ANA[7:6]

These analog GPIOs must be enabled as outputs and set for external gain functionality. The 2-bit value programmed is directly related to
the status of these GPIO pins. For example, if the external gain word of the Rx1 gain table is programmed to 3 in the selected gain index,
analog GPIO_0 and GPIO_1 are high.

22
77

0-
07

6

EXTERNAL
ATTENUATOR

Rx1

GPIO_ANA_0
GPIO_ANA_1

Figure 77. GPIO Control of an External Gain Element to Rx1

The signed digital gain/attenuation is used to apply gain or attenuation digitally. The range of the digital gain is 0 to 50 dB. The range of
the digital attenuation is 0 to 18 dB. The resolution of the steps is 0.05 dB. As an example, a value of 14 results in a 0.7 dB gain, and a value
of −14 results in 0.7 dB of attenuation. The combination of TIA and ADC gain must be zero in all rows because this functionality is not used.

Gain Control Modes

The gain control mode is selected with the adi_adrv9025_RxGainCtrlModeSet API function.

adi_adrv9025_RxGainCtrlModeSet(…)
adi_adrv9025_RxGainCtrlModeSet(adi_adrv9025_Device_t* device, adi_adrv9025_RxAgcMode_t
gainMode[], uint8_t arraySize)

Description

This command selects the gain control mode.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 137 of 336

Parameters

Table 142. adi_adrv9025_RxGainCtrlModeSet(…) Parameters
Parameter Description
*device Pointer to device structure.
gainMode An array of type adi_adrv9025_RxAgcMode_t indicating which gain mode is to be used for which receiver channel
arraySize The size of the array

Each adi_adrv9025_RxAgcMode_t instance contains agcMode, an enumerator selecting the chosen gain mode. The possible options are
shown in Table 143.

Table 143. Definition of adi_adrv9025_RxAgcMode_t
Enumerator Gain Mode
ADI_ADRV9025_MGC Manual gain mode
ADI_ADRV9025_AGCSLOW Automatic gain control Mode
ADI_ADRV9025_HYBRID Not currently supported

rxChannelMask

rxChannelMask selects the channels upon which to enable this gain control mode. rxChannelMask is a bit mask with each bit
corresponding to a channel, D0 = Rx1, D1 = Rx2, D2 = Rx3, and D3 = Rx4. Setting the rxChannelMask = 15 means that all receivers are
configured with the same agcMode.

MANUAL GAIN CONTROL (MGC)
The gain control block applies the settings from the selected gain index in the gain table. In MGC mode, the baseband processor is in
control of selecting the gain index. There are two options, API commands and pin control. By default, if MGC is chosen, the device is
configured for API commands. The commands described in this section can be used when in API command mode.

adi_adrv9025_RxGainSet(…)
adi_adrv9025_RxGainSet(adi_adrv9025_Device_t* device, adi_adrv9025_RxGain_t rxGain[], uint8_t
arraySize)

Description

This command selects the gain index in the gain table when in API command mode.

Parameters

Table 144. adi_adrv9025_RxGainSet(…) Parameters
Parameter Description
*device Pointer to device structure.
rxGain An array of type adi_adrv9025_RxGain_t that determines the gain setting and the channels using the chosen setting.
arraySize The size of the array.

Each adi_adrv9025_RxGain_t instance contains the following:
• gainIndex—the selected gain index from the gain table.
• rxChannelMask—this selects the channels upon which to apply the gainIndex setting. It is a bit mask with each bit corresponding to

a channel, D0 = Rx1, D1 = Rx2, D2 = Rx3, and D3 = Rx4. Setting the rxChannelMask = 15 applies this gain index to all four receivers.
adi_adrv9025_RxGainGet(…)
adi_adrv9025_RxGainGet(adi_adrv9025_Device_t* device, adi_adrv9025_RxChannels_e rxChannel,
adi_adrv9025_RxGain_t *rxGain)

Description

This command reads back the gain index in the gain table for the selected channel when in API command mode.

Parameters
Table 145. adi_adrv9025_RxGainGet(…) Parameters
Parameter Description
*device Pointer to device structure.
rxChannel An enumerator as shown in Table 146.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 138 of 336

Parameter Description
*rxGain Of type adi_adrv9025_RxGain_t, pointer to the current gain of the channel and a mask indicating which gain of the channel is

contained within the structure.

Table 146. Definition of adi_adrv9025_RxChannels_e
Receiver Enumerator
Rx1 ADI_ADRV9025_RX1
Rx2 ADI_ADRV9025_RX2
Rx3 ADI_ADRV9025_RX3
Rx4 ADI_ADRV9025_RX4

The pin control MGC mode is useful when real-time control of gain is required. In this mode, 2 GPIO pins per receiver are used, two for
each receiver, one increasing and the other decreasing the gain table index. The user specifies both the increment and decrement step size
in terms of number of gain indices. A pulse is applied to the relevant GPIO pin to trigger an increment or decrement in gain, as shown in
Figure 78. This pulse must be held high for at least 2 AGC clock cycles for a gain change to occur (see the AGC Clock and Gain Block
Timing section for details).

22
77

0-
07

7

Rx3
GPIO1.8V e

GPIO1.8V f

GPIO1.8V g

GPIO1.8V h

GPIO1.8V a

GPIO1.8V b

GPIO1.8V c

GPIO1.8V d

Rx3

Rx4

Rx4

Rx1

Rx1

Rx2

Rx3

Figure 78. MGC Pin Mode: GPIO1.8V (a through h) Represent Any of GPIO_0 to GPIO_15

adi_adrv9025_RxGainPinCtrlCfgSet(…)
adi_adrv9025_RxGainPinCtrlCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025_RxGainPinCfg_t
*rxGainPinCtrlCfg, adi_adrv9025_RxChannels_e rxChannel)

Description

This command configures pin control MGC mode.

Parameters

Table 147. adi_adrv9025_RxGainPinCtrlCfgSet(…) Parameters
Parameter Description
*device Pointer to device structure.
rxChannel An enumerator indicating which receiver channel to configure, as shown in Table 146.
*rxGainPinCtrlCfg A configuration structure pointer for the pin control MGC mode containing the members shown in Table 148.

Table 148. Definition of ADRV9025_RxGainCtrlPin_t
Member Description
uint8_t incStep Increment in gain index applied when the increment gain is pulsed. Acceptable values for this

parameter are 0 to 7. However, 1 is added to what is programmed into this parameter, resulting in step
sizes of 1 to 8.

uint8_t decStep Decrement in gain index applied when the decrement gain is pulsed. Acceptable values for this
parameter are 0 to 7. However, 1 is added to what is programmed into this parameter, resulting in step
sizes of 1 to 8.

adi_adrv9025_GpioPinSel_e
rxGainIncPin

GPIO used to increment gain. Any of GPIO_0 to GPIO_15 can be used. Acceptable values are
ADI_ADRV_9025_GPIO_00 to ADI_ADRV9025_GPIO_15.

adi_adrv9025_GpioPinSel_e
rxGainDecPin

GPIO used to decrement gain. Any of GPIO_0 to GPIO_15 can be used. Acceptable values are
ADI_ADRV_9025_GPIO_00 to ADI_ADRV9025_GPIO_15.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 139 of 336

The peak detector outputs can be monitored using GPIO pins by configuring them as outputs that are activated when an upper or lower
threshold has been exceeded by the APD or HB2 detectors. More details on what causes an overrange condition are provided in the Peak
Detect Mode section.

AUTOMATIC GAIN CONTROL
In AGC mode, a built-in state machine automatically controls the gain based on a user defined configuration. The AGC can be
configured in one of the following two modes:

• Peak detect mode, where only the peak detectors are used to make gain changes.
• Peak/power detect mode, where information from the power detector and the peak detectors are used to make gain changes.

The agcPeakThreshGainControlMode parameter of the adi_adrv9025_AgcCfg_t AGC configuration structure is used to select the
individual modes of the AGC operation, as shown in Table 149.

Table 149. agcPeakThreshGainControlMode Settings
agcPeakThreshGainControlMode Description
0 AGC in peak/power mode
1 AGC in peak detect mode

Peak Detect Mode

In this mode, the peak detectors alone are used to inform the AGC to make gain changes. The APD and HB2 detectors both have a high
threshold and a low threshold. These are set with the apdHighThresh, apdLowThresh, hb2HighTresh, and hb2UnderRangeHighThresh
parameters. These levels are user programmable, as is the limit for the number of times a threshold must be crossed for an overrange or
underrange condition to be flagged. The high thresholds are used as limits on the incoming signal level and typically are set based on the
maximum input of the ADC. When an overrange condition occurs, the AGC reduces the gain (gain attack).

The low thresholds are used as lower limits on signal level. When the signal peaks are not exceeding the lower threshold, this is indicative
of a low power signal, and the AGC increases gain (gain recovery). This is termed an underrange. The AGC stable state (where it does not
adjust gain) occurs when neither an underrange nor overrange condition is occurring (the signal peaks are less than the high threshold
and greater than the lower level). Each overrange/underrange condition has its own attack and recovery gain step, as shown in Table 150.

Table 150. Peak Detector Gain Steps
Overload/Underrange Gain Step
apdHighThresh overrange Reduce gain by apdGainStepAttack
apdLowThresh underrange Increase gain by apdGainStepRecovery
hb2HighThresh overrange Reduce gain by hb2GainStepAttack
hb2UnderRangeHighThresh underrange Increase gain by hb2GainStepHighRecovery

An overrange condition occurs when the high thresholds have been exceeded a configurable number of times within a configurable
period. An underrange condition occurs when the low thresholds have not been exceeded a configurable number of times within the
same configurable period. These counters make the AGC more or less sensitive to peaks in the input signal, ensuring that a single peak
exceeding a threshold does not necessarily cause the AGC to react, allowing the user to trade off bit error rate with signal to noise ratio.
Table 151 outlines the counter parameters for the individual overload/underrange conditions.

Table 151. Peak Detector Counter Values
Overload/Under Range Counter
apdHighTresh over range apdUpperThreshPeakExceededCnt
apdLowThresh under range apdLowerThreshPeakExceededCnt
hb2HighThresh over range hb2UpperThreshPeakExceededCnt
hb2UnderRangeHighThresh under range hb2UnderRangeHighThreshExceededCnt

The AGC uses a gain update counter to time gain changes, with gain changes made when the counter expires. The counter value, and
therefore, the time spacing between possible gain changes, is user programmable through the agcGainUpdateCounter parameter. The
user specifies the period, in AGC clock cycles, that gain changes can be made. Typically, this might be set to frame or sub-frame boundary
periods. The total time between gain updates is the combination of the agcSlowLoopSettlingDelay and the agcGainUpdateCounter.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 140 of 336

When the gain update counter expires, all the peak threshold counters are reset. The gain update period is, therefore, a decision period.
The overload thresholds and counters are, therefore, set based on the number of overloads considered acceptable for the application
within the gain update period.

Figure 79 shows an example of the AGC response to a signal vs. the APD threshold levels. For ease of explanation, the APD is considered
in isolation. The green line is representative of the peaks of the signal. Initially, the peaks of the signal are within the apdHighThresh and
apdLowThresh. No gain changes are made. An interferer suddenly appears whose peaks now exceed apdHighThresh. On the next expiry
of the gain update counter (assuming a sufficient number of peaks occurred to exceed the counter), the AGC decrements the gain index
(reduces the gain) by apdGainStepAttack. This is not sufficient to obtain the signal peaks within the threshold levels, and thus the gain is
decremented again, with the peaks now between the two thresholds. The gain is stable in this current gain level until the interfering signal
is removed, and the peaks of the signal are below the apdLowThresh, resulting in an underrange condition. The AGC increases gain by
the apdGainStepRecovery at the next expiry of the gain update counter, continuing to do so until the peaks of the signal are within the
two thresholds again.

22
77

0-
07

6

apdHighThresh

apdLowThresh

GAIN UPDATE
PERIOD

GAIN DECREMENT
(apdGainStepAttack)

GAIN INCREMENT
(apdGainStepRecovery

GAIN INCREMENT
(apdGainStepRecovery

GAIN DECREMENT
(apdGainStepAttack)

INTERFERER
REMOVED

INTERFERER
PRESENT

SIGNAL
LEVEL

Figure 79. APD Thresholds and Gain Changes Associated with Underrange and Overrange Conditions

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 141 of 336

Figure 80 shows the same scenario but from the viewpoint of the HB2 detector considered in isolation.

22
77

0-
07

9

hb2HighThresh

GAIN UPDATE
PERIOD

GAIN DECREMENT
(hb2GainStepAttack)

GAIN DECREMENT
(hb2GainStepAttack)

INTERFERER
REMOVED

INTERFERER
PRESENT

SIGNAL
LEVEL

hb2UnderRangeHighThresh

GAIN INCREMENT
(hb2GainStepHighRecovery

GAIN INCREMENT
(hb2GainStepHighRecovery

Figure 80. HB2 Thresholds and Gain Changes Associated with Underrange and Overrange Conditions

It is possible to enable a fast attack mode whereby the AGC is instructed to reduce gain immediately when an overrange condition occurs,
instead of waiting until the next expiry of the gain update counter using agcGainChangeIfThreshHigh. This parameter has independent
controls for the APD and HB2 detectors. Values from 0 to 3 are valid, as shown in Table 152.

Table 152. agcGainChangeIfThreshHigh Settings
agcChangeGainIfThreshHigh[1:0] Gain Change Following APD Overrange Gain Change Following HB2 Overrange
00 After expiry of agcGainUpdateCounter After expiry of agcGainUpdateCounter
01 Immediately After expiry of agcGainUpdateCounter
10 After expiry of agcGainUpdateCounter Immediately
11 Immediately Immediately

Figure 81 shows how the AGC reacts when the agcChangeGainIfThreshHigh is set for APD. In this case, when the interferer appears, the
gain is updated as soon as the number of peaks exceed the peak counter. It does not wait for the next expiry of the gain update counter. A
number of gain changes can be made in quick succession providing a much faster attack than the default operation. The assumption here
is that if the ADC is overloaded, it is best to decrease the gain quickly rather than wait for a suitable moment in the received signal to
change the gain.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 142 of 336

22
77

0-
08

0

apdHighThresh

GAIN UPDATE
PERIOD

INTERFERER
REMOVED

INTERFERER
PRESENT

SIGNAL
LEVEL

apdLowThresh

GAIN INCREMENT
(apdGainStepRecovery)

GAIN INCREMENT
(apdGainStepRecovery)

GAIN DECREMENT
(apdGainStepAttack)

GAIN DECREMENT
(apdGainStepAttack)

Figure 81. APD Gain Changes with Fast Attack Enabled

Figure 82 shows the same scenario but from the viewpoint of agcChangeGainIfThreshHigh being set for HB2.

22
77

0-
08

1

hb2HighThresh

GAIN UPDATE
PERIOD

INTERFERER
REMOVED

INTERFERER
PRESENT

SIGNAL
LEVEL

hb2UnderRangeHighThresh

GAIN INCREMENT
(hb2GainStepHighRecovery

GAIN INCREMENT
(hb2GainStepHighRecovery

GAIN DECREMENT
(hb2GainStepAttack)

GAIN DECREMENT
(hb2GainStepAttack)

Figure 82. HB2 Gain Changes with Fast Attack Enabled

It is also possible to enable a fast recovery mode whereby a gain recovery event occurs at the expiry of the gain update period, as shown in
Figure 83. This functionality is enabled with the ableFastRecoveryLoop parameter. This fast recovery mode enables the HB2 overload
detector. The operation is shown in Figure 84. When the signal level falls below hb2UnderRangeLowThresh, the gain is incremented by
hb2GainStepLowRecovery following the expiry of the gain update period. Note that in the fast recovery mode the agcUnderRangeLowInterval
is used instead of the gain update counter to set the gain update period. After sufficient gain increases are implemented to bring the signal
level above hb2UnderRangeLowThresh, the gain is incremented by hb2GainStepMidRecovery after the expiry of a number of gain update
periods, as set by hb2GainStepMidRecovery. Finally, when the signal level is increased above hb2UnderRangeMidThresh, the gain is
incremented by hb2GainStepHighRecovery following the expiry of a number of gain update periods, as set by agcUnderRangeHighInterval.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 143 of 336

The multiple threshold and interval parameters allow for a gain recovery whereas the wanted signal level is approached, the magnitude of
the gain adjustments is reduced and the time interval between gain changes is increased. However, recovery events remain periodic, as
shown in Figure 83 because all gain updates occur at the expiry of the gain update period.

22
77

0-
08

2

GAIN UPDATE COUNTER
OR

LOW UNDER-RANGE INTERVAL

GAIN UPDATE COUNTER
OR

LOW UNDER-RANGE INTERVAL
SLOW LOOP

SETTLING DELAY
5 AGC
CLOCK
CYCLES

GAIN
RECOVERY

EVENT

SLOW LOOP
SETTLING DELAY

5 AGC
CLOCK
CYCLES

GAIN
RECOVERY

EVENT

Figure 83. AGC Sequence with HB2 Detector in Fast Recovery Mode

22
77

0-
08

3

hb2HighThresh
SIGNAL LEVEL

agcUnderRangeHighInterval GAIN INCREMENT
(hb2GainStepHighRecovery)

hb2UnderRangeHighThresh

hb2UnderRangeMidThresh

hb2UnderRangeLowThresh

GAIN INCREMENT
(hb2GainStepLowRecovery)

GAIN INCREMENT
(hb2GainStepMidRecovery)

agcUnderRangeLowInterval

agcUnderRangeMidInterval

Figure 84. AGC Operation with HB2 Detector in Fast Recovery Mode

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 144 of 336

Priorities and Overall Operation

It is highly recommended that the apdHighThresh and hb2HighThresh are set to an equivalent dBFS value. Likewise, it is highly
recommended that the apdLowThresh and the hb2UnderRangeHighThresh are set to equivalent values. This equivalence is approximate
because these thresholds have unique threshold settings that are not exactly equal. This section discusses the relevant priorities between
the detectors and how the AGC reacts when multiple threshold detectors have been exceeded. Table 153 shows the priorities between the
detectors when multiple overranges occur.

Table 153. Priorities of Attack Gain Steps
apdHighThresh Over Range hb2HighThresh Over Range Gain Change
No No No gain change
No Yes Gain change by hb2GainStepAttack
Yes No Gain change by apdGainStepAttack
Yes Yes Gain change by apdGainStepAttack

For recovery, the number of thresholds is dependent on whether fast recovery is enabled or not. Considering the fast recovery scenario,
the priority of the thresholds is the following:

• hb2UnderRangeLowThresh underrange condition
• hb2UnderRangeMidThresh underrange condition
• hb2UnderRangeHighThresh underrange condition
• apdLowThresh underrange condition

Upon one underrange condition, the AGC changes the gain by the corresponding gain step size of this condition. However, if multiple
conditions occur simultaneously, the AGC prioritizes based on the priorities indicated. That is, if hb2UnderRangeLowThresh is reporting
an underrange condition, the AGC adjusts the gain by hb2GainStepLowRecovery with two exceptions.

The apdLowThresh has priority in terms of preventing recovery. If apdLowThresh reports an overrange condition (sufficient signal peaks
have exceeded its threshold in a gain update counter period), no further recovery is allowed. Configure apdLowThresh and
hb2UnderRangeHighThresh to be as close to the same value of dBFS. However, assuming some small difference between the thresholds,
then as soon as apdLowThresh is exceeded, recovery no longer occurs. The reverse is not true, hb2UnderRangeHighThresh does not
prevent the gain recovery towards the apdLowThresh. Given the strong recommendation that apdLowThresh and hb2UnderRangeHighThresh
be set equally, a condition where apdLowThresh is at a lower dBFS level to hb2UnderRangeLowThresh or hb2UnderRangeMidThresh
does not occur.

Another exception is if the recovery step size for a detector is set to zero. If so, the AGC makes the gain change of the highest priority
detector with a nonzero recovery step. Figure 85 provides a flow diagram of the decisions of the AGC when recovering the gain in peak
detect mode.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 145 of 336

22
77

0-
08

4

IF
apdLowThresh

under-range

IF
hb2UnderRange

LowThresh
under-range AND
hb2GainStepLow
RECOVERY ≠ 0

RECOVER GAIN BY
hb2GainStepLowRecovery

YN

YN

IF
hb2UnderRange

MidThresh
under-range AND
hb2GainStepMid
RECOVERY ≠ 0

RECOVER GAIN BY
hb2GainStepLowRecovery

YN

IF
hb2UnderRange

HighThresh
under-range AND
hb2GainStepHigh

RECOVERY ≠ 0

RECOVER GAIN BY
hb2GainStepHighRecovery

YN

IF
apdLowThresh

under-range AND
apdGainStep

RECOVERY ≠ 0

RECOVER GAIN BY
apdGainStepRecovery

YN

GAIN RECOVERY

END

Figure 85. Flow Diagram for AGC Recovery in Peak Detect AGC Mode

Power Detect Mode

In this mode, the power detector measurement is also used to control the gain of the receiver chain. In the event of an overrange
condition, both the peak detectors and the power detector can instantiate a gain decrement. In the event of an underrange, only the power
detector can increment the gain. The power detector changes gain solely at the expiry of the gain update counter. The peak detectors can
be set in one of two modes (depending on the setting of agcGainChangeIfThreshHigh) where the AGC waits for the gain update counter
to expire before initiating a gain change, or immediately updates the gain as soon as the overrange condition occurs (see Figure 79 to
Figure 84).

The power measurement block provides the rms power of the receiver data at the measurement location. The power measurement block
can be configured to monitor the signal in one of three locations, as shown in Figure 76. In power detect mode, the AGC compares the
measured signal level to programmable thresholds, which provide a second order control loop, where gain can be changed by larger
amounts when the signal level is further from the target level, and make smaller gain changes when the signal is closer to the target level.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 146 of 336

Figure 86 shows the operation of the AGC when using the power measurement detector. Considering the power measurement detector in
isolation from the peak detectors, the AGC does not modify the gain when the signal level is between overRangeLowPowerThresh and
underRangeHighPowerThresh. This range is the target range for the power measurement.

When the signal level goes below underRangeLowPowerThresh, the AGC waits for the next gain update counter expiry and then
increments the gain by underRangeLowPowerGainStepRecovery. When the signal level is greater than underRangeLowPowerThresh but
below underRangeHighPowerThresh, the AGC increments the gain by underRangeHighPowerGainStepRecovery. Likewise, when the
signal level goes above overRangeHighPowerThresh, the AGC decreases the gain by overRangeHighPowerGainStepAttack, and when the
signal level is between overRangeHighPowerThresh and overRangeLowPowerThresh, the AGC decreases the gain by
overRangeLowPowerGainStepAttack.

22
77

0-
08

5

overRangeHighPowerThresh

overRangeLowPowerThresh

underRangeHighPowerThresh

SIGNAL
LEVEL

RECEIVED SIGNAL
LEVEL CHANGE

GAIN UPDATE
PERIOD

GAIN INCREMENT

GAIN INCREMENT

GAIN
DECREMENT

underRangeLowPowerThresh

GAIN
DECREMENT

DECREMENT GAIN BY
overRangeHighPowerGainStepAttack

INCREMENT GAIN BY
underRangeHighPowerGainStepRecovery

INCREMENT GAIN BY
underRangeLowPowerGainStepRecovery

DECREMENT GAIN BY
overRangeLowPowerGainStepAttack

NO GAIN CHANGE

RECEIVED SIGNAL
LEVEL CHANGE

PO
W

ER
M

EA
SU

RE
M

EN
T

DU
R

AT
IO

N

PO
W

ER
M

EA
SU

RE
M

EN
T

DU
R

AT
IO

N

PO
W

ER
M

EA
SU

RE
M

EN
T

DU
R

AT
IO

N

Figure 86. PMD Thresholds and Gain Changes for Underrange and Overrange Conditions

It is possible for the AGC to get contrasting requests from the power and peak detectors. An example is a blocker that is visible to the
analog peak detector but is quite significantly attenuated by the power measurement block. In this case, the APD can be requesting a gain
decrement while the power measurement block can be requesting a gain increment. The AGC has the following priority scheme in power
detect mode:

1. APD overrange (upper level)
2. HB2 overrange (upper level)
3. APD lower level peak exceeded
4. HB2 lower level peak exceeded
5. Power measurement

In this example, the gain is decremented because the APD overrange has a higher priority than the power measurement. It is important to
note the APD and HB2 lower level overloads. In peak detect mode, the lower level thresholds for these detectors are used to indicate an
underrange condition, which caused the AGC to increase the gain. In power detect mode, these detectors are not used for gain recovery,
but can be used to control gain recovery by setting the agcLowThreshPreventGain API parameter. If this parameter is set, and if the signal
level is exceeding a lower level threshold, the AGC is prevented from increasing the gain regardless of the power measurement.

This prevents an oscillation condition that may otherwise occur to a blocker visible to a peak detector but filtered before the power
measurement block. In such a case, the peak detector can cause the AGC to decrease gain. The peak detector does this until the blocker is
no longer exceeding the defined threshold. At this point, the power measurement block can request an increase in gain and does so until
the peak threshold of the detector is exceeded, which decreases gain. By using these lower level thresholds, the AGC is prevented from
increasing gain as the signal level approaches an overload condition, providing a stable gain level for the receiver chain under such a
condition.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 147 of 336

AGC CLOCK AND GAIN BLOCK TIMING
The AGC clock is the clock that drives the AGC state machine. A number of the programmable counters used by the AGC are clocked at
this rate. The AGC clock maximum frequency is 500 MHz. The clock is the greatest 2N multiple of the IQ rate less than 500 MHz. For
example, for a receiver profile with an IQ output rate of 245.76 MSPS, the AGC clock is 491.52 MHz.

The AGC state machine contains 3 states, the gain update counter, followed by the slow loop settling (SLS) delay, and a constant 5 AGC
clock cycles delay. The total time between gain updates (gain update period) is a combination of agcSlowLoopSettlingDelay and 5 AGC
clock cycles.

22
77

0-
08

6GAIN
RECOVERY

EVENT

SLOW LOOP
SETTLING

DELAY
GAIN UPDATE COUNTER GAIN UPDATE COUNTER5 AGC CLOCK

CYCLES
5 AGC CLOCK

CYCLES
SLOW LOOP

SETTLING
DELAY

GAIN
RECOVERY

EVENT

DELAYED
GAIN ATTACK

EVENT

IMMEDIATE
GAIN ATTACK

EVENT

YY AGC GAIN
ATTACK

AGC GAIN
ATTACK

GAIN
CHANGE

COUNTER/SLS

Figure 87. Gain Update Period

Figure 87 outlines the operation of the AGC state machine. The diagram outlines possible gain change scenarios rather than a practical
example of AGC operation. The possible gain change scenarios are described as follows:

• AGC gain attack within gain update counter, but more than an SLS delay before the gain update counter expiry. Because SLS is
typically several orders of magnitude smaller than the gain update counter, this is the most common gain decrement scenario.

• AGC gain attack within the gain update counter, but within an SLS delay before the gain update counter expiry. This is a special case,
but rarely occurs in applications per the reasoning described in the previous scenario.

• AGC gain recovery at the end of the gain update counter. Note that when fast recovery is enabled, the gain update counter is
substituted with the low underrange interval, per Figure 83.

A gain attack may occur within the gain update counter period when fast attack is enabled. A gain recovery event may only occur at the
end of the gain update counter period. After a gain attack, a gain change counter with a value equal to the SLS delay is started. No further
gain attacks are possible while this counter is running. This allows the minimum time to be set between gain changes. However, the gain
change counter also prevents the AGC from moving from the gain update counter state to the SLS delay state. Therefore, if a gain attack
occurred very close to the end of the gain update counter state, the gain change counter delays the start of the SLS state and shifts the gain
recovery event. To prevent this happening and maintain a periodic gain recovery event, gain attacks are prevented from happening
towards the end of the gain update counter state, as shown in Figure 87. If a gain attack happens in this period, it is delayed until the start
of the next gain update counter state. This can cause gain attacks to be held off for up to 2 × SLS delay, therefore it is recommended to
keep SLS delay as short as possible to minimize the gain attack delay. Note that it is possible to disable this blocking feature, allowing gain
attacks to occur anywhere within the gain update counter state. However, the periodicity of the gain recovery event is no longer
guaranteed as gain attacks towards the end of the gain update counter state cause the gain recovery event to be delayed.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 148 of 336

At the expiry of the gain update counter, all measurement blocks are reset and any peak detector counts are reset back to zero. When the
receiver is enabled, the counter begins. This may mean that its expiry is at an arbitrary phase to the slot boundaries of the signal. The
expiry of the counter can be aligned to the slot boundaries by setting the agcEnableSyncPulseForGainCounter parameter. While this bit is
set, the AGC monitors a GPIOx pin to find a synchronization pulse. This pulse causes the reset of the counter at this point in time.
Therefore, if the user supplies a GPIO pulse time aligned to these slot boundaries, the expiry of the counter is aligned to slot boundaries.
Any of GPIO_0 to GPIO_15 can be used for this purpose.

For example, considering a 100 µs gain update period and a 491.52 MHz AGC clock, a total of 49,152 AGC clocks exist in the gain update
period.

Gain Update Period (AGC Clocks) = 491.52 MHz × 100 µs = 49,152

As noted, the full gain update period is the sum of the agcGainUpdateCounter, the agcSlowLoopSettlingDelay, and 5 clock cycles. If the
agcSlowLoopSettlingDelay is set to 4, the gain update counter must be set to 49,139.

Gain Update Period (AGC Clocks) = agcGainUpdateCounter × 2(agcSlowLoopSettingDelay) + 5

Gain Update Period (AGC Clocks) = 49,139 + 2(4) + 5 = 49,152

When receiver is enabled, the AGC can be kept inactive for a number of AGC clock cycles by using agcRxAttackDelay. This means the
user can specify one delay for AGC reaction when entering receiver mode, and another for after a gain change occurs
(agcSlowLoopSettlingDelay).

ANALOG PEAK DETECTOR (APD)
The analog peak detector is located in the analog domain following the TIA filter and prior to the ADC input (see Figure 76). The APD
functions by comparing the signal level to programmable thresholds. When a threshold has been exceeded a programmable number of
times in a gain update period, the detector flags that the threshold has been overloaded.

22
77

0-
08

7

apdHighThresh (mV)

apdLowThresh (mV)

TIME
Figure 88. Analog Peak Detector Thresholds

There are two APD thresholds, as shown in Figure 88. These thresholds are contained in the agcPeak API structure, apdHighThresh and
apdLowThresh, respectively.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 149 of 336

To determine the setting of the APD thresholds in terms of the closest possible setting in terms of dBFS of the ADC (ADCdBFS), the
following equations can be used:

850 10 16
20round

16

ADCdBFS

apdHighThresh

 × − 
=  

  
 

850 10 16
20round

16

ADCdBFS

apdLowThresh

 × − 
=  

  
 

Note that the APD is an analog circuit located after the TIA filter. The previous equations assume that the TIA does not attenuate the
signal, but the receiver path is typically configured to have some analog roll-off within the pass band, compensated by the programmable
FIR filter. The TIA provides filtering that attenuates the signal seen at the APD, which means that a larger signal is required to assert the
APD. There is a known issue with the APD where it is more sensitive to signals near dc (<5 MHz, generally). This increased sensitivity
(typically on the order of 1 dB to 2 dB) is accounted for with the introduction of a secondary digital threshold that prevents the APD from
making a gain change when the input signal is detected in-band. This prevents the sensitivity from causing unnecessary changes to the
gain index. The APD acts mostly as an out-of-band blocker detector.

The APD threshold must be exceeded a programmable number of times within a gain update counter period before an overrange
condition occurs. Both the upper and lower thresholds have a programmable counter in the agcPeak API structure, as indicated in Table 154.

Table 154. APD Programmable Threshold Counters
Threshold Counter
Upper threshold (apdHighThresh) apdUpperThreshPeakExceededCnt
Lower threshold (apdLowThresh) apdLowerThresPeakExceededCnt

As described in the Automatic Gain Control section, the APD is used for both gain attack and gain recovery in peak detect mode. In
power detect mode, the APD is used for gain attack and is used to prevent overloading during gain recovery.

In AGC mode, the APD has programmable gain attack and gain recovery step sizes.

Table 155. APD Attack and Recovery Step Sizes
Gain Change Step Size
Gain Attack apdGainStepAttack
Gain Recovery apdGainStepRecovery

Step size refers to the number of indices of the gain table used for each gain adjustment. The gain table is programmed with the largest
gain in the maximum gain index (typically Index 255), with ever decreasing gain for decreasing gain index. Therefore, if the APD gain
attack step size is programmed to 6, this means that the gain index is reduced by 6 when the apdHighThresh has been exceeded more
than apdUpperThreshPeakExceededCnt times. For example, if the gain index had been 255 before this overrange condition, the gain
index is reduced to 249. The amount of gain reduction this equates to is dependent on the gain table in use. The default table has 0.5 dB
steps, which, in this example, equates to a 3 dB gain reduction upon an APD overrange condition.

The APD is held in reset for a configurable amount of time following a gain change to ensure that the receiver path is settled at the new
gain setting before monitoring the paths for overranges. This is configured using the agcPeakWaitTime API parameter.

HALF-BAND 2 PEAK DETECTOR
The HB2 peak detector is located in the digital domain at the output of the Half-Band 2 filter. The HB2 peak detector can, therefore, also
be referred to as the decimated data overload detector because it works on decimated data. Like the APD detector, the HB2 peak detector
functions by comparing the signal level to programmable thresholds. The HB2 peak detector monitors the signal level by observing
individual I2 + Q2 samples (or peak I and peak Q if hb2OverloadPowerMode = 0) over a period of time and compares these samples to the
threshold. If a sufficient number of samples exceed the threshold in the period of time, the threshold is noted as exceeded by the detector.
The duration of the HB2 measurement is controlled by hb2OverloadDurationCnt, whereas the number of samples that exceeds the
threshold in that period is controlled by hb2OverloadThreshCnt.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 150 of 336

After the required number of samples exceeds the threshold in the duration required, the detector records that the threshold was
exceeded. Like the APD detector, the HB2 detector requires a programmable number of times for the threshold to be exceeded in a gain
update period before it flags an overrange condition.

Figure 89 shows the two level approach. Figure 89 shows the gain update counter period, with the time being broken into subsets of time
based on the setting of hb2OverloadDurationCnt. Each of these periods of time are considered separately, and hb2OverladThreshCnt
individual samples must exceed the threshold within hb2OverloadDurationCnt for an overload to be declared. These individual samples
greater than the threshold are shown in red, while those less than the threshold are shown in green. Two examples are shown, one where
the number of samples exceeding the threshold is sufficient for the HB2 peak detector to declare an overload (this time period is shown as
red in the gain update counter timeline), and a second example where the number of samples exceeding the threshold is not sufficient to
declare an overload (this time period is shown as green in the gain update counter timeline). The number of overloads are counted, and if
the number of overloads of the hb2HighThresh exceed hb2UpperThreshPeakExceededCnt in a gain update counter period, an overrange
condition is called. Likewise, if the number of overloads of the hb2UnderRangeHighThresh does not exceed
hb2LowerThreshPeakExceededCnt, an underrange condition is called.

22
77

0-
08

8

hb2OverloadDurationCnt

hb2OverloadThreshCnt
Exceeded

agcGainUpdateCounter

hb2OverloadThreshCnt
Not Exceeded

hb2OverloadDurationCnt

Figure 89. HB2 Detector Two-Level Approach for an Overload Condition

The HB2 detector has a number of programmable thresholds. Some of these thresholds are only used in the fast recovery mode of the
peak detect AGC configuration, as summarized in Table 156.

Table 156. HB2 Overload Thresholds
HB2 Threshold Usage
hb2HighThresh Used for gain attack in both peak and power detect AGC modes.
hb2UnderRangeHighThresh Used for gain recovery in peak detect AGC mode. In power detect AGC mode, it is used to prevent overloads

during gain recovery.
hb2UnderRangeMidThresh Used only when the fast recovery option of the peak detect AGC mode is being utilized.
hb2UnderRangeLowThresh Used only when the fast recovery option of the peak detect AGC mode is being utilized.

For more details of how these thresholds are used by the AGC, refer to the Peak Detect Mode section, Figure 80, Figure 82, and Figure 84.

The thresholds are related to an ADC dBFS value using the following equations:
2

202 16,384 10
hb HighdBFS

hb HighThresh
 
 
 = ×

2
202 16,384 10

hb UnderRangeHighdBFS

hb UnderRangeHighThresh
 
 
 = ×

2
202 16,384 10

hb UnderRangeMiddBFS

hb UnderRangeMidThresh
 
 
 = ×

2
202 16,384 10

hb UnderRangeLowdBFS

hb UnderRangeLowThresh
 
 
 = ×

Each threshold has an associated counter so that an overrange condition is not flagged until the threshold has been exceeded the amount
of times determined by the corresponding equation in a gain update period. Note that these equations only apply if
hb2OverladPowerMode = 0. If this parameter is set to 1, the denominator in the exponent of each equation changes from 20 to 10.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 151 of 336

Table 157. Gain Steps for HB2 Overrange and Underrange Conditions
HB2 Threshold Counter
hb2HighThresh hb2UpperThreshPeakExceededCnt
hb2UnderRangeHighThresh hb2UnderRangeHighThreshExceededCnt
hb2UnderRangeMidThresh Hb2UnderRangeMidThreshExceededCnt
hb2UnderRangeLowThresh Hb2UnderRangeLowThreshExceededCnt

In AGC mode, the HB2 has programmable gain attack and gain recovery step sizes.

Table 158. HB2 Attack and Recovery Step Sizes
Gain Change Step Size
Gain Attack hb2GainStepAttack
Gain Recovery (hb2UnderRangeHighThresh) hb2GainStepHighRecovery
Gain Recovery (hb2UnderRangeMidThresh) hb2GainStepMidRecovery
Gain Recovery (hb2UnderRangeLowThresh) hb2GainStepLowRecovery

The HB2 peak detector is held in reset for a configurable amount of time following a gain change to ensure that the receiver path is settled
at the new gain setting before monitoring the paths for over-range conditions. This duration is configured using the agcPeakWaitTime
API parameter.

POWER DETECTOR
The power measurement block measures the rms power of the incoming signal. The power measurement block can monitor the signal
level at different locations, namely the HB2 output, the RFIR output, and the output of the dc correction block. To choose a location, the
powerInputSelect API parameter is utilized, as described in Table 159.

Table 159. Location of the Decimated Power Measurement
powerInputSelect Value
RFIR Output 0
HB1 1
HB2 2

The number of samples that are used in the power measurement calculation is configurable using the powerMeasurementDuration API
parameter.

PowerMeasDuration (Rx Sample Clocks) = 8 × 2powerMeasurementDuration

where Rx Sample Clocks is the number of clocks at the power measurement location. It is important that this duration not exceed the gain
update counter. The gain update counter resets the power measurement block and, therefore, a valid power measurement must be
available before this event. In the case of multiple power measurements occurring in a gain update period, the AGC uses the last fully
completed power measurement, and any partial measurements are discarded.

The power measurement block has a dynamic range of 60 dB by default. Power measured in the receiver datapath can be read back with
the adi_adrv9025_RxDecPowerGet command.

adi_adrv9025_RxDecPowerGet(…)
adi_adrv9025_RxDecPowerGet(adi_adrv9025_Device_t* device, adi_adrv9025_RxChannels_e rxChannel,
uint16_t *rxDecPower_mdBFS)

Description

This command readback for receiver power measurement.

Parameters

Table 160. adi_adrv9025_RxDecPowerGet(…) Parameters
Parameter Description
*device Pointer to device structure.
rxChannel An enumerator indicating which receiver channel to configure, as shown in Table 146.
*rxDecPower_mdBFS Pointer to the variable through which the power measurement reading is returned.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 152 of 336

API PROGRAMMING
The API programming sequence for the gain control blocks is detailed in Figure 90. The configuration of these blocks is one of the last
steps before making the device operational. The structures are defined before initialization of the device begins. When device
initialization has proceeded up to the configuration of the JESD204B and JESD204C, the gain control configuration begins.

The following API is used to configure the gain control blocks within the device, such as the peak detectors, the power detector, and the
AGC if used. It is required to call this command in applications that require AGC.

adi_adrv9025_AgcCfgSet(…)
adi_adrv9025_AgcCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025_AgcCfg_t agcConfig[], uint8_t
arraySize)

Description

This command configures the gain control blocks within the device, such as peak detectors, power detector, and AGC settings.

Parameters

Table 161. adi_adrv9025_AgcCfgSet(…) Parameters
Parameter Description
*device Pointer to device structure.
agcConfig An array of gain control configuration structures of type adi_adrv9025_AgcCfg_t.
arraySize The number of configuration structures in agcConfig[].

The composition of the gain control configuration structure is detailed in the AGC Holdover Function section. After agcConfig[] has
been configured, the desired gain control mode can be enabled by using the adi_adrv9025_RxGainCtrlModeSet() API function.

The final step is to configure any GPIOs as necessary, whether monitor outputs, which allow real-time monitoring of the peak detector
outputs, or GPIO inputs, which allow the AGC gain update counter to be synchronized to a slot boundary, or GPIOs to directly control
the gain index.

22
77

0-
08

9

GAIN CONRTROL SETUP
COMPLETE

DEVICE INITIALISATION
UP TO AND INCLUDING

adi_adrv9025_PostMcsInit()

CONFIGURE GAIN
CONTROL GPIOs

RUN
adi_adrv9025_RxGainModeSet()

RUN
adi_adrv9025_AgcCfgSet()

CONFIGURE GAIN TABLE,
DEVICE DATA STRUCTURE

AGC STRUCTURES

Figure 90. Gain Control Programming Flowchart

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 153 of 336

AGC HOLDOVER FUNCTION
The transceiver AGC uses counters to keep track of any overrange or underrange events. These events are used to increment a counter
that accumulates and triggers the AGC state machine if it exceeds the desired count value. For a TDD case, the counters get reset every
time the receiver enable goes low. This reset of the overrange and underrange counters can potentially cause the AGC state machine to
never trigger if the gainUpdateCounter is larger than the receiver TDD slot duration. The AGC holdover function has been implemented
to avoid this situation by preventing the counters from getting reset when the receiver enable is toggled.

To enable this function, the user must create a stream file using the transceiver evaluation software with the AGC state persist box
checked in the stream settings window, as shown in Figure 91. After this box is checked, a stream file can be created with the AGC
holdover function enabled to prevent AGC counter resets during TDD operation.

22
77

0-
09

0

Figure 91. TES Stream Settings Control Window to Enable AGC Holdover

RECEIVER GAIN MODE SWITCHING USING GPIO
This feature allows the use of a GPIOx pin to force receiver gain index changes and move to MGC mode. This feature is beneficial if the
user wants to run a quick RF calibration for the entire receiver signal chain. Such a calibration requires a fixed receiver gain index, which
is not possible to guarantee if the device is in AGC mode. The user can change the mode to MGC and then change the receiver gain
index, but the duration of this switch is a few ms, which is not feasible in a 5G NR TDD platform.

When this feature is employed, the user can enable a GPIOx pin to change the receiver gain index to a fixed predetermined value and
move the receiver to MGC mode. This action sets the gain index and avoids the issue of the AGC state machine modifying the index. The
user can then run the desired function (for example, RF calibration) and then toggle the GPIO low to restore the original receiver state.
When the GPIO is low, the gain control mode is restored back to AGC to resume normal receiver operation.

To enable receiver GPIO gain mode switching, the user must create a stream file using the TES with the Rx Gain Gpio Pin set to the
desired GPIO pin, as shown in Figure 92.

22
77

0-
09

1

Figure 92. TES Stream Settings Control Window to Enable Receiver Gain Mode Switching using GPIO

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 154 of 336

The user also must use the StreamGpioConfigSet API function to unmask the stream GPIO source to allow the stream to be triggered on
the desired GPIO. The steps to set up this feature are the following:

1. Generate the stream with the correct GPIO set to the receiver gain GPIO tag, as shown in Figure 92.
2. Use StreamGpioConfigSet function (called during postMcsInit) with the correct GPIO pin selected, as shown in the

StreamGpioConfigSet Function section.
3. Set the receiver manual gain to the desired value to be used during the calibration.

By following these steps, the user can move the receiver to MGC mode when the GPIO goes high and move the receiver back to AGC
mode when the GPIO goes low. Note that this function affects all four channels of the receivers if utilized.

StreamGpioConfigSet Function
streamGpioCfg = Types.adi_adrv9025_StreamGpioPinCfg_t()

streamGpioCfg.streamGpInput0 = Types.adi_adrv9025_GpioPinSel_e. ADI_ADRV9025_GPIO_INVALID

streamGpioCfg.streamGpInput1 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID

streamGpioCfg.streamGpInput2 = Types.adi_adrv9025_GpioPinSel_e. ADI_ADRV9025_GPIO_INVALID

streamGpioCfg.streamGpInput3 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID

streamGpioCfg.streamGpInput4 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID

streamGpioCfg.streamGpInput5 = Types.adi_adrv9025_GpioPinSel_e. ADI_ADRV9025_GPIO_05

streamGpioCfg.streamGpInput6 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID

streamGpioCfg.streamGpInput7 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID

streamGpioCfg.streamGpInput8 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID

streamGpioCfg.streamGpInput9 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID

streamGpioCfg.streamGpInput10 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID

streamGpioCfg.streamGpInput11 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID

streamGpioCfg.streamGpInput12 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID

streamGpioCfg.streamGpInput13 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID

streamGpioCfg.streamGpInput14 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID

streamGpioCfg.streamGpInput15 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID

link.platform.board.Adrv9025Device.RadioCtrl.StreamGpioConfigSet(streamGpioCfg)

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 155 of 336

GAIN CONTROL DATA STRUCTURES
Figure 93 shows the member structure of adi_adrv9025_AgcCfg_t, and of its substructures, adi_adrv9025_AgcPeak_t and
adi_adrv9025_AgcPower_t. Each of the parameters are briefly explained in Table 162, Table 163, and Table 164.

22
77

0-
09

2

adi_adrv9025_AgcCfg_t
+ rxChannelMask
+ agcPeakWaitTime
+ agcRxMaxGainIndex
+ agcRxMinGainIndex
+ agcGainUpdateCounter
+ agcRxAttackDelay
+ agcSlowLoopSettlingDelay
+ agcLowThreshPreventGainInc
+ agcGainChangelfThreshHigh
+ agcPeakThreshGainControlMode
+ agcResetOnRxOn
+ agcEnableSyncPulseForGainCounter
+ agcEnableFastRecoveryLoop

adi_adrv9025_AgcPeak_t

+ agcPeak + agcPower

+ agcUnderRangeLowInterval
+ agcUnderRangeMidInterval
+ agcUnderRangeHighInterval
+ apdHighThresh
+ apdLowGainModeHighThresh
+ apdLowThresh
+ apdLowGainModeLowThresh
+ apdUpperThreshPeakExceededCnt
+ apdLowerThreshPeakExceededCnt
+ apdGainStepAttack
+ apdGainStepRecovery
+ enableHb2Overload
+ hb2OverloadDurationCnt
+ hb2OverloadThreshCnt
+ hb2HighThresh
+ hb2UnderRangeLowThresh
+ hb2UnderRangeMidThresh
+ hb2UnderRangeHighThresh
+ hb2UpperThreshPeakExceededCnt
+ hb2UnderRangeHighThreshPeakExceededCnt
+ hb2GainStepHighRecovery
+ hb2GainStepLowRecovery
+ hb2GainStepMidRecovery
+ hb2GainStepAttack
+ hb2OverloadPowerMode
+ hb2ThreshConfig
+ hb2UnderRangeMidThreshPeakExceededCnt
+ hb2UnderRangeLowThreshPeakExceededCnt

adi_adrv9025_AgcPower_t
+ powerEnableMeasurement
+ powerInputSelect
+ underRangeHighPowerThresh
+ underRangeLowPowerThresh
+ underRangeHighPowerGainStepRecovery
+ underRangeLowPowerGainStepRecovery
+ powerMeasurementDuration
+ rxTddPowerMeasDuration
+ rxTddPowerMeasDelay
+ overRangeHighPowerThresh
+ overRangeLowPowerThresh
+ powerLogShift
+ overRangeHighPowerGainStepAttack
+ overRangeLowPowerGainStepAttack

Figure 93. Member Listing of adi_adrv9025_AgcCfg_t Data Structure

Table 162. adrv9025_AgcCfg_t Structure Definition
Parameter Description Min Value Max Value
rxChannelMask This selects the channels upon which to enable this gain control

mode. It is a bit mask with each bit corresponding to a channel,
[D0] = Rx1, [D1] = Rx2, [D2] = Rx3, [D3] = Rx4. Therefore, setting the
rxChannelMask = 15 means that all receiver channels are
configured with the same AGC configuration.

0 15

agcPeakWaitTime Number of AGC clock cycles to wait before enable peak/overload
detectors after a gain change.

0 31

agcRxMaxGainIndex Maximum gain index allowed in AGC mode. Must be greater than
agcMinGainIndex and be a valid gain index.

0 255

agcRxMinGainIndex Minimum gain index allowed in AGC mode. Must be less than
agcRxMaxGainIndex and be a valid gain index.

0 255

agcGainUpdateCounter Used as a decision period, with the peak detectors reset on this
period. Gain changes in AGC mode can also be synchronized to
this period (the expiry of this counter). The full period is a
combination of the agcGainUpdateCounter and
agcSlowLoopSettlingDelay.

Depends on
overload
detector
settings

4194303
AGC_CLK
cycles

agcRxAttackDelay Hold the duration the AGC must be held in reset when the receiver
path is enabled.

0 63

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 156 of 336

Parameter Description Min Value Max Value
agcSlowLoopSettlingDelay Number of AGC clock cycles to wait after a gain change before the

AGC changes gain again.
0 127

agcLowThreshPreventGain Only relevant in peak and power detect AGC operation. 0 1
 1: If AGC is in peak power detect mode, gain increments requested

by the power detector are prevented if there are sufficient peaks
(APD/HB2 low threshold exceeded count) above the
apdLowThresh or hb2UnderRangeHighThresh.

 0: apdLowThresh and hb2UnderRangeHighThresh are don’t cares
for gain recovery.

agcChangeGainIfThreshHigh Applicable in both peak and peak mode and power detect mode. 0 3
 0: gain changes wait for the expiry of the gain update counter if a high

threshold count has been exceeded on either the APD or HB2
detector.

 1: gain changes occur immediately when initiated by HB2. Gain
changes initiated by the APD wait for the gain update to expire.

 2: gain changes occur immediately when initiated by APD. Gain
changes initiated by HB2 wait for the gain update to expire.

 3: gain changes occur immediately when initiated by APD or HB2
detectors.

agcPeakThreshGainControlMode 1: AGC in peak AGC mode, power-based gain changes are disabled. 0 1
 0: AGC in peak and power AGC mode where both peak detectors

and power detectors are utilized.

agcResetOnRxon 1: AGC state machine is reset when the receiver is disabled. The
AGC gain setting is returned to the maximum gain.

0 1

 0: AGC state machine maintains its state when the receiver is disabled.
agcEnableSyncPulseForGainCounter 1: Allows synchronization of the AGC gain update counter to the

time slot boundary. GPIO setup required.
0 1

 0: AGC gain update counter free runs.
agcEnableFastRecoveryLoop 1: Enables the fast recovery AGC functionality using the HB2

overload detector. Only applicable in peak detect mode.
0 1

 0: AGC fast recovery is not enabled.
agcPower Structure containing all the power detector settings. Not

applicable
Not
applicable

agcPeak Structure containing all the peak detector settings. Not
applicable

Not
applicable

Table 163. adrv9025_AgcPeak_t Structure Definition
Parameter Description Min Value Max Value
agcUnderRangeLowInterval This sets the time constant (in AGC clock cycles) that the AGC recovers

when the signal peaks are less than hb2UnderRangeLowThresh.
Only applicable when the fast recovery option is enabled in peak
detect AGC mode.

Depends on
HB2 detector
settings

65535

agcUnderRangeMidInterval This sets the time constant (in AGC clock cycles) that the AGC recovers
when the signal peaks are less than hb2UnderRangeMidThresh.
Calculated as (agcUnderRangeMidInterval + 1) ×
agcUnderRangeLowInterval.

0 63

 Only applicable when the fast recovery option is enabled in peak
detect AGC mode.

agcUnderRangeHighInterval This sets the time constant (in AGC clock cycles) that the AGC recovers
when the signal peaks are less than hb2UnderRangeHighThresh.
Calculated as (agcUnderRangeHighInterval + 1) ×
agcUnderRangeMidInterval

0 63

 Only applicable when the fast recovery option is enabled in peak
detect AGC mode.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 157 of 336

Parameter Description Min Value Max Value
apdHighThresh This sets the upper threshold of the analog peak detector. When

the input signal exceeds this threshold a programmable number
of times (set by its corresponding overload counter) within a gain
update period, the overload detector flags. In AGC modes, the gain
is reduced when this overload occurs. The value is calculated using
the equation: adpdHighThresh (mV) = (apdHighThresh + 1) × 16 mV.

apdLowThresh 63

apdLowGainModeHighThresh This parameter is not utilized.
apdLowThresh This sets the lower threshold of the analog peak detector. When the

input signal exceeds this threshold a programmable number of times
(set by its corresponding overload counter) within a gain update
period, the overload detector flags. In peak AGC mode, the gain is
increased when this overload is not occurring. In power AGC mode,
this threshold can be used to prevent further gain increases if the
agcLowThreshPreventGain bit is set. The value is calculated using the
equation: adpdLowThresh (mV) = (apdLowThresh + 1) × 16 mV.

7 apdHighThresh

apdLowGainModeLowThresh This parameter is not utilized.
apdUpperThreshPeakExceededCnt Sets number of peaks to detect greater than apdHighThresh to

cause an APD high overrange event. In AGC modes, this results in a
gain decrement set by apdGainStepAttack.

0 255

apdLowerThreshPeakExceededCnt Sets number of peaks to detect greater than apdLowThresh to
cause an APD low overload event. In peak detect AGC mode, if an
APD low overload event is not occurring, this results in a gain
increment set by apdGainStepRecovery.

0 255

apdGainStepAttack The number of indices that the gain index pointer must be
decreased in the event of an APD high overrange in AGC modes.
The step size in dB depends on the gain step resolution of the gain
table (default 0.5 dB per index step).

0 31

apdGainStepRecovery The number of indices that the gain index pointer must be
increased in the event of an APD underrange event occurring in
peak detect AGC mode. The step size in dB depends on the gain
step resolution of the gain table (default 0.5 dB per index step).

0 31

enableHb2Overload 1: HB2 overload detector enabled. 0: HB2 overload detector disabled. 0 1
hb2OverloadDurationCnt The number of clock cycles (at the HB2 output rate) within which

hb2OverloadThreshCnt must be exceeded for an overload to
occur. An HB2 overload flag is only raised when the number of
these overloads exceeds hb2UpperThreshPeakExceededCnt or
hb2LowerThreshPeakExceededCnt within a gain update period.
The number of clocks is 2(hb2OverloadDurationCnt + 1).

0 6

hb2OverloadThreshCnt Sets the number of individual samples exceeding hb2HighThresh
or hb2LowThresh necessary within hb2OverloadDurationCnt for
an overload to occur. The HB2 overload flag is only raised when
the number of these overloads exceeds
hb2UpperThreshPeakExceededCnt or
hb2LowerThreshPeakExceededCnt within a gain update period.

1 15

hb2HighThresh This sets the upper threshold of the HB2 detector. 0 16383
  

 
 = ×

2
202 16,384 10

hb HighdBFS

hb HighThresh

hb2UnderRangeLowThresh This sets the lower threshold of the HB2 underrange threshold
detectors. Used only when the fast recovery option of the peak
detect AGC mode is being utilized.

0 16383

  
 
 = ×

2
202 16,384 10

hb UnderRangeLowdBFS

hb UnderRangeLowThresh

hb2UnderRangeMidThresh This sets the middle threshold of the HB2 underrange threshold
detectors. Used only when the fast recovery option of the peak
detect AGC mode is being utilized.

0 16383

  
 
 = ×

2
202 16,384 10

hb UnderRangeMiddBFS

hb UnderRangeMidThresh

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 158 of 336

Parameter Description Min Value Max Value
hb2UnderRangeHighThresh; Peak detect mode: threshold used for gain recovery. 0 16383
 Peak detect with fast recovery mode: this sets the highest

threshold of the HB2 underrange threshold detectors.

 Power detect mode: threshold used to prevent further gain
increases if agcLowThreshPreventGain is set.

  
 
 = ×

2
202 16,384 10

hb UnderRangeHIghdBFS

hb UnderRangeHighThresh

hb2UpperThreshPeakExceededCnt Sets number of individual overloads greater than hb2HighThresh
(number of times hb2OverloadThreshCnt was exceeded in
hb2OverloadDurationCnt) to cause an HB2 high overrrange event.
In AGC modes, this results in a gain decrement set by
hb2GainStepAttack.

0 255

hb2UnderRangeHighThreshExceededCnt Sets number of individual overloads greater than
hb2UnderRangeHighThresh (number of times hb2OverloadThreshCnt
was exceeded in hb2OverloadDurationCnt) to cause an HB2
underrange high threshold overload event. In peak detect AGC
mode, not having sufficient peaks to cause the overload is flagged
as an underrange event and the gain is recovered by
hb2GainStepHighRecovery.

0 255

hb2GainStepHighRecovery The number of indices that the gain index pointer must be
increased in the event of an HB2 underrange high threshold
underrange event.

0 31

hb2GainStepLowRecovery Only applicable in fast recovery mode of peak detect AGC. This
sets the number of indices that the gain index pointer must be
increased in the event of an HB2 underrange low threshold
underrange event.

0 31

hb2GainStepMidRecovery Only applicable in fast recovery mode of peak detect AGC. This sets the
number of indices that the gain index pointer must be increased in the
event of an HB2 underrange mid threshold underrange event.

0 31

hb2GainStepAttack The number of indices that the gain index pointer must be
decreased in the event of an HB2 high threshold overrange event
in AGC modes. The step size in dB depends on the gain step
resolution of the gain table (default 0.5 dB per index step).

0 31

hb2OverloadPowerMode Sets the measurement mode of the HB2 detector. If it is set to 0,
the hb2 threshold sample type is signal amplitude. If it is set to 1,
the hb2 threshold sample type is signal power.

0 1

hb2ThreshConfig Set to 3. 3 3
hb2UnderRangeMidThreshExceededCnt Only applicable in fast recovery mode of peak detect AGC. Sets

number of individual overloads above hb2UnderRangeMidThresh
(number of times hb2OverloadThreshCnt was exceeded in
hb2OverloadDurationCnt) to cause an HB2 underrange mid
threshold overload event. In peak detect AGC mode, not having
sufficient peaks to cause the overload is flagged as an underrange
event and the gain is recovered by hb2GainStepMidRecovery.

0 255

hb2UnderRangeLowThreshExceededCnt Only applicable in fast recovery mode of peak detect AGC. Sets the
number of individual overloads greater than
hb2UnderRangeLowThresh (number of times hb2OverloadThreshCnt
was exceeded in hb2OverloadDurationCnt) to cause an HB2
underrange low threshold overload event. In peak detect AGC
mode, not having sufficient peaks to cause the overload is flagged
as an underrange event and the gain is recovered by
hb2GainStepLowRecovery.

0 255

Table 164. adrv9025_AgcPower_t Structure Definition
Parameter Description Min Value Max Value
powerEnableMeasurement 1: power measurement block enabled. 0: power measurement

block disabled.
0 1

powerInputSelect This parameter sets the location of the power measurement. 0 =
RFIR output, 1 = HB1 output, 2 = HB2 output.

0 3

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 159 of 336

Parameter Description Min Value Max Value
underRangeHighPowerThresh Threshold in dBFS (negative sign assumed), which defines the lower

boundary on the stable region of the power detect gain control mode.
0 127

underRangeLowPowerThresh Offset (negative sign assumed) from underRangeHighPowerThresh,
which defines the outer boundary of the power based AGC
convergence. Typically, recovery is set to be larger steps than when
the power measurement is less than this threshold.

0 31

underRangeHighPowerGainStepRecovery The number of indices that the gain index pointer must be
increased (gain increase) in the event of the power measurement
being less than underRangeHighPowerThresh but greater than
underRangeLowPowerThresh.

0 31

underRangeLowPowerGainStepRecovery The number of indices that the gain index pointer must be
increased (gain increase) in the event of the power measurement
being less than underRangeLowPowerThresh.

0 31

powerMeasurementDuration Number of IQ samples on which to perform the power
measurement. The number of samples corresponding to the 4-bit
word is 8 × 2(pmdMeasDuration[3:0]). This value must be less than the AGC
gain update counter.

0 31

rxTddPowerMeasDuration Following a receiver enable, the power measurement block can be
requested to perform a power measurement for a specific period of
a frame. This is applicable in TDD modes. This parameter sets the
duration of this power measurement. A value of 0 causes the power
measurement to run until the next gain update counter expiry.

0 65535 AGC
clock
cycles

rxTddPowerMeasDelay Following a receiver enable, the power measurement block can be
requested to perform a power measurement for a specific period of a
frame. This is applicable in TDD modes. This parameter sets the delay
between the receiver enable and the power measurement starting on Rx1.

0 65535 AGC
clock
cycles

overRangeHighPowerThresh Threshold in dBFS (negative sign assumed), which defines the
upper boundary on the stable region (no gain change based on
power measurement) of the power detect gain control mode.

0 127

overRangeLowPowerThresh Offset (positive sign assumed) from upper0PowerThresh, which
defines the outer boundary of the power based AGC convergence.
Typically, attack is set to be larger steps than when the power
measurement is greater than this threshold.

0 15

powerLogShift Enable increase in dynamic range of the power measurement from
40 dB to ~60 dB.

0 1

overRangeHighPowerGainStepAttack The number of indices that the gain index pointer must be
decreased (gain reduction) in the event of the power measurement
being greater than overRangeHighPowerThresh.

0 31

overRangeLowPowerGainStepAttack The number of indices that the gain index pointer must be
decreased (gain decrease) in the event of the power measurement
being less than OverRangeHighPowerThresh but greater than
OverRangeLowPowerThresh.

0 31

SAMPLE PYTHON SCRIPT—PEAK DETECT MODE WITH FAST ATTACK
The following is a sample python script to enable the AGC in peak detect mode. The user can use this sample script as a starting point to
enable AGC on the evaluation platform.
#Import Reference to the DLL
import System
import clr
from System import Array
clr.AddReferenceToFileAndPath("C:\\Program Files (x86)\\Analog Devices\\ADRV9025 Transceiver
Evaluation Software\\adrv9025_dll.dll")
from adrv9025_dll import AdiEvaluationSystem
from adrv9025_dll import Types

#Create an Instance of the Class

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 160 of 336

Link = AdiEvaluationSystem.Instance

connect = False

if (Link.IsConnected() == False):

 connect = True

 Link.Ads8.board.Client.Connect("192.168.1.10", 55556)

 print "Connecting"

if (Link.IsConnected()):

 adrv9025 = Link.Adrv9025Get(1)

 # Create an instance of the rxGainMode , agcConfig classes

 rxGainMode = Types.adi_adrv9025_RxAgcMode_t()

 agcConfig = Types.adi_adrv9025_AgcCfg_t()

 # General Rx Gain Mode Configuration

 rxGainMode.rxChannelMask = 0xF

 rxGainMode.agcMode = Types.adi_adrv9025_RxAgcMode_e.ADI_ADRV9025_AGCSLOW

 # General AGC Configuration

 agcConfig.rxChannelMask = 0xF

 agcConfig.agcPeakWaitTime = 4

 agcConfig.agcRxMaxGainIndex = 255

 agcConfig.agcRxMinGainIndex = 195

 agcConfig.agcGainUpdateCounter = 921600

 agcConfig.agcRxAttackDelay = 10

 agcConfig.agcSlowLoopSettlingDelay = 16

 agcConfig.agcLowThreshPreventGainInc = 1

 agcConfig.agcChangeGainIfThreshHigh = 1

 agcConfig.agcPeakThreshGainControlMode= 1

 agcConfig.agcResetOnRxon = 0

 agcConfig.agcEnableSyncPulseForGainCounter = 0

 agcConfig.agcEnableFastRecoveryLoop = 0

 #adi_adrv9025_AgcPeak_t agcPeak;

 agcConfig.agcPeak.agcUnderRangeLowInterval = 205000 / 245;

 agcConfig.agcPeak.agcUnderRangeMidInterval = 2;

 agcConfig.agcPeak.agcUnderRangeHighInterval = 4;

 agcConfig.agcPeak.apdHighThresh = 38;

 agcConfig.agcPeak.apdLowThresh = 25;

 agcConfig.agcPeak.apdUpperThreshPeakExceededCnt = 10;

 agcConfig.agcPeak.apdLowerThreshPeakExceededCnt = 3;

 agcConfig.agcPeak.enableHb2Overload = 1;

 agcConfig.agcPeak.hb2OverloadDurationCnt = 1;

 agcConfig.agcPeak.hb2OverloadThreshCnt = 1;

 agcConfig.agcPeak.hb2HighThresh = 11598; #-3dBFS

 agcConfig.agcPeak.hb2UnderRangeLowThresh = 8211;

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 161 of 336

 agcConfig.agcPeak.hb2UnderRangeMidThresh = 5813;

 agcConfig.agcPeak.hb2UnderRangeHighThresh = 2913;

 agcConfig.agcPeak.hb2UpperThreshPeakExceededCnt = 10;

 agcConfig.agcPeak.hb2UnderRangeHighThreshExceededCnt = 3;

 agcConfig.agcPeak.hb2UnderRangeMidThreshExceededCnt = 3;

 agcConfig.agcPeak.hb2UnderRangeLowThreshExceededCnt = 3;

 agcConfig.agcPeak.hb2OverloadPowerMode = 0;

 agcConfig.agcPeak.hb2ThreshConfig = 3;

 agcConfig.agcPeak.apdGainStepAttack = 4;

 agcConfig.agcPeak.apdGainStepRecovery = 2;

 agcConfig.agcPeak.hb2GainStepAttack = 4;

 agcConfig.agcPeak.hb2GainStepHighRecovery =2;

 agcConfig.agcPeak.hb2GainStepMidRecovery = 4;

 agcConfig.agcPeak.hb2GainStepLowRecovery = 8;

 #adi_adrv9025_AgcPower_t agcPower;

 agcConfig.agcPower.powerEnableMeasurement = 0;

 agcConfig.agcPower.powerInputSelect = 0;

 agcConfig.agcPower.underRangeHighPowerThresh = 9;

 agcConfig.agcPower.underRangeLowPowerThresh = 2;

 agcConfig.agcPower.underRangeHighPowerGainStepRecovery = 0;

 agcConfig.agcPower.underRangeLowPowerGainStepRecovery = 0;

 agcConfig.agcPower.powerMeasurementDuration = 5;

 agcConfig.agcPower.rxTddPowerMeasDuration = 5;

 agcConfig.agcPower.rxTddPowerMeasDelay = 1;

 agcConfig.agcPower.overRangeHighPowerThresh = 2;

 agcConfig.agcPower.overRangeLowPowerThresh = 0;

 agcConfig.agcPower.powerLogShift = 1; # Force to 1

 agcConfig.agcPower.overRangeHighPowerGainStepAttack = 0;

 agcConfig.agcPower.overRangeLowPowerGainStepAttack = 0;

 # Make agcConfig and rxGainMode into array types (necessary for syntax reasons)

 agcConfigArr = Array[Types.adi_adrv9025_AgcCfg_t]([agcConfig])

 rxGainModeArr = Array[Types.adi_adrv9025_RxAgcMode_t]([rxGainMode])

 # Write settings to device

 adrv9025.Agc.AgcCfgSet(agcConfigArr, 1)

 # Enable AGC Mode

 adrv9025.Rx.RxGainCtrlModeSet(rxGainModeArr, 1)

 print "Finished Programming Device"

else:

 print "Not Connected"

if (connect == True):

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 162 of 336

 Link.Ads8.board.Client.Disconnect()

 print "Disconnecting"

GAIN COMPENSATION, FLOATING POINT FORMATTER AND SLICER
The user has the option of enabling gain compensation in the transceiver. In gain compensation mode, the digital gain block is utilized to
compensate for the analog front-end attenuation. The cumulative gain across the device is therefore 0 dB. For example, if 5 dB analog
attenuation is applied at the front end of the device then 5 dB of digital gain is applied. This ensures that the digital data is representative
of the rms power of the signal at the receiver input port. Any internal front-end attenuation changes made to prevent ADC overloading
are transparent to the baseband processor. In this way, the AGC can be used to react quickly to incoming blockers without the need for
the baseband processor to track the current gain index the level of the received signal at the input to the device for received signal
strength measurements.

The digital gain block is controlled by the gain table, and a compensated gain table is required to operate in this mode. Analog Devices
provides an example compensated gain table in the software package. Such a gain table has a unique front-end attenuator setting with a
corresponding amount of digital gain programmed at each index of the table.

Gain compensation can be used in either AGC mode or MGC mode. The maximum amount of gain compensation is 50 dB. This allows
for compensation of both the internal analog attenuator and an external gain component (such as a DSA or LNA).

Large amounts of digital gain increase the bit width of the path. There are a number of ways in which this expanded bit width data can be
sent to the baseband processor, which are described in the following mode option descriptions. Figure 94 is a block diagram of the gain
compensation portion of the receiver chain, showing the locations of the various blocks.

22
77

0-
09

3

SLICER OUTPUTS
TO BBP

DIGITAL GAIN/
COMPENSATION

FLOATING POINT
FORMATTERSLICER JESD204B/C

Figure 94. Gain Compensation, Floating Point Formatter, and Slicer Section of the Receiver Datapath

Mode 1: No Digital Gain Compensation

This is the mode that the chip is configured to by default. In this mode the digital gain block is not used for gain compensation. Instead,
the digital gain block may be utilized to apply small amounts of digital gain or attenuation to provide consistent gain steps in a gain table.
The premise is that because the analog attenuator does not have consistent stops in dB across its range, the digital gain block can be
utilized to even out the steps for consistency (the default table utilizes the digital gain block to provide consistent 0.5 dB steps).

Neither the slicer nor floating point formatter block is utilized. As no gain compensation is applied, there is no bit width expansion of the
digital signal. The signal is provided to the JESD204B and JESD204C port, which sends it to the baseband processor in either 12-bit, 16-
bit, or 24-bit format depending on the use case.

Mode 2: Digital Gain Compensation with Slicer GPIO Outputs

In this mode, gain compensation is used. Load the transceiver with a gain table that compensates for the analog front-end attenuation
applied. As the analog front-end attenuation is increased, an equal amount of digital gain is applied. Considering 16-bit data at the input
to the digital compensation block, as more digital gain is applied, the bit width of the signal is increased. With every 6 dB of gain, the bit
width increases by 1. Figure 95 outlines this effect, with yellow boxes indicating the valid (used) bits in each case.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 163 of 336

22
77

0-
09

4

0dB GAIN
COMPENSATION D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0dB < GAIN
COMPENSATION < 6dB

6dB ≤ GAIN
COMPENSATION < 12dB

D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Figure 95. Bit Width of Received Signal for Increasing Gain Compensation

The slicer is used to attenuate the data after the digital gain block in a way that it can fit into the resolution of the JESD204B and
JESD204C datapath. The slicer then advises the user how much attenuation is being applied in real time, so that the user can compensate
on the baseband processor side. In this mode, the current slicer setting (amount of attenuation) is provided in real time over GPIO pins.

Note that this slicer setting information is not necessarily time aligned to the data at the baseband processor side. As soon as the slicer
value changes, this information is provided on the GPIO pins. However, there is some latency between this and when the corresponding
data arrives across the JESD204B and JESD204C link. It is up to the user to determine an appropriate way of accounting for this latency.

This slicer can be configured for a number of attenuation resolutions, namely 1 dB, 2 dB, 3 dB, 4 dB, 6 dB, or 8 dB steps. Higher resolution
(smaller steps) allows the user to follow the actual signal amplitude with finer resolution, while lower resolution (larger steps) allows for
more compensation range.

The slicer can use up to 4 GPIOs per receiver. The GPIOs used to output the slicer position are shown in Table 165. These GPIOs require
their pins to be enabled as outputs and configured for slicer output mode (see the GPIO Configuration section).

Table 165. GPIOs Used for Slicer Output Mode
Receiver GPIOs Utilized (MSB to LSB)
Rx1 GPIO11, GPIO10, GPIO9, GPIO8
Rx2 GPIO_15, GPIO14, GPIO13, GPIO12
Rx3 GPIO7, GPIO6, GPIO5, GPIO4
Rx4 GPIO3, GPIO2, GPIO1, GPIO_0

The following example illustrated in Figure 96 explains the operation of the slicer in detail. In this use case, the JESD204B and JESD204C
is configured for 16-bit data resolution. The slicer is configured to 6 dB resolution.

Figure 96 explains the operation. Initially, the analog attenuator is applying no attenuation (0 dB) and, therefore, there is 0 dB digital gain
applied to the signal. The slicer is in its default (0000) position. As the attenuation increases (0 dB to 6 dB), a corresponding amount of
digital gain is applied to the signal. With any digital gain applied to the signal, the bit width of the signal has increased (the ADC can
output 16-bits, and further gain allows a maximum input to go beyond 16-bits). In this case, the signal now has a bit width of 17. The
slicer therefore applies 6 dB of attenuation, and the slicer position information across the GPIOs is updated to advise the user of this
change (in this case 0001). This 6 dB attenuation ensures that the bit width of the signal is 16 again. That is, the 16 MSBs have been
selected (sliced) with the LSB dropped. When the compensation increases beyond 6 dB, it is now possible that the signal resolution in the
digital path can be 18-bit. The slicer then attenuates by 12 dB (or slices the 16 MSBs dropping the 2 LSBs).

22
77

0-
09

5

0dB GAIN
COMPENSATION D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0dB < GAIN
COMPENSATION < 6dB

6dB ≤ GAIN
COMPENSATION < 12dB

D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

MSB

SLICER
OUTPUTS
TO BBP

LSB

0 0 0 0

0 0 0 0

0 0 0 0

Figure 96. Slicer Bit Selection with Digital Gain

The baseband processor receives these 16-bits and uses the slicer output to scale the power of the received signal to determine the power
at the input to the device (or at the input to an external gain element if considered part of the digital gain compensation).

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 164 of 336

The slicer position vs. digital gain for this 6 dB example is described in Table 166. Equivalent tables can be inferred for the other
attenuation options.

Table 166. Slicer GPIO Output vs. Digital Gain Compensation
Digital Gain Compensation (dB) Slicer Position (Value Output on GPIOs)
0 0
0 < Dig_Gain < 6 1
6 ≤ Dig_Gain < 12 2
12 ≤ Dig_Gain < 18 3
18 ≤ Dig_Gain < 24 4
24 ≤ Dig_Gain < 30 5
30 ≤ Dig_Gain < 36 6
36 ≤ Dig_Gain < 42 7
42 ≤ Dig_Gain < 48 8
48 ≤ Dig_Gain ≤ 50 9

Mode 3: Digital Gain Compensation with Embedded Slicer Position

This mode is similar to Mode 2. The slicer is used to select the 16 MSBs based on the amount of digital gain used by the currently selected
gain index in the gain table. However, in this mode the GPIO slicer outputs are not used. Instead, the slicer position (or attenuation
applied) is embedded into the data.

There are a number of permissible ways in which this can be configured, controlled by the intEmbeddedBits API parameter. The options
are to place the slicer setting as 1 bit on both I and Q, or 2 bits on both I and Q. These can be placed at the MSBs or LSBs. For the case
where 2 bits are embedded onto both I and Q data, there are further options of using 3 or 4 slicer bits. If 3 are used, there is another
option of inserting a 0 to fill the 4th bit, or to insert a parity bit (by adjusting the intParity API parameter). Table 167 shows the various
modes selectable by intEmbeddedBits.

Table 167. adi_adrv9025_RxSlicerEmbeddedBits_e Description
intEmbeddedBits Description
ADI_ADRV9025_EMBED_1_SLICERBIT_AT_MSB Embeds 1 slicer bit on both I and Q at the MSB position. See Figure 97.
ADI_ADRV9025_EMBED_1_SLICERBIT_AT_LSB Embeds 1 slicer bit on both I and Q at the LSB position. See Figure 98.
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_3_BIT_SLICER Embeds 2 slicer bits on both I and Q at the MSB positions. See Figure 99.

Because this is a 3-bit mode, an extra bit is inserted denoted as P in Figure
99. This can either be a parity bit or a zero can always be inserted alternatively.

ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_3_BIT_SLICER Embeds 2 slicer bits on both I and Q at the LSB position. See Figure 100.
Given this is a 3-bit mode, an extra bit is inserted denoted as P in Figure 100.
This can either be a parity bit or a zero can always be inserted alternatively.

ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_4_BIT_SLICER Embeds 2 slicer bits on both I and Q at the MSB positions. See Figure 101.
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_4_BIT_SLICER Embeds 2 slicer bits on both I and Q at the LSB positions. See Figure 102.

22
77

0-
09

6

I DATA

SIGN
BIT

SLICER
VALUE

S SL1 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Q DATA

SIGN
BIT

SLICER
VALUE

S SL0 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
Figure 97. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_1_SLICERBIT_AT_MSB)

22
77

0-
09

7

I DATA

SIGN
BIT

SLICER
VALUE

S SL1D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Q DATA

SIGN
BIT

SLICER
VALUE

S SL0D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
Figure 98. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_1_SLICERBIT_AT_LSB)

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 165 of 336

22
77

0-
09

8

I DATA

SIGN
BIT

SLICER
VALUE

S P D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Q DATA

SIGN
BIT

SLICER
VALUE

S SL1

SL2

SL0 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
Figure 99. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_3_BIT_SLICER)

22
77

0-
09

9

I DATA

SIGN
BIT

SLICER
VALUE

S PD12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Q DATA

SIGN
BIT

SLICER
VALUE

S SL1

SL2

SL0D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
Figure 100. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_3_BIT_SLICER)

22
77

0-
10

0

I DATA

SIGN
BIT

SLICER
VALUE

S SL3 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Q DATA

SIGN
BIT

SLICER
VALUE

S SL1

SL2

SL0 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
Figure 101. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_4_BIT_SLICER)

22
77

0-
10

1

I DATA

SIGN
BIT

SLICER
VALUE

S SL3D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Q DATA

SIGN
BIT

SLICER
VALUE

S SL1

SL2

SL0D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
Figure 102. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_4_BIT_SLICER)

Mode 4: Digital Gain Compensation and Slicer Input

In this mode, the slicer position is controlled by the user. In Mode 2 and Mode 3, the slicer can be viewed as an attenuator, which reduces
the signal level a certain dB with each slicer position step in a way that it can be sent across the JESD204B and JESD204C link. This mode
is similar, except the position (amount of attenuation) is controlled externally. The valid step sizes are between 1 dB and 6 dB and
controlled by the extPinStepSize API parameter, as outlined in Table 168.

Table 168. adi_adrv9025_ExtSlicerStepSizes_e Description
extPinStepSize Slicer Gain Step (dB)
ADI_ADRV9025_EXTSLICER_STEPSIZE_1DB 1
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_2DB 2
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_3DB 3
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_4DB 4
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_6DB 6

The slicer has 3 input pins. The valid options are shown in Table 169. Each channel can be set to any one of the options using the
rx1ExtSlicerGpioSelect, rx2ExtSlicerGpioSelect, rx3ExtSlicerGpioSelect, and rx4ExtSlicerGpioSelect API parameters. The value of these
pins and the step size chosen set the level of slicer attenuation applied to the data before transmission across the JESD204BC link.

Slicer Attenuation = Slicer Input Pin Values × extPinStepSize

For example, if the value on the slicer input pins is 0’b111, and the step size is 2 dB, the slicer applies 14 dB (7 × 2 dB) of attenuation to the data.

Table 169. adi_adrv9025_RxExtSlicerGpioSel_e Description
Value of RxExtSlicerGpioSelect GPIOs Utilized (MSB to LSB)
ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 GPIO2, GPIO1, GPIO_0
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 GPIO5, GPIO4, GPIO3

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 166 of 336

Value of RxExtSlicerGpioSelect GPIOs Utilized (MSB to LSB)
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 GPIO8, GPIO7, GPIO6
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 GPIO11, GPIO10, GPIO9
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 GPIO14, GPIO13, GPIO12
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 GPIO17, GPIO16, GPIO_15

Mode 5: Digital Gain Compensation and Floating Point Formatting

The floating point formatter offers an alternative way of encoding the digitally compensated data onto the JESD204B link. In this mode,
the data is converted to IEEE754 half precision floating point format (binary 16). There is a slight loss in resolution when using the
floating-point formatter, though resolution is distributed in a way so that smaller numbers have higher resolution.

In binary 16 floating point format the number is composed on a sign bit (S), an exponent (E), and a significand (T). There are a number
of options in terms of the number of bits that can be assigned to the exponent. More bits in the exponent result in a higher range, and
therefore can allow for more digital compensation to the represented, whereas more bits in the significand provides higher resolution.
The available options for the floating point formatter of the device include the following:

• 5-bit exponent, 10-bit significand
• 4-bit exponent, 11-bit significand
• 3-bit exponent, 12-bit significand
• 2-bit exponent, 13-bit significand

It is also possible to pack the data in the following different formats (as shown in Figure 103):

• Sign, exponent, significand
• Sign, significand, exponent

22
77

0-
10

2

SIGN
BIT

S E

W

T

t

S ET

SIGN
BIT

MSB LSB MSB
SIGNIFICANDEXPONENT

LSB

MSB MSB
SIGNIFICAND EXPONENT

LSB LSB

Wt
Figure 103. Floating Point Number Representation

In Figure 103, S is the sign bit, E is the value of the exponent, T is the value of the significand, w is the bit width of the exponent, and t is
the bit width of the significand.

Upon receipt of an encoded floating point formatter, the user breaks up the binary 16 number into its constituent parts. For the purposes
of this explanation, consider a 3-bit exponent. In IEEE754, the maximum exponent (0’b111 in this case) is reserved for NaN. The
minimum exponent (0’b000) is used for a signed zero (E = 0, T = 0) and subnormal numbers (E = 0, T ≠ 0). To decode a received floating
point sample, the following equations are used:

If E = 0 and T = 0,

Value = 0

If E = 0 and T ≠ 0:

Value = (−1)S × 2E – bias+1 × (0 + 21 – p × T)

If E ≠ 0:

Value = (−1)S × 2E − bias × (1 + 21 – p × T)

where:
bias is used to convert the positive binary values to exponents which allow for values both less than and greater than the full-scale of the ADC.
p is the precision of the mode (p = t + 1, because the t significand bits are coupled with a sign bit).

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 167 of 336

Table 170 provides the values to use in these equations for the various IEEE754 supported modes.

Table 170. Floating-Point Formatter—Supported IEEE754 Modes
Exponent Bit Width (w) Significand Bit Width (t) Precision (p) Bias
5 10 11 15
4 11 12 7
3 12 13 3
2 13 14 1

Figure 104 provides a visual representation of how the values of a waveform are encoded in floating point format. In this case, the
maximum exponent (E bias) is 3, meaning that data up to 24 dBFS of the ADC can be represented. As the signal reduces, the exponent
required to represent each value differs. This is a different concept to the slicer that instead bit shifted the data solely based on the applied
digital attenuation and had a constant value for a constant digital gain. Instead, the floating-point formatter interprets each data value
after the digital gain compensation separately. Because of the fixed precision of the significand and the sign bit, it can also be interpreted
from this plot that there is higher resolution at lower signal levels than there is at higher signal levels, preserving SNR when the received
signal strength is low.

22
77

0-
10

3

32.0

16.0

8.0

4.0
2.0

–2.0
–4.0

–8.0

–16.0

–32.0

EXP: +3

EXP: –3

EXP: +2

EXP: –2

EXP: +1

EXP: –1

EXP: –2

EXP: –2

EXP: –2
(Subnormal)

EXP: –1

EXP: –1

EXP: 0

EXP: 0

1.00

–0.5

0.25
0

–0.25

–0.50

–1.00

Figure 104. Visualization of the Floating-Point Formatter Values

The floating-point formatter also supports non-IEEE754 modes, referred to as Analog Devices modes, where the largest exponent is not
used to express NaN in accordance with IEEE754. It is unnecessary for the device to encode NaN because none of the data values can be
NaN and, therefore, using this extra exponent value increases the largest value representable for a given exponent bit width.

Table 171. Exponent Bit Widths of IEEE754 and Analog Devices Modes
Exponent Bit Width IEEE754 Mode Exponent Range (After Unbiasing) Analog Devices Mode Exponent Range (After Unbiasing)
5 +15 to −14 +16 to −14
4 +7 to −6 +8 to −6
3 +3 to −2 +4 to −2
2 +1 to −1 +2 to −1

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 168 of 336

In the default floating point format, the leading one is inferred and not encoded (for normal numbers). It is possible to enable a mode
where the leading one is encoded and stored in the MSB of the significand. However, this reduces the precision of the values.
If the user knows that the range of attenuation required for the worst case blocker (and therefore the digital gain required to compensate for it)
exceeds the correction range allowed by the exponent width chosen, it is also possible to enable a fixed digital attenuation (from 6 dB to 42 dB) prior
to the floating-point formatter to ensure that the signal never exceeds the maximum range encodable over the JESD204B and JESD204C link.

RECEIVER DATA FORMAT DATA STRUCTURE
The configuration parameters for the floating-point formatter and slicer are set up in a data structure of adi_adrv9025_RxDataFormat_t type.
Table 172. adi_adrv9025_RxDataFormat Definition
Parameter Comments
rxChannelMask This selects the channels upon which to enable this gain control mode. It is a bit mask with each bit

corresponding to a channel, [D0] = Rx1, [D1] = Rx2, [D2] = Rx3, [D3] = Rx4. Therefore, setting the
rxChannelMask = 15 means that all receivers are configured with the same agcMode. Data type: uint32.

formatSelect This selects the format of the data received from the receive path. Data type: adirx9025_RxDataFormatModes_e.
formatSelect Format
ADI_ADRV9025_GAIN_COMPENSATION_DISABLED No gain compensation (Mode 1)
ADI_ADRV9025_GAIN_WITH_FLOATING_POINT Gain compensation and floating-point formatter

enabled (Mode 5)
ADI_ADRV9025_GAIN_WITH_INTERNAL_SLICER_NOGPIO Gain compensation and slicer bits embedded on

JESD204B and JESD204C signal (Mode 3)
ADI_ADRV9025_GAIN_WITH_INTERNAL_SLICER Gain compensation and slicer bits output on

GPIOs (Mode 2)
ADI_ADRV9025_GAIN_WITH_EXTERNAL_SLICER Gain compensation and slicer position input from

GPIOs (Mode 4)
floatingPointConfig A configuration structure for floating point format (see Table 173). To be used when floating point formatter is

utilized. Data type: adi_adrv9025_FloatingPointConfigSettings_t.
integerConfigSettings A configuration structure for the data resolution across the JESD204B and JESD204C link (see Table 174). Data

type: adi_adrv9025_IntegerConfigSettings_t.
slicerConfigSettings A configuration structure for the slicer functionality (see Table 175). Data type: adi_adrv9025_SlicerConfigSettings_t.
externalLnaGain For use in dual band modes. Not currently supported.
tempCompensationEnable Not currently supported.

Table 173. adi_adrv9025_FloatingPointConfigSettings_t
Parameter Comments
fpDataFormat This parameter sets the format of the 16-bit output on the JESD204B interface. Data type:

adi_adrv9025_FpFloatDataFormat_e.

fpDataFormat Floating Point Data Format
ADI_ADRV9025_FP_FORMAT_SIGN_EXP_SIGNIFICAND Sign, Exponent, Significand
ADI_ADRV9025_FP_FORMAT_SIGN_SIGNIFICAND_EXP Sign, Significand, Exponent

fpRoundMode This parameter sets the round mode for the significand. The following settings are defined in the IEEE754
specification. For more information, consult Section 4.3 in IEEE 754-2008. Data type: adi_adrv9025_FpRoundModes_e.

fpRoundMode Floating Point Rounding Mode
ADI_ADRV9025_ROUND_TO_EVEN Floating point ties to an even value.
ADI_ADRV9025_ROUNDTOWARDS_POSITIVE Round floating point toward the positive direction.
ADI_ADRV9025_ROUNDTOWARDS_NEGATIVE Round floating point toward the negative direction.
ADI_ADRV9025_ROUNDTOWARDS_ZERO Round floating point toward the zero direction.
ADI_ADRV9025_ROUND_FROM_EVEN Round floating point away from the even value.

fpNumExpBits This parameter indicates the number of exponent bits in the floating-point number. Data type:
adi_adrv9025_FpExponentModes_e.

fpNumExpBits No. of Exponent Bits
ADI_ADRV9025_2_EXPONENTBITS 2
ADI_ADRV9025_3_EXPONENTBITS 3
ADI_ADRV9025_4_EXPONENTBITS 4
ADI_ADRV9025_5_EXPONENTBITS 5

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 169 of 336

Parameter Comments
fpAttenSteps Attenuates integer data before floating point conversion when floating point mode enabled. Data type:

adi_adrv9025_FpAttenSteps_e.
fpRx1Atten Attenuation (dB)
ADI_ADRV9025_FPATTEN_0DB 0
ADI_ADRV9025_FPATTEN_MINUS6DB −6
ADI_ADRV9025_FPATTEN_MINUS12DB −12
ADI_ADRV9025_FPATTEN_MINUS18DB −18
ADI_ADRV9025_FPATTEN_24DB 24
ADI_ADRV9025_FPATTEN_18DB 18
ADI_ADRV9025_FPATTEN_12DB 12
ADI_ADRV9025_FPATTEN_6DB 6

fpHideLeadingOne It is possible to hide the leading one in the significand to be compatible to the IEEE754 specification (IEEE mode).
Alternatively, a leading one can be inserted at the MSB of the significand. Data type: adi_adrv9025_FpHideLeadingOne_e.

fpHideLeadingOne Setting
ADI_ADRV9025_FP_FORMAT_HIDE_LEADING_ONE_DISABLE Leading one at start of significand.
ADI_ADRV9025_FP_FORMAT_HIDE_LEADING_ONE_ENABLE No leading one at start of the significand.

fpEncodeNan This parameter is used to configure whether the floating-point formatter reserves the highest value of exponent for
not a number (NaN) to be compatible with the IEEE754 specification or whether to use the highest value of the
exponent to extend the representable signal range. Data type: adi_adrv9025_FpNanEncode_e.
fpHideLeadingOne Setting
ADI_ADRV9025_FP_FORMAT_NAN_ENCODE_DISABLE Do not reserve the highest exponent for NaN.
ADI_ADRV9025_FP_FORMAT_NAN_ENCODE_ENABLE Reserve highest exponent for NaN.

Table 174. adi_adrv9025_IntegerConfigSettings_t Definition
Parameter Comments
intEmbdeddedBits For use in slicer modes. This parameter sets the integer number of embedded slicer bits to embed in receiver data

sample and bit position to embed them (see Mode 3). Data type: adi_adrv9025_RxSlicerEmbeddedBits_e.
intEmbeddedBits Slicer Bit Embedded position in Data Frame
ADI_ADRV9025_NO_EMBEDDED_SLICER_BITS Disabled all embedded slicer bits.
ADI_ADRV9025_EMBED_1_SLICERBIT_AT_MSB Embeds 1 slicer bit on I and 1 slicer bit on Q and

the MSB position.
ADI_ADRV9025_EMBED_1_SLICERBIT_AT_LSB Embeds 1 slicer bit on I and 1 slicer bit on Q and

the LSB position.
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_3_BIT_SLICER Embeds 2 slicer bits on I and 2 slicer bits on Q

and the MSB position in 3-bit slicer mode.
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_3_BIT_SLICER Embeds 2 slicer bits on I and 2 slicer bits on Q

and the LSB position in 3-bit slicer mode.
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_4_BIT_SLICER Embeds 2 slicer bits on I and 2 slicer bits on Q

and the MSB position in 4-bit slicer mode.
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_4_BIT_SLICER Embeds 2 slicer bits on I and 2 slicer bits on Q

and the LSB position in 4-bit slicer mode.
intSampleResolution This parameter sets the integer sample resolution selecting either 12 bits, 16 bits, or 24 bits data with either twos

complement or signed magnitude. Data type: adi_adrv9025_RxIntSampleResolution_e.
intSampleResolution Resolution of Integer Sample
ADI_ADRV9025_INTEGER_12BIT_2SCOMP 12-bit resolution with twos complement.
ADI_ADRV9025_INTEGER_12BIT_SIGNED 12-bit resolution with signed magnitude.
ADI_ADRV9025_INTEGER_16BIT_2SCOMP 16-bit resolution with twos complement.
ADI_ADRV9025_INTEGER_16BIT_SIGNED 16-bit resolution with signed magnitude.
ADI_ADRV9025_INTEGER_24BIT_2SCOMP 24-bit resolution with twos complement.
ADI_ADRV9025_INTEGER_24BIT_SIGNED 24-bit resolution with signed magnitude.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 170 of 336

Parameter Comments
intParity In the embedded 3-bit slicer mode (Mode 3), it is possible to enable a parity mode. The device can support even

parity (whereby the number of 1s in the bit sequence is always even) or odd parity (whereby the number of 1s in the
bit sequence is always odd). Data type: adi_adrv9025_RxIntParity_e.

 intParity Setting
 ADI_ADRV9025_3BIT_SLICER_EVEN_PARITY Even parity enabled.
 ADI_ADRV9025_3BIT_SLICER_ODD_PARITY Odd parity enabled.
 ADI_ADRV9025_NO_PARITY Parity disabled.

Table 175. adi_adrv9025_SlicerConfigSettings_t Definition
Parameter Comments
extSlicerStepSize This parameter is used in gain compensation with external slicer control (Mode 4). This parameter sets the slicer

step value that is used with this external control mechanism. Data type: adi_adrv9025_ExtSlicerStepSizes_e.
extSlicerStepSize Slicer Step Size
ADI_ADRV9025_EXTSLICER_STEPSIZE_1DB 1 dB
ADI_ADRV9025_EXTSLICER_STEPSIZE_2DB 2 dB
ADI_ADRV9025_EXTSLICER_STEPSIZE_3DB 3 dB
ADI_ADRV9025_EXTSLICER_STEPSIZE_4DB 4 dB
ADI_ADRV9025_EXTSLICER_STEPSIZE_6DB 6 dB

intSlicerStepSize This parameter is used in gain compensation with internal (automatic) slicer control (Mode 2). This parameter sets
the slicer step value. Data type: adi_adrv9025_IntSlicerStepSizes_e.

intSlicerStepSize Slicer Step Size
ADI_ADRV9025_INTSLICER_STEPSIZE_1DB 1 dB
ADI_ADRV9025_INTSLICER_STEPSIZE_2DB 2 dB
ADI_ADRV9025_INTSLICER_STEPSIZE_3DB 3 dB
ADI_ADRV9025_INTSLICER_STEPSIZE_4DB 4 dB
ADI_ADRV9025_INTSLICER_STEPSIZE_6DB 6 dB
ADI_ADRV9025_INTSLICER_STEPSIZE_8DB 8 dB

rx1ExtSlicerGpioSelect This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx1. The choice must be unique to
Rx1. Data type: adi_adrv9025_RxExtSlicerGpioSel_e.

rx1ExtSlicerGpioSelect GPIOs Utilized
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE
ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 2, 1, 0
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 5, 4, 3
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 8, 7, 6
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11, 10, 9
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14, 13, 12
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17, 16, 15
ADI_ADRV9025_EXTSLICER_RX_GPIO_INVALID

rx2ExtSlicerGpioSelect This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx2. The choice must be unique to
Rx2. Data type: adi_adrv9025_RxExtSlicerGpioSel_e.

rx2ExtSlicerGpioSelect GPIOs Utilized
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE
ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 2, 1, 0
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 5, 4, 3
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 8, 7, 6
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11, 10, 9
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14, 13, 12
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17, 16, 15
ADI_ADRV9025_EXTSLICER_RX_GPIO_INVALID

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 171 of 336

Parameter Comments
rx3ExtSlicerGpioSelect This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx3. The choice must be unique to

Rx3. Data type: adi_adrv9025_RxExtSlicerGpioSel_e.
 rx3ExtSlicerGpioSelect GPIOs Utilized
 ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE
 ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 2, 1, 0
 ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 5, 4, 3
 ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 8, 7, 6
 ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11, 10, 9
 ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14, 13, 12
 ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17, 16, 15
 ADI_ADRV9025_EXTSLICER_RX_GPIO_INVALID
rx4ExtSlicerGpioSelect This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx4. The choice must be unique to

Rx4. Data type: adi_adrv9025_RxExtSlicerGpioSel_e.

rx4ExtSlicerGpioSelect GPIOs Utilized
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE
ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 2, 1, 0
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 5, 4, 3
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 8, 7, 6
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11, 10, 9
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14, 13, 12
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17, 16, 15

adi_adrv9025_RxDataFormatSet(…)
adi_adrv9025_RxDataFormatSet(adi_adrv9025_Device_t* device, adi_adrv9025_RxDataFormat_t
rxDataFormat[],uint8_t arraySize);

Description

This command configures the receiver data format.

Parameters

Table 176. adi_adrv9025_RxDataFormatSet(…) Parameters
Parameter Description
*device Pointer to device structure.
rxDataFormat[] An array of receiver data format structures.
arraySize The number of receiver data format structures in rxDataFormatarray length of txPaProtectCfg[].

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 172 of 336

DIGITAL FILTER CONFIGURATION
OVERVIEW
This section describes the digital filters within the transceiver and provides a description of each filter in terms of their filter coefficients
and position within the signal chain. The API structures are described and an example profile specific configuration is provided for each
signal chain. The API functions that are used to configure the filters are also described in this section.

RECEIVER SIGNAL PATH
Each receive input has an independent signal path including separate I/Q mixers that feed into programmable analog transimpedance
amplifiers (TIAs) that serve as LPFs in the analog data path. The signals are then converted by the ΣΔ ADCs and filtered in half-band
decimation stages and the PFIR. The fixed coefficient half-band filters (FIR1, FIR2, RHB1(HR), RHB1(LP), RHB2, RHB3, and DEC5)
and the PFIR is designed to prevent data wrapping and overrange conditions.

Each receive channel can convert signals down to zero IF real data using either the standard I/Q configuration or a low IF complex data
configuration. The digital filtering stage allows the configuration flexibility and decimation options to operate in either mode.

Figure 105 shows the in-phase (I) and quadrature (Q) signal paths for the Rx1, Rx2, Rx3, and Rx4 signal chain.

22
77

0-
10

4

FIR2 FIR1 RHB3 RHB2 PFIR QEC
CORR

DC
CORR

IF
CONVERSION
AND DIGITAL

GAIN

RHB1
(HR)

RHB1
(LP)

DEC5

TIA

TIA JE
SD

20
4B

/C
 IN

TE
RF

AC
E

FIR2 FIR1 RHB3 RHB2 PFIR QEC
CORR

DC
CORR

RHB1
(HR)

RHB1
(LP)

DEC5

IADC

QADC

Figure 105. Receive Signal Path

TIA

The receive transimpedance amplifier is an LPF with a single real pole frequency response. The transceiver supports bandwidths up to
200 MHz and each TIA supports a pass-band of 100 MHz on the I and Q paths. The TIA is calibrated during device initialization to
ensure a consistent frequency corner across all devices. The TIA 3 dB bandwidth is set within the device data structure and is profile
dependent. Roll-off within the receive pass band is compensated by the PFIR to ensure a maximally flat pass band frequency response.

Decimation Stages

The signal path can be configured such that either the decimate by 5 filter (DEC5) or the combination of FIR2, FIR1, and RHB3 is used in
the receive digital path. The DEC5 decimates by a factor of 5 while the other filter combination can be configured to decimate by factors
of 2, 4, or 8.

DEC5

DEC5 filter coefficients include the following: +0.000976563, +0.001220703, +0.001953125, +0.001953125, −0.00390625, −0.0078125,
−0.014648438, −0.018798828, −0.019042969, −0.007568359, +0.010742188, +0.041748047, +0.079101563, +0.1171875, +0.146972656,
+0.165527344, +0.165527344, +0.146972656, +0.1171875, +0.079101563, +0.041748047, +0.010742188, −0.007568359, −0.019042969,
−0.018798828, −0.014648438, −0.0078125, −0.00390625, +0.001220703, +0.001953125, +0.001953125, +0.001220703, and +0.000976563

Finite Impulse Response 2 Filter (FIR2)

The FIR2 filter is a fixed coefficient decimating filter. The FIR2 filter can decimates by a factor of 2 or the filter can be bypassed.

The FIR2 filter coefficients include the following: 0.0625, 0.25, 0.375, 0.25, and 0.0625.

Finite Impulse Response 1 Filter (FIR1)

The FIR1 filter is a fixed coefficient decimating filter. The FIR1 filter can decimate by a factor of 2 or the filter can be bypassed.

The FIR1 filter coefficients include the following: 0.0625, 0.25, 0.375, 0.25, and 0.0625.

Receive Half-Band 3 Filter (RHB3)
The RHB3 filter is a fixed coefficient decimating filter. The RHB3 filter decimates by a factor of 2.

The RHB3 filter coefficients include the following: −0.033203125, 0, +0.28125, +0.49609375, +0.28125, 0, and −0.033203125.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 173 of 336

Receive Half-Band 2 Filter (RHB2)

The RHB2 filter is a fixed coefficient decimating filter. The RHB2 filter can decimate by a factor of 2 or the filter can be bypassed.

The RHB2 filter coefficients include the following: −0.000244141, 0, +0.001708984, 0, −0.0078125, 0, +0.026855469, 0, −0.078369141, 0,
+0.30859375, +0.501220703, +0.30859375, 0, −0.078369141, +0, 0.026855469, 0, −0.0078125, 0, +0.001708984, 0, −0.000244141.

Receive Half-Band High Rejection 1 Filter (RHB1 (HR))

The RHB1 (HR) filter is a fixed coefficient decimating filter. The RHB1 (HR) filter can decimate by a factor of 2 or the filter can be bypassed.

RHB1 (HR) filter coefficients include the following: +0.000106812, 0, −0.000289917, 0, +0.00062561, 0, −0.001205444, 0, +0.002120972,
0, −0.003494263, 0, +0.005493164, 0, −0.008300781, 0, +0.012207031, 0, −0.01763916, 0, +0.025421143, 0, −0.03717041, 0, +0.057250977,
0, −0.101608276, 0, +0.314498901, +0.495956421, +0.314498901, 0, −0.101608276, 0, +0.057250977, 0, −0.03717041, 0, +0.025421143, 0,
−0.01763916, 0, +0.012207031, 0, −0.008300781, 0, +0.005493164, 0, −0.003494263, 0, +0.002120972, 0, −0.001205444, 0, +0.00062561, 0,
−0.000289917, 0, +0.000106812.

Receive Half-Band Low Power 1 Filter (RHB1 (LP))

The RHB1 (LP) filter is a fixed coefficient decimating filter. The RHB1 (LP) filter can decimate by a factor of 2 or the filter can be bypassed.

RHB1 (LP) filter coefficients: −0.002685547, 0, +0.017333984, 0, −0.068359375, 0, +0.304443359, +0.501708984, +0.304443359, 0,
−0.068359375, 0, +0.017333984, 0, −0.002685547.

Receive PFIR Filter

The receive PFIR filter acts as a decimating filter. The PFIR can decimate by a factor of 1, 2, or 4, or the filter can be bypassed. The RFIR
filter compensates for the roll-off of the TIA LPF. The PFIR filter can use 24, 48, or 72 filter taps. The PFIR filter also has programmable
gain settings of +6 dB, 0 dB, −6 dB, or −12 dB.

The maximum number of taps is limited by the FIR clock rate (data processing clock − DPCLK). The maximum DPCLK is 1 GHz. The
DPCLK is the ADC clock rate divided by either 4 or 5. The divider is 4 when using the FIR2, FIR1, and HB3 filters, and the divider is 5 when
using the DEC5 filter. The DPCLK affects the maximum number of PFIR filter taps that can be used according to the following equation:

Rx PFIR Filter Tapsmax = (DPCLK)/(Rx_IQ_DATARATE) × 24

where:
Rx PFIR Filter Tapsmax is the maximum number of filter taps that can be used for the given clock rate.
DPCLK is the digital filter clock rate.
Rx_IQ_DATARATE is the output data rate of the filter.

IF Conversion

The IF conversion stage provides the ability to change how the received data is presented to the JESD port. Figure 106 shows a block
diagram of the IF conversion stage. There are two parallel paths where data can be processed (Band A and Band B). There are two mixer
stages in the circuitry of each band that allow upshifting or downshifting, interpolation and decimation stages, and a half-band filter with
a pass band of 0.4 × the sample rate.

The half-band filter coefficients in this IF conversion stage include the following: −9.1553 × 10−5, 0, +2.4414 × 10−4, 0, −5.7983 × 10−4, 0, +0.0012,
0, −0.0023, +0, 0.0040, 0, −0.0065, 0, +0.0103, 0, −0.0157, 0, +0.0236, 0, −0.0357, 0, +0.0563, 0, −0.1015, 0, +0.3168, +0.5000, +0.3168, 0,
−0.1015, 0, +0.0563, 0, −0.0357, 0, +0.0236, 0, −0.0157, 0, +0.0103, 0, −0.0065, 0, +0.0040, 0, −0.0023, 0, +0.0012, 0, −5.7983 × 10−4, 0,
+2.4414 × 10−4, 0, −9.1553 × 10−5.

The following use cases provide examples of the types of functionality supported by this block. Note that currently, only the low IF to zero
IF conversion mode is supported in a released profile.

COMPLEX LOW IF TO ZERO IF
In this use case, the received signal is offset from the LO such that the entire signal of interest is on one side of the LO. The Band A NCO1
downshifts the signal such that the signal is centered at 0 Hz. There is a half-band filter and decimate by 2 stage that decreases the bandwidth and
subsequently the IQ rate if used. This stage reduces the number of JESD lanes required, or the rate that at which the lanes must be run.

Figure 107 shows a conceptual case of a 200 MHz receive bandwidth (IQ rate 245.76 MSPS) profile used to receive a 75 MHz MC-GSM
offset from the LO. The center frequency is 52.5 MHz offset from the LO, such that the band occupies from ±15 MHz to ±90 MHz. The

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 174 of 336

channel then uses the IF conversion stage to shift the signal to be centered at about 0 Hz, filter with the half-band filter, and decimate the
output by two such that the IQ rate sent over the JESD is 122.88 MSPS.

COMPLEX LOW IF TO REAL IF
In this use case the signal is shifted using NCO1 or NCO2 (or both/none) such that the downconverted signal exists solely on one side of
the LO. The signal no longer needs to be in complex form; only I data is sent across the link and Q data is dropped. The interpolate by 2
stage can also be utilized for this scenario.

22
77

0-
10

7

2

2

2

2

2

2

2

2

INT2 + HB FILTER

BAND A
NCO 1

BAND A
NCO 2

DIG GAIN
COMP

HB FILTER

BAND A CIRCUITRY

BAND B CIRCUITRY

I, Q

HB FILTER + DEC2 2

2

2

2

2

2

INT2 + HB FILTER

BAND B
NCO 1

BAND B
NCO 2

DIG GAIN
COMP

HB FILTER

HB FILTER + DEC2

2

I, Q
2

Figure 106. IF Conversion Stage Block Diagram (All Circuitry is Implemented in Quadrature, as Indicated)

ZERO IF TO REAL IF
In this use case, the received signal is centered around the LO. The signal is interpolated by 2 and half-band filtered. The Band A NCO2
upshifts or downshifts the data to generate a signal that is symmetrical to about 0 Hz. The result of this signal is that the spectrum no
longer requires a complex representation, only I data is sent across the link, and the Q data is dropped.

DUAL BAND MODE
In this use case, multiple signals are received (Signal 1 and Signal 2). Band A circuitry can be used to process Signal 1, and Band B
circuitry can be used to process Signal 2. Band A NCO1 shifts Signal 1 such that the signal is placed within the pass band of the half-band
filter and filters out Signal 2. The decimate by 2 stage can also be used if the final composite bandwidth allows a lower data rate across the
JESD link. The Band A NCO2 stage is then used to offset the signal to the required position in the spectrum. Likewise, the same
procedure is performed on Signal 2. The result of this procedure is that the two signals, originally located far apart in the spectrum and
requiring a high data rate, can be moved closer together with this IF conversion circuitry and represented by a lower IQ rate.

DUAL BAND MODE (REAL IF)
In this use case, the signals are processed separately using Band A and Band B. The NCO2 stages are used to shift both signals so that the
signals exist on the same side of the LO. At this point, the spectrum no longer needs a complex representation, only I data can be sent
across the link, and Q data is dropped. The interpolate by 2 stage can also be utilized for this scenario.

HB FILTER ONLY MODE
If there is a blocker to one side of the signal, the IF conversion stage can be used to obtain further rejection of the blocker. Band A NCO1
offsets the signal to position the signal close to the edge of the half-band filter pass band, and to position the blocker in the filter transition or
stopband. The Band A NCO2 can be used to position the desired signal to its previous position within the spectrum, if required.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 175 of 336

22
77

0-
10

8

INPUT TO IF CONVERSION STAGE

IQ RATE: 245.76MSPS

OUTPUT OF BAND A MIXER STAGE 1

IQ RATE: 245.76MSPS

OUTPUT OF HB FILTER AND DEC 2 STAGE
AND FINAL OUTPUT

IQ RATE: 122.88MSPS

MC-GSM15MHz

0 f f52.5MHz 0 f0

MC-GSM MC-GSM

2

2

2

2

2

2

2

2

INT2 + HB FILTER

BAND A
NCO 1

BAND A
NCO 2

DIG GAIN
COMP

HB FILTER

BAND A CIRCUITRY

BAND B CIRCUITRY

I, Q

HB FILTER + DEC2 2

2

2

2

2

2

INT2 + HB FILTER

BAND B
NCO 1

BAND B
NCO 2

DIG GAIN
COMP

HB FILTER

HB FILTER + DEC2

2

I, Q
2

Figure 107. IF Conversion Stage in Zero-IF MC-GSM Configuration Block Diagram

RECEIVER SIGNAL PATH EXAMPLE
The TES provides an example that shows how the baseband filtering stages are used in profile configurations for a signal pathway. In this
example, the ADRV9025Init_StdUseCase26_nonLinkSharing profile is selected for the receive channels. This example is a 200 MHz
profile with an IQ rate of 245.76 MSPS.

Figure 108 shows the filter configuration for this example profile. The signal rate after the PFIR block is equal to the profile IQ rate.
22

77
0-

10
9

Figure 108. Filter Configuration for Receive 200 MHz, IQ Rate 245.76 MSPS

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 176 of 336

The TES also provides a graph of the complete signal chain transfer function for this profile in the Rx tab under the ChipConfig
dropdown (see Figure 109).

22
77

0-
11

0

Figure 109. Receive Signal Transfer Function

RECEIVER FILTER API STRUCTURE
The filter configuration is stored in the adi_adrv9025_RxProfile_t structure. This structure is stored within the adi_adrv9025_RxSettings
structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). The adi_adrv9025_RxProfile_t structure
parameters are listed in Table 177.

Table 177. adi_adrv9025_RxProfile_t Structure Parameters
Name Value Description
channelType A value of type adi_adrv9025_RxChannels_e Chooses which channel is used to configure the filters

described in Table 178
rxFirDecimation 1, 2, 4 Receive FIR decimation setting
rxDec5Decimation 4 = use a combination of FIR1, FIR2, and/or RHB3 Set to use either the Dec5 or HB3 and HB2 in the

Observation receive path
 5 = use DEC5
rhb1Decimation 1 = bypass, 2 = in use Receive HB1 decimation setting
rhb1WideBandMode 0 – HB1 is narrow, 1 – HB1 is wider Observation receive and loopback profiles ignore this field
rhb2Decimation 1, 2 Receive HB2 decimation factor
rhb3Decimation 1, 2 Receive HB3 decimation factor
rxFir1Decimation 1, 2 Receive FIR1 decimation factor
rxFir2Decimation 1, 2 Receive FIR2 decimation factor, observation receive and

loopback profiles ignore this field
rxOutputRate_kHz 30720 to 368640 (based on currently defined use cases) IQ data rate specified in kHz (to the input of the JESD block)
rfBandwidth_kHz 20000 to 200000 (based on currently defined use cases) The RF bandwidth specified in kHz
rxBbf3dBCorner_kHz 20000 to 200000 (based on currently defined use cases) The BBF 3 dB corner frequency specified in kHz
rxAdcBandWidth_kHz 10000 to 100000 (based on currently defined use cases) Receive ADC bandwidth tunes the bandwidth of the pass

band and noise transfer functions of the ADC
rxFir A value of type adi_adrv9025_RxFir_t The receive FIR filter structure is described in Table 179
rxDdcMode A value of type adi_adrv9025_RxDdc_e The receive DDC mode settings are described in Table 180
rxNcoShifterCfg A value of type adi_adrv9025_RxNcoShifterCfg_t The receive NCO shifter configuration structure is

described in Table 181
tiaPowerMode 0, 1, 2, 3 Four options for TIA power reduction modes (Range 0 to 3)

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 177 of 336

Table 178. adi_adrv9025_RxChannels_e Enumeration Definition
adi_adrv9025_RxChannels_e Enumeration Enabled Channels
ADI_ADRV9025_RXOFF No receive or observation receive channels enabled
ADI_ADRV9025_RX1 Rx1 enabled
ADI_ADRV9025_RX2 Rx2 enabled
ADI_ADRV9025_RX3 Rx3 enabled
ADI_ADRV9025_RX4 Rx4 enabled
ADI_ADRV9025_ORX1 ORx1 enabled
ADI_ADRV9025_ORX2 ORx2 enabled
ADI_ADRV9025_ORX3 ORx3 enabled
ADI_ADRV9025_ORX4 ORx4 enabled
ADI_ADRV9025_LB12 Tx1 or Tx2 internal loopback into ORx1or ORx2channel enabled
ADI_ADRV9025_LB34 Tx3 or Tx4 internal loopback into ORx3 or ORx4 channel enabled

Receive PFIR Settings

The receive PFIR filter is specified in signed coefficients from +32767 to −32768. The gain block allows more flexibility when designing a
digital filter. For example, a FIR can be designed with 6 dB gain in the pass band, and then that block can be set to −6 dB gain to give an
overall 0 dB gain in the pass band. To calculate the gain of the filter coefficients, use the following equation:

∑
=

−152 1
FIR Coefficients

DC Gain

Table 179. adi_adrv9025_RxFir_t Structure Parameters
Name Value Description
gain_dB −12, −6, 0, +6 The setting (in dB) for the gain block within the receive FIR
numFirCoefs 24, 48, 72 Number of taps to be used in the receive FIR
coefs[ADI_ADRV9025_MAX_RXPFIR_COEFS] A pointer to an array of filter coefficients of size ADI_ADRV9025_MAX_RXPFIR_COEFS

Receive DDC Mode

Receive DDC mode is defined within the adi_adrv9025_RxProfile_t structure as an enumerated type from the adi_adrv9025_RxDdc_e
type definition. Permissible values are listed in Table 180.

Table 180. adi_adrv9025_RxDdc_e Enumeration Definition
adi_adrv9025_RxDdc_e Enumeration Description
ADI_ADRV9025_RXDDC_BYPASS In this mode, the half-band filter and interpolation/decimation stages are bypassed.
ADI_ADRV9025_RXDDC_FILTERONLY In this mode, the half-band filter stage is used, but the interpolation and decimation stages

are bypassed.
ADI_ADRV9025_RXDDC_INT2 In this mode, the interpolate by 2 stage and half-band filter stage are utilized.
ADI_ADRV9025_RXDDC_DEC2 In this mode, the half-band filter stage and decimate by 2 stage are utilized.
ADI_ADRV9025_RXDDC_BYPASS_REALIF In this mode, the half-band filter stage and interpolation/decimation stage are bypassed. Q

data is dropped at the input to the JESD core.
ADI_ADRV9025_RXDDC_FILTERONLY_REALIF In this mode, the half-band filter stage is used, but the interpolation stage and decimation

stage are bypassed. Q data is dropped at the input to the JESD core.
ADI_ADRV9025_RXDDC_INT2_REALIF In this mode, the interpolate by 2 stage and half-band filter stage are utilized. Q data is

dropped at the input to the JESD core.
ADI_ADRV9025_RXDDC_DEC2_REALIF In this mode, the half-band filter stage and decimate by 2 stage are utilized. Q data is

dropped at the input to the JESD code.

Receive NCO Shifter Configuration

The adi_adrv9025_RxNcoShifterCfg_t structure is contained within the adi_adrv9025_RxProfile_t structure. The adi_adrv9025_
RxNcoShifterCfg_t structure contains the settings of the Band A and Band B NCO stages, as well as the bandwidth and baseband center
frequency of the desired signal(s). These settings allows the API to ensure that the IF conversion stage is properly setup, and that the signal(s)
post NCO shifting falls within the bandwidth provided by the IQ rate utilized and the pass-band bandwidth of the half-band filter, if utilized.

The NCOs can be configured according to the following rules:

• bandwidthDiv2 = (bandAInputBandwidth_kHz/2) × 1000
• inputCenterFreq = (bandAInputCenterFreq_kHz) × 1000

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 178 of 336

• nco1OutputCenterFreq = (bandAInputCenterFreq_kHz + bandANco1Freq_kHz) × 1000
• nco2OutputCenterFreq = nco1OutputCenterFreq + (bandANco2Freq_kHz) × 1000
• outputRateHz = IQ Data rate of the Rx UseCase
• primaryBwHz = Primary Rx signal bandwidth of the Rx UseCase
• ddcHbCorner depends on which of the following modes is used:

• If RXDDC_FILTERONLY, RXDDC_FILTERONLY_REALIF, RXDDC_INT2, RXDDC_INT2_REALIF at the ddcHbCorner =
outputRateHz × 0.2

• If RXDDC_DEC2, RXDDC_DEC2_REALIF at the ddcHbCorner = outputRateHz × 0.4

Range Checks

Rule 1: Input Center Frequency Setup

Use the following relationships to ensure the center frequency is setup properly.

• inputCenterFreq + bandWidthDiv2 > primaryBwHz/2
• inputCenterFreq − bandWidthDiv2 < −primaryBwHz/2

Rule 2: Output Center Frequency Setup NCO1 (If DDC HB is Enabled)

Use the following relationships to ensure the NCO1 center frequency is setup properly.
• nco1OutputCenterFreq + bandWidthDiv2 > ddcHbCorner
• nco1OutputCenterFreq − bandWidthDiv2 < −ddcHbCorner

Rule 3: Output Center Frequency Setup NCO2

Use the following relationships to ensure the NCO2 center frequency is setup properly.
• nco2OutputCenterFreq + bandWidthDiv2 > outputRateHz/2
• nco2OutputCenterFreq − bandWidthDiv2 < −outputRateHz/2

Table 181. adi_adrv9025_RxNcoShifterCfg_t Structure Parameters
adi_adrv9025_RxNcoShifterCfg_t Description
bandAInputBandWidth_kHz The bandwidth of the received signal being processed in Band A specified in kHz
bandAInputCenterFreq_kHz The center frequency, in terms of baseband frequencies, of the received signal being process in

Band A, specified in kHz
bandANco1Freq_kHz The frequency shift to be provided by NCO1 of Band A specified in kHz, positive values shift the

spectrum up in frequency, negative values shift the spectrum down in frequency
bandANco2Freq_kHz The frequency shift to be provided by NCO2 of Band B specified in kHz, positive values shift the

spectrum up in frequency, negative values shift the spectrum down in frequency
bandBInputBandWidth_kHz The bandwidth of the received signal being processed in Band B specified in kHz
bandBInputCenterFreq_kHz The center frequency, in terms of baseband frequencies, of the received signal being process in

Band B, specified in kHz
bandBNco1Freq_kHz The frequency shift to be provided by NCO1 of Band B specified in kHz, positive values shift the

spectrum up in frequency, negative values shift the spectrum down in frequency
bandBNco2Freq_kHz The frequency shift to be provided by NCO2 of Band B specified in kHz, positive values shift the

spectrum up in frequency, negative values shift the spectrum down in frequency
bandAbCombinedEnable The frequency shift to be provided by the combination of Band A and Band B at output, 1 = combine

dual-band AB, 0 = disable combine dual-band on AB

Note that dual-band mode is selected when the input bandwidths of Band A and Band B are both specified (nonzero). In nondual band
modes, specify Band A settings only with Band B left with zero settings. Likewise, if the NCO stages of both Band A and Band B are not
to be used, provide zero settings for all variables in the adi_adrv9025_RxNcoShifterCfg_t structure.

TRANSMITTER SIGNAL PATH
Each transmitter has an independent signal path including separate digital filters, DACs, analog low-pass filters, and I/Q mixers that drive
the signal outputs. Data is input to the transmit signal path via the JESD high-speed serial data interface at the IQ data rate of the
transmitter profile. The serial data is converted to parallel format through the JESD deframer into I and Q components. The data is
processed through digital filtering and signal correction stages and input to I/Q DACs.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 179 of 336

The DAC output is low pass filtered by the transmit LPFs and input to the upconversion mixer. The I and Q paths are identical to one
another. Over-ranging is detected in the transmit digital signal path at each stage and limited to the maximum code value to prevent data
wrapping. A block diagram of a transmit signal path is shown in Figure 110. Blocks that are not discussed in this section are faded.

22
77

0-
10

9

LPF

Tx1 SIGNAL PATH, I AND Q CHANNEL

THB3

INT5

IDAC THB1 TFIR QEC DIGITAL
GAIN

JE
SD

20
4B

/C
 IN

TE
RF

AC
E

THB2

LPF THB3

INT5

QDAC THB1 TFIR QEC DIGITAL
GAINTHB2

Figure 110. Transmit Signal Path Diagram

Analog LPF

The LPF is a second-order, analog Butterworth LPF with an adjustable 3 dB corner. The transmit chains of the device can support pass-band
bandwidths up to 225 MHz (on I and Q). The LPF is calibrated during device initialization, which results in a consistent frequency corner
across all devices. The LPF bandwidth is set within the device data structure and is profile dependent. Roll-off within the analog LPF pass
band is compensated by the transmitter finite impulse response (TFIR) to ensure a maximally flat pass-band frequency response.

Interpolation By 5 Filter (INT5)

Either the INT5 filter or any combination of THB3 and THB2 are used in the transmit digital path. The INT5 filter interpolates by a
factor of 5.

The INT5 filter coefficients include the following: +0.002929688, +0.029052734, −0.029296875, +0.03125, −0.012207031, −0.005859375,
−0.056640625, +0.051513672, −0.055664063, +0.025390625, +0.020996094, 0.081298828, −0.057617188, +0.072509766, −0.045166016,
−0.047607422, −0.095947266, +0.030517578, −0.071289063, +0.068603516, +0.093994141, +0.113769531, +0.030761719, +0.055419922,
−0.103759766, −0.185791016, −0.185302734, −0.136962891, −0.037353516, +0.227050781, +0.518554688, +0.717285156, +0.928466797,
+1.019287109, +0.928466797, +0.717285156, +0.518554688, +0.227050781, −0.037353516, −0.136962891, −0.185302734, −0.185791016,
−0.103759766, +0.055419922, +0.030761719, +0.113769531, +0.093994141, +0.068603516, −0.071289063, +0.030517578, −0.095947266,
−0.047607422, −0.045166016, +0.072509766, −0.057617188, +0.081298828, +0.020996094, +0.025390625, −0.055664063, +0.051513672,
−0.056640625, −0.005859375, −0.012207031, +0.03125, −0.029296875, +0.029052734, and +0.002929688.

Transmit Half-Band 3 Filter (THB3)

The THB3 filter is a fixed coefficient, half-band, interpolating filter. The THB3 filter can interpolate by a factor of 2 or the filter can be
bypassed. The THB3 filter coefficients include the following: 0.125, 0.5, 0.75, 0.5, and 0.125.

Transmit Half-Band 2 Filter (THB2)

The THB2 filter is a fixed coefficient, half-band, interpolating filter. The THB2 filter can interpolate by a factor of 2 or the filter can be
bypassed. The THB2 filter coefficients include the following: −0.08203125, 0, +0.58203125, +1, +0.58203125, 0, −0.08203125.

Transmit Half Band 1 Filter (THB1)

The THB1 filter is a fixed coefficient, half-band, interpolating filter. The THB1 interpolates by a factor of 2 or the filter can be bypassed.
The THB1 filter coefficients include the following: −0.002319336, 0, +0.003601074, 0, −0.004058838, 0, +0.004119873, 0, −0.006439209,
0, +0.009613037, 0, −0.012023926, 0, +0.014404297, 0, −0.018737793, +0, 0.024291992, 0, −0.030059814, 0, +0.037353516, 0, −0.048156738, 0,
+0.062927246, 0, −0.084350586, +0, 0.122283936, 0, −0.209564209, 0, +0.635925293, +1, +0.635925293, 0, −0.209564209, 0, +0.122283936, 0,
−0.084350586, 0, +0.062927246, 0, −0.048156738, 0, +0.037353516, 0, −0.030059814, 0, +0.024291992, 0, −0.018737793, 0, +0.014404297,
0, −0.012023926, 0, +0.009613037, 0, −0.006439209, 0, +0.004119873, 0, −0.004058838, 0, +0.003601074, 0, −0.002319336

Programmable TFIR

The TFIR filter acts as an interpolating filter in the transmit path. The TFIR can interpolate by a factor of 1, 2, or 4, or the TFIR can be
bypassed. The TFIR is used to compensate for roll-off caused by the post DAC analog LPF. The TFIR has a configurable number of taps
that can be used including 20, 40, 60, or 80 taps. The TFIR also has a programmable gain setting of +6 dB, 0 dB, −6 dB, or −12 dB.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 180 of 336

The maximum number of taps is limited by the TFIR clock rate (data processing clock − DPCLK). The maximum DPCLK is 1 GHz. The
DPCLK is the high speed digital clock (HSDIG_CLK) divided by either 4 or 5 depending on the HSDIG_CLK divider setting. The
DPCLK affects the maximum number of TFIR filter taps that can be used according to the following relationship:

Tx PFIR Filter TapsMAX = (DPCLK/Tx_IQ_DATARATE) × 20

where:
Tx PFIR Filter Tapsmax is the maximum number of filter taps that can be used for the given clock rate
Tx_IQ_DATARATE is the input datarate of the filter

TRANSMIT SIGNAL PATH EXAMPLE
The TES provides an example that shows how the baseband filtering stages are used in profile configurations for a signal data path. In this
example, the ADRV9025Init_StdUseCase26_nonLinkSharing profile is selected for the transmit channels. This example is a 200 MHz/450
MHz profile with an IQ rate of 491.52 MSPS.

To explain the terminology of the 200 MHz/450 MHz profile, the 200 MHz refers to the transmit primary signal bandwidth, and the
450 MHz refers to the transmit RF bandwidth.

Figure 111 shows the filter configuration for this example profile. The signal rate after the TFIR block is equal to the profile IQ rate.

22
77

0-
11

2

Figure 111. Filter Configuration for the Transmit 200 MHz/450 MHz, 491.52 MSPS Profile

The combined transmit signal transfer function can be found in the Tx tab under the ChipConfig dropdown menu, as shown in Figure 112.

22
77

0-
11

3

Figure 112. Transmit Signal Transfer Function

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 181 of 336

TRANSMITTER FILTER API STRUCTURE
The filter configuration is stored in the adi_adrv9025_TxProfile_t structure. This structure is stored within the adi_adrv9025_TxSettings_t
structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). The adi_adrv9025_TxProfile_t structure
parameters are described in Table 182.

Table 182. adi_adrv9025_TxProfile_t Structure Parameters
Name Value Description
txInputRate_kHz 30720 to 491520 (based on currently defined use cases) IQ data rate at the input to the TFIR specified in kHz
primarySigBandwidth_kHz 20000 to 200000 (based on currently defined use cases) Primary signal bandwidth specified in kHz
rfBandwidth_kHz 100000 to 450000 (based on currently defined use cases) RF bandwidth specified in kHz
txDac3dBCorner_kHz 100000 to 450000 (based on currently defined use cases) DAC3 dB corner specified in kHz
txBbf3dBCorner_kHz 50000 to 225000 (based on currently defined use cases) BBF3 dB corner frequency specified in kHz
txFirInterpolation 1, 2, 4 Transmit FIR interpolation setting
thb1Interpolation 1 = bypass, 2 = in use Transmit HB1 interpolation setting
thb2Interpolation 1 = bypass, 2 = in use Transmit HB2 interpolation setting
thb3Interpolation 1 = bypass, 2 = in use Transmit HB3 interpolation setting
txInt5Interpolation 1 = bypass, 5 = in use Transmit INT5 interpolation setting
txFir A value of type adi_adrv9025_TxFir_t The txFir structure is explained in detail in the

Transmit FIR Settings section
txBbfPowerMode 0 to 8 The transmit BBF power scaling mode selection

between 0 and 8, where a value of 8 allows the arm to
set the power mode based on the look up tables (LUT)
of power saving

Transmit FIR Settings

The adi_adrv9025_TxFir_t structure is contained within the adi_adrv9025_TxProfile_t structure. The adi_adrv9025_TxFir_t structure
parameters are described in Table 183.

Table 183. adi_adrv9025_TxFir_t Structure Parameters
Name Value Description
gain_dB −12, −6, 0, +6 The setting (in dB) for the gain block within the transmit FIR
numFirCoefs 20, 40, 60, 80 Number of taps to be used in the transmit FIR
coefs[ADI_ADRV9025_MAX_TXPFIR_COEFS] A pointer to an array of filter coefficients of size ADI_ADRV9025_MAX_TXPRIF_COEFS

The transmit FIR is specified in signed coefficients from +32,767 to −32,768. The gain block allows for more flexibility when designing a
digital filter. For example, a FIR can be designed with 6 dB gain in the pass band, and then this block can be set to −6 dB gain to give an
overall 0 dB gain in the pass band. The gain of the filter coefficients can be calculated as follows:

152 1
FIR Coefficients

DC Gain
∑

=
−

OBSERVATION RECEIVERS SIGNAL PATH
The transceiver has four observation receiver inputs (ORx1, ORx2, ORx3, and ORx4) that can be used to capture data for DPD
algorithms and other measurements or calibrations that require monitoring the transmitter outputs. The observation receiver can serve as
an external loopback path to loop back the output of a power amplifier, provided the input level to the observation receiver is below the
full-scale level of the ADC.

The observation channels have separate I and Q mixers. These mixers are identical to the receiver mixers except that the observation
mixers include an LO multiplexer. The LO multiplexer allows either the RF PLL or the AUX PLL to provide the local oscillator signal
source for the observation channel mixers.

The mixer feeds into a programmable TIA that serves as an LPF in the analog data path. The signal is converted by the ΣΔ ADC and
filtered in half-band decimation stages and the PFIR. The fixed coefficient half-band filters (FIR1, RHB1(HR), RHB1(LP), RHB2, RHB3,
and DEC5) and the PFIR are designed to prevent data wrapping and overrange conditions.

The IF conversion stage provides the ability to frequency shift or upsample/downsample digital data. Configurations supported for the
observation receivers include real IF (real valued baseband data) configuration and low IF (complex data) configuration.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 182 of 336

The diagram in Figure 113 shows the signal path for an observation receive signal chain.

22
77

0-
10

9

LPF

Tx1 SIGNAL PATH, I AND Q CHANNEL

THB3

INT5

IDAC THB1 TFIR QEC DIGITAL
GAIN

JE
SD

20
4B

/C
 IN

TE
RF

AC
E

THB2

LPF THB3

INT5

QDAC THB1 TFIR QEC DIGITAL
GAINTHB2

Figure 113. Observation Receive Signal Path

TIA
The observation receive TIA is an LPF with a single real pole frequency response. The TIA can support pass-band bandwidths up to 225 MHz
(for both I and Q). The TIA is calibrated during device initialization to ensure a consistent frequency corner across all devices. The TIA 3 dB
bandwidth is set within the device data structure and is profile dependent. Roll-off within the observation receive pass band is compensated by
the PFIR to ensure a maximally flat pass-band frequency response.
DEC5 Filter
Either the DEC5 filter or a combination of RHB3 and FIR1 is used in the receive digital path. The DEC5 filter decimates by a factor of 5
or the filter can be bypassed.
The DEC5 filter coefficients include the following: +0.000732422, +0.001464844, +0.002441406, +0.003417969, +0.003173828,
−0.000732422, −0.005615234, −0.013183594, −0.020507813, −0.022949219, −0.014648438, +0.003417969, +0.035400391, +0.077392578,
+0.119873047, +0.154541016, +0.176269531, +0.176269531, +0.154541016, +0.119873047, +0.077392578, +0.035400391, +0.003417969,
−0.014648438, −0.022949219, −0.020507813, −0.013183594, −0.005615234, −0.000732422, +0.003173828, +0.003417969, +0.002441406,
+0.001464844, and +0.000732422.

Finite Impulse Response 1 Filter (FIR1)

The FIR1 filter is a fixed coefficient, decimating filter. The FIR1 filter decimates by a factor of 2 or the filter can be bypassed.

The FIR1 filter coefficients include the following: 0.25, 0.75, 0.75, and 0.25.

Receive Half-Band 3 Filter (RHB3)

The RHB3 filter is a fixed coefficient, decimating filter. The RHB3 filter decimates by a factor of 2 or the filter can be bypassed.

The RHB3 filter coefficients include the following: −0.0625, 0.0078125, +0.5625, +0.984375, +0.5625, +0.0078125, and −0.0625.

Receive Half-Band 2 Filter (RHB2)
The RHB2 filter is a fixed coefficient, decimating filter. The RHB2 decimates by a factor of 2 or the filter can be bypassed.
The RHB2 filter coefficients include the following: −0.002929688, +0, 0.018554688, 0, −0.0703125, +0, 0.3046875, +0.500976563,
+0.3046875, 0, −0.0703125, +0, 0.018554688, 0, and −0.002929688.

Receive Half-Band 1 High Rejection Filter (RHB1 (HR))
The RHB1 (HR) filter is a fixed coefficient, decimating filter. The RHB1 filter can decimate by a factor of 2 or the filter can be bypassed.
The RHB1 filter coefficients include the following: −0.000732422, 0, +0.000732422, 0, −0.001098633, +0, 0.001586914, 0, −0.00213623, 0,
+0.002929688, 0, −0.00378418, 0, +0.004882813, 0, −0.006225586, 0, +0.007873535, 0, −0.009887695, 0, +0.012329102, 0, −0.015380859,
0, +0.019226074, 0, −0.024353027, 0, +0.031555176, 0, −0.042419434, 0, +0.061462402, 0, −0.104797363, 0, +0.317871094, +0.5,
+0.317871094, 0, −0.104797363, 0, +0.061462402, 0, −0.042419434, 0, +0.031555176, 0, −0.024353027, 0, +0.019226074, 0, −0.015380859,
0, +0.012329102, 0, −0.009887695, 0, +0.007873535, 0, −0.006225586, 0, +0.004882813, 0, −0.00378418, 0, +0.002929688, 0, −0.00213623,
0, +0.001586914, 0, −0.001098633, 0, +0.000732422, 0, and −0.000732422.

Receive Half-Band 1 Low Power Filter (RHB1 (LP))
The RHB1 (LP) filter is a fixed coefficient, decimating filter. The RHB1 filter can decimate by a factor of 2 or the filter can be bypassed.
The RHB1 filter coefficients include the following: −0.002685547, 0, +0.017333984, 0, −0.068359375, 0, +0.304443359, +0.501708984,
+0.304443359, 0, −0.068359375, 0, +0.017333984, 0, and −0.002685547.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 183 of 336

PFIR Filter

The PFIR filter acts as a decimating filter. The PFIR can decimate by a factor of 1, 2, or 4, or the filter can be bypassed. The PFIR filter
compensates for the roll-off of the analog TIA LPF. The PFIR can use 24, 48, or 72 filter taps. The PFIR also has programmable gain
settings of +6 dB, 0 dB, −6 dB, or −12 dB.

The maximum number of taps is limited by the FIR clock rate (data processing clock − DPCLK). The maximum DPCLK is 1 GHz. The DPCLK
is the ADC clock rate divided by either 4 or 5. The divisor is 4 when using the HB2 and HB3 filters, and the divisor is 5 when using the DEC5
filter. The DPCLK affects the maximum number of RFIR filter taps that can be used according to the following relationship:

ORx PFIR Filter TapsMAX = (DPCLK/ORx_IQ_DATARATE) × 24

where:
ORx PFIR Filter TapsMAX is the maximum number of filter taps that can be used for the given clock rate
ORx_IQ_DATARATE is the output datarate of the filter

IF Conversion

Refer to the equivalent Receiver Signal Path section for information on the IF conversion stage.

OBSERVATION RECEIVER SIGNAL PATH EXAMPLE
The TES provides an example that shows how the baseband filtering stages are used in profile configurations for a signal pathway. In this
example, the Observation receive 450 MHz, IQ Rate = 491.52 MSPS profile is selected for the Observation receive channels. This profile is
compatible with the other examples provided in this user guide.

Figure 114 shows the filter configuration for this example profile. The clocking frequencies are noted in blue. The signal rate after the
RFIR block is equal to the IQ Rate of the profile.

22
77

0-
11

5

Figure 114. Filter Configuration for Observation Receive 450 MHz, IQ Rate = 491.52 MSPS

The Observation receive signal transfer function of the signal chain is in the ORx tab within the ChipConfig dropdown menu, as shown
in Figure 115.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 184 of 336

22
77

0-
11

6

Figure 115. Observation Receive Signal Transfer Function

OBSERVATION RECEIVER FILTER API STRUCTURE
The filter configuration is stored in the adi_adrv9025_RxProfile_t structure. This structure is stored within the adi_adrv9025_RxSettings
structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). The adi_adrv9025_RxProfile_t structure contains
the parameters listed in Table 184. For further details, refer to the Receiver Filter API Structure section.

Table 184. adi_adrv9025_RxProfile_t Structure Parameters
Name Value Description
channelType A value of type adi_adrv9025_RxChannels_e Choose which channel is used to configure the filters

described in Table 178
rxFirDecimation 1, 2, 4 ORx FIR decimation setting
rxDec5Decimation 4 = use combination of FIR1, FIR2, and/or RHB3, 5 =

Use Dec5
Setting to use either the DEC5 or the HB3 and HB2 in the
ORx path

rhb1Decimation 1 = bypass, 2 = in use ORx HB1 decimation setting
rhb1WideBandMode 0 = HB1 is narrow, 1 = HB1 is wider ORx and loopback profiles ignore this field
rhb2Decimation 1, 2 ORx HB2 decimation factor
rhb3Decimation 1, 2 ORx HB3 decimation factor
rxFir1Decimation 1, 2 ORx FIR decimation factor
rxFir2Decimation 1, 2 Receive FIR decimation factor, the ORx and loopback

profiles ignore this field
rxOutputRate_kHz 122880 to 491520 (based on currently defined use cases) The IQ data rate is specified in kHz (to the input of the

JESD block)
rfBandwidth_kHz 112500 to 450000 (based on currently defined use cases) The RF bandwidth is specified in kHz
rxBbf3dBCorner_kHz 112500 to 450000 (based on currently defined use cases) The BBF 3 dB corner frequency is specified in kHz
rxAdcBandWidth_kHz 56250 to 225000 (based on currently defined use cases) The receive ADC bandwidth tunes the bandwidth of the

pass band and noise transfer functions of the ADC
rxFir A value of type adi_adrv9025_RxFir_t The receive FIR filter structure is described in Table 179
rxDdcMode A value of type adi_adrv9025_RxDdc_e The receive DDC mode settings are described in Table 180
rxNcoShifterCfg A value of type adi_adrv9025_RxNcoShifterCfg_t The receive NCO shifter configuration structure is

described in Table 181
tiaPowerMode 0, 1, 2, 3 Four options for TIA power reduction modes (range 0 to 3)
rxDataFormat A value of type adi_adrv9025_RxDataFormat_t This structure is explained in the Gain Compensation,

Floating Point Formatter and Slicer section and Table 172

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 185 of 336

DUAL BAND OVERVIEW: DUAL-BAND 2T2R SOLUTION
The normal transceiver configuration uses four transmitters, four receivers, and four observation receivers with either a common LO in
TDD mode or dual LOs in FDD mode configured for a single radio band. Figure 116 shows how the transceiver is configured as a dual-
band 2T2R solution by configuring half of the channels to operate in one band (Band A) and the other half of the device to operate in
another band (Band B).

Tx3

Rx3
(TxNC)

LO2
(Tx)

ORx3/ORx4

Rx4

Tx4

Tx2

Rx2
(TxNC)

ORx1/ORx2

Rx1

Tx1

SERDES

FDD 2 × 2T, 2R, 2ORx

BALUN

BALUN

BALUN

BALUN

BALUN

BALUN

BALUN

BALUN

BALUN

BALUN

BALUN

BALUN

PA

PA

LNA

LNA

ANTENNA 3

ANTENNA 4

ANTENNA 2

ANTENNA 1

PA

PA

LNA

LNA

22
77

0-
11

5

LO2
(Rx)

LO2
(Tx)

LO2
(Rx)

LO2
(Tx)

LO1
(Tx)

LO1
(Rx)

LO1
(Tx)

LO1
(Rx)

LO1
(Tx)

Figure 116. 2 Transmitter, 2 Receiver Dual-Band Mode

Each half of the transceiver can operate as TDD, FDD, or a mix of both. The transceiver contains two independent Los, LO1 and LO2,
where LO1 is asigned to either Band A or Band B and LO2 is assigned to the other band. Reducing the number of LOs by sharing an LO
minimizes the risks of LO to LO coupling issues, which is a major contributor to spurious issues in highly integrated RF ICs. Figure 117
shows one LO shared between the receive and transmit FDD bands.

Rx BAND Tx BAND

Rx BOTTOM Rx TOP

LOW IF MODE
FDD SHARE SAME

22
77

0-
11

6

Figure 117. Dual Band LO Configuration

The frequency planning for the LO frequency selection is flexible. The receiver bandwidth remains at 200 MHz, as specified in the device data
sheet. The transmitter bandwidth has been extended beyond 200 MHz to accomodate 3GPP bands that require larger receiver and
transmitter bandwidths and duplex spacing. The transmitter channels have internal interpolation and NCOs to shift the input carriers beyond
the 200 MHz primary bandwidth. The device data sheet has transmitter QEC performance specifications for operation beyond the 200 MHz
primary bandwidth. Choose the LO frequency necessary to place the transmitter image out of the receiver band so that there is no impact to the
receiver sensitivity. Duplexer rejection of the transmitter image is required to meet transmit emissions specifications. The receiver and
transmitter channels both have NCOs, so the low IF configuration is transparent to the baseband.

The transceiver has three dual-band profiles to choose from that optimize power consumption versus required bandwidths based on user
application. These profiles include the following:

• UC51nonLinkSharing, TDD bands with transmit and receive bandwidths greater than 100 MHz and an I/Q data rate of 245.76 MSPS.
• UC54nonLinkSharing, FDD or TDD bands with transmit and receive bandwidths less than 100 MHz and I/Q data rates of 122.88

MSPS. Reduced transmit and receive IQ rates are included to save power consumption and lower cost FPGA solution.
• UC55nonLinkSharing, similar to UC54 except the receive bandwidth is reduced to 160 MHz if additional receive channel filtering

is desired.

LO Assignment
The firmware determines if the device is in dual-band mode when the TX1 and TX2 selected LO is the same as the RX1 and RX2 LO and
different than the LO selected for the TX3, TX4 and RX3, and RX4 channels. The following code is an example how this is setup. Receiver
channels 1 and 2 and transmitter channels 1 and 2 share LO1, and receiver channels 3 and 4 and transmitter channels 3 and 4 share LO2.
It is also acceptable to use the opposite LO in this assignment.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 186 of 336

The following init structures are used to make LO assignments:

initStruct = link.platform.board.Adrv9025Device.InitStructGet()

initStruct.clocks.rx12LoSelect = Types.adi_adrv9025_LoSel_e.ADI_ADRV9010_LOSEL_LO1

initStruct.clocks.rx34LoSelect = Types.adi_adrv9025_LoSel_e.ADI_ADRV9010_LOSEL_LO2

initStruct.clocks.tx12LoSelect = Types.adi_adrv9025_LoSel_e.ADI_ADRV9010_LOSEL_LO1

initStruct.clocks.tx34LoSelect = Types.adi_adrv9025_LoSel_e.ADI_ADRV9010_LOSEL_LO2

initStruct.clocks.orx12LoSelect = Types.adi_adrv9025_OrxLoSel_e.ADI_ADRV9025_ORXLOSEL_TXLO

initStruct.clocks.orx34LoSelect = Types.adi_adrv9025_OrxLoSel_e.ADI_ADRV9025_ORXLOSEL_TXLO

postMcsInit = Types.adi_adrv9025_PostMcsInit_t()

postMcsInit.radioCtrlInit.lo1PllFreq_Hz = 1810000000

postMcsInit.radioCtrlInit.lo2PllFreq_Hz = 2593000000

The AUX LO must remain cleared. For observation receivers, only the transmitter LO can be used. The AUX LO provides the source
needed to run tracking calibrations that are controlled by the ARM processor.

For dual-band applications, it is possible for Band A (Channel 1 and Channel 2) to be in real traffic and for Band B (Channel 3 and
Channel 4) to require an LO frequency change. For more information on the procedure to change the LO frequency, see the Calibration
Guidelines after PLL Frequency Changes section. The dual-band considerations include the following:

• Change the LO frequency using the following process:
• Disable all tracking on all four channels.
• Change the LO frequency.
• Run the internal path delay initial calibration on the desired channels.
• Run the external LO leakage initial calibration on the desired channels.
• Enable the tracking on all four channels.

• For devices that incorporate crest factor reduction (CFR), change the CFR correction pulses using the following process:
• Disable all tracking on all four channels.
• Load the CFR correction pulses.
• Run the CFR initial calibration.
• Enable the tracking.

• TX_EN, RX_EN, and ORX_CTRL_X can continue toggling when these initial calibrations are called.

DUAL-BAND CONFIGURATION AND EXAMPLE USE CASES
For most bands, the LO can be selected to fall within the transmit band. The widest 3GPP bands are Band 1 and the AWS-1 bands (4, 10,
or 66).

An example frequency plan for Band 1 is shown in Figure 118. An LO frequency of 2015 MHz places the transmit image at the edge of the
receive band so as not to impact receive sensitivity. A transmit NCO frequency of 125 MHz places a 0 Hz centered baseband input at the
proper output RF frequency, which requires 310 MHz of transmit bandwidth. Using a receiver NCO frequency of 65 MHz shifts the
receive band to 0 IF, if desired. A DPD correction of 3× requires 430 MHz bandwidth, which is within the 450 MHz available.

An example frequency plan for Band 3 is shown in Figure 119. With these two frequency plans, the transceiver can provide a dual-band
2-transmitter, 2-receiver, 2-observation receiver solution.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 187 of 336

BAND 1:
LO = 2015MHz

Rx BW 190M

Tx PRIMARY BW 310

Tx DPD BW 450

DL IMAGE
1860-1920

Rx BW
95MHz

UL
1920-1980

DL
2110-2170

3×: 2050-2230

5×: 1990-2290

Rx BW
95MHz

Tx NCO
125MHz

22
77

0-
11

7

Figure 118. Band1 Frequency Plan Example (UL = uplink, DL = downlink)

LO = 1757.5MHz

Rx BW 95M

Tx PRIMARY BW 245

Tx DPD BW 450

DL IMAGE
1635-1710

UL
1710-1785

DL
1805-1880

3×: 1730-1955

5×: 1655-2030

Rx
47.5MHz

Tx BW
122.5MHz

22
77

0-
11

8

Figure 119. Band 3 Frequency Plan Example

Band 4, Band 10, and Band 66 have the largest bandwidth from the bottom of the receive bands and the top of the transmit bands. Band 66
is the largest, and Band 4 and Band 10 are subsets of Bands 66. The span from the top of the transmit band to the bottom of receive band is
490 MHz. This range is too wide a bandwidth to share a single LO. Operators in the United States that have an AWS-1 band also have
Band 25. In this case, Band 25 can be paired with these AWS-1 bands (B66 or B4 or B10). Band 2 is also a subset of Band 25. These
frequency plans require less bandwidth than Band 1. Because transmitters and receivers do not share an LO, transmit images do not impact
the receive channel. Band 1 is the most stringent 2T2R use case. A combination of Band 66 and Band 25 can be accomodated using
LO1 (1812.5 MHz) for the Band 66 and Band 25 uplink and LO2 (2042.5 MHz) for the Band 66 and Band 25 downlink.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 188 of 336

GPIO CONFIGURATION
The transceiver features 19 digital general purpose input/output (GPIO) pins that can be used for a variety of functions. The transceiver
also features eight analog GPIO (GPIO_ANA_x) pins. The GPIO pins and GPIO_ANA pins provide a real-time interface either for the
baseband processor to control the transceiver or for the transceiver to send information to the baseband processor. An example of baseband
processor control uses rising edges sent by the baseband processor over user assigned GPIO pins to increase or decrease the transmitter
attenuation. An example of the transceiver sending information to the baseband processor is the ability to send overload detection
information from peak detectors in the receiver datapath to advise that the input signal level is too high.

The GPIO_ANA pins serve as the output pins for eight auxiliary digital to analog converter (AUXDAC_x) signals. The AUXDAC can be
used to provide a control voltage to peripheral devices. The AUXDAC is not a precision converter device and is recommended to be used
in applications where high accuracy is not needed. It is recommended to use the AUXDAC in feedback systems rather than in open-loop
control systems.

The digital GPIO supply is the VIF supply voltage. The GPIO_ANA supply is the 1.8V analog supply connected through the VANAx_1p8
pins. IBIS models have been created to assist in the simulation of these interfaces.

DIGITAL GPIO OPERATION
Each digital GPIO pin can be set to either input or output mode. In this section, input and output mode are oriented with respect to the
transceiver device. Input mode allows the baseband processor to drive pins on the transceiver to execute specific tasks. Output mode
allows the device to output various signals.

The digital GPIO pin I/O direction can be set with the following API commands.

adi_adrv9025_GpioInputDirSet(…)
adi_adrv9025_GpioInputDirSet(adi_adrv9025_Device_t* device, uint32_t gpioInputMask)

Description

This command configures pins for input direction.

Parameters

Table 185. adi_adrv9025_GpioInputDirSet(…) Parameters
Parameter Description
*device Pointer to the device structure.
gpioInputMask Selects the device GPIO pins required to be set as an input in the 0x00000 to 0x7FFFF range. If a bit is set high, the GPIO pin

associated with that bit is set as an input (GPIO_0 corresponds to Bit D0, GPIO_1 corresponds to Bit D1, and so on).

adi_adrv9025_GpioOutputDirSet(…)
adi_adrv9025_GpioOutputDirSet(adi_adrv9025_Device_t* device, uint32_t gpioOutputMask)

Description

This command configures pins for output direction.

Parameters

Table 186. adi_adrv9025_GpioOutputDirSet(…) Parameters
Parameter Description
*device Pointer to the device structure.
gpioInputMask Selects the device GPIO pins that are required to be set as an output in the 0x00000 to 0x7FFFF range. If a bit is set high, the

GPIO pin associated with that bit is set as an output (GPIO_0 corresponds to Bit D0, GPIO_1 corresponds to Bit D1, and so
on).

Note that conflicts regarding GPIO usage can occur when using combinations of certain features. Ensure that multiple functions are not
assigned to the same GPIO pin.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 189 of 336

Input GPIO Features

The following table provides a list of GPIO input features available that interact with datapath control elements on the device. For the
GPIO features within Table 187, the API automatically sets the I/O direction of the GPIO pins assigned for the feature. More details on
these features are provided in the following subsections.

Table 187. Summary of Input GPIO Features
Feature Description GPIO Pins Available for Feature
SPI2 Secondary SPI channel for control and readback of receiver gain index and

transmitter attenuation
GPIO_0: SPI_DIO (input or output)

 API configuration commands are adi_adrv9025_Spi2CfgSet(…) and GPIO_1: SPI_DO (output only)
 adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(…) GPIO_2: SPI_CLK (input)
 GPIO_3: SPI_CS (input)
 GPIO_4 through GPIO_18: transmit

attenuation state select
Pin Controlled

Receive/ORx Gain
Index Increment
and Decrement

Configure specific GPIO pins to increment or decrement the gain index on
any receive or ORx channel after a rising edge on the assigned pin.

GPIO_0 through GPIO_15:
receive/ORx gain index increment
pin select

API configuration command is adi_adrv9025_RxGainPinCtrlCfgSet(…) GPIO_0 through GPIO_15:
receive/ORx gain index decrement
pin select

Pin Controlled
Transmit
Attenuation
Increment and
Decrement

Configures specific GPIO pins to increment or decrement attenuation on any
transmit channel after a rising edge on the assigned pin

GPIO_0 through GPIO_15: transmit
attenuation increment pin select

API configuration command is adi_adrv9025_TxAttenPinCtrlCfgSet(…) GPIO_0 through GPIO_15: transmit
attenuation decrement pin select.

External Slicer Mode A technique used in some gain compensation applications, the baseband
processor instructs the slicer to attenuate the digital data to fit within a
desired bit width based on the value expressed on the slicer pins (up to
three are available in input mode)

GPIO_[2:0] = assign to any receive

 API configuration command is adi_adrv9025_RxDataFormatSet(…) GPIO_[5:3] = assign to any receive
 GPIO_[8:6] = assign to any receive
 GPIO_[11:9] = assign to any receive
 GPIO_[14:12] = assign to any

receive
 GPIO_[17:15] = assign to any

receive
Transmit

Observation
Receiver Select

When using fewer than four ORx channels, the ORx channel requires
information on which transmit channel data is presented to the ORx, if a pin
interface is required to indicate the transmit to ORx mapping, the following
command sets up the pins, provided that the stream file is generated with
appropriate input settings

GPIO_0 through GPIO_15.

 API configuration command is adi_adrv9025_StreamGpioConfigSet(…)

SPI2

A complete description, including descriptions of custom data types, for the SPI2 interface can be found in the SPI2 Description section.

The SPI2 interface acts as a secondary SPI channel that operates on the digital GPIO_[3:0] pins. An optional pin can be configured for
toggling the transmit attenuation between the S1 attenuation state and the S2 attenuation state on the GPIO_4 through GPIO_18 pins.
The SPI2 interface uses the same SPI configuration used on the primary SPI interface. SPI2 can be used to set the gain index on the
receiver and observation receiver channels, read back the gain index on those channels, and set up two distinct transmit attenuation states
that the user can alternate between by switching a GPIO pin. The SPI2 interface cannot access registers available to the primary SPI
interface.

When the SPI2 feature is enabled, the GPIO_[3:0] pin and the pin assigned for transmit attenuation selection (can be GPIO_4 through
GPIO_18 or left unassigned) cannot be used for other purposes. When SPI2 is enabled, it overrides the functionality previously assigned
to the digital GPIO_[3:0] pins. Refer to Table 187 for specific pin mapping details.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 190 of 336

adi_adrv9025_Spi2CfgSet(…)
adi_adrv9025_Spi2CfgSet(adi_adrv9025_Device_t* device, uint8_t spi2Enable)

Description

This command enables the SPI2 feature.

Parameters
Table 188. adi_adrv9025_SpiCfgSet(…) Parameters
Parameter Description
*device Pointer to the device structure.
Spi2Enable Sets the state of the SPI2 bus, 1 = enable and 0 = disable.

adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(…)
adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(adi_adrv9025_Device_t* device,
adi_adrv9025_TxAttenSpi2PinCfg_t txAttenSpi2PinCfg[], uint8_t numTxAttenSpi2PinConfigs)

Description

This command assigns the transmit attenuation select pin.

Parameters
Table 189. adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(…) Parameters
Parameter Description
*device Pointer to the device structure.
txAttenSpi2PinCfg[] Pointer to an array of the adi_adrv9025_TxAttenSpi2PinCfg_t structure that configures the transmit

attenuation SPI2 pin control. Note that multiple transmitters can share an attenuation select pin, if desired.
numTxAttenSpi2PinConfigs This parameter determines the number of channelized transmit attenuation SPI2 pin configurations passed in

the txAttenSpi2PinCfg array.

Pin-Based Receive Gain Control

A complete description of the pin-based receive gain control feature is provided in the Receiver Gain Control and Gain Compensation section.

Pin-based receive gain control is relevant for applications that require MGC and precise timing for gain change events. The pin-based control
scheme offers a lower latency than SPI-based gain change operations. In pin-based gain control, specific GPIO pins are assigned increment gain
index or decrement gain index functionality for a particular receiver channel. By applying a logic high pulse on the GPIO pin, the gain index for
the corresponding channel is either incremented or decremented, depending on the assigned functionality. The pulse width requirement is
two AGC clock cycles in the logic high state. The gain change because of gain index increment or decrement is programmable (ranges from 1 to
8 gain index steps). Increment and decrement functionality can be assigned to any digital GPIO from GPIO_15 to GPIO_0.

Note that if the user has programmed a gain table that operates in a subset of the full gain table range (that is, using Index 195 to Index 255), the
pin-based receive gain control does not have knowledge of this status. If the gain decrement pulse is applied when the gain index is 195, the gain
index decrements off table. The off-table gain indices (that is, gain indices below 195) can correspond to the maximum gain condition.
Take care when applying pulses when the gain index is at the edge of the useful section gain table, or design the gain table with this in mind.

adi_adrv9025_RxGainPinCtrlCfgSet(…)
adi_adrv9025_RxGainPinCtrlCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025_RxChannels_e
rxChannel, adi_adrv9025_RxGainPinCfg_t *rxGainPinCtrlCfg)

Description

This command configures the pin-based receive gain control feature. Note that the device must be in MGC for proper operation.

Parameters
Table 190. adi_adrv9025_RxGainPinCtrlCfgSet(…) Parameters
Parameter Description
*device Pointer to the device structure.
rxChannel This parameter selects which receive channel is used for configuring the pin-based receive gain control.
*rxGainPinCtrlCfg Pointer to the adi_adrv9025_RxGainPinCfg_t structure containing the configuration values for the pin-based receive

gain control.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 191 of 336

Table 191 describes the adi_adrv9025_RxGainPinCfg_t data structure used in this command.

Table 191. Description of adi_adrv9025_RxGainPinCfg_t Data Structure
Parameter Data Type Comments
incStep uint8_t An increment in the gain index is applied when the increment gain pin is pulsed. A value

from 0 to 7 applies a step size of 1 to 8.
decStep uint8_t A decrement in the gain index is applied when the increment gain pin is pulsed. A value

from 0 to 7 applies a step size of 1 to 8.
rxGainIncPin adi_adrv9025_GpioPinSel_e Choose the GPIO used for the increment gain input. ADI_ADRV9025_GPIO_00 to

ADI_ADRV9025_GPIO_15 can be used.
rxGainDecPin adi_adrv9025_GpioPinSel_e Choose the GPIO assigned for the decrement gain input. ADI_ADRV9025_GPIO_00 to

ADI_ADRV9025_GPIO_15 can be used.
enable uint8_t Enable or disable the gain pin control. Enable = 1 and disable = 0.

Pin-Based Transmit Attenuation Control

A complete description of transmit attenuation control is provided in the Transmitter Overview and Path Control section.

Pin-based transmit attenuation control, similar to the transmit attenuation select feature of SPI2, provides an interface to make attenuation
adjustments with precise timing control. The pin-based control scheme offers a lower latency than SPI-based attenuation change operations. In
pin-based attenuation control, certain GPIO pins are assigned increment attenuation or decrement attenuation functionality. By applying a
high pulse on the assigned GPIO pin, the attenuation for a specific channel is either incremented or decremented, depending on the
assigned functionality. Increment and decrement functionality can be assigned to any digital GPIO from GPIO_15 to GPIO_0.

A notable difference between SPI2 and pin-based transmit attenuation control is that SPI2 allows switching between the programmed
attenuation states (S1 and S2) and pin-based transmit attenuation control allows multiple increments or decrements of transmit attenuation.

adi_adrv9025_TxAttenPinCtrlCfgSet(…)
adi_adrv9025_TxAttenPinCtrlCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025_TxAttenPinCfg_t
txAttenPinCfg[],uint8_t numTxAttenPinConfigs)

Description

This command configures the pin-based transmit gain control feature.

Parameters

Table 192. adi_adrv9025_TxAttenPinCtrlCfgSet(…) Parameters
Parameter Description
*device Pointer to the device structure.
txAttenPinCfg[] Pointer to an array of the adi_adrv9025_TxAttenPinCfg_t structure that configures the transmit attenuation pin control.
numTxAttenPinConfigs This parameter determines the number of channelized transmit attenuation pin configuration passed in the

txAttenPinCfg array.

Table 193 describes the adi_adrv9025_TxAttenPinCfg_t data structure used in this command.

Table 193. Description of adi_adrv9025_TxAttenPinCfg_t Data Structure
Parameter Data Type Comments
txChannelMask uint32_t Choose the bitwise channel mask that the transmit attenuation pin configuration settings

are applied to. [D0] = Tx1, [D1] = Tx2, [D2] = Tx3, [D3] = Tx4.
stepSize uint8_t This parameter sets the change in transmit attenuation for each increment or decrement

signal received in increment and decrement mode with a step size of 0.5dB/LSB. The valid
range is from 0 to 31.

txAttenIncPin adi_adrv9025_GpioPinSel_e Choose the GPIO assigned for the increment attenuation input. ADI_ADRV9025_GPIO_00
to ADI_ADRV9025_GPIO_15 can be used

txAttenDecPin adi_adrv9025_GpioPinSel_e Choose the GPIO assigned for the decrement attenuation input. ADI_ADRV9025_GPIO_00
to ADI_ADRV9025_GPIO_15 can be used

enable uint8_t Enable or disable the gain pin control. Enable = 1 and disable = 0.

External Slicer Mode

A complete description of the external slicer use case is provided in the Receiver Gain Control and Gain Compensation section.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 192 of 336

The receive datapath features a GPIO-based slicer used in conjunction with the digital gain compensation to digitally attenuate data sent
over the JESD204B/JESD204C interface. The digital gain compensation can expand the required number of bits to express data path
samples beyond the interface bit width. The slicer attenuates the data to fit within the interface bit width.

The slicer can be used in a mode where the amount of digital gain compensation at a particular gain index determines the slicer position
(internal slicer). Alternatively, the slicer can be used with GPIOs in an externally driven mode where the baseband processor determines the
slicer position, which controls the amount of digital attenuation applied by the slicer. When using the slicer in the external mode, specific groups
of GPIO pins are assigned to set the slicer position. Three GPIO pins per receiver are utilized. See Table 197 for the valid external slicer pins.

adi_adrv9025_RxDataFormatSet(…)
adi_adrv9025_RxDataFormatSet(adi_adrv9025_Device_t* device, adi_adrv9025_RxDataFormat_t
rxDataFormat[], uint8_t arraySize)

Description

This command configures the external slicer mode.

Parameters

Table 194. adi_adrv9025_RxDataFormatSet(…) Parameters
Parameter Description
*device Pointer to the device structure.
rxDataFormat[] Pointer to the receive data format configuration structure.
arraySize This parameter determines the size of the rxDataFormat array that represents the number of configurations.

Table 195 describes the adi_adrv9025_RxDataFormat_t data structure.

Table 195. Description of adi_adrv9025_RxDataFormat_t Data Structure
Parameter Data Type Comments
rxChannelMask uint32_t Receive channel mask settings
formatSelect adi_adrv9025_RxDataFormatModes_e Receive channel format mode select
floatingPointConfig adi_adrv9025_FloatingPointConfigSettings_t Receive channel floating point format configuration
integerConfigSettings adi_adrv9025_IntegerConfigSettings_t Receive channel integer format configuration
slicerConfigSettings adi_adrv9025_SlicerConfigSettings_t Receive channel integer slicer configuration
externalLnaGain uint8_t Selects the slicer to compensate for external dual-band

LNA (0 = disable, 1 = enable)
tempCompensationEnable uint8_t Selects the slicer to compensate for temperature

variations (0 = disable, 1 = enable)

For external slicer mode, the formatSelect parameter must be set as ADI_ADRV9025_GAIN_WITH_EXTERNAL_SLICER.

Other settings relevant to the external slicer configuration include the adi_adrv9025_SlicerConfigSettings_t data structure described
in Table 196.

Table 196. Description of adi_adrv9025_SlicerConfigSettings_t Data Structure
Parameter Data Type Comments
extSlicerStepSize adi_adrv9025_ExtSlicerStepSizes_e Enumeration selects the external pin gain step size
intSlicerStepSize adi_adrv9025_IntSlicerStepSizes_e Enumeration selects the internal pin gain step size
rx1ExtSlicerGpioSelect adi_adrv9025_RxExtSlicerGpioSel_e Enumeration selects the Rx1 Ext Ctrl GPIO

configuration
rx2ExtSlicerGpioSelect adi_adrv9025_RxExtSlicerGpioSel_e Enumeration selects the Rx2 Ext Ctrl GPIO

configuration
rx3ExtSlicerGpioSelect adi_adrv9025_RxExtSlicerGpioSel_e Enumeration selects the Rx3 Ext Ctrl GPIO

configuration
rx4ExtSlicerGpioSelect adi_adrv9025_RxExtSlicerGpioSel_e Enumeration selects the Rx4 Ext Ctrl GPIO

configuration

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 193 of 336

The enum adi_adrv9025_RxExtSlicerGpioSel_e structure provides the list of GPIO groupings available when using external slicer mode,
as shown in Table 197.

Table 197. Description of adi_adrv9025_RxExtSlicerGpioSel_e Enumeration
Enumeration Name Enumeration Value Comments
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE 0 No GPIO assigned to external slicer
ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 1 Select receive gain slicer external, GPIO2, GPIO1, and

GPIO_0
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 2 Select receive gain slicer external, GPIO5, GPIO4, and

GPIO3
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 3 Select receive gain slicer external, GPIO8, GPIO7, and

GPIO6
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 4 Select receive gain slicer external, GPIO11, GPIO10, and

GPIO9
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 5 Select receive gain slicer external, GPIO14, GPIO13, and

GPIO12
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 6 Select receive gain slicer external, GPIO17, GPIO16, and

GPIO_15

Other members of the adi_adrv9025_RxDataFormatter_t structure are discussed in the Receiver Gain Control and Gain Compensation section.

Transmitter to Observation Receiver Mapping

A full description of transmitter to observation receiver mapping is provided in the Use Cases section.

For initial calibrations and tracking calibrations that require an external transmit to observation receive loopback channel for the
algorithm, the ARM processor must understand the specific mapping of transmit to observation receive at that time. In the use case with
four observation receivers, the mapping is typically static, and it is recommended to use the adi_adrv9025_TxToOrxMappingSet(…) API
command to configure the mapping. In the use case with two observation receivers, each observation receive channel must know which
transmit channel is provided as the input. An alternative to the API command interface is to use a GPIO-based interface to inform the
ARM about the currently mapped transmit channels into the observation receive. To clarify, the baseband processor informs the
transceiver about the channel mapping state by signaling on the GPIO, which executes a stream processor command. This stream
processor command provides the mapping information to the ARM processor, which executes the calibration routines.

The GPIO pins available for this feature range from the GPIO_0 pin to the GPIO_15 pin. Up to four GPIO are required to fully
implement pin-based mapping controls. A partial implementation can be achieved with two GPIO. The partial implementation only
indicates which transmit was mapped to the observation receive (TX_SEL signal) and does not permit the baseband processor to inform
the device that the device must not perform tracking calibrations (TX_EN signal). This additional information is useful if antenna
calibrations are performed while the tracking calibrations that depend on a constant external channel are still enabled.

To set up this feature, the GUI must generate a stream file with the desired GPIO to use for the TX_SEL and TX_EN signals.

adi_adrv9025_StreamGpioConfigSet(…)
adi_adrv9025_ StreamGpioConfigSet(adi_adrv9025_Device_t* device,

 adi_adrv9025_StreamGpioPinCfg_t* streamGpioPinCfg);

Description

With the proper stream file, the user can configure the stream processor to listen to the input GPIO with the following command.

Note that this command is called as a part of the adrv9025_RadioctrlInit command, which is called during the
adi_adrv9025_PostMcsInit(…) command.

This function associates a GPIO pin with the stream processor general-purpose inputs and enables the stream trigger functionality if a
valid GPIO (GPIO_0 to GPIO_15) is assigned to the internal streamGpInput path.

There are 16 GPIO inputs available to trigger streams. These GPIO inputs can be mapped to one of the pins GPIO_0 to GPIO_15.

To unmap a GPIO association with a stream general-purpose input, set the GPIO input to ADI_ADRV9025_GPIO_INVALID.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 194 of 336

Parameters
Table 198. adi_adrv9025_StreamGpioConfigSet(…) Parameters
Parameter Description
*device Pointer to the device structure.
streamGpioPinCfg Data structure containing the GPIO assignments for the stream processor inputs.

Table 199. Description of the adi_adrv9025_StreamGpioPinCfg_t Data Structure
Member Data Type Description
streamGpInput0 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 0

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.
streamGpInput1 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose P Input 1

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.
streamGpInput2 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 2

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.
streamGpInput3 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 3

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.
streamGpInput4 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 4

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.
streamGpInput5 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 5

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.
streamGpInput6 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 6

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.
streamGpInput7 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 7

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.
streamGpInput8 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 8

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.
streamGpInput9 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 9

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.
streamGpInput10 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 10

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.
streamGpInput11 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 11

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.
streamGpInput12 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 12

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.
streamGpInput13 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 13

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.
streamGpInput14 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 14

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.
streamGpInput15 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 15

(valid GPIO_0 GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID.

Description

This command sets the source control.

Parameters
Table 200. adi_adrv9025_GpioOutSourceCtrlSet(…) Parameters
Parameter Description
*device Pointer to device structure.
gpioSrcCtrl Selects nibble-based source control. This is a 32-bit value containing 5 nibbles that set the output source control for each set

of four GPIO pins. This parameter is set in 4-bit nibble groupings, as shown in Table 201.

Table 201. Description of the Nibble Groups Configured Via gpioSrcCtrl
gpioSrcCtrl[bits] Description
gpioSrcCtrl[d3:d0] GPIO output source for GPIO_3 to GPIO_0 pins
gpioSrcCtrl[d7:d4] GPIO output source for GPIO_7 to GPIO_4 pins
gpioSrcCtrl[d11:d8] GPIO output source for GPIO_11 to GPIO_8 pins
gpioSrcCtrl[d15:d12] GPIO output source for GPIO_15 to GPIO_12 pins
gpioSrcCtrl[d19:d16] GPIO output source for GPIO_18 to GPIO_16 pins

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 195 of 336

The values for these nibble groupings can be formed with the adi_adrv9025_GpioOutputModes_e enumeration. This enumeration is
described in Table 202.

Table 202. Description of adi_adrv9025_GpioOutputModes_e Enumeration
Enumeration Name Enumeration Value Comments
ADI_ADRV9025_GPIO_BITBANG_MODE 3 Manual mode, API function sets output pin levels and reads input pin

levels
ADI_ADRV9025_GPIO_SLICER_OUT_MODE 10 Allows slicer position to be output on GPIO pins

Note that if a GPIO is not designated as an output pin, the GPIO can be set as an input pin. For example, consider a use case where three
pins in a 4-pin nibble group are dedicated for slicer output mode. The fourth pin in the group can be set as an input pin for gain control.
As a constraint on customer applications, multiple source control selections cannot be used within a single 4-pin nibble group.

Manual Pin Toggle (Bitbang) Mode

This mode allows control of the logic level of individual GPIO pins.

adi_adrv9025_GpioOutPinLevelSet(…)
adi_adrv9025_GpioOutPinLevelSet(adi_adrv9025_Device_t* device, uint32_t gpioOutPinLevel)

Description

This command sets the output logic level of the GPIO pins after configuring the I/O direction and source control.

Parameters

Table 203. adi_adrv9025_GpioOutPinLevelSet(…) Parameters
Parameter Description
*device Pointer to the device structure.
gpioOutPinLevel Determines the level to output on each GPIO pin. 0 = low output, 1 = high output.

Slicer Output Mode

A general description of this feature is provided in the Mode 2: Digital Gain Compensation with Slicer GPIO Outputs section.

GPIO_ANA OPERATION
The main purpose of the GPIO_ANA_x pins is to serve as control pins for an external control element, such as a DSA or LNA. Other
features can be exposed in future software releases. A high level overview of the GPIO_ANA_x features are provided in Table 204.

Table 204. Summary of GPIO_ANA Features
Feature Description GPIO Pins Available for Feature
Receive Gain
Table External
Control Word
Output

The receive gain table includes a column for 2-bit control
of an external gain element. Each receive channel is
associated with two fixed GPIO_ANA_x pins. The 2-bit
value expressed on the pins depends on the gain index
and gain table column. The API function for configuration
is adi_adrv9025_RxGainTableExtCtrlPinsSet(…).

GPIO_ANA_1 and GPIO_ANA_0: Rx1 external control word

 GPIO_ANA_3 and GPIO_ANA_2: Rx2 external control word
 GPIO_ANA_5 and GPIO_ANA_4: Rx3 external control word
 GPIO_ANA_7 and GPIO_ANA_6:: Rx4 external control word

Gain Table External Control Word

For proper use of this feature, a custom gain table must be created that uses the external control column. When a gain index with a non-
zero value in the external control column of the gain table is selected, the value of the external control column is output on a pair of
GPIO_ANA_x pins. The configuration of the GPIO pins for the gain table external control word is performed with the following API
command.

adi_adrv9025_RxGainTableExtCtrlPinsSet(…)
adi_adrv9025_RxGainTableExtCtrlPinsSet(adi_adrv9025_Device_t* device,
adi_adrv9025_RxExtCtrlPinOuputEnable_e extCtrlGpioChannelEn)

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 196 of 336

Description

This command configures the GPIO pins for the gain table external control word.

Parameters

Table 205. adi_adrv9025_RxGainTableExtCtrlPinsSet(…) Parameter
Parameter Description
*device Pointer to the device structure.
extCtrlGpioChannelEnable Determines the adi_adrv9025_RxChannels_e enumeration type to select which set of gain table external

control words to output on analog GPIOs.

Table 206 describes the adi_adrv9025_RxExtCtrlPinOutputEnable_e enumeration.

Table 206. Description of adi_adrv9025_RxExtCtrlPinOuputEnable_e Enumeration
Enumeration Name Comments
ADI_ADRV9025_DISABLE_RX1_RX2_EXT_CTRL_GPIOS Disable Rx1 and Rx2 external control words output on the analog GPIOs
ADI_ADRV9025_ENABLE_RX1_RX2_EXT_CTRL_GPIOS Enable Rx1 and Rx2 external control words output on the analog GPIOs
ADI_ADRV9025_DISABLE_RX3_RX4_EXT_CTRL_GPIOS Disable Rx3 and Rx4 external control words output on the analog GPIOs
ADI_ADRV9025_ENABLE_RX3_RX4_EXT_CTRL_GPIOS Enable Rx3 and Rx4 external control words output on the analog GPIOs
ADI_ADRV9025_DISABLE_RX1_RX2_RX3_RX4_EXT_CTRL_GPIOS Disable Rx1, Rx2, Rx3 and Rx4 external control words output on the analog

GPIOs
ADI_ADRV9025_ENABLE_RX1_RX2_RX3_RX4_EXT_CTRL_GPIOS Enable Rx1, Rx2, Rx3 and Rx4 external control words output on the analog

GPIOs

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 197 of 336

GENERAL-PURPOSE INTERRUPT (GPINT)
The transceiver features two general purpose interrupt (GPINT) pins, GPINT1 and GPINT2. Note that the device data sheet pinout
conventions of GPINT1 and GPINT2 are referenced within the API as GPINT0 and GPINT1, respectively. In this section, references are
made to the GPINT1 and GPINT2 conventions on the device data sheet pinout except when listed in an API code example. A summary of
API commands relevant to the GPINT functionality is provided in the API Commands for GPINT section.

The GPINTx pins provide an interface that allows the device to inform the baseband processor of an error in normal operation. Examples
of the interrupt sources include PLL unlock events, SERDES link status, a stream processor error, or ARM exception. A full list of
interrupt sources is provided in Table 207. The GPINT2 pin acts as the high priority interrupt pin, and the GPINT1 pin acts as the low
priority interrupt pin. These pins can be configured with independent bitmasks that control which signals can assert GPINT1 or
GPINT2. A high level block diagram of the GPINT operation is shown in Figure 120.

GP_INT2

ON-CHIP

GP_INT1

gpInt1Mask[d49:d0]

gpInt0Mask[d49:d0]

x50

x50

x50

x50

D49:D0

D49:D0GP_INT STATUS REGISTER:
gpIntStatus[d49:d0]

50

OFF-CHIP

INTERRUPT SOURCES

22
77

0-
11

9

Figure 120. Block Diagram of GPINT Outputs

The GPINT1 and GPINT2 pins are a bitwise OR of all unmasked GPINT sources. The status register represents all possible interrupt sources that
can assert on the device. Any time the GPINTx pin asserts, the GPINT status indicates what interrupt source(s) asserted the GPINTx pin.

Note that the GPINT status and the GPINTx pins have different behaviors. The GPINTx pins are real-time indicators of error status. For
example, if a power amplifier protection error occurs when power amplifier protection is configured in the autoclear mode, the GPINTx pin
deasserts when the power returns to normal. The GPINT status bit fields are sticky and remain asserted until the user clears the register. If
the power amplifier protection error occurs and disappears in autoclear mode, the GPINT status still indicates that a power amplifier
protection error occurred until the user manually clears the GPINT status.

A description of the interrupt sources and their bit positions within the 50-bit general purpose interrupt mask is provided in Table 207.

Table 207. GP_INTERRUPT Bitmask Description
Bit Position Description Subsystem API Recovery Action
D49 Deframer IRQ 11: Deframer1 JESD204C CRC error

Deframer
ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR

D48 Deframer IRQ 10: Deframer1 JESD204C loss of sync
D47 LO1 PLL unlock

PLL

ADI_COMMON_ACT_ERR_RESET_MODULE
D46 LO2 PLL unlock ADI_COMMON_ACT_ERR_RESET_MODULE
D45 Auxiliary PLL unlock ADI_COMMON_ACT_ERR_RESET_MODULE
D44 Clock PLL unlock ADI_COMMON_ACT_ERROR_RESET_FULL
D43 LO1 PLL charge pump overrange

ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR
D42 LO2 PLL charge pump overrange
D41 Auxiliary PLL charge pump overrange
D40 Clock PLL charge pump overrange
D39 SERDES PLL unlock ADI_COMMON_ACT_ERROR_RESET_FULL
D38 Deframer IRQ 9: Deframer1 JESD204B quad byte deframer

(QBD) IRQ

Deframer ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR
D37 Deframer IRQ 8: Deframer1 SYSREF out of phase
D36 Deframer IRQ 7: Deframer1 elastic buffer error
D35 Deframer IRQ 6: Deframer1 lane FIFO pointer error
D34 Deframer IRQ 5: Deframer0 JESD204C CRC error
D33 Deframer IRQ 4: Deframer0 JESD204C loss of sync

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 198 of 336

Bit Position Description Subsystem API Recovery Action
D32 Deframer IRQ 3: Deframer0 JESD204B QBD IRQ
D31 Deframer IRQ 2: Deframer0 SYSREF out of phase
D30 Deframer IRQ 1: Deframer0 elastic buffer error
D29 Deframer IRQ 0: Deframer0 lane FIFO pointer error
D28 Framer IRQ 8: Framer2 transport not sending data

Framer

D27 Framer IRQ 7: Framer2 SYSREF out of phase
D26 Framer IRQ 6: Framer2 lane FIFO pointer error
D25 Framer IRQ 5: Framer1 transport layer not sending data
D24 Framer IRQ 4: Framer1 SYSREF out of phase
D23 Framer IRQ 3: Framer1 lane FIFO pointer error
D22 Framer IRQ 2: Framer0 Transport layer not sending data
D21 Framer IRQ 1: Framer0 SYSREF out of phase
D20 Framer IRQ 0: Framer0 lane FIFO pointer error
D19 Power Amplifier Protection Error Tx4 (threshold exceeded)

Transmitter ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR
D18 Power Amplifier Protection Error Tx3 (threshold exceeded)
D17 Power Amplifier Protection Error Tx2 (threshold exceeded)
D16 Power Amplifier Protection Error Tx1 (threshold exceeded)
D15 ARM has forced interrupt

ARM

ADI_COMMON_ACT_ERROR_RESET_FULL
D14 ARM watchdog timer timeout ADI_COMMON_ACT_ERROR_RESET_FULL
D13 Slew rate limiter IRQ ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR
D12 ARM system error ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR
D11 ORx3 or ORx4 stream processor error

Stream
processor ADI_COMMON_ACT_ERROR_RESET_FULL

D10 ORx1 or ORx2 stream processor error
D9 Tx4 stream processor error
D8 Tx3 stream processor error
D7 Tx2 stream processor error
D6 Tx1 stream processor error
D5 Rx4 stream processor error
D4 Rx3 stream processor error
D3 Rx2 stream processor error
D2 Rx1 stream processor error
D1 Core stream processor error r
D0 Memory ECC error ARM ADI_COMMON_ACT_ERROR_RESET_FULL

Table 207 can be used to form bitmasks for the GPINT2 and GPINT1 pins. Note that in the API, GPINT1 is linked to the GPINT2 pin
and GPINT0 is linked to the GPINT1 pin. Further descriptions of these event sources is provided in the following sections.

PLL GPINT SOURCES
The PLL GPINT sources include two types of interrupt for the PLLs, PLL unlock events and PLL charge pump overrange events. Note
that if initial calibrations are run, it is expected that some PLLs are used during this time and a PLL unlock event can appear in the
GPINT status register. PLL unlocks during successful runs of initialization calibrations are expected and are not a concern.

PLL Unlock Event Bits

The PLL unlock event bits, if asserted, indicate that a PLL has unlocked and is not operating properly. The PLLs are designed to maintain
lock over the full temperature range and operation of the device. In extremely rare cases, the PLL can unlock because of external or internal
factors. There are two recovery procedures for PLL unlocks depending on the PLL that unlocks. These procedures include the following:

• If the clock PLL unlocks, reset the device. The device is not expected to recover from the loss of the primary clock within the transceiver.
• If the LO2, LO1, or auxiliary PLL unlocks, call adi_adrv9025_PllFrequencySet(…) to see if the PLL relocks.

• If the unlocked PLL relocks, follow the procedures to rerun certain initialization calibrations as this is effectively a PLL
frequency change procedure. If the user has configured attenuation ramp down/up events to occur based on the PLL lock status,
the attenuation ramp down/up event must be cleared prior to running initial calibrations.

• If the unlocked PLL fails to achieve lock, reset the device.

The real time lock status of the PLL can be verified with the command adi_adrv9025_PllStatusGet(…).

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 199 of 336

Charge Pump Overrange Event Bits

The charge pump overrange event bits must not be unmasked for the GPINTx pins. These bits can assert intermittently but do not
indicate a significant device issue.

JESD204B AND JESD204C GPINT SOURCES
The deframer and framer in both JESD204B and JESD204C modes of operation can send information to the user regarding error events
over the GPINTx pin.

Because of a hardware issue, the JESD204C CRC error can assert when the link is configured for JESD204B mode. Ignore the JESD204C
CRC error when detected in JESD204B use cases. Additionally, do not allow JESD204C errors assert the GPINTx pins when configured in
JESD204B mode because there is no value provided in this configuration.

Table 208 provides additional details regarding the deframer and framer interrupts that can assert the GPINTx pin. In general, referring
to JESD204B/JESD204C documentation explains these events in more detail as well as possible recovery mechanisms.

Table 208. Framer and Deframer Interrupt List
GP_INT Bits Brief Description Technical Description Further Actions, If Necessary
D34, D49 Deframer JESD204

CRC error
A CRC error has been detected on one of the active
deframer lanes, the transmit data is possibly corrupted.

Log the event. The user must decide how to
react to the event.

D33, D48 Deframer JESD204C
loss of sync

The JESD204C link layer has lost sync. This can be
because of a loss of sync header alignment or
multiblock alignment. Typically, the link has
dropped and must be reestablished.

Log the event. If the link is down, reestablish
the link.

D32, D38 Deframer JESD204B
QBD IRQ

The QBD interrupt request (IRQ) indicates that a
deframer IRQ source has asserted. Deframer IRQ
sources include bad disparity (BD), not in table
(NIT), and unexpected K (UEK). Most errors are
considered minor.

Log the event. Call
adi_adrv9025_DfrmIrqSourceGet(…) to
retrieve the specific interrupt that asserted.
Typically, this is an informational interrupt,
but some cases can require the link reset.

D31, D37 Deframer SYSREF
out of phase

SYSREF registered at the wrong phase in the link. Log the event. Something is likely incorrect in
the overall system timing and must be adjusted.

D30, D36 Deframer elastic
buffer error

The phase of lane data in the link with respect to
global LMFC has shifted such that the buffer is in
protect mode to avoid corrupt data transfer.
Deterministic latency is lost.

Log the event. Reassess the lmfcOffset value
selection if deterministic latency is required.

D29, D35 Deframer lane FIFO
pointer error

Lane FIFO pointers have moved in the link. This error
may or may not be associated with SYNC going low.

Log the event. Reset the link.

D22, D25,
and D28

Framer transport
layer not sending
data

The framer is not sending user data. This error
occurs if the LMFC from the link layer is out of phase
with the transport layer LMFC, and forces a relink by
taking SYNC low.

Log the event.

D21, D24,
and D27

Framer SYSREF out
of phase

SYSREF is registered at the wrong phase in the
framer link. If JESD is configured to attempt relink
with the new phase, no action is required.

Log the event. Something is likely incorrect in
the overall system timing and must be adjusted.

D20, D23,
and D26

Framer lane FIFO
pointer error

The lane FIFO pointer has changed. Log the event.

These deframer interrupts can be used to assert the rampdown of transmit attenuation as described in the Transmitter Power Amplifier
Protection section.

POWER AMPLIFIER PROTECTION GPINT SOURCES
The power amplifier protection feature must be enabled for these interrupts to assert. The power amplifier protection block refers
specifically to the peak and average power measurement capabilities within the transmit data path and must not be misconstrued for the
general transmit attenuation ramp features.

Power amplifier protection GPINT sources indicate to the user that a peak or average power measurement within the transmit data path
has exceeded the thresholds as configured on the device. When the power measurement exceeds the threshold, this is also referred to as a
power amplifier protection error. Log this event and take appropriate action within the system to resolve the reason for the power
increase in the transmit data path.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 200 of 336

The user can configure the power amplifier protection block to enforce a ramp (or increase) of transmit attenuation with the
adi_adrv9025_PaPllDfrmEventRampDownEnableSet(…) command. Control over whether the attenuation ramp is sticky or autoclears is
determined by the adi_adrv9025_TxAttenuationRampUpStickyModeEnable(…) command. Refer to the Transmitter Power Amplifier
Protection section for more information.

ARM GPINT SOURCES
There are four ARM interrupt sources available.

ARM Has Forced Interrupt

The ARM asserts this interrupt when a fatal error occurs within the firmware. If possible, acquire an ARM memory dump to assist in a
debug. Reset the device.

ARM Watchdog Timer Timeout

The ARM asserts this interrupt when the watchdog timer within the ARM reaches its timeout value. If the ARM is unable to reset this
timer, a fatal error occurs within the ARM. If possible, acquire an ARM memory dump to assist in a debug. Reset the device.

Slew Rate Limiter IRQ

As of SW 2.0.5 versions, this bit represents the SRL error interrupt for the transmit datapaths. If this interrupt asserts, it indicates an SRL
error event has occurred. Check the SRL statistics for each channel to check which channel generated the interrupt.

ARM System Error

The ARM asserts this interrupt when the ARM detects an issue with any calibration or system related issue managed by the ARM. Some
events can be fatal. To acquire more information about the error, call the API command adi_adrv9025_ArmSystemErrorGet(…). This bit
also represents any issues with tracking calibrations.

STREAM PROCESSOR SOURCES
Assertion of any stream processor interrupt bits indicates that a significant problem has occurred within the stream processor. The stream
processor does not have a way to recover from these events. Reset the device if stream processor errors are detected.

MEMORY ECC ERROR
A memory ECC error indicates that a bit error has occurred in a memory circuit within the chip. This is an extremely rare event. Reset
the device if this error is detected.

SOFTWARE PROCEDURES FOR GPINT
Referring to the transceiver programming sequence in adi_adrv9025_daughter_board.c, the GPINT feature setup is one of the last steps
in device initialization and occurs after both the adi_board_adrv9025_JesdBringup(…) and adi_adrv9025_TxRampDownInit(…)
commands are issued. The GPINT masks for the GPINT2 and GPINT1 pins are stored in the adi_adrv9025_GpInterruptSettings_t
structure and applied to the device during adi_adrv9025_GpIntInit(…). This command configures both GPINTx pins and no further
action is needed for setup.

If it is necessary to reconfigure the GPINT masks after initialization, use the adi_adrv9025_GpIntMaskSet(…) command. The primary
difference between the two GPINT setup commands is that the adi_adrv9025_GpIntMaskSet(…) command allows selection regarding
which pin bitmask to program.

The baseband processor monitors the status of the GPINT2 and GPINT1 pins after configuring the mask bits. If either pin asserts, this indicates
that the transceiver has run into a problem that can require user intervention to resolve. The GPINT handler functions attempts to resolve the
error by reading back the status and then clearing the status bit fields. The bits in the status register are sticky, but the pin is not. The pin
represents whether the interrupt source is active or not. The register indicates which interrupts occurred since the status was last cleared.

The general setup and usage for the GPINT command is as follows:

1. Initialize the device using either the call adi_adrv9025_GpIntInit(…) or adi_adrv9025_GpIntMaskSet(…) command to set up the
GPINT feature.

2. Operate the device. The baseband processor monitors the GPINT2 pin and/or GPINT1 pin for rising edges that indicate an interrupt
occurred.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 201 of 336

3. If the GPINT2 pin and/or GPINT1 pin asserts, call their associated interrupt handler API command, either the
adi_adrv9025_GpInt1Handler(…) or adi_adrv9025_GpInt0Handler(…) command, respectively. The interrupt handler returns
information related to the interrupt source to the user. Calling this command can be sufficient to clearing the error. Either handler
function returns a recovery action which suggests further action if necessary.

4. Alternatively, the user can call the adi_adrv9025_GpIntStatusGet(…) command, which only returns the interrupt status bits. The
status word is not maskable and indicates all errors since the previous clearing of the status word.

5. If the device does not need to be reset and the error state has been eliminated, it is necessary to call the
adi_adrv9025_GPIntClearStatusRegister(…) command to clear all error bits asserted in the GPINT status register.

6. Perform recovery action(s).

API COMMANDS FOR GPINT
The following section outlines API commands for configuring and using the GPINT feature.

adi_adrv9025_GpIntMaskSet(…)
adi_adrv9025_GpIntMaskSet(adi_adrv9025_Device_t* device, adi_adrv9025_gpMaskSelect_e maskSelect,
adi_adrv9025_gp_MaskArray_t *maskArray)

Description

This command applies the desired bitmasks to the device.

Parameters

Table 209. adi_adrv9025_GpIntMaskSet(…) Parameters
Parameter Description
*device Pointer to the device structure.
maskSelect Sets enumeration indicating which GP_INTERRUPT bitmask (GPINT1 or GPINT0) to write.
*maskArray Pointer to the data structure holding the GP_INTERRUPT bitmasks to write.

Table 210 describes the adi_adrv9025_gpMaskSelect_e enumeration. This parameter describes which pin to write the mask to.

Table 210. Description of adi_adrv9025_gpMaskSelect_e Enumeration
Enumeration Comments
ADI_ADRV9025_GPINT0 GPINT1 select (GPINT0 bitmask), only adi_adrv9025_gp_MaskArray_t -> gpInt0Mask is programmed to the device.
ADI_ADRV9025_GPINT1 GPINT2 select (GPINT1 bitmask), only adi_adrv9025_gp_MaskArray_t -> gpInt1Mask is programmed to the device.
ADI_ADRV9025_GPINTALL GPINT1 and GPINT2 select, both members of adi_adrv9025_gp_MaskArray_t are programmed to the device.

Table 211 describes the adi_adrv9025_gp_MaskArray_t data structure. Refer to Table 207 for a description of the bitmasks.

Table 211. Description of adi_adrv9025_gp_MaskArray_t Data Structure
Data Type Parameter Comments
uint64_t gpInt0Mask Bitmask for the GPINT1 pin. If a bit within the mask is set to 1, the associated interrupt source cannot assert the

GPINT1 pin.
uint64_t gpInt1Mask Bitmask for the GPINT2 pin. If a bit within the mask is set to 1, the associated interrupt source cannot assert the

GPINT2 pin.

When either GPINTx pin asserts, there are interrupt handler API commands to assist with determining the error. The following
commands are the GPINT2 and GPINT1 interrupt handlers.

adi_adrv9025_GpInt1Handler(…)
adi_adrv9025_GpInt1Handler(adi_adrv9025_Device_t* device, adi_adrv9025_gpIntStatus_t
*gpInt1Status)

Description

This command sets up the GPINT2 interrupt handler.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 202 of 336

Parameters

Table 212. adi_adrv9025_GpInt1Handler(…)
Parameter Description
*device Pointer to the device structure.
*gpInt1Status Pointer to the status readback word that contains the GPINT2 source registers.

adi_adrv9025_GpInt0Handler(…)
adi_adrv9025_GpInt0Handler(adi_adrv9025_Device_t* device, adi_adrv9025_gpIntStatus_t
*gpInt0Status)

Description

This command sets up the GPINT1 interrupt handler.

Parameters

Table 213. adi_adrv9025_GpInt0Handler(…) Parameters
Parameter Description
*device Pointer to the device structure.
*gpInt0Status Pointer to the status readback word that contains the GPINT1 source registers.

When either handler command is called, the first step in the procedure is to temporarily modify the interrupt bitmask such that no other
interrupts can assert the GPINT2 pin or GPINT1 pin while the handler is invoked. This masking is followed by retrieval of the GPINT
status. The final step in the handler is to restore the initial bitmask for the GPINT2 pin and GPINT1 pin. In some cases, reading the error
is sufficient to clearing the error, which is the case for short-term, intermittent errors. If the error persists, the status continues to indicate
the interrupt and further intervention is necessary.

adi_adrv9025_GpIntStatusGet(…)
adi_adrv9025_GpIntStatusGet(adi_adrv9025_Device_t* device, uint64_t *gpIntStatus)

Description

This command provides a direct readback of the GPINT status word.

Parameters

Table 214. adi_adrv9025_GpIntStatus(…) Parameters
Parameter Description
*device Pointer to the device structure.
*gpIntStatus Pointer to the status readback word. Refer to Table 207 for bitmask descriptions.

adi_adrv9025_GPIntClearStatusRegister(…)
adi_adrv9025_GPIntClearStatusRegister(adi_adrv9025_Device_t *device, uint64_t *gpIntStatus)

Description

This command clears the GPINT status register.

Parameters

Table 215. adi_adrv9025_GPIntClearStatusRegister(…) Parameters
Parameter Description
*device Pointer to the device structure.
*gpIntStatus Pointer to the status readback word. Refer to Table 207 for bitmask descriptions.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 203 of 336

AUXILIARY CONVERTERS AND TEMPERATURE SENSOR
The transceiver features auxiliary data converters including eight 12-bit auxiliary digital-to-analog converters (AUXDACs) and two 12-bit
auxiliary analog-to-digital converters (AUXADCs). An integrated diode-based temperature sensor is available to readback the
approximate die temperature of the device. These features are included to simplify control tasks and reduce pin count requirements on
the baseband processor by offloading these tasks to the transceiver. Example usage of the auxiliary converters include static voltage
measurements performed by the AUXADC and flexible voltage control performed by the AUXDAC. This section outlines the operation
of these features along with the API command for configuration and control.

The AUXDAC and AUXADC are not precision data converters. DC offset and gain/slope errors are present and can vary on different
channels. Refer to the specifications in ADRV9029 data sheet. The AUXDAC and AUXADC are best used in feedback systems rather
than in open-loop systems for precision voltage readback or control.

AUXILIARY DAC (AUXDAC)
There are eight independent 12-bit AUXDACs integrated on the transceiver. The voltage range of the AUXDAC is from ground (0 V) to
1.8 V. The AUXDACs use the enumeration adi_adrv9025_AuxDacs_e when referenced in the API. The pins used for the AUXDAC
features are listed in Table 216.

Table 216. AUXDAC Pin Mapping and adi_adrv9025_AuxDacs_e Enumeration Description
Auxiliary DAC Number Pin Name Pin Number Enumeration Name Enumeration Value
AUXDAC[0] GPIO_ANA_0 C13 ADI_ADRV9025_AUXDAC0 0x01
AUXDAC[1] GPIO_ANA_1 C12 ADI_ADRV9025_AUXDAC1 0x02
AUXDAC[2] GPIO_ANA_2 L16 ADI_ADRV9025_AUXDAC2 0x04
AUXDAC[3] GPIO_ANA_3 L17 ADI_ADRV9025_AUXDAC3 0x08
AUXDAC[4] GPIO_ANA_4 L2 ADI_ADRV9025_AUXDAC4 0x10
AUXDAC[5] GPIO_ANA_5 L1 ADI_ADRV9025_AUXDAC5 0x20
AUXDAC[6] GPIO_ANA_6 C5 ADI_ADRV9025_AUXDAC6 0x40
AUXDAC[7] GPIO_ANA_7 C4 ADI_ADRV9025_AUXDAC7 0x80

The capacitive load of the AUXDAC pins must not exceed more than 100 pF. Otherwise, stability issues can occur.

The AUXDAC uses the GPIO_ANA pins on the device. Conflicts between GPIO_ANA and AUXDAC functionality can occur. In case of
these conflicts, the AUXDAC takes precedence over all other GPIO_ANA functionality when the AUXDAC is enabled for a specific pin.
When the AUXDAC is disabled, the configured GPIO_ANA functionality is applied. The AUXDAC can be enabled one pin at a time to
allow flexibility between AUXDAC and GPIO_ANA functionality.

The AUXDAC is typically used in applications that require analog control signals. The data interface used to set the output level of the
AUXDAC is SPI based. There is no CMOS/LVDS data interface to provide input data to the AUXDAC.

The (ideal) output voltage expressed on the AUXDAC is based on the following equation:

1.8 V
4096AuxDAC

AuxDACValueV = ×

where
VAUXDAC is the output voltage.
AuxDacValue is the 12-bit digital code applied to the AUXDAC.

The AUXDAC is not a precision converter and is best used in feedback systems. Figure 121 shows the AUXDAC output voltage vs. the
input codes for a full range code sweep of the AUXDAC. Channel to channel variability in slope and dc offset are expected.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 204 of 336

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
0 500 1000 1500 2000 2500 3000 3500 4000

Au
xD

AC
 V

O
LT

AG
E

(V
)

AuxDAC CODE 22
77

0-
12

0

CHANNEL 0
CHANNEL 1
CHANNEL 2
CHANNEL 3
CHANNEL 4
CHANNEL 5
CHANNEL 6
CHANNEL 7

Figure 121. AUXDAC Channel Comparison over Full Range Code Sweep

AUXDAC Configuration

The AUXDAC is configured and controlled using the commands listed in this section.

adi_adrv9025_AuxDacCfgSet(…)
adi_adrv9025_AuxDacCfgSet(adi_adrv9025_Device_t *device, adi_adrv9025_AuxDacCfg_t
auxDacConfig[],uint8_t numberOfCfg)

Description

This command configures the AUXDAC settings. This command must be called when device initialization is complete to use the AUXDACs.

Clears the GPINT status register.

Parameters

Table 217. adi_adrv9025_AuxDacCfgSet(…) Parameters
Parameter Description
*device The pointer to the device settings structure
auxDacConfig[] The pointer to an array of AUXDAC configuration structure
numberOfCfg The number of configurations at the auxDacConfig array

A data structure used in this command is the adi_adrv9025_AuxDacCfg_t data structure. The elements within this structure are
described in Table 218.

Table 218. Description of adi_adrv9025_AuxDacCfg_t Data Structure
Data Type Parameter Name Comments
uint32_t auxDacMask AUXDAC selection. Bit 0 = AUXDAC0, Bit1 = AUXDAC1, …, Bit7 = AUXDAC7
uint8_t enable 1 = Enable selected AUXDAC per auxDacMask. 0 = Disable selected AUXDAC.

adi_adrv9025_AuxDacValueSet(…)
adi_adrv9025_AuxDacValueSet(adi_adrv9025_Device_t* device,adi_adrv9025_AuxDacValue_t
auxDacValues[], uint8_t numberOfCfg)

Description

This command sets the output value of one or more AUXDAC outputs.

Parameters

Table 219. adi_adrv9025_AuxDacValueSet(…) Parameters
Parameter Description
*device The pointer to the device settings structure
auxDacValues[] The array of DAC value data structures to set
numberOfCfg The number of configurations at the auxDacValues array

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 205 of 336

A data structure used in this command is the adi_adrv9025_AuxDacValue_t data structure. The elements within this structure are
described in Table 220.

Table 220. Description of adi_adrv9025_AuxDacValue_t Data Structure
Data Type Parameter Name Comments
uint32_t auxDacMask AUXDAC selection, Bit 0 = AUXDAC0, Bit1 = AUXDAC1, …, Bit7 = AUXDAC7
uint16_t value 12-bit AUXDAC word to apply to the AUXDACs selected by auxDacMask

AUXILIARY ADC (AUXADC)
There are two physical AUXADCs integrated on the device. Each AUXADC has two inputs: AUXADC_0 and AUXADC_1 for the first
converter, AUXADC_2 and AUXADC_3 for the second converter. The different AUXADCs are designated as
ADI_ADRV9025_AUXADC_A and ADI_ADRV9025_AUXADC_B, per the adi_adrv9025_AuxAdcSelect_e enumeration.

The AUXADC is a 12-bit Δ-Σ converter and is most useful for relative voltage measurements rather than precision measurements
because of slope and dc offset variability. The decimator state at the AUXADC output is linear to 10 bits. The input voltage range of the
AUXADC is 50 mV to 950 mV. Readback of the AUXADC data word is performed using API commands. Accuracy of the AUXADC is
dependent upon the supply voltages provided to the VCONV1_1P0 pin for AUXADC_A and to the VCONV2_1P0 pin for AUXADC_B.

There are no on-chip calibrations executed or available for the AUXADC.

Each physical converter has two inputs providing four possible measurement channels (see Figure 122).

AUXADC_A

AUXADC_0 (Pin F17)
[Input 0]

AUXADC_1 (Pin E17)
[Input 1]

AUXADC_B

AUXADC_2 (Pin F1)
[Input 0]

AUXADC_3 (Pin E1)
[Input 1]

auxAdcInputSelect FOR AUXADC_A

auxAdcInputSelect FOR AUXADC_B

DECIMATOR

DECIMATOR
22

77
0-

12
1

Figure 122. AUXADC On-Chip Block Diagram

The following (ideal) equation describes the output code in relation to an input voltage, VIN. In practice, the AUXADC has slope and dc
offset variability.

DOUT = 4096(VIN – 0.5 V) + 2048

Where DOUT is the output of the AUXADC for the given input voltage VIN.

AUXADC Configuration

The following commands are used to configure and read the AUXADCs.

adi_adrv9025_AuxAdcCfgSet(…)
adi_adrv9025_AuxAdcCfgSet(adi_adrv9025_Device_t *device, adi_adrv9025_AuxAdcCfg_t *auxAdcConfig,
uint8_t arraySize)

Description

This command configures the AUXADC setup.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 206 of 336

Parameters
Table 221. adi_adrv9025_AuxAdcCfgSet(…) Parameters
Parameter Description
*device Pointer to the device settings structure
*auxAdcConfig Pointer to the supplied ADC configuration structure(s)
arraySize Number of supplied configuration structures

An important data structure used in this command is adi_adrv9025_AuxAdcCfg_t. Table 222 describes the parameters used in this structure.

Table 222. Description of adi_adrv9025_AuxDacValueAuxDacAdcValueCfg_t Data Structure
Data Type Parameter Name Comments
AdiAadi_adrv9025_AuxAdcEnable_e auxAdcEnable Enable = 1, disable = 0
AdiAadi_adrv9025_AuxAdcSelect_e auxAdcSelect Select which ADC to configure (AUXADC_A or AUXADC_B)
AdiAadi_adrv9025_AuxAdcInputSelect_e auxAdcInputSelect Select which input of the selected AUXADC to use (INPUT_0 or INPUT_1)
AdiAadi_adrv9025_AuxAdcClkDivide_e auxAdcClkDivide ADC CLK divider setting

The enumerations used in this structure are described further in Table 223 through Table 226.
Table 223. Description of adi_adrv9025_AuxAdcEnable_e Enumeration
Enumeration Name Enumeration Value Comments
ADI_ADRV9025_AUXADC_DISABLE 0 Aux ADC disabled
ADI_ADRV9025_AUXADC_ENABLE 1 Aux ADC enabled

Table 224 provides the enumerations that describe the two physical converters on the device.

Table 224. Description of adi_adrv9025_AuxAdcSelect_e Enumeration
Enumeration Name Enumeration Value Comments
ADI_ADRV9025_AUXADC_A 0 Aux ADC A selection
ADI_ADRV9025_AUXADC_B 1 Aux ADC B selection

Table 225 provides the enumerations that describe the two input selections that can be applied to each converter.
Table 225. Description of adi_adrv9025_AuxAdcInputSelect_e Enumeration
Enumeration Name Enumeration Value Comments
ADI_ADRV9025_AUXADC_INPUT_0 3 Aux ADC Input 0 selection
ADI_ADRV9025_AUXADC_INPUT_1 2 Aux ADC Input 1 selection

The AUXADC clock can be set based on a divider. The AUXADC input clock is supplied by the device clock input to the device
(DEVCLK±). The valid options are provided in Table 226. Select the AUXADC divider setting such that the sampling clock frequency is
set as low as possible without resulting in aliasing.
Table 226. Description of adi_adrv9025_AuxAdcClkDivide_e Enumeration
Enumeration Name Enumeration Value Comments
ADI_ADRV9025_AUXADC_CLKDIVIDE_32 0 Input clock divide by 32
ADI_ADRV9025_AUXADC_CLKDIVIDE_1 1 No clock divide
ADI_ADRV9025_AUXADC_CLKDIVIDE_2 2 Input clock divide by 2
ADI_ADRV9025_AUXADC_CLKDIVIDE_3 3 Input clock divide by 3
ADI_ADRV9025_AUXADC_CLKDIVIDE_4 4 Input clock divide by 4
ADI_ADRV9025_AUXADC_CLKDIVIDE_5 5 Input clock divide by 5
ADI_ADRV9025_AUXADC_CLKDIVIDE_6 6 Input clock divide by 6
ADI_ADRV9025_AUXADC_CLKDIVIDE_7 7 Input clock divide by 7
ADI_ADRV9025_AUXADC_CLKDIVIDE_8 8 Input clock divide by 8
ADI_ADRV9025_AUXADC_CLKDIVIDE_9 9 Input clock divide by 9
ADI_ADRV9025_AUXADC_CLKDIVIDE_10 10 Input clock divide by 10
ADI_ADRV9025_AUXADC_CLKDIVIDE_11 11 Input clock divide by 11
ADI_ADRV9025_AUXADC_CLKDIVIDE_12 12 Input clock divide by 12
ADI_ADRV9025_AUXADC_CLKDIVIDE_13 13 Input clock divide by 13
ADI_ADRV9025_AUXADC_CLKDIVIDE_14 14 Input clock divide by 14
ADI_ADRV9025_AUXADC_CLKDIVIDE_15 15 Input clock divide by 15

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 207 of 336

adi_adrv9025_AuxAdcValueGet(…)
adi_adrv9025_AuxAdcValueGet(adi_adrv9025_Device_t *device, adi_adrv9025_AuxAdcSelect_e
auxAdcSelect, adi_adrv9025_AuxAdcValue_t *auxAdcValue)

Description

This command retrieves the AUXADC readback value when the AUXADC is configured.

Parameters

Table 227. adi_adrv9025_AuxAdcValueGet(…) Parameters
Parameter Description
*device Pointer to the device settings structure
auxAdcSelect Selects the desired AUXADC to read a sample from
*auxAdcValue Pointer to the supplied AUXADC value structure to populate

A data structure used in the previous command is the adi_adrv9025_AuxAdcValue_t. Table 228 describes the members within this data
structure.

Table 228. Description of adi_adrv9025_AuxAdcValue_t Data Structure
Data Type Parameter Name Comments
adi_adrv9025_AuxAdcSelect_e auxAdcSelect Selects which AUXADC to read from
uint16_t auxAdcValue 12-bit ADC sample from the selected AUXADC

TEMPERATURE SENSOR
The device features a temperature sensor that measures the temperature on the die. The temperature sensor uses an ADC similar to the
AUXADC, however, the temperature sensor converter is a separate instantiation and has no connections to a device pin.

The initiation of a temperature measurement is performed without user intervention by the ARM processor. The user can retrieve this
measurement result in °C through an API command. The API command to readback the temperature sensor measurement is listed in
this section.

adi_adrv9025_TemperatureGet(…)
adi_adrv9025_TemperatureGet(adi_adrv9025_Device_t *device, int16_t *temperatureDegC)

Description

This command returns the temperature sensor ADC output value.

Parameters

Table 229. adi_adrv9025_TemperatureGet(…) Parameters
Parameter Description
*device The pointer to the device settings structure
*temperatureDegC The pointer to a single int16_t element that returns the current 12-bit temperature sensor in °C

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 208 of 336

SPI2 DESCRIPTION
The transceiver uses the primary SPI port for nearly all SPI transactions needed during operation. The device also features a secondary
SPI port, SPI2, that can be used to control transmit, receive, and observation receive attenuation settings.

SPI2 CONFIGURATION
The SPI2 port can be enabled by calling the following API and setting spi2Enable to 1:
adi_adrv9025_Spi2CfgSet(adi_adrv9025_Device_t *device, uint8_t spi2Enable)

When this feature is enabled, the GPIO pins listed in Table 230 are configured automatically to the correct input/output port direction to
support the SPI Interface.

Table 230. SPI2 GPIO Pin Assignments
Pin Number SPI2 Functionality Pin Direction
GPIO_3 CS Input

GPIO_2 SCLK Input
GPIO_1 SDO Input/output (depending on 3-wire or 4-wire wire mode)
GPIO_0 SDIO Input/output (depending on 3-wire or 4-wire wire mode)

The primary SPI and SPI2 share the same configuration: LSB first/MSB first, 3-wire/4-wire, and single-instruction mode. Whichever
configuration is selected for SPI is automatically assigned to SPI2.

TRANSMITTER CONTROL WITH SPI2
SPI2 provides the option to switch between two distinct attenuation states for the transmitters by toggling a single GPIO pin, which
bypasses the need to access the main SPI bus. The user can program four 10-bit attenuation words into registers designated as State 1 (S1)
and State 2 (S2). When the GPIO is low, the S1 registers set the attenuation values for the four transmitters. When the GPIO is high, the
S2 registers set the attenuation values for the four transmitters. The user must select which GPIO is to be used to control the attenuation
state. The valid selection values range from GPIO_4 to GPIO_18. The GPIO selection is performed by calling the following API.

adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(…)
adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(adi_adrv9025_Device_t *device,
adi_adrv9025_TxAttenSpi2PinCfg_t txAttenSpi2PinCfg[], uint8_t numTxAttenSpi2PinConfigs)

Description

This command selects the GPIO pins used to implement the SPI2 interface.

Parameters

Table 231. adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(…) Parameters
Parameter Description
*device Pointer to the device settings structure
txAttenSpi2PinCfg[] An array of structures of type adi_adrv9025_TxAttenSpi2PinCfg_t detailed in Table 232
numTxAttenSpi2PinConfigs The number of configurations passed in the array

Table 232. SPI2 Configuration Parameters
Parameter Comments
txChannelMask This parameter selects the channels upon which the API acts, and is a bit mask with each bit corresponding to a channel.

The desired mask can be generated by OR’ing the desired channel enumerations as follows (data type: uint32_t):

adi_adrv9025_TxChannels_e Transmit Channel
ADI_ADRV9025_TXOFF No transmit channels selected.
ADI_ADRV9025_TX1 Tx1 channel selected.
ADI_ADRV9025_TX2 Tx2 channel selected.
ADI_ADRV9025_TX3 Tx3 channel selected.
ADI_ADRV9025_TX4 Tx4 channel selected.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 209 of 336

Parameter Comments
txAttenSpi2Pin This parameter selects which GPIO pin is used to select between transmit attenuation State 1 and State 2.

Data type: adi_adrv9025_Spi2TxAttenGpioSel_e.

txAttenSpi2Pin GPIO Selected
ADI_ADRV9025_SPI2_TXATTEN_DISABLE Remove GPIO selection. This choice is only used if SPI2 is being disabled,

and removes the previously selected GPIO from the list of used resources.
ADI_ADRV9025_SPI2_TXATTEN_GPIO4 Select GPIO 4 for transmit state selection.
ADI_ADRV9025_SPI2_TXATTEN_GPIO5 Select GPIO 5 for transmit state selection.
ADI_ADRV9025_SPI2_TXATTEN_GPIO6 Select GPIO 6 for transmit state selection.
ADI_ADRV9025_SPI2_TXATTEN_GPIO7 Select GPIO 7 for transmit state selection.
ADI_ADRV9025_SPI2_TXATTEN_GPIO8 Select GPIO 8 for transmit state selection.
ADI_ADRV9025_SPI2_TXATTEN_GPIO9 Select GPIO 9 for transmit state selection.
ADI_ADRV9025_SPI2_TXATTEN_GPIO10 Select GPIO 10 for transmit state selection.
ADI_ADRV9025_SPI2_TXATTEN_GPIO11 Select GPIO 11 for transmit state selection.
ADI_ADRV9025_SPI2_TXATTEN_GPIO12 Select GPIO 12 for transmit state selection.
ADI_ADRV9025_SPI2_TXATTEN_GPIO13 Select GPIO 13 for transmit state selection.
ADI_ADRV9025_SPI2_TXATTEN_GPIO14 Select GPIO 14 for transmit state selection.
ADI_ADRV9025_SPI2_TXATTEN_GPIO_15 Select GPIO 15 for transmit state selection.
ADI_ADRV9025_SPI2_TXATTEN_GPIO16 Select GPIO 16 for transmit state selection.
ADI_ADRV9025_SPI2_TXATTEN_GPIO17 Select GPIO 17 for transmit state selection.
ADI_ADRV9025_SPI2_TXATTEN_GPIO18 Select GPIO 18 for transmit state selection.

22
77

0-
12

2

ATTENUATION STATE 0 ATTENUATION STATE 1

2:1 MUX

RETIMING BLOCK

GPIO

tx_atten_upd_core_spi2_en

tx_atten_upd_core_spi2

Figure 123. SPI2 Transmitter Attenuation Update Options

There are two update modes selectable for updating the attenuation applied to the transmitters, selected by Bit D0 in the SPI2 Register 0x2A.
When this bit is 0, it updates to the attenuation state registers or the multiplexer select GPIO take immediate effect. When this bit is 1, a
retiming block is used to block updates to the transmit attenuation until a latch bit (one per transmitter channel) is set. The latch bits are
in the SPI2 Register 0x2A, Bits[D4:D1]. Note that these bits are not self-clearing and must be written to zero before being used to latch
new attenuation values.

Table 233. SPI2 Register 0x2A Details
Register 0x2A Comments
D4 Latch this bit for Tx3 attenuation words (not self-clearing).
D3 Latch this bit for Tx2 attenuation words (not self-clearing).
D2 Latch this bit for Tx1 attenuation words (not self-clearing).
D1 Latch this bit for Tx0 attenuation words (not self-clearing).
D0 Attenuation update mode selection bit.
 0 = update the attenuation when the LSB is written.
 1 = update the attenuation when the latch bit is set and transitioned from low to high.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 210 of 336

It is generally preferred to synchronize the attenuation change of all the transmit channels in one device, or across an antenna array
comprising many devices. An example of how to perform this synchronization is given in the following steps:

1. Set Register 0x2A, Bit D0 low to allow immediate attenuation updates.
2. Update the attenuation values of the attenuation state that is not in use.
3. Toggle the selected attenuation state by toggling the appropriate GPIO pin, which selects between states. The new attenuation values

are now simultaneously applied to all transmitters in the product/antenna array.

As this sequence repeats, the transmit attenuation values of an entire antenna array can be adjusted simultaneously with real-time
attenuation changes triggered by the GPIO transition.

The two different attenuation states for each transmitter can be stored in the SPI2 register map shown in Table 234. Values are written to
these registers using the SPI protocol that is defined in the Serial Peripheral Interface (SPI) section.

RECEIVER AND OBSERVATION RECEIVER CONTROL WITH SPI2
SPI2 can also be used to control both receiver and observation receiver attenuation settings. Dual states like those used by the transmitters
are not implemented for the receiver and observation receiver attenuation settings. When a new attenuation setting is written to one of
the gain index registers shown in Table 234, an immediate update occurs. The value of each register can be written or read back using the
SPI protocol that is defined in the Serial Peripheral Interface (SPI) section.

Table 234. SPI2 Register Map
Address Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x0002 orx0_agc_manual_gain_index agc_orx0_manual_gain_index
0x0003 orx1_agc_manual_gain_index agc_orx1_manual_gain_index
0x0004 orx2_agc_manual_gain_index agc_orx2_manual_gain_index
0x0005 orx3_agc_manual_gain_index agc_orx3_manual_gain_index
0x0006 orx0_agc_gain_index_readback agc_orx0_gain_index_readback
0x0007 orx1_agc_gain_index_readback agc_orx1_gain_index_readback
0x0008 orx2_agc_gain_index_readback agc_orx2_gain_index_readback
0x0009 orx3_agc_gain_index_readback agc_orx3_gain_index_readback
0x000a rx0_agc_manual_gain_index agc_rx0_manual_gain_index
0x000b rx1_agc_manual_gain_index agc_rx1_manual_gain_index
0x000c rx2_agc_manual_gain_index agc_rx2_manual_gain_index
0x000d rx3_agc_manual_gain_index agc_rx3_manual_gain_index
0x000e rx0_agc_gain_index_readback agc_rx0_gain_index_readback
0x000f rx1_agc_gain_index_readback agc_rx1_gain_index_readback
0x0010 rx2_agc_gain_index_readback agc_rx2_gain_index_readback
0x0011 rx3_agc_gain_index_readback agc_rx3_gain_index_readback
0x0012 tx0_attenuation_readback_lsb tx0_attenuation_readback[7:0]
0x0013 tx0_attenuation_readback_msb Reserved tx0_attenuation_readback[9:8]
0x0014 tx0_attenuation_s1_lsb tx0_attenuation_s1[7:0]
0x0015 tx0_attenuation_s1_msb Reserved tx0_attenuation_s1[9:8]
0x0016 tx0_attenuation_s2_lsb tx0_attenuation_s2[7:0]
0x0017 tx0_attenuation_s2_msb Reserved tx0_attenuation_s2[9:8]
0x0018 tx1_attenuation_readback_lsb tx1_attenuation_readback[7:0]
0x0019 tx1_attenuation_readback_msb Reserved tx1_attenuation_readback[9:8]
0x001a tx1_attenuation_s1_lsb tx1_attenuation_s1[7:0]
0x001b tx1_attenuation_s1_msb Reserved tx1_attenuation_s1[9:8]
0x001c tx1_attenuation_s2_lsb tx1_attenuation_s2[7:0]
0x001d tx1_attenuation_s2_msb Reserved tx1_attenuation_s2[9:8]
0x001e tx2_attenuation_readback_lsb tx2_attenuation_readback[7:0]
0x001f tx2_attenuation_readback_msb Reserved tx2_attenuation_readback[9:8]
0x0020 tx2_attenuation_s1_lsb tx2_attenuation_s1[7:0]
0x0021 tx2_attenuation_s1_msb Reserved tx2_attenuation_s1[9:8]
0x0022 tx2_attenuation_s2_lsb tx2_attenuation_s2[7:0]

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 211 of 336

Address Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x0023 tx2_attenuation_s2_msb Reserved tx2_attenuation_s2[9:8]
0x0024 tx3_attenuation_readback_lsb tx3_attenuation_readback[7:0]
0x0025 tx3_attenuation_readback_msb Reserved tx3_attenuation_readback[9:8]
0x0026 tx3_attenuation_s1_lsb tx3_attenuation_s1[7:0]
0x0027 tx3_attenuation_s1_msb Reserved tx3_attenuation_s1[9:8]
0x0028 tx3_attenuation_s2_lsb tx3_attenuation_s2[7:0]
0x0029 tx3_attenuation_s2_msb Reserved tx3_attenuation_s2[9:8]
0x002a tx_atten_upd_spi2 Reserved tx_atten_upd_core_spi2 tx_atten_upd_core_spi2_en

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 212 of 336

RF PORT INTERFACE OVERVIEW
This section describes the recommended RF transmitter and receiver interfaces to obtain optimal transceiver performance. This section
includes data regarding the expected RF port impedance values and examples of impedance matching networks used in the evaluation
platform. Some information is also provided regarding board layout techniques and balun selection guidelines.

External impedance matching networks are required on the transmitter and receiver ports to achieve the performance levels indicated in
the device data sheet. Analog Devices recommends the utilization of simulation tools in the design and optimization of impedance
matching networks. To achieve optimal correlation from simulation to the PCB, accurate models of the board environment, surface
mounted device (SMD) components (for example, baluns and filters), and transceiver port impedances are required.

RF PORT IMPEDANCE DATA
Figure 124 through Figure 129 provide the port impedance data for all transmitters and receivers in the device obtained using ADS
simulation tool modeling. Note the following:

• SEDZ stands for series equivalent differential impedance.
• PEDZ stands for parallel equivalent differential impedance.
• Zo is defined as 50 Ω for transmit and as 100 Ω for receive/observation receive.
• The reference plane for this data is the device ball pads.
• Single-ended mode port impedance data is not available. However, a rough assessment is possible by taking the differential mode

port impedance data and dividing both the real and imaginary components by 2.

22
77

0-
12

3

0

5.0

–5.0

2.0

1.0

–1.0

–2.0

0.5

–0.5

0.2

–0.2

m4
FREQUENCY = 3.500GHz
S(1,1) = 0.221/171.325
IMPEDANCE = Z0 × (0.640 + j0.045)
m5
FREQUENCY = 4.500GHz
S(1,1) = 0.290/146.279
IMPEDANCE = Z0 × (0.585 + j0.205)
m6
FREQUENCY = 6.000GHz
S(1,1) = 0.392/109.862
IMPEDANCE = Z0 × (0.596 + j0.519)

m1
FREQUENCY = 100.0MHz
S(1,1) = 0.005/156.393
IMPEDANCE = 49.550 – j0.196
m2
FREQUENCY = 1.000GHz
S(1,1) = 0.060/–127.659
IMPEDANCE = Z0 × (0.926 – j0.088)
m3
FREQUENCY = 2.000GHz
S(1,1) = 0.122/–150.540
IMPEDANCE = Z0 × (0.803 – j0.098)

FREQUENCY (0.000Hz TO 6.000Hz)

S(
1,

1)

M6

M5

M4
M3

M2

M1

Figure 124. Tx1 and Tx4 SEDZ and PEDZ Data

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 213 of 336

22
77

0-
12

4

0

5.0

–5.0

2.0

1.0

–1.0

–2.0

0.5

–0.5

0.2

–0.2

m4
FREQUENCY = 3.500GHz
S(1,1) = 0.217/–178.721
IMPEDANCE = Z0 × (0.643 – j0.007)
m5
FREQUENCY = 4.500GHz
S(1,1) = 0.285/158.552
IMPEDANCE = Z0 × (0.570 + j0.129)
m6
FREQUENCY = 6.000GHz
S(1,1) = 0.387/125.242
IMPEDANCE = Z0 × (0.533 + j0.396)

m1
FREQUENCY = 100.0MHz
S(1,1) = 0.006/170.987
IMPEDANCE = 49.416 + j0.092
m2
FREQUENCY = 1.000GHz
S(1,1) = 0.060/–124.931
IMPEDANCE = Z0 × (0.929 – j0.091)
m3
FREQUENCY = 2.000GHz
S(1,1) = 0.121/–144.639
IMPEDANCE = Z0 × (0.813 – j0.115)

FREQUENCY (0.000Hz TO 6.000Hz)

S(
1,

1)

M6

M5 M4
M3

M2

M1

Figure 125. Tx2 and Tx3 SEDZ Data

22
77

0-
12

5

0

5.0

–5.0

2.0

1.0

–1.0

–2.0

0.5

–0.5

0.2

–0.2

m4
FREQUENCY = 3.500GHz
RC_SEDZ_Rref2 = 0.118/167.935
IMPEDANCE = Z0 × (0.792 + j0.040)
m5
FREQUENCY = 4.500GHz
RC_SEDZ_Rref2 = 0.139/130.357
IMPEDANCE = Z0 × (0.818 + j0.176)
m6
FREQUENCY = 6.000GHz
RC_SEDZ_Rref2 = 0.179/70.979
IMPEDANCE = Z0 × (1.057 + j0.369)

m1
FREQUENCY = 100.0MHz
RC_SEDZ_Rref2 = 0.098/–58.372
IMPEDANCE = Z0 × (1.092 – j0.185)
m2
FREQUENCY = 1.000GHz
RC_SEDZ_Rref2 = 0.083/–109.461
IMPEDANCE = Z0 × (0.935 – j0.147)
m3
FREQUENCY = 2.000GHz
RC_SEDZ_Rref2 = 0.084/–142.611
IMPEDANCE = Z0 × (0.871 – j0.089)

FREQUENCY (100.0MHz TO 6.000GHz)

RC
_S

ED
Z_

Rr
ef

2 M6
M5

M3
M2

M1
M4

Figure 126. Rx1 and Rx4 SEDZ Data

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 214 of 336

0

5.0

–5.0

2.0

1.0

–1.0

–2.0

0.5

–0.5

0.2

–0.2

m4
FREQUENCY = 3.500GHz
RC_SEDZ_Rref2 = 0.115/166.645
IMPEDANCE = Z0 × (0.797 + j0.043)
m5
FREQUENCY = 4.500GHz
RC_SEDZ_Rref2 = 0.136/128.770
IMPEDANCE = Z0 × (0.826 + j0.178)
m6
FREQUENCY = 6.000GHz
RC_SEDZ_Rref2 = 0.177/68.966
IMPEDANCE = Z0 × (1.071 + j0.365)

m1
FREQUENCY = 100.0MHz
RC_SEDZ_Rref2 = 0.098/–58.288
IMPEDANCE = Z0 × (1.092 – j0.183)
m2
FREQUENCY = 1.000GHz
RC_SEDZ_Rref2 = 0.082/–109.796
IMPEDANCE = Z0 × (0.935 – j0.145)
m3
FREQUENCY = 2.000GHz
RC_SEDZ_Rref2 = 0.082/–143.472
IMPEDANCE = Z0 × (0.873 – j0.085)

FREQUENCY (100.0MHz TO 6.000GHz)

RC
_S

ED
Z_

Rr
ef

M1

M6
M5

M4

M2
M3

22
77

0-
12

6

Figure 127. Rx2 and Rx3 SEDZ Data

22
77

0-
12

7

0

5.0

–5.0

2.0

1.0

–1.0

–2.0

0.5

–0.5

0.2

–0.2

m4
FREQUENCY = 3.500GHz
RC_SEDZ_Rref2 = 0.207/–133.176
IMPEDANCE = Z0 × (0.722 + j0.227)
m5
FREQUENCY = 4.500GHz
RC_SEDZ_Rref2 = 0.242/–149.161
IMPEDANCE = Z0 × (0.638 – j0.169)
m6
FREQUENCY = 6.000GHz
RC_SEDZ_Rref2 = 0.277/–172.444
IMPEDANCE = Z0 × (0.568 – j0.045)

m1
FREQUENCY = 100.0MHz
RC_SEDZ_Rref2 = 0.124/–49.378
IMPEDANCE = Z0 × (1.153 – j0.221)
m2
FREQUENCY = 1.000GHz
RC_SEDZ_Rref2 = 0.109/–85.458
IMPEDANCE = Z0 × (0.993 – j0.218)
m3
FREQUENCY = 2.000GHz
RC_SEDZ_Rref2 = 0.140/–107.096
IMPEDANCE = Z0 × (0.890 – j0.243)

FREQUENCY (100.0MHz TO 6.000GHz)

RC
_S

ED
Z_

Rr
ef

M6
M5M4

M3

M2 M1

Figure 128. ORx1 and ORx4 SEDZ Data

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 215 of 336

22
77

0-
12

8

0

5.0

–5.0

2.0

1.0

–1.0

–2.0

0.5

–0.5

0.2

–0.2

m4
FREQUENCY = 3.500GHz
RC_SEDZ_Rref2 = 0.214/–138.082
IMPEDANCE = Z0 × (0.700 – j0.209)
m5
FREQUENCY = 4.500GHz
RC_SEDZ_Rref2 = 0.248/–156.131
IMPEDANCE = Z0 × (0.619 – j0.132)
m6
FREQUENCY = 6.000GHz
RC_SEDZ_Rref2 = 0.276/177.077
IMPEDANCE = Z0 × (0.567 + j0.017)

m1
FREQUENCY = 100.0MHz
RC_SEDZ_Rref2 = 0.127/–51.004
IMPEDANCE = Z0 × (1.149 – j0.231)
m2
FREQUENCY = 1.000GHz
RC_SEDZ_Rref2 = 0.113/–85.635
IMPEDANCE = Z0 × (0.992 – j0.226)
m3
FREQUENCY = 2.000GHz
RC_SEDZ_Rref2 = 0.146/–108.917
IMPEDANCE = Z0 × (0.877 – j0.248)

FREQUENCY (100.0MHz TO 6.000GHz)

RC
_S

ED
Z_

Rr
ef

M6

M4

M3

M2M1M5

Figure 129. ORx2 and ORx3 SEDZ Data

ADS SETUP USING DATA ACCESS COMPONENT AND SEDZ FILE
The port impedances are supplied as a SEDZ file (file with a *.s1p extension. This format allows simple interface to ADS by using the data
access component. In Figure 130, TERM1 is the single-ended input or output and TERM2 represents the differential input or output RF
port. The Pi network on the single-ended side and the differential Pi configuration on the differential side allow maximum flexibility in
designing matching circuits and is suggested for all design layouts as the network can step the impedance up or down as needed with
appropriate component selection.

–

+S

GND

C118

TERM
TERM1
NUM = 1
Z = RREF Ω

TERM
TERM2
NUM = 2
Z = RX_SEDZ Ω

Data Access Component
DAC1
File =
Type = Touchstone
InterpMode = Linear
InterpDom = Rectangular
ExtrapMode = Interpolation Mode
iVar1 = “freq”
iVal1 = freq

RX_RC
RX_RC = file(DAC1,”S[1,1]”)

VAR

C120

C122 C121 Balun 3 Port
CMP1

BALUN DACL103

L104

C119

22
77

0-
12

9

VAR1
RX_SEDZ = 50 × (RX_RC+1)/(1–RX_RC)

VAR

Figure 130. Simulation Setup in ADS with SEDZ s1p Files and DAC Component

This evaluation operation is as follows:

1. The data access component block reads the RF port *.s1p file, which is the device RF port reflection coefficient.
2. The two equations convert the RF port reflection coefficient to a complex impedance. The end result is the RF port calculated

complex impedance (RX_SEDZ) variable.
3. The RX_SEDZ is utilized to define the TERM2 impedance.

Term2 is used in a differential mode and TERM1 is used in a single-ended mode. Setting up the simulation this way allows measurement
of S11, S22, and S21 of the 3-port system without complex math operations within the display page.

For the highest accuracy, use electromagnetic (EM) modeling results of the PCB artwork and s-parameters of the matching components
and balun in the simulations.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 216 of 336

TRANSMITTER BIAS AND PORT INTERFACE
This section explains the dc biasing of the transmitter outputs and how to interface to each transmit port. The transmitters operate over a
range of frequencies. At full output power, each differential output side draws approximately 100 mA of dc bias current. The transmit
outputs are dc biased to a 1.8 V supply voltage using either RF chokes (wire wound inductors) or a transformer center tap connection.

Careful design of the dc bias network is required to ensure optimal RF performance levels. When designing the dc bias network, select
components with low dc resistance (RDCR) to minimize the voltage drop across the series parasitic resistance element with either of the
suggested dc bias schemes suggested in Figure 131. The red resistors (R_DCR) indicate the parasitic elements. As the impedance of the
parasitics increase, the voltage drop (ΔV) across the parasitic element increases, causing the transmitter RF performance (for example,
PO,1dB and PO,MAX) to degrade. Select the choke inductance (LC) high enough relative to the load impedance such that it does not degrade
the output power.

The recommended dc bias network is shown in Figure 132. This network has fewer parasitics and fewer total components. Note that CB

signifies the bias supply decoupling capacitor, IBIAS is the bias current to each transmitter output stage port, and VBIAS is the bias voltage
seen by each transmitter output stage port.

22
77

0-
13

0

VDC = 1.8V

CB

RDCR ΔV ΔV RDCR
+ +

LC LC

IBIAS = ~100mA

Tx1_OUT–/
Tx2_OUT–

Tx1_OUT+/
Tx2_OUT+

VBIAS = 1.8V – ΔV

VBIAS = 1.8V – ΔV

Tx1 OR Tx2
OUTPUT
STAGE

Figure 131. RF DC Bias Configurations Depicting Parasitic Losses Because of Wire Wound Chokes

CB

1.8V

ΔV +–

ΔV +–

RDCR

RDCR

22
77

0-
13

1

IBIAS

IBIASTx1_OUT–/
Tx2_OUT–

Tx1_OUT+/
Tx2_OUT+

VBIAS = 1.8V – ΔV

VBIAS = 1.8V – ΔV

Tx1 OR Tx2
OUTPUT
STAGE

Figure 132. RF DC Bias Configurations Depicting Parasitic Losses Because of Center Tapped Transformers

Figure 133 through Figure 136 identify four basic differential transmitter output configurations. Impedance matching networks (balun
single-ended port) are most likely required to achieve optimum device performance. The transmitter outputs must also be ac-coupled in
most applications because of the dc bias voltage applied to the differential output lines of the transmitter.

The recommended RF transmitter interface featuring a center tapped balun is shown in Figure 133. This configuration offers the lowest
component count of the options presented.

Descriptions of the transmit port interface schemes are as follows:

• The center tapped transformer passes the bias voltage directly to the transmitter outputs.
• The RF chokes are used to bias the differential transmitter output lines. Additional coupling capacitors (CC) are added in the creation

of a transmission line balun.
• The RF chokes are used to bias the differential transmitter output lines and connect into a transformer.
• The RF chokes are used to bias the differential output lines that are ac-coupled into the input of a driver amplifier.

Tx1 OR Tx2
OUTPUT
STAGE Tx1_OUTN/

Tx2_OUTN

Tx1_OUTP/
Tx2_OUTP

1.8V

22
77

0-
13

2

CB

Figure 133. RF Transmitter Interface Configuration A

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 217 of 336

1.8V

1.8V

22
77

0-
13

3

1.8V

CB LC LC

CC

CC

Tx1_OUTN/
Tx2_OUTN

Tx1_OUTP/
Tx2_OUTP

Tx1 OR Tx2
OUTPUT
STAGE

Figure 134. RF Transmitter Interface Configuration B

1.8V

1.8V

22
77

0-
13

4

1.8V

CB LC LC

Tx1_OUTN/
Tx2_OUTN

Tx1_OUTP/
Tx2_OUTP

Tx1 OR Tx2
OUTPUT
STAGE

Figure 135. RF Transmitter Interface Configuration C

1.8V

1.8V
22

77
0-

13
5

1.8V

CB LC LC

CC

CC

Tx1_OUTN/
Tx2_OUTN

Tx1_OUTP/
Tx2_OUTP

Tx1 OR Tx2
OUTPUT
STAGE

DRIVER
AMPLIFIER

Figure 136. RF Transmitter Interface Configuration D

If a chosen transmit balun requires a set of external dc bias choke inductors, careful planning is required. It is necessary to find the
optimum compromise between the choke physical size, choke dc resistance (RDCR) and the balun low frequency insertion loss. In
commercially available dc bias chokes, the resistance decreases as the size increases. However, as the choke inductance increases, the
resistance increases. Therefore, it is not recommended to use physically small chokes with high inductance as these chokes exhibit the
greatest resistance. Table 235 lists some sample choke inductor resistances for different package sizes to help determine how much dc loss
to expect. For example, the voltage drop of a 500 nH, 0603 choke inductor at 100 mA is roughly 45 mV.

Table 235. Sample Wire Wound DC Bias Choke Resistance vs. Size
Inductance (nH) 0603 Package Size Resistance (Ω) 01206 Package Size Resistance (Ω)
100 0.10 0.08
200 0.15 0.10
300 0.16 0.12
400 0.28 0.14
500 0.45 0.15
600 0.52 0.20

GENERAL RECEIVER PATH INTERFACE
The device has two types of receivers. These receivers include four main receive pathways (Rx1, Rx2, Rx3, and Rx4) and four observation
receivers (ORx1, ORx2, ORx3, and ORx4). The receive and observation receive channels are designed for differential use only.

The receivers support a wide range of operation frequencies. In the case of the receive and observation receive channels, the differential
signals interface to an integrated mixer. The mixer input pins have a dc bias of approximately 0.7 V present on them and may need to be
ac-coupled depending on the common-mode voltage level of the external circuit.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 218 of 336

Important considerations for the receiver port interface include the following:

• What device will be interfaced to the transceiver? Examples are filter, balun, transmit/receive switch, external LNA, and external
power amplifier. Determine if this device represents a short to ground at dc.

• Receive and observation receive maximum safe input power is 18 dBm (peak).
• Receive and observation receive optimum dc bias voltage is 0.7 V bias to ground.
• Board Design characteristics, including reference planes, transmission lines, and impedance matching must be carefully planned.

Figure 137 shows the possible differential receiver port interface circuits. The options in Figure 137 and Figure 138 are valid for all
receiver inputs operating in differential mode, but only the Rx1 signal names are indicated. Impedance matching can be necessary to
obtain the performance levels in the ADRV9029 data sheet.

RECEIVER
INPUT STAGE

(MIXER OR LNA)

Rx–

Rx+

22
77

0-
13

6

Figure 137. Differential Receiver Input Interface Circuits

RECEIVER
INPUT STAGE

(MIXER OR LNA)

Rx–

Rx+

22
77

0-
13

7

CC

CC

Figure 138. Differential Receiver Input Interface Circuits

Given wide RF bandwidth applications, SMD balun devices function well. Decent loss and differential balance are available in a relatively
small (0603 or 0805) package.

IMPEDANCE MATCHING NETWORK EXAMPLES
Impedance matching networks are required to achieve performance levels noted in the ADRV9029 data sheet. This section provides
example topologies and components used on the CE board.

Models of the devices, board, balun, and SMD components are required to build an accurate system level simulation. The board layout
model can be obtained from an EM simulator (for example, Momentum). The balun and SMD component models can typically be
obtained from the device vendors. Figure 139 shows a typical matching circuit topology used to connect single-ended signal sources to
the transceiver’s differential inputs.

22
77

0-
13

8

2

RX IN

RX AND ORX TOPOLOGY

3 4 5

1

NC_6 GND GND_DC_FEED_RFGND
6

1

5 2

3

4UNBAL_IN

BAL_OUT1

BAL_OUT2

RX+

RX–

Figure 139. Impedance Matching Topology

The impedance matching networks provided in this section have not been evaluated in terms of mean time to failure (MTTF) in high
volume production. Consult with component vendors for long-term reliability concerns. Additionally, consult with balun vendors to
determine appropriate conditions for dc biasing.

The schematics in Figure 140, Figure 141, and Figure 142 show two or three circuit elements in parallel marked do not include (DNI),
which was done on the evaluation board schematic to accommodate different component configurations for different frequency ranges.
Only one set of SMD component pads are placed on the board to provide a physical location that can be used for the selected parallel circuit
element. For example, the R302, L302, and C302 components only have one set of SMD pads for one SMD component. The schematic shows that
in a generic port impedance matching network the series elements can be a resistor, inductor, or capacitor, and the shunt elements can be either
an inductor or a capacitor. Only one component of each parallel combination is placed in a practical application. Note that in some matching
circuits, some shunt elements may not be required. All components for a given physical location remain DNI in those particular
applications.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 219 of 336

BALUN

Tx+

Tx–

OPTIONAL
RF CHOKE FEED

OPTIONAL
RF CHOKE FEED

Tx OUTPUT

1.8V

1.8V

22
77

0-
13

9

Figure 140. Transmitter Generic Matching Network Topology from CE Board

22
77

0-
14

0

BALUN

Rx+

Rx–

Rx INPUT

Figure 141. Receiver Generic Matching Network Topology from CE Board

22
77

0-
14

1

BALUN

ORx+

ORx–

ORx INPUT

Figure 142. Observation Receiver Generic Matching Network Topology from CE Board

MATCHING COMPONENT RECOMMENDATIONS
Table 236 through Table 241 show the balun and matching components used on the CE boards. Leave the DNI components open. Note
that all tolerances are ±3% unless otherwise noted. Tolerance notations are either shown as a percentage of the nominal value (%) or as a
range in the units of the component. Component reference designators can be cross referenced with the schematic drawings for the
different variant CE boards.

Table 236. Receiver Matching Components, Rx1 and Rx4

Frequency
Band (MHz)

Component Location on PCB (All Tolerances Are ±3% Unless Otherwise Noted)

C301/
L301,
C331/
L331

C302/L302/
R302, C332/
L332/R332

C303/
L303,
C333/
L333

C304/L304/
R304, C334/
L334/R334

C305/
R305,
C335/
R335

C306/
L306,
C336/
L336

C307/L307/
R307, C337/
L337/R337

C308/L308/
R308, C338/
L338/R338

C309/
L309,
C339/
L339 T301, T307

75 to 1000 DNI 0 Ω DNI 0Ω 0.01 µF DNI 0 Ω 0 Ω DNI TDK ATB2012-
50011

650 to 2800 DNI 0 Ω DNI 0 Ω 0 Ω 91 nH 3.9 pF ±
0.1 pF

3.9 pF ±
0.1 pF

47 nH Johanson
1720BL15A0100

2800 to 6000 DNI 1.2 nH ±
0.1 nH

DNI 0 Ω 1.8 pF ±
0.1 pF

9.1 nH 0.7 nH ±
0.1 nH

0.7 nH ±
0.1 nH

30 nH Johanson
4400BL15A0100E

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 220 of 336

Table 237. Receiver Matching Components, Rx2 and Rx3

Frequency
Band (MHz)

Component Location on PCB (All Tolerances Are ±3% Unless Otherwise Noted)
C311/
L311,
C321/
L321

C312/L312/
R312, C322/
L322/R322

C313/
L313,
C323/
L323

C314/L314/
R314, C324/
L324/R324

C315/
R315,
C325/
R325

C316/
L316,
C326/
L326

C317/L317/
R317, C327/
L327/R327

C318/L318/
R318, C328/
L328/R328

C319/
L319,
C329/
L329 T303, T305

75 to 1000 DNI 0 Ω DNI 0Ω 0.01 µF DNI 0 Ω 0 Ω DNI TDK ATB2012-
50011

650 to 2800 DNI 0 Ω DNI 0 Ω 0 Ω 100 nH 3.9 pF ±
0.1 pF

3.9 pF ± 0.1 pF 43 nH Johanson
1720BL15A0100

2800 to 6000 DNI 1.2 nH ±
0.1 nH

0.2 pF ±
0.05 pF

0 Ω 4.8 pF ±
0.1 pF

9.1 nH 0.7 nH ±
0.1 nH

0.7 nH ± 0.1 nH 30 nH Johanson
4400BL15A0100E

Table 238. Observation Receiver Matching Components, ORx2 and ORx4

Frequency
Band (MHz)

Component Location on PCB (All Tolerances Are ±3% Unless Otherwise Noted)

C401/
L401,
C431/
L431

C402/L402/
R402, C432/
L432/R432

C403/
L403,
C433/
L433

C404/L404/
R404, C434/
L434/R434

C405/
R405,
C435/
R435

C406/
L406,
C436/
L436

C407/L407/
R407, C437/
L437/R437

C408/L408/
R408, C438/
L438/R438

C409/
L409,
C439/
L439 T401, T407

75 to 1000 DNI 0 Ω DNI 0Ω 0.01 µF DNI 0 Ω 0 Ω DNI TDK ATB2012-
50011

650 to 2800 DNI 0 Ω DNI 0 Ω 0 Ω 82 nH 4.7 pF ±
0.1 pF

4.7 pF ±
0.1 pF

75 nH ±
5%

Johanson
1720BL15A0100

2800 to 6000 DNI 1.3 nH ±
0.1 nH

0.2 pF ±
0.05 pF

0 Ω 5.6 pF ±
0.1 pF

7.5 nH 0.6 nH ±
0.1 nH

0.6 nH ±
0.1 nH

0.1pF ±
0.05 pF

Johanson
4400BL15A0100E

Table 239. Observation Receiver Matching Components, ORx1 and ORx3

Frequency
Band (MHz)

Component Location on PCB (All Tolerances Are ±3% Unless Otherwise Noted)

C411/
L411,
C421/
L421

C432/L412/
R412, C422/
L422/R422

C413/
L413,
C423/
L423

C414/L414/
R414, C424/
L424/R424

C415/
R415,
C425/
R425

C416/
L416,
C426/
L426

C417/L417/
R417, C427/
L427/R427

C418/L418/
R418, C428/
L428/R428

C419/
L419,
C429/
L429 T403, T405

75 to 1000 DNI 0 Ω DNI 0Ω 0.01 µF DNI 0 Ω 0 Ω DNI TDK ATB2012-
50011

650 to 2800 DNI 0 Ω DNI 0 Ω 0 Ω 200 nH 10 pF ± 5% 10 pF ± 5% 200 nH Johanson
1720BL15A0100

2800 to 6000 13 nH 0.5 nH ±
0.1 nH

DNI 0.3 nH ±
0.1 nH

1.6 pF ±
0.1 pF

11 nH 0.5 nH ±
0.1 nH

0.5 nH ±
0.1 nH

39 nH Johanson
4400BL15A0100E

Table 240. Transmitter Matching Components, Tx1 and Tx4

Frequency
Band (MHz)

Component Location on PCB (All Tolerances Are ±3% Unless Otherwise Noted)
C512/
L512,
C572/
L572

C511/L511/
R511, C571/
L571/R571

C510/
L510,
C570/
L570

C509/L509/
R509, C569/
L569/R569

C508/
L508,
C568/
L568

C506/L506/
R506, C566/
L566/R566

C507/L507/
R507, C567/
L567/R567

C503/
L503,
C563/
L563

C516,
C576 T501, T507

75 to 1000 DNI 0.01 µF DNI 0 Ω DNI 0 Ω 0 Ω DNI 0.01 µF TDK ATB2012-
50011

650 to 2800 DNI 0.8 nH ±
0.1 nH

33 nH 5.1 pF ±
0.1 pF

DNI 0 Ω 0 Ω DNI 82 pF Johanson
1720BL15A0100

2800 to
6000

3.2 nH ±
0.1 nH

8.2 pF ±
0.1 pF

DNI 2 pF ± 0.1 pF 16 nH 1.1 nH ±
0.1 nH

1.1 nH ±
0.1 nH

12 nH 6.2 pF ±
0.1 pF

Johanson
4400BL15A0100E

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 221 of 336

Table 241. Transmitter Matching Components, Tx2 and Tx3

Frequency
Band (MHz)

Component Location on PCB (All Tolerances Are ±3% Unless Otherwise Noted)
C532/
L532,
C552/
L552

C531/L531/
R531, C551/
L551/R551

C530/
L530,
C550/
L550

C529/L529/
R529, C549/
L549/R549

C528/
L528,
C548/
L548

C526/L526/
R526, C546/
L546/R546

C527/L527/
R527, C547/
L547/R547

C523/
L523,
C543/
L543

C536,
C556 T503, T505

75 to 1000 DNI 0.01 µF DNI 0 Ω DNI 0 Ω 0 Ω DNI 0.01 µF TDK ATB2012-
50011

650 to 2800 DNI 0.9 nH ±
0.1 nH

200 nH 6.8 pF ±
0.1 pF

DNI 0 Ω 0 Ω DNI 82 pF Johanson
1720BL15A0100

2800 to 6000 62 nH 1.8 nH ±
0.1 nH

0.2 pF ±
0.05 pF

0.5 nH ±
0.1 nH

12 nH 1 nH ± 0.1
nH

1 nH ± 0.1 nH 20 nH 4.9 pF ±
0.1 pF

Johanson
4400BL15A0100E

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 222 of 336

POWER MANAGEMENT CONSIDERATIONS
The transceiver requires the following five different power supply domains:

• 1.0 V digital: this supply is connected to the device through the three VDIG_1P0 pins. This supply feeds all digital processing and
clock generation. Take care to properly isolate this supply from all analog signals on the PCB to avoid noise corruption. This supply
input can have a tolerance of ±5%, however, note that the total tolerance must include the tolerance of the supply device added to the
voltage drop of the PCB. This supply is a high current input, and it is critical that the input traces for these three inputs be balanced
(same impedance for the inputs) and as thick as possible to minimize the I × R drop.

• 1.0 V analog: these supplies are collectively referred to in the data sheet as the VANA_1P0 supply. This covers the VDES_1P0,
VSER_1P0, VTT_DES, and VJSY_1P0 supplies. All of these inputs provide power for various functions in the JESD interface blocks.
They can be connected directly to the same supply as VDIG_1P0 if the source has the current capability to supply the extra current
needed for the JESD interface and if proper isolation is included to prevent digital noise from corrupting these inputs. Alternatively,
these supply inputs can be connected to a separate 1.0 V regulator to keep the inputs isolated from digital domains inside the
transceiver. The tolerance on these supply inputs is ±5%.

• 1.3 V analog: these supplies connect to all functional blocks in the transceiver through 14 different input pins, and are collectively
referred to in the data sheet as the VANA_1P3 supply. Treat each input as a noise susceptible input, meaning proper decoupling and
isolation techniques must be followed to avoid crosstalk between channels. The tolerance on these supply inputs is ±2.5%.

• 1.8 V analog: these supplies are primarily used to supply the transmitter outputs, but they also supply current for multiple
transmitter, receiver, converter, and auxiliary converter blocks. They are collectively referred to in the data sheet as the VANA_1P8
supply. The tolerance on these supply inputs is ±5%.

• Interface supply: the VIF supply is a separate power domain shared with the baseband processor interface. The nominal input voltage
on this supply is 1.8 V with a tolerance of ±5%. This input serves as the voltage reference for the digital SPI interface, GPIO, and
digital control inputs.

SUPPLY CAPACITY
During operation, supply currents can vary significantly, especially if operating in TDD mode. The supply must have adequate capacity to
provide the necessary current (as indicated in the device data sheet) so that performance criteria over all process and temperature
variations are maintained. Analog Devices recommends adding 900 mA to the digital supply maximum and 30% margin to all analog
supply maximums to ensure proper operation under all conditions.

POWER SUPPLY SEQUENCE
The transceiver requires a specific power-up sequence to avoid undesirable power-up currents. In the optimal sequence, the VDIG_1P0
supply must come up first. If the VANA_1P0 supplies are connected to the same source as the VDIG_1P0 supply, these inputs can power
up at the same time as the VDIG_1P0 supply. When the VDIG_1P0 source is enabled, the other supplies can be enabled in any order or
all together. Note that the VIF supply can be enabled at any time without affecting the other circuits in the transceiver. In addition to this
sequence, it is also recommended to toggle the RESET signal after power has stabilized prior to initializing the device.

The power-down sequence recommendation is similar to power-up. Disable all analog supplies in any order (or all together) before
VDIG_1P0 is disabled. If such a sequence is not possible, disable the sources of all supplies simultaneously to ensure that there is no back
feeding circuits that have been powered down.

POWER SUPPLY DOMAIN CONNECTIONS
Table 242 lists the pin name, the pin number, the recommended routing technique for that pin from the main supply rail (if applicable),
and a brief description of the block the pin powers in the chip.

The information listed in Table 242 shows which power supply pins must be powered by designated traces and which pins are tied
together and share a common trace. In some cases, a separate trace from a common power plane is used to power up two to three 1.3 V
power supply pins, wheras in other cases, there are power supply pins that are powered from a separate trace.

The recommendation for VDDA1P3_DES is to keep it separate from the VDDA1P3_SER supplies using a separate trace. This input can
be powered from the other 1.3 V analog supply. Noise from this supply can affect the JESD link performance directly.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 223 of 336

Table 242. Power Supply Pins and Functions
Pin Name Pin No. Type Voltage (V) Recommended Routing/Notes Description
VDIG_1P0 G9, J9,

L9
Digital 1.0 Ensure that all connections are matched

to avoid variations in voltage among the
pins. Minimize total impedance to
ensure as little voltage drop as possible.

Digital clocks and processing blocks

VIF N9 Analog 1.8 CMOS/LVDS interface supply (routing
is typically not critical).

Supply for SPI interface, GPIO, control signals

TX1± (RF Choke
Feed)

N17,
P17

Analog 1.8 Star connect from the 1.8 V plane,
isolate by ground from the other
transmitter supplies, connect to the
pins using RF chokes (part depends
on the frequency range).

Alternative transmit supply if power is not
supplied via a center tapped balun

TX2± (RF Choke
Feed)

A13,
A14

Analog 1.8 Star connect from the 1.8 V plane,
isolate by ground from the other
transmitter supplies, connect to the
pins using RF chokes (part depends
on the frequency range).

Alternative transmit supply if power is not
supplied via a center tapped balun

TX3± (RF Choke
Feed)

A4, A5 Analog 1.8 Star connect from the 1.8 V plane,
isolate by ground from the other
transmitter supplies, connect to the
pins using RF chokes (part depends
on the frequency range).

Alternative transmit output supply if power
is not supplied via a centertapped balun

TX4± (RF Choke
Feed)

P1, N1 Analog 1.8 Star connect from the 1.8 V plane,
isolate by ground from the other
transmitter supplies, connect to the
pins using RF chokes (part depends
on the frequency range).

Alternative transmit output supply if power
is not supplied via a center tapped balun

VANA1_1P8 N16 Analog 1.8 Star connect from the 1.8 V plane.
Isolate from the other 1.8 V inputs
with a ferrite bead if necessary.

1.8 V supply for the following circuit blocks:
Tx1 analog output, Rx1 LO buffer, RF
synthesizer 1, AUXADC_0, AUXADC_1, Rx1
TIA, ORx1 mixer, and Converter1 LDO

VANA2_1P8 B14 Analog 1.8 Star connect from the 1.8 V plane.
Isolate from the other 1.8 V inputs
with a ferrite bead if necessary.

1.8 V supply for the following circuit blocks: Tx2
analog output, Tx1_2 LO buffers and LO delay,
analog SPI, DEVCLK, AUX PLL and AUX LO
generation, receive LO multiplexer and master
bias, Rx2 LO buffer, RFPLL1 and LO generator 1,
ORx1_2 LO buffers and TxLB1_2 LO buffer, Rx2
TIA, ORx2 mixer, ORx1 and ORx2 TIA

VANA3_1P8 B4 Analog 1.8 Star connect from the 1.8 V plane.
Isolate from the other 1.8 V inputs
with a ferrite bead if necessary.

1.8 V supply for the following circuit blocks:
Tx3 analog output, auxilliary synthesizer,
Tx3_4 LO, analog SPI, Rx3 LO buffer, RF PLL2
and LO generator 2, ORx3_4 LO buffers and
TxLB3_4 LO buffers, Rx3 TIA, ORx3 mixer, and
ORx3_4 TIA

VANA4_1P8 N2 Analog 1.8 Star connect from the 1.8 V plane.
Isolate from the other 1.8 V inputs
with a ferrite bead if necessary.

1.8 V supply for the following circuit blocks:Tx4
analog output, RF synthesizer 2, Rx4 LO buffer,
clock PLL and CLKGEN, clock synth, AUXADC_2,
AUXADC_3, Rx4 TIA, ORx4 mixer, and
Converter2 LDO

VCONV1_1P8 H15 Analog 1.8 Star connect from the 1.8 V plane.
Isolate from the other 1.8 V inputs
with a ferrite bead if necessary.

1.8 V supply for Tx1 and Tx2 DACs, Rx1 and
Rx2 ADCs, and ORx1 and ORx2 ADCs

VCONV2_1P8 H3 Analog 1.8 Star connect from the 1.8 V plane.
Isolate from the other 1.8 V inputs
with a ferrite bead if necessary.

1.8 V supply for Tx3 and4 DACs, Rx3 and 4
ADCs, and ORx3 and 4 ADCs

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 224 of 336

Pin Name Pin No. Type Voltage (V) Recommended Routing/Notes Description
VJVCO_1P8 P11 Analog 1.8 Star connect from the 1.8 V plane.

Isolate from the other 1.8 V inputs
with a ferrite bead if necessary.

1.8 V supply for JESD VCO/PLL

VANA1_1P3 D15 Analog 1.3 Star connect from the 1.3 V plane. Use
wide traces/shapes to minimize the
trace resistance as much as possible.
Isolate from the other 1.3 V inputs
with a ferrite bead if necessary.

1.3 V supply for Tx1 phase detector, BBF, Tx2
phase detector, Rx1, Rx2 TIA, ORx1_2 TIA,
and analog SPI

VANA2_1P3 D3 Analog 1.3 Star connect from the 1.3 V plane. Use
wide traces/shapes to minimize the
trace resistance as much as possible.
Isolate from hte other 1.3 V inputs
with a ferrite bead if necessary.

1.3 V supply for Tx3 phase detector, BBF, Tx4
phase detector, Rx3,4 TIA, ORx3_4 TIA, and
analog SPI

VCONV1_1P3 J15 Analog 1.3 Star connect from the 1.3 V plane. Use
wide traces/shapes to minimize the
trace resistance as much as possible.
Isolate from the other 1.3 V inputs
with a ferrite bead if necessary.

1.3 V supply for Tx1,2 DACs, Rx1,2 ADCs, and
ORx1_2 ADCs

VCONV2_1P3 J3 Analog 1.3 Star connect from the 1.3 V plane. Use
wide traces/shapes to minimize the
trace resistance as much as possible.
Isolate from the other 1.3 V inputs
with a ferrite bead if necessary.

1.3 V supply for Tx3,4 DACs, Rx3, Rx4 ADCs,
and ORx3_4 ADCs

VRFVCO1_1P3 G15 Analog 1.3 Star connect from the 1.3 V plane. Use
wide traces/shapes to minimize the
trace resistance as much as possible.
Isolate from the other 1.3 V inputs
with a ferrite bead if necessary. This
pin is very sensitive to aggressors.

1.3 V supply for RF VCO1 and LO generator 1

VRFVCO2_1P3 G3 Analog 1.3 Star connect from the 1.3 V plane. Use
wide traces/shapes to minimize the
trace resistance as much as possible.
Isolate from the other 1.3 V inputs
with a ferrite bead if necessary. This
pin is very sensitive to aggressors.

1.3 V supply for RF VCO2 and LO generator 2

VRFSYN1_1P3 J13 Analog 1.3 Star connect from the 1.3 V plane. Use
wide traces/shapes to minimize the
trace resistance as much as possible.
Isolate from the other 1.3 V inputs
with a ferrite bead if necessary. This
pin is very sensitive to aggressors.

1.3 V supply for RF1 synthesizer

VRFSYN2_1P3 J5 Analog 1.3 Star connect from the 1.3 V plane. Use
wide traces/shapes to minimize the
trace resistance as much as possible.
Isolate from the other 1.3 V inputs
with a ferrite bead if necessary. This
pin is very sensitive to aggressors.

1.3 V supply for RF1 synthesizer

VAUXVCO_1P3 C12 Analog 1.3 Star connect from the 1.3 V plane. Use
wide traces/shapes to minimize the
trace resistance as much as possible.
Isolate from the other 1.3 V inputs
with a ferrite bead if necessary. This
pin is very sensitive to aggressors.

1.3 V supply for auxilliary VCO, auxilliary LO
generator 1 and 2, and auxilliary LO
generator 3 and 4

VAUXSYN_1P3 C6 Analog 1.3 Star connect from the 1.3 V plane. Use
wide traces/shapes to minimize the
trace resistance as much as possible.
Isolate from the other 1.3 V inputs
with a ferrite bead if necessary. This

1.3 V supply for auxilliary synthesizer

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 225 of 336

Pin Name Pin No. Type Voltage (V) Recommended Routing/Notes Description
pin is very sensitive to aggressors.

VCLKSYN_1P3 R7 Analog 1.3 Star connect from the 1.3 V plane. Use
wide traces/shapes to minimize the
trace resistance as much as possible.
Isolate from the other 1.3 V inputs
with a ferrite bead if necessary. This
pin is very sensitive to aggressors.

1.3 V supply for DEVCLK and clock
synthesizer

VCLKVCO_1P3 N5 Analog 1.3 Star connect from the 1.3 V plane. Use
wide traces/shapes to minimize the
trace resistance as much as possible.
Isolate from the other 1.3 V inputs
with a ferrite bead if necessary. This
pin is very sensitive to aggressors.

1.3 V supply for clock VCO, clock generation,
and clock distribution

VRXLO_1P3 A9 Analog 1.3 Star connect from the 1.3 V plane. Use
wide traces/shapes to minimize the
trace resistance as much as possible.
Isolate from the other 1.3 V inputs
with a ferrite bead if necessary. This
pin is very sensitive to aggressors.

1.3 V supply for Rx1 and Rx2 LO multiplexer,
Rx3 and Rx4 LO multiplexer

VTXLO_1P3 A7 Analog 1.3 Star connect from the 1.3 V plane. Use
wide traces/shapes to minimize the
trace resistance as much as possible.
Isolate from the other 1.3 V inputs
with a ferrite bead if necessary. This
pin is very sensitive to aggressors.

1.3 V supply for Tx1and Tx2 LO multiplexer,
Tx3 and Tx4 LO multiplexer

VSER_1P0 R3, R4 Analog 1.0 Connect these pins directly to
VDIG_1P0 or to a 1.0 V regulator using
a separate wide trace to minimize the
resistance as much as possible.
Connect to these pins using a ferrite
bead if digital noise is a concern.

1.0 V supply for JESD serializer

VDES_1P0 P12,
P13

Analog 1.0 Connect these pins directly to
VDIG_1P0 or to a 1.0 V regulator using a
separate wide trace to minimize the
resistance as much as possible. Connect
to these pins using a ferrite bead if
digital noise is a concern.

1.0 V supply for JESD deserializer

VTT_DES P14 Analog 1.0 Connect directly to VDIG_1P0 or to a
1.0 V regulator. Connect to this pin
using a ferrite bead if digital noise is a
concern.

1.0 V supply for JESD deserializer VTT

VJSYN_1P0 R9 Analog 1.0 Connect directly to VDIG_1P0 or to a
1.0 V regulator. Connect to this pin
using a ferrite bead if digital noise is a
concern.

1.0 V supply for the JESD synth

VCONV1_1P0 K12 Analog 1.0 Connect a 4.7 µF bypass capacitor
from this pin to ground.

Bypass connection point for internal
converter regulator

VCONV2_1P0 K3 Analog 1.0 Connect a 4.7 µF bypass capacitor to
from this pin ground.

Bypass connection point for internal
converter regulator

VAUXVCO_1P0 B11 Analog 1.0 Connect a 4.7 µF bypass capacitor to
from this pin ground.

Bypass connection point for internal
AUXVCO regulator

VCLKVCO_1P0 P5 Analog 1.0 Connect a 4.7 µF bypass capacitor to
from this pin ground.

Bypass connection point for internal
CLKVCO regulator

VRFVCO1_1P0 G13 Analog 1.0 Connect a 4.7 µF bypass capacitor to
from this pin ground.

Bypass connection point for internal
RFVCO1 regulator

VRFVCO2_1P0 G5 Analog 1.0 Connect a 4.7 µF bypass capacitor to
from this pin ground.

Bypass connection point for internal
RFVCO2 regulator

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 226 of 336

POWER SUPPLY ARCHITECTURE
The diagram in Figure 143 outlines the power supply configuration used on the CE board. This configuration follows the
recommendations outlined in Table 242. This diagram includes the use of ferrite beads for additional RF isolation and 0 Ω resistors.
These devices accomplish the following functions:

• The ferrite beads provide RF noise filtering. They may be necessary when users encounter RF spurs or noise coupling in their
application and additional isolation is required. If they are found to be unnecessary, they can be replaced by 0 Ω resistors.

• The resistors and ferrite beads ensure that the layout follows power routing guidelines, which recommends the traces to be star
connected to a central supply.

• The resistors and ferrite beads provide a place in the circuit where the current can be monitored and measured for debugging
purposes. For this function, the components can be replaced by low impedance shunt resistors and the voltage measured to
determine the total current to the specified input ball.

• The 0 Ω resistors provide connection options for the JESD204B and JESD204C power supply inputs so that these power inputs can
be isolated from the digital supply if digital noise corrupts the JESD204B and JESD204C performance.

For more details on recommended power supply implementation, refer to the CE board schematic included in the design support package.

VC
O

NV
1_

1P
0

4.7µF INTERNAL LDO
OUTPUT CAPACITORS

VDIG_1P0
VDIG_1P0
VDIG_1P0

VJSYN_1P0
VSER_1P0
VSER_1P0
VDES_1P0
VDES_1P0
VTT_DES

1.0V
LDO

DNI

VDIG_1P0 (1.0V ± 5%)

VCONV1_1P8
VCONV2_1P8
VANA1_1P8
VANA2_1P8
VANA3_1P8
VANA4_1P8
VJVCO_1P8

VIF

VCONV1_1P3
VCONV2_1P3
VANA1_1P3
VANA2_1P3
VRFVCO1_1P3
VRFVCO2_1P3
VAUXVCO_1P3
VCLKVCO_1P3
VAUXSYN_1P3
VCLKSYN_1P3
VRFSYN1_1P3
VRFSYN2_1P3
VRXLO_1P3
VTXLO_1P3

INTERFACE SUPPLY (1.8V ± 5%)

VANA_1P8 (1.8V ± 5%) BEAD 2
BEAD 2
BEAD 2
BEAD 2
BEAD 2
BEAD 2
BEAD 2

BEAD 2
BEAD 2
BEAD 2
BEAD 2
BEAD 2
BEAD 2
BEAD 2
BEAD 2

BEAD 1

BEAD 1

BEAD 1

VANA_1P3 (1.3V ± 2.5%)

2 × 200µF + 1µF + 3 × 100nF

10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF

10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF

10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF
10µF + 1µF + 100nF

100µF

VC
O

NV
2_

1P
0

VA
UX

VC
O

_1
P0

VC
LK

VC
O

_1
P0

VR
FV

CO
1_

1P
0

VR
FV

CO
2_

1P
0

0Ω

0Ω

0Ω

22
77

0-
14

2

NOTES
1. BEAD 1 IS HIGH CURRENT.
2. BEAD 2 IS LOW CURRENT, HIGH REJECTION.
3. 0Ω CAN BE REPLACED WITH BEAD 1 IF NOISE PROBLEMS OCCUR.
4. DECOUPLING CAPACITOR RECOMMENDATIONS ARE SHOWN FOR EACH INPUT PIN.

Figure 143. Power Supply Connection Diagram

CURRENT CONSUMPTION
The current consumption in each block can vary depending on the device configuration for the profile in use. Clock frequencies, data
rates, calibrations, and the number of channels in operation all influence the amount of current required for transceiver operation. The
following section gives a sample of a typical use case profile and the resulting current consumption in different modes. This example is a

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 227 of 336

typical example, but do not consider the values maximums for design purposes. Follow the design margins noted previously in Supply
Capacity the section when sizing power supplies.

Current Measurements: Use Case 26 Non Link Sharing Profile

The setup parameters for this use case are as follows:

• Transmit channels: 4
• Receive channels: 4
• Observation receive channels: 1
• Device clock: 491.52 MHz
• Transmit/Receive primary signal bandwidth: 200 MHz
• Transmit/Observation receive synthesis bandwidth: 450 MHz
• Receive data sample rate: 245.76 MSPS
• Transmit/Observation Receive data sample rate: 491.52 MSPS
• JESD lane rate: 24.33024 Gbps

Table 243. Typical Current Consumption, Use Case 26-NLS

Pin Name Pins Type Voltage (V)
Measured Current (mA)

Rx Enabled Tx + ORx Enabled Rx + Tx + ORx Enabled
VDIG_1P0 G9, J9, L9 Digital 1.0 959 1068 1600
VSER_1P0 R3, R4 Analog 1.0 190 191 193
VDES_1P0 P12, P13 Analog 1.0 361 362 364
VTT_DES P14 Analog 1.0 4 4 4
VJSYN_1P0 R9 Analog 1.0 6 7 7
VIF N9 Analog 1.8 8 8 8
VANA1_1P8 N16 Analog 1.8 6 132 131
VANA2_1P8 B14 Analog 1.8 16 134 134
VANA3_1P8 B4 Analog 1.8 8 141 142
VANA4_1P8 N2 Analog 1.8 9 134 134
VCONV1_1P8 H15 Analog 1.8 99 26 100
VCONV2_1P8 H3 Analog 1.8 102 65 142
VJVCO_1P8 P11 Analog 1.8 2 2 2
VANA1_1P3 D15 Analog 1.3 329 325 438
VANA2_1P3 D3 Analog 1.3 331 381 496
VCONV1_1P3 J15 Analog 1.3 382 125 494
VCONV2_1P3 J3 Analog 1.3 382 306 679
VRFVCO1_1P3 G15 Analog 1.3 188 188 189
VRFVCO2_1P3 G3 Analog 1.3 187 188 190
VRFSYN1_1P3 J13 Analog 1.3 11 11 11
VRFSYN2_1P3 J5 Analog 1.3 10 10 10
VAUXVCO_1P3 C12 Analog 1.3 187 216 217
VAUXSYN_1P3 C6 Analog 1.3 8 8 8
VCLKSYN_1P3 R7 Analog 1.3 23 23 24
VCLKVCO_1P3 N5 Analog 1.3 110 110 141
VRXLO_1P3 A9 Analog 1.3 176 19 179
VTXLO_1P3 A7 Analog 1.3 9 186 189

Table 244. Total Current Consumption per Supply Rail
Mode of Operation 1.8 V Source Current (mA) 1.3 V Source Current (mA) 1.0 V Source Current (mA)
Rx Enabled 242 2333 1520
Tx + ORx Enabled 634 2096 1632
Rx + Tx + ORx Enabled 785 3265 2168

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 228 of 336

PCB LAYOUT CONSIDERATIONS
OVERVIEW
Because of the complexity of this transceiver device and the high pin count, careful PCB layout is important to obtain optimal performance.
This user guide provides a checklist of issues to look for and general guidelines on how to optimize the PCB to mitigate performance issues.
Use this user guide to help achieve the best performance from the transceiver while reducing board layout effort. This section assumes
that the user is an experienced analog/RF engineer who understands RF PCB layout as well as RF and high speed transmission lines.

The evaluation board represents one of the most complex implementations of the transceiver. All RF inputs and outputs, JESD serial data
lanes, and digital control and monitoring signals are implemented in this design and are expected to operate over the full frequency range
of the device. Advanced PCB technology is used to achieve maximum device performance in the face of constraints presented by the
routing density. Depending on the intended application, users may not require all signals to be routed and can, therefore, use alternate
PCB layout techniques to meet the design goals. These techniques include but are not limited to a traditional BGA fanout, fewer layers,
through-hole vias only, and lower grade PCB materials.

The PCB Layout Considerations section discusses the following issues and provides guidelines for system designers to get the optimal
performance out of the transceiver:

• PCB material and stack up selection
• Fanout and trace space layout guidelines
• Component placement and routing priorities
• RF and JESD transmission line layout
• Isolation techniques used on the CE board
• Power management routing considerations
• Analog signal routing recommendations
• Digital signal routing recommendations
• Unused pin instructions

PCB MATERIAL AND STACK UP SELECTION
The evaluation board utilizes Isola I-Speed dielectric material, and was selected for its low loss tangent and low dielectric constant
characteristics. On previous evaluation systems, Analog Devices chose a combination of low loss, RF capable dielectric material for the
outer edge layers and standard FR4-370 HR dielectric material for interior layers. RF signal routing on these boards was confined to the
top and bottom layers. The material mix was a good compromise to obtain optimum RF performance and low overall board cost. Given
the need to route RF and high speed digital data lanes on multiple layers because of the increased number of RF channels and JESD lanes,
I-Speed material was chosen for all layers on this board. There are several other material options on the market from other PCB material
vendors that are also valid options for this transceiver. The key comparison metrics for these materials are the dielectric constant and the
loss tangent. Designers must also be careful to ensure that the thermal characteristics of the material are adequate to handle high reflow
temperatures for short durations and expected operating temperatures for extended durations.

Figure 144 shows the PCB stack up used for the evaluation board. Layer 1 and Layer 16 are primarily used for RF input/output signal
routing and I-Speed prepreg material was selected to support the required controlled impedance traces. Layer 2 and Layer 15 have
uninterrupted ground copper flood beneath all RF routes on Layer 1 and Layer 16. Layer 2 is also used in combination with Layer 4 to
route high speed digital JESD lanes. These signal layers use Layer 3 and Layer 4 as references. Clean reference planes are important to
maintain signal integrity on sensitive RF and high speed digital signal paths. Layer 3, Layer 5, and Layer 7 are used to route analog power
domains. Routing of analog power planes and traces are discussed in more detail in the Power Management Layout Design section. Layer
9 is a solid ground plane used to help isolate sensitive analog signal and power layers from potentially noisy digital signals routed in the
lower half of the PCB. Layer 10 through Layer 14 are used to route a variety of digital power, GPIO, and control signals. Table 245
describes the drill table for via structures used in the evaluation board to route all signals from the transceiver. Note that the metal and
dielectric thicknesses have been balanced to ensure that the thickness of each half of the PCB is relatively equal to avoid uneven flexing or
deforming under pressure or temperature changes.

Via structures were selected based on signal routing requirements and manufacturing constraints. Ground planes are full copper floods
with no splits except for vias, through-hole components, and isolation structures. Ground and power planes are all routed to the edge of
the PCB with a 10 mil pullback from the edge to decrease the risk of a layer to layer short at the exposed board edge.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 229 of 336

22
77

0-
14

3

3.35

DK DESCRIPTION

3.35

3.56

3.56

3.46

3.46

3.77

3.50

3.77

3.35

3.46

3.35

3.77

3.50

3.77

6.15

6.16

3.20

3.20

4.69

4.58

4.00

6.88

4.00

2.88

4.25

2.98

4.00

6.96

4.00

PREREQ I-SPEED 1035(77)/1035(77) 18.25G × 24.25

PREREQ I-SPEED 1035(77)/1035(77) 18.25G × 24.25

PREREQ I-SPEED 1086(66.5) 18.25G × 24.25

PREREQ I-SPEED 1086(66.6) 18.25G × 24.25

PREREQ I-SPEED 1035(71.5)/1035(71.5) 18.25G × 24.25

PREREQ I-SPEED 1035(71.5)/1035(71.5) 18.25G × 24.25

CORE I-SPEED 4.00mils 3313 0.5oz/1oz VLP2 18.25G × 24.25

PREREQ I-SPEED 1078(69.5)/1078(69.5) 18.25G × 24.25

FOIL .375oz

FOIL .375oz

FOIL .375oz

FOIL .375oz

CORE I-SPEED 4.00mils 3313 0.5oz/1oz VLP2 18.25G × 24.25

PREREQ I-SPEED 1035(77) 18.25G × 24.25

PREREQ I-SPEED 1035(71.5)/1035(71.5) 18.25G × 24.25

FOIL .375oz

FOIL .375oz

FOIL .375oz

PREREQ I-SPEED 1035(77) 18.25G × 24.25

CORE I-SPEED 4.00mils 3313 0.5oz/0.5oz VLP2 18.25G × 24.25

PREREQ I-SPEED 1078(69.5)/1078(69.5) 18.25G × 24.25

CORE I-SPEED 4.00mils 3313 0.5oz/1oz VLP2 18.25G × 24.25

1
LAYER

Cu THICK.
(mils)

Cu FOIL
WEIGHT

(oz)
LAM. THICK.

(mils)

15

16

2

14

3

13

4

5

6

7

8

9

10

11

12

2.15

0.55

2.15

0.55

1.85

1.85

1.20

0.60

1.20

0.60

1.20

1.85

1.85

0.60

0.60

0.60

.375

.375

.375

.375

.375

.375

1.00

0.50

1.00

0.50

1.00

.375

.375

0.50

0.50

0.50

Figure 144. PCB Material Stack Up Diagram

Table 245. Drill Table
Start Layer End Layer Drill Type Plate Type Via Fill Drill Size (min) Drill Depth Pad Size(min) Stacked Vias
1 16 Mech PTH Not applicable 33.00 84.06

3 8 Mech Via Resin fill 7.90 27.06

9 14 Mech Via Resin fill 7.90 26.51

1 16 Mech Via Nonconductive via fill 7.90 84.06

15 14 Laser Microvia CuVF_Button pattern 5.90 3.74

Y
16 15 Laser Microvia Nonconductive via fill 9.10 6.54

Y

8 7 Laser Microvia Dummy drill 7.90 3.37

Y
1 2 Laser Microvia Non-Conductive via fill 9.10 6.53

Y

2 3 Laser Via CuVF_Button pattern 5.90 3.74

Y
3 4 Laser Microvia CuVF_Button pattern 7.90 5.16

Y

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 230 of 336

Controlled impedance traces, single ended and differential, are required to obtain best RF performance. Impedances of 50 Ω and 100 Ω
are required for RF, high speed digital, and clock signals. Table 246 describes details about trace impedance controls used in the
evaluation board and types of line structures used to obtain desired impedance and performance on and for given layers and impedances.

Table 246. Impedance Table

Layer Structure Type

Target
Impedance
(Ω)

Impedance
Tolerance
(Ω)

Target Line
Width
(mils)

Edge
Coupled
Pitch (mils)

Reference
Layers

Modeled
Line Width
(mils)

Modeled
Impedance
(Ω)

Coplanar
Space
(mils)

1 Single-ended 50.00 ±5 11.00 0.00 (2) 11.50 51.02 9.75
1 Edge coupled

differential
50.00 ±5 27.00 32.00 (2) 27.50 50.54 9.75

1 Edge coupled
differential

100.00 ±10 7.50 14.50 (2) 8.25 101.83 9.62

2 Edge coupled
differential

100.00 ±10 4.25 12.00 (1, 3) 3.75 101.01 12.25

4 Edge coupled
differential

100.00 ±10 3.75 9.50 (3, 5) 3.75 100.67 12.00

4 Single-ended 50.00 ±5 4.50 0.00 (3, 5) 4.25 50.05 12.13
6 Single-ended 50.00 ±5 4.50 0.00 (5, 7) 4.75 50.94 11.88
8 Single-ended 38.00 ±3.8 5.00 0.00 (9, 7) 5.00 37.90 5.00
10 Single-ended 50.00 ±5 3.00 0.00 (9, 11) 3.25 51.20 11.88
10 Edge coupled

differential
100.00 ±10 3.00 11.00 (9, 11) 3.25 100.87 11.88

11 Single-ended 50.00 ±5 4.50 0.00 (12, 10) 4.75 51.02 11.88
11 Edge coupled

differential
100.00 ±10 4.00 9.00 (12, 10) 4.00 100.19 12.01

12 Single-ended 50.00 ±5 4.50 0.00 (11, 13) 4.75 51.02 11.88
12 Edge coupled

differential
100.00 ±10 4.00 9.00 (11, 13) 4.00 100.19 12.00

16 Single-Ended 50.00 ±5 11.00 0.00 (15) 11.50 51.06 9.75
16 Edge coupled

differential
100.00 ±10 7.50 14.50 (15) 8.25 101.85 9.62

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 231 of 336

FANOUT AND TRACE SPACING GUIDELINES
The package used for these transceivers is a 14 mm × 14 mm 289-ball BGA package. The pitch between the pins is 0.8 mm. This small
pitch makes it impractical to route all signals on a single layer. RF and high speed data pins are placed on the perimeter rows of the BGA
to minimize complexity of the routing of these critical signals. Via in pad technology is used to escape all other signals to the layers on
which they are routed. The recommended via size includes an 8 mil drill hole with a 12 mil capture pad. A combination of stacked micro
vias, buried vias, and through vias are used to route signals to appropriate inner layers for further routing. JESD interface signals are
routed on two inner signal layers utilizing controlled impedance traces.

Figure 145 illustrates the fanout of RF differential channels from the transceiver on the top layer of the PCB. Note that each signal pair is
designed with the required characteristic impedance and isolation to minimize crosstalk between channels. The isolation structures
include a series of ground balls around each RF channel and the digital interface section of the transceiver. Connect these ground balls by
traces to form a wall around each section, and then fill the area to make the ground as continuous as possible underneath the device.

22
77

0-
14

4

Figure 145. CE Board RF Receiver and Transmitter Fanout and Layout

COMPONENT PLACEMENT AND ROUTING GUIDELINES
The transceiver requires few external components to function. Those components that are required must be carefully placed and routed
to optimize performance. This section provides instructions for properly placing and routing some of those critical signals and components.

Signals with Highest Routing Priority

RF inputs and outputs, clocks, and high speed digital signals are the most critical for optimizing performance and must be routed with the
highest priority. Figure 146 shows the general directions in which each of the signals must be routed so that they can be effectively
isolated from aggressor signals. It can be difficult to keep all RF channels on a single outer layer. In such cases, it is recommended to route
the receiver and transmitter channels on the top PCB layer with adequate channel to channel isolation and the observation receivers
either on the internal layers or on the bottom layers. Ensure that the trace impedance is properly designed to 100 Ω differential including
the vias needed to transfer the signals between PCB layers.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 232 of 336

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A

B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

U

22
77

0-
14

5

Figure 146. RF IO, DEVCLK, EXT LO, and SERDES Routing Guidelines

Transmit, receive, and observation receive routing (also referred to as trace routing), physical design (trace width/spacing), matching
network design, and balun placement significantly impact RF transceiver performance. Make every effort to optimize path design,
component selection, and placement to avoid performance degradation. The RF Routing Guidelines section describes proper matching
circuit placement and routing in greater detail. Additional related information can be found in the RF Port Interface Overview section.

To achieve the desired levels of isolation between the RF signal paths, use the considerations and techniques described in the Isolation
Techniques section in designs.

For RF transmit outputs, install a 10 µF capacitor near the transmit balun(s) VANAx_1P8 dc feed(s). This capacitor acts as a reservoir for
the transmit supply current. The Transmit Bias Supply Guidelines section discusses the transmit dc supply design in detail.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 233 of 336

Connect external clock inputs to DEVCLK+ and DEVCLK− through ac coupling capacitors. Place a 100 Ω termination across the input
near Pin C8 and Pin C9, as shown in Figure 147. Shield traces by ground planes above and below with vias staggered along the edges of
the differential pair routing. This shielding is important because it protects the reference clock inputs from spurious signals that can
transfer to different clock domains within the device. Refer to the Synthesizer Configuration section for more details regarding the clock signals.

22
77

0-
14

6

Figure 147. DEVCLK and SYSREF Termination

Route SERDES high speed digital interface traces at the beginning of the PCB design process with the same priority as the RF signals. The
JESD204B/JESD204C Routing Recommendations section outlines launch and routing guidelines for these SERDES signals. Provide
adequate isolation between interface differential pairs.

Signals with Second Routing Priority

Power supply routing and quality have a direct impact on overall system performance. The Power Management Layout section provides
recommendations for how to best route the power supplies to minimize loss as well as interference between RF channels. Follow the
recommendations provided in the Power Management Layout Design section to ensure optimal RF and isolation performance.

Signals with Lowest Routing Priority

Route the remaining low frequency digital inputs and outputs, the auxiliary ADCs and DACs, and the SPI signals. It is important to route
all digital signals bounded between Row E and Row R and Column 6 and Column 15 down and away from sensitive analog signals on
PCB signal layers with a solid ground layer shielding other sensitive signals from the potentially noisy digital signals (refer to Figure 146
for the ball diagram). The CE board uses Layer 9 as a solid ground flood on the entire layer to act as a shield and delineation between
analog and digital domains. All RF, analog power, and high speed signaling is routed on Layer 1 through Layer 8 and Layer 16, while
digital power and signaling is routed on Layer 10 through Layer 15. Auxiliary ADC and DAC signal traces are routed on layers separated
from RF input/output and high speed digital, but are still on the analog side of the PCB.

RF AND JESD TRANSMISSION LINE LAYOUT
RF Routing Guidelines

The evaluation boards use both surface coplanar waveguide and surface edge coupled coplanar waveguide transmission lines for transmit,
receive, and observation receive RF signals. In general, Analog Devices does not recommend using vias to route RF traces unless a direct
route on the same layer as the device is not possible. Keep balanced lines for differential mode signaling used between the transceiver and
the RF balun as short as possible. Keep the length of the single-ended transmission lines for RF signals as short as possible. Keeping signal
paths as short as possible reduces susceptibility to undesired signal coupling and reduces the effects of parasitic capacitance, inductance,
and loss on the transfer function of the transmission line and impedance matching network system. The routing of these signal paths is
the most critical factor in optimizing performance and, therefore, must be routed prior to any other signals and maintain the highest
priority in the PCB layout process.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 234 of 336

All 12 RF ports are impedance matched using π-matching networks, both differential and single-ended. Take care in the design of
impedance matching networks including balun, matching components, and ac coupling capacitor selection. Additionally, DEVCLK can
require impedance matching to ensure optimal performance. Figure 148 depicts the path from the device to the external connector that is
used to route Tx4 on the CE board. Component placement for matching components are highlighted in red. Refer to the RF Port
Interface Overview section for more information on RF impedance matching recommendations.

22
77

0-
14

7

1.8V FEED
BALUN

Figure 148. Transmit RF Routing and Matching Network

All RF signals must have a solid ground reference under each path to maintain the desired impedance. Ensure that none of the critical
traces run over a discontinuity in the ground reference.

Transmit Bias Supply Guidelines

Each transmitter requires approximately 125 mA supplied through an external connection. In the CE board, bias voltages are supplied at
the dc feed of a center tapped balun in the RF signal path, as shown in Figure 149.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 235 of 336

22
77

0-
14

8

1.8V FEED BALUN

Figure 149. 1.8V Transmit Bias Routing at Balun

To reduce switching transients because of attenuation setting changes, power the balun dc feed directly from the 1.8 V supply plane.
Design the geometry of the plane to isolate each transmitter from the others. Figure 150 shows the 1.8 V supply distribution on the CE
board. The primary 1.8 V distribution is through a plane that transitions to two wide fingers on Layer 5, which run up both sides of the
device. The finger width is designed to minimize voltage drop at the tap points. Each transmitter is biased with a finger on Layer 3 that
taps the main 1.8 V supply. The fingers are designed and routed to present a low impedance at the connection point to the transmit input.

22
77

0-
14

9

Figure 150. 1.8 V Supply Distribution

The evaluation board couples the supply into the transmitter via a center tapped balun, but is also provisioned for an external choke feed
inductor with an ac decoupling capacitor. This topology helps improve transmitter to transmitter isolation.

When a balun is selected that does not have a dc feed capability, RF chokes must be used to supply the current to the transmitters. Chokes
are connected from the 1.8 V supply to each transmit output. Note that in this scenario, the transmit balun must be ac-coupled. The RF
chokes must also be decoupled by capacitors from the power feed to ground. Place the ground connections to these capacitors as close as
possible to the transmit output pins. Take care to match both chokes and their layout to avoid peaking because of current transients.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 236 of 336

JESD204B/JESD204C Routing Recommendations

The transceiver uses a JESD204B/JESD204C high speed serial interface. To ensure performance of this interface, keep the differential
traces as short as possible by placing the device as close as possible to the baseband processor and routing the traces as directly as possible
between the devices. Using a PCB material with a low dielectric constant and loss tangent is also strongly recommended. For a specific
application, loss must be modeled to ensure adequate drive strength is available in both the transceiver and the baseband processor.

Route the differential pairs on a single plane using a solid ground plane as a reference on the layers directly above and/or below the signal
layer. Reference planes for the impedance controlled traces must not be segmented or broken along the entire length of a trace.

All JESD lane traces must be impedance controlled and target 100 Ω differential. Ensure that the pair is loosely coplanar edge coupled.
The CE board uses 4 mil wide traces and a separation of approximately 10 mil. These parameters can vary depending on the stack up and
selected dielectric material. Minimize the pad area for all connector and passive components to reduce parasitic capacitance effects on the
transmission lines, which can negatively impact signal integrity. Minimize using vias to route these signals as much as possible. Use blind vias
wherever possible to eliminate via stub effects and use micro vias to minimize inductance. If using standard vias, use maximum length vias to
minimize the stub size. For example, on an 8-layer board, use Layer 7 for the stripline pair, which reduces the stub length of the via to that
of the height of a single layer. For each via pair, a pair of ground vias must be placed nearby to minimize the impedance discontinuity.

For JESD signal traces, the recommendation is to route them on the top side of the board as a 100 Ω differential pair (coplanar edge
coupled waveguide). In the case of the CE board, the JESD signals are routed on inner Layer 2 and Layer 4. To minimize coupling, these
signals are placed on an inner layer using a via in the pad of the component footprint. AC coupling capacitors (100 nF) are placed in
series near the FMC connector away from the chip. The JESD interface can operate at frequencies up to 16 GHz.

Figure 151 and Figure 152 show the transition between ball and launch. Surrounding ground references above and below the signal layer
are designed to tune the modal impedances ideal for the high speed signaling and according to the JESD204 standard.

22
77

0-
15

0

Figure 151. JESD Signal Launch on Layer 2

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 237 of 336

22
77

0-
15

1

Figure 152. JESD Signal Launch on Layer 4

ISOLATION TECHNIQUES
Given the density of sensitive and critical signals, significant isolation challenges are faced when designing a PCB for the transceiver. The
isolation requirements listed in Table 247 were followed to accurately evaluate transceiver performance. Analytically determining
aggressor to victim isolation in a system is complex and involves considering vector combinations of aggressor signals and coupling
mechanisms.

Isolation Goals

Table 247 lists the isolation targets for each RF channel to channel combination type. To meet these goals with significant margin,
isolation structures were designed into the CE board.

Table 247. Port to Port Isolation Goals
Port 650 MHz to 4 GHz 4 GHz to 6 GHz
Transmit to Transmit 65 dB 60 dB
Transmit to Receive 70 dB 65 dB
Transmit to Observation Receive 70 dB 65 dB
Receive to Receive 65 dB 60 dB
Receive to Observation Receive 70 dB 65 dB

Isolation Between RF I/O Ports

The primary coupling mechanisms between the RF IO paths on the evaluation board include the following:

• Magnetic field coupling
• Surface propagation
• Cross domain coupling via ground

To reduce the impact of these coupling mechanisms on the CE board, several strategies were used. Large slots are opened in the ground
plane between the RF IO paths. These discontinuities prevent surface propagation. A careful designer can notice various bends in the
routing of differential paths. These routes were developed and tuned through iterative electromagnetic simulation to minimize magnetic
field coupling between differential paths. These techniques are illustrated in Figure 153.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 238 of 336

22
77

0-
15

2

Figure 153. RF IO Isolation Structures

Additional shielding is provided using connecting VSSA balls under the device to form a shield around the RF IO ball pairs. This ground
provides a termination for stray electric fields. Figure 154 shows how this layout is done for Tx1. The same layout approach is used for
each set of sensitive RF IO ports. Ground vias are used along the single-ended RF IO traces. Optimal via spacing is 1/10 of a wavelength
for the highest signal frequency, but that spacing can vary somewhat because of practical layout considerations. The wavelength is
dependent on the dielectric material relative permittivity (εr) and can be calculated using the following equation:

ε
=

×
300()
() r

wavelength m
frequency MHz

22
77

0-
15

3

Figure 154. Transmit Launch Shielding

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 239 of 336

RF IO baluns are spaced and aligned to reduce magnetic coupling from the structures in the balun package. Care must be taken to reduce
crosstalk over shared grounds between baluns. Another precaution taken involves placing and orienting SMA connectors to minimize
connector to connector coupling between ports.

Isolation Between SERDES Lines

The SERDES interface uses 16 lane pairs that can operate at speeds up to 16 GHz. Take care when creating the PCB layout to ensure that those
lines are routed following the guidelines described in the JESD204B/JESD204C Routing Recommendations section. In addition, use isolation
techniques to prevent crosstalk between the different SERDES lane pairs. Via fencing is the primary technique used on the CE board.

Figure 155 illustrates the via fencing technique. Ground vias are placed along and between each pair of traces to provide isolation and
decrease crosstalk. The spacing between vias, shown as Label A in Figure 155, follows the rule provided in the Isolation Between RF I/O
Ports section. For the most accurate spacing of fencing vias, use layout simulation software.

A

22
77

0-
15

4

Figure 155. SERDES Lane Via Fencing

POWER MANAGEMENT LAYOUT DESIGN
Because of the complexity and high level of integration in the transceiver, power supply routing is critical to achieve optimum RF performance.
The transceiver is designed to minimize power supply coupled noise by implementing several internal linear regulators that isolate
circuits from each other when connected to a common power supply rail. This design provides an improved level of isolation compared
to previous products, but is only one level of protection. Proper power supply layout can also help isolate individual circuits in the device.

Analog Power Ring Approach

The RF section is designed as two hemispheres with two transmitters, two receivers, and as many as two observation receivers on each
side. To reduce coupling between channels and keep each power supply input isolated from others, a star connection approach is used.
This approach involves connecting each power supply input to a common power supply bus using an isolated trace designed specifically
for the current requirements of the particular input. The CE board uses a power ring approach to provide the power supply bus for the 1.8
V and 1.3 V analog supplies. The 1.8 V supply is routed as an inner ring to provide a more direct connection to the 1.8 V transmitter
output supplies, and the 1.3 V supply is routed in a similar fashion as an outer ring that can be star connected to each 1.3 V supply on the
device. Figure 156 shows this layout approach on the CE board. The inner purple “U” shape labeled 1P8 is the 1.8 V supply and the outer
pink “U” shape labeled 1P3V is the 1.3 V supply. Note that neither shape forms a complete ring, which was done to better control the
current path for each supply and avoid current loops and coupling between the two hemispheres of the board. There is also a thin strip of
ground plane that is routed between the two supply rings to maintain some separation and prevention of direct coupling on the same
layer.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 240 of 336

22
77

0-
15

5

Figure 156. Analog Power Ring Layout Approach

Analog Power Star Connections

The analog power ring approach provides ample locations for the individual star connections to be made. This approach enables the
designer to control the current paths for each supply as well as design individual traces that better control the effect of voltage drops on
other circuits when large load current changes occur. Each individual power supply input is evaluated for its maximum current
consumption value, and the star connection trace is then designed to minimize the voltage drop for that particular supply input while still
providing isolation from the other inputs. Figure 157 and Figure 158 illustrate how these star connections are made to the individual
supply balls of the transceiver. Some of the connections are made directly to the corresponding supply ring and some are made through a
ferrite bead or similar filter device. Note that the thickness and layer of each trace was determined to minimize voltage drops and
maximize isolation between aggressor and victim inputs. The layers with the thicker metal in the stack up drawing are used for the inputs
with the highest current consumption values.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 241 of 336

22
77

0-
15

6

Figure 157. 1.8 V Supply Routing Using Star Connections

22
77

0-
15

7

Figure 158. 1.3 V Supply Routing Using Star Connections

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029
https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 242 of 336

Digital Power Routing

The digital 1.0 V supply is the noisiest supply in the system and it is important to keep this supply shielded from the other supplies. This
supply is also the highest current supply and the thickness of the traces must be adequate to carry the load current to the device without
experiencing significant voltage drops. There are three digital power input pins to the device and the routing into the device is also
critical. Each input that connects to an input pin must match the others in length and thickness so that there is no additional voltage drop
in one connection compared to the others. Figure 159 illustrates the approach used on the CE board to supply this current. A digital
power channel is routed from the power supply to the device and the entire area is flooded with copper to provide a low resistance supply
trace. This channel is shielded on all sides so that the channel is isolated from other signals. Figure 160 shows a zoomed in view of the
connection to the device. Note that all three connections are made using two traces to reduce the trace resistance. Each connection is
equal in total copper volume to the others and their voltage drops are equal when the device is active.

22
77

0-
15

8

Figure 159. Digital Supply Routing

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 243 of 336

22
77

0-
15

9

Figure 160. Digital Supply Connection to Three VDIG Input Pins of the Device

JESD 1.0 V Supply Inputs

After careful evaluation, it was determined that the 1.0 V supply needed for the JESD interface can be supplied directly from the 1.0 V
digital supply without any interference or noise problems. The CE boards have these supplies routed separately from the common 1.0 V
supply shared by VDIG_1P0 as traces using a similar star connection approach that was used by the analog 1.3 V and 1.8 V supplies. Note
that the serializer and deserializer supply inputs carry the majority of the current and these traces are made by creating filled areas as wide
as possible to minimize voltage drop. The VTT_DES and VJSYN_1P0 traces carry little current and are, therefore, routed using standard
traces. Figure 161 illustrates how these traces are routed to the device. Note that the VTT_DES and VJSYN_1P0 traces were routed on a
different PCB layer than the VSER_1P0 and VDES_1P0 supplies.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 244 of 336

22
77

0-
16

0

Figure 161. SERDES Power Supply Input Routing

Interface Supply Input

The VIF interface supply is a low current input that provides the supply reference for the SPI serial interface. This supply can be routed as
a signal trace with adequate thickness to minimize voltage drop when the device is active. Route this trace in the digital area similar to the
VDIG_1P0 supply and keep the trace isolated from other signals to ensure that the trace is not corrupted by other active digital signals or
by the JESD interface lanes.

Ground Returns

Another critical routing consideration is how to control the mixing of ground currents to avoid noise coupling between different power
domains. One way to keep domains separated is to provide different ground return planes for each supply domain. This approach can
complicate a dense PCB layout such as what is required for this transceiver. Another option is to connect all ground to the same plane
system and use cutouts and channeling similar to those used in the RF sections to provide better channel to channel isolation. Creating
such ground channels can provide the benefit of steering ground currents in a desired path without the complexity of trying to keep ground
planes isolated from each other. The specifics of such designs are highly dependent on the PCB layout and the level of isolation is desired.

Input Bypass Component Placement

There are subtle component placement techniques for placing power supply bypass components that can have a substantial impact on
radio performance. When placing components on power supply inputs, use the following guidelines:

• Each power supply pin requires at a minimum a 0.1 µF bypass capacitor near the pin. For inputs that require a large current step, a
10 µF capacitor in parallel is recommended. Place the ground side of the bypass capacitor(s) so that the ground currents flow away
from other power pins and their bypass capacitors.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 245 of 336

• Route power supply input traces to the bypass capacitor and the connect capacitor(s) as close to the supply pin as possible through a
via to the component side of the PCB. If possible, it is recommended that the via be located inside the power supply pin pad to
minimize trace inductance.

• Some power supplies require a ferrite bead in series with the supply line to prevent RF noise from coupling between different inputs,
while others can do without the extra protection. It is recommended that each line be connected with either a ferrite bead or a 0 Ω
place holder as a series component. Ensure that the device is sized properly to handle the current load for the particular power
supply input of concern.

• Figure 162 and Figure 163 illustrate an example of how the power supply routing from the common power ring to a bypass capacitor
and into the transceiver is implemented. Note that the bypass capacitor is connected directly to the vias leading from the bottom of
the PCB to the ball pads on the top of the PCB.

22
77

0-
16

1

Figure 162. Power Supply Routing Example with Ferrite Bead at the Input (VANA1_1P3)

22
77

0-
16

2

Figure 163. Power Connection to Supply Ball with Bypass Capacitor Between Vias

ANALOG SIGNAL ROUTING CONSIDERATIONS
Other analog signals in and out of the transceiver such as the auxiliary ADCs and DACs do not require critical routing considerations.
Use standard routing techniques for these signals to keep them shielded from interference or noise that can affect their desired levels.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 246 of 336

DIGITAL SIGNAL ROUTING CONSIDERATIONS
The digital signal routing (for example, SPI, enable controls, and GPIO) is the least sensitive area, but is nevertheless important to isolate
from other signals to avoid digital noise coupling into other circuits. In the evaluation board, these signals are routed from the bottom of
the board up through the same channel created for the VDIG power supply on Layer 10, Layer 11, and Layer 12. This routing provides the
benefit of using the same ground return area as the VDIG supply, which keeps the return currents from intermixing with currents from
the analog and RF functions of the transceiver. Most of these signals are static or infrequently change state and once signals are routed out
of the device, they can be fanned out to other parts of the PCB without interfering with the radio functions. Figure 164 illustrates how the
signals are routed out of the device following the same path as the VDIG supply (the brown area labeled “Digital Routing Region”). Note
that there are designated layers on the customer evaluation PCB for digital routing and that these layers are isolated by ground layers from
other sensitive signals such as the JESD lanes and the RF inputs and outputs. It is recommended to keep any traces that are nonstatic, such
as the SPI or SPI2 buses, isolated from the sensitive analog, RF, and JESD signals by ensuring that there is ample ground between the
traces and that there is no overlap of signals from layer to layer.

22
77

0-
16

3

DIGITAL

DIGITAL
ROUTING
REGION

DIGITAL
ROUTING
REGION

Figure 164. Digital Routing Out of the Transceiver

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 247 of 336

UNUSED PIN INSTRUCTIONS
In some applications, the user may decide not to use all available inputs or outputs. In these cases, take care to follow the
recommendations listed in Table 248 for unused pins.

Table 248. Recommendations for Unused Pins
Pin No. Type Mnemonic When pins are not used:
A4, A5, A13, A14, P1, N1, N17, P17 O TX3+, TX3−, TX2+, TX2−, TX4+, TX4−, TX1+, TX1− Do not connect.
E4, E5, E13, E14, L4, L5, L13, L14 I ORX3+, ORX3−, ORX1+, ORX1−, ORX4+, ORX4−,

ORX2+, ORX2−
Connect to VSSA.

C1, B1, B17, C17, J1, H1, H17, J17 O RX3+, RX3−, RX2+, RX2−, RX4+, RX4−, RX1+, RX1− Connect to VSSA.
F2, E2, E16, F16 I/O EXT_LO2+, EXT_LO2−, EXT_LO1+, EXT_LO1− Do not connect.
C4, C5, L1, L2, L17, L16, C12, C13 I/O GPIO_ANA_7 to GPIO_ANA_0 Connect to VSSA with a 10 kΩ resistor or

configure as outputs, drive low, and leave
disconnected.

E1, E17, F1, F17 I AUXADC_3, AUXADC_1, AUXADC_2, AUXADC_0 Do not connect.
E7, E11, M7, M11 I TX3_EN, TX2_EN, TX4_EN, TX1_EN Connect to VSSA.
G7, G11, J7, J11 I RX3_EN, RX2_EN, RX4_EN, RX1_EN Connect to VSSA.
F7, F11, L7, L11 I ORX_CTRL_C, ORX_CTRL_B, ORX_CTRL_D,

ORX_CTRL_A
Connect to VSSA directly or with a 10 kΩ
pull-down resistor.

H11, K11, N11, E10, F10, G10,
H10, J10, K10, E9, F9, E8, F8,
G8, H8, J8, K8, H7, K7

I/O GPIO_0 to GPIO_18 Connect to VSSA with a 10 kΩ resistor or
configure as outputs, drive low, and leave
disconnected.

N7, N8 O GPINT2, GPINT1 Do not connect.
M8 O SPI_DO Do not connect.
P10 I TEST_EN Connect to VSSA.
N6, P6, N12, N13, P7, P8 I SYNCIN3+, SYNCIN3-, SYNCIN1+, SYNCIN1-,

SYNCIN2+, SYNCIN2-
Connect to VSSA.

N14, N15, P15, R15 O SYNCOUT2+, SYNCOUT2-, SYNCOUT1+,
SYNCOUT1−

Do not connect.

U1, U2, T3, T4, U5, U6, T7, T8 O SERDOUTD+, SERDOUTD− SERDOUTC+,
SERDOUTC−, SERDOUTB+, SERDOUTB−,
SERDOUTA+, SERDOUTA−,

Do not connect.

U16, U17, T15, T14, U12, U13,
T11, T10,

I SERDIND+, SERDIND−, SERDINC+, SERDINC-,
SERDINB+, SERDINB−, SERDINA+, SERDINA−

Do not connect.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 248 of 336

TRANSCEIVER EVALUATION SOFTWARE (TES) OPERATION
The transceiver demonstration system enables the user to evaluate the transceiver without having to develop custom software or
hardware. The system comprises a radio daughtercard, an ADS9 motherboard, a microSD card with an operating system, a power supply
for the ADS9, a 12 V power supply that connects to a wall outlet, and a C#-based evaluation software application. The evaluation system
uses Ethernet interface to communicate with the PC.

INITIAL SETUP
The ADRVTRX TES is the graphical user interface (GUI) used to communicate with the evaluation platform. The GUI can run with or without
evaluation hardware connected. When the TES runs without the hardware connected, the TES can be fully configured for a particular operating
mode. If the evaluation hardware is connected, the desired operating parameters can be setup with the TES and then the software can program
the evaluation hardware. When the transceiver is configured, the evaluation software can be used to transmit waveforms generated from
the internal NCO block or using custom waveform files as well as observe signals received on one of the receiver or observation input ports. An
initialization sequence in form of an IronPython script can be generated and executed using the TES if customized scripts are desired.

HARDWARE KIT
The transceiver demonstration system kit contains the following:

• The CE board in the form of a daughter card with an FMC connector
• One 12 V wall connector power supply cable
• One SD card that contains an image of a Linux operating system with the required evaluation software (SD card is 16 GB size, Type 10)

The ADS9 demonstration system kit contains the following:

• The ADS9 motherboard with an FMC connector
• One 12 V, 1.5 A power supply for powering the board

REQUIREMENTS
The hardware and software require the following:

• The ADS9 demonstration system kit.
• The transceiver demonstration system kit (six options available).
• The operating system on the controlling PC must be Windows 7 (×86 and ×64) or Windows 10 (×86 and ×64).
• The PC must have a free Ethernet port with the following constraints:

• If the Ethernet port is occupied by another LAN (local area network) connection, a USB to Ethernet adapter can be used.
• The PC must be able to access over this dedicated Ethernet connection via the following ports:

• Port 22: SSH protocol.
• Port 55556: access to the evaluation software on the ADS9 platform.

• TES. Contact a local Analog Devices representative to obtain access to this software.
• The user must have administrative privileges. To run software automatic updates, the PC must have access to the internet. If

internet access is restricted, a manual software update can be performed.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 249 of 336

HARDWARE SETUP
Before setup, the ADS9 platform requires the user to insert the SD card included with the evaluation kit into the J6 slot of the ADS9
(MicroZED) platform. The evaluation hardware setup is shown in Figure 165 and Figure 166.

S1: MUST BE IN
OFF POSITION

DS1: FPGA
ONLINE

S4: POWER ON

DS13: 12V_PIN

J6: MicroSD
CARD SLOT
(UNDER ETHERNET)

J1: ETHERNET
CONNECTION

SW1: SHUTDOWN

D3: BOOT STATUS
NOTE: BOOT TIME
IS 3 MINUTES

22
77

0-
16

4

Figure 165. Analog Devices ADS9 Motherboard Configured to Work with Transceiver Evaluation Boards

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 250 of 336

ETHERNET
CONNECTION

SIGNAL SYNTHESIZER
REFERENCE CLOCK SOURCE

SIGNAL ANALYZER

Tx1

Tx2

Tx3

Tx4Rx4Rx3

Rx1Rx2

DAUGHTERCARD
POWER SUPPLY

12V/1.5A

MOTHERBOARD AC/DC
POWER SUPPLY

12V/5A

PC RUNNING TRANSCEIVER
EVALUATION SOFTWARE

22
77

0-
16

5

Figure 166. CE Board and ADS9 Motherboard with Connections Required for Transmit Testing

To set up the evaluation board for testing, take the following steps:

1. Connect the transceiver evaluation board and the ADS9 evaluation platform together as shown in Figure 166. Use the HPC FMC
connector (P1001/P2). Ensure that the connectors are properly aligned.

2. Insert the SD card that came with the evaluation kit into the ADS9 microSD card slot (J6).
3. On the transceiver evaluation card, provide a reference clock source (122.88 MHz is the default, or frequency match the setting

selected on the AD9528 configuration tab), at a 7 dBm power level to the J613 connector. This signal drives the reference clock into
the AD9528 clock generation chip on the board. The REFA/REFA_N pins of the AD9528 generate the DEV_CLK for the device and
REF_CLK for the FPGA on the ADS9 platform.

4. Connect a 12 V, 1.5 A power supply to the ADS9 evaluation platform at the P1 header.
5. Connect the ADS9 evaluation platform to the PC with an Ethernet cable (connect to P3). There is no driver installation required.

If the Ethernet port is already occupied by another connection, use an USB to Ethernet adapter.

On an Ethernet connection dedicated to the ADS9 platform, the user must manually set the following:

• IPv4 address: 192.168.1.2
• IPv4 subnet mask: 255.255.255.0

Refer to Figure 167 for more details. Ensure that the following ports are not blocked by firewall software on the PC:

• Port 22: SSH protocol
• Port 55556: access to the evaluation software on the ADS9 platform

Note that the ADS9 IP address is set by default to 192.168.1.10.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 251 of 336

22
77

0-
16

6

Figure 167. IP Settings for Ethernet Port Dedicated for ADS9 Platform

HARDWARE OPERATION
The following steps should be used to setup the evaluation platform for use with the Transceiver Evaluation Software.

1. Switch the ADS9 motherboard power switch (S4) to the on position to turn on the evaluation system. If hardware is connected
correctly, the green LED (DS13) on the ADS9 motherboard illuminates.

2. The ADS9 motherboard uses a Linux operating system. Wait approximately 3 minutes before the system is ready for operation and
can accept commands from PC software. Boot status can be observed on the ADS9 LED (D3, on the MicroZED daughtercard). This
LED illuminates red for approximately 3 minutes after power-on. When the LED goes off, this indicates that the board is booted
properly. When D3 transitions from red to off, the system is ready for normal operation and awaits connection with the PC over
Ethernet (which must be established using TES).

3. Connect the reference clock signal (122.88 MHz continuous wave tone, 7 dBm maximum) to J613 on the underside of the CE board.
4. Before applying power to the CE board, ensure that each of the four transmit output ports (J501 to J504) are properly terminated.
5. Connect power from the 12 V wall adapter to the CE board. When power is applied, DS801 and DS802 illuminate on the CE board.
6. For transmitter testing, connect a spectrum analyzer to any transmit output on the evaluation board. Use a shielded RG-58, 50 Ω coaxial

cable (1 m or shorter) to connect the spectrum analyzer. Terminate all transmit paths, either into spectrum analyzers or into 50 Ω if unused.
7. Unplug the wall adaptor to power the CE board off before the motherboard.
8. When power is removed from the CE board, click Disconnect in the TES window and then press and hold SW1 on the ADS9

evaluation board (MicroZED daughter card) until LED D3 illuminates. When LED D3 starts to blink, it is safe to turn off the ADS9
power using Switch S4.

TES INSTALLATION
Contact an Analog Devices representative to obtain access to the TES. When the initial software download completes, copy the software
to the target system and unzip the files (if not already unzipped). The downloaded zip container has an executable file called ADRV9025
Transceiver Evaluation Software_x64_FULL.exe (there is a x86 version available if the computer does not support x64 operation).

Administrator privileges are required to install the TES. When an executable file is run, a standard installation process follows. Parts of
the installation build are Microsoft .NET Framework 4.5 (which is mandatory for the software to operate) and IronPython 2.7.4 (which is
optional and recommended). Figure 168 shows the recommended configuration. Note that the Microsoft .NET Framework and the
IronPython 2.7.4 installations are not necessary to select once they have been installed. If updating the version of the TES, these boxes can
be left cleared to save installation time.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 252 of 336

 22
77

0-
16

7

Figure 168. Software Installation Components

The last step of the instalation process is to select the shortcut configuration, as shown in Figure 169. The user can select a shortcut to be
placed in the Windows Start menu and/or on the Windows desktop.

 22
77

0-
16

8

Figure 169. Transceiver Evaluation Software Shortcut Configuration

STARTING THE TRANSCEIVER EVALUATION SOFTWARE
Depending on the user selection during the installation process (see Figure 169), users can start the customer software by clicking on
Start > All Programs > Analog Devices > ADRV9025 Transceiver Evaluation Software_x86_FULL > ADRV9025 Transceiver
Evaluation Software or by clicking on the desktop shortcut labeled ADRV9025 Transceiver Evaluation Software. Figure 170 shows the
opening page of the TES when the software is activated.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 253 of 336

22
77

0-
16

9

Figure 170. TES Interface

Demo Mode

Figure 170 shows the opening page of the TES. In the case when evaluation hardware is not connected, the user can still use the software
in demo mode by clicking Connect (top left corner of the window). The software moves into demo mode in which a superset of all
transceiver family features is displayed.

NORMAL OPERATION
When hardware is connected to a PC and the user wants to start using the complete evaluation system, the TES establishes a connection
with the ADS9 system via Ethernet when the Connect option in the dropdown menu is clicked. When proper connection is established,
the user can click the DaughterCard position in the device tree on the left side of the window. When DaughterCard is clicked,
information about revisions of different setup blocks appears in the main window. The bottom part of that window shows the TCP IP
address set to 192.168.1.10 and the port number set to 55556. Figure 171 shows an example of correct connection between a PC and an
ADS9 system with a daughter card connected.

22
77

0-
17

0

Figure 171. Setup Revision Information

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 254 of 336

Configuring the Device

Contained within the Config tab are subtabs that contain setup options for the transceiver. The first subtab displayed is the Overview tab.
Figure 172 shows the initial window for the device. In this window the user can select the following:

• Device to be programmed
• Select profiles

Profile Options

The TES contains the following profile options:

• ADRV9025Init_StdUseCase50_nonLinkSharing
• ADRV9025Init_StdUseCase50_LinkSharing
• ADRV9025Init_StdUseCase51_LinkSharing
• ADRV9025Init_StdUseCase61_ LinkSharing

These profiles configure the transceiver for different transmit, receive, and observation receive bandwidths, sample rates, and clock rates.
The profiles also set different JESD configurations and lane rates. By default, the platform boots to JESD204B mode. Note that the
available use cases can vary based on the version of the software being run.

22
77

0-
17

1

Figure 172. Overview Tab

Additional 204C use cases are also available. Switch the platform to 204C mode and then the available 204C profiles are displayed. To
switch the platform, click Device > FPGA switch JESD > Jesd 204C, at which point the platform reboots (which takes approximately 3
minutes). Upon reconnecting, the 204C profiles are available.

Initialization

The Initialization subtab provides access to the settings that are used to configure the transceiver at startup. This window allows the user
to set the LO frequencies used, the initial transmit attenuation settings, the initial receive gain index settings, and the initial gain index for
ORx1 (the only observation receive channel available at this stage in development). These and other settings that are provided in future
revisions are shown in Figure 173.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 255 of 336

 22
77

0-
17

2

Figure 173. Initialization Configuration Tab

InitCals

The InitCals subtab sets which calibrations take place at initialization. The default settings are shown in Figure 174. To enable or disable
these settings, select the checkbox next to the calibration. A check mark indicates that the calibration is run at startup.

22
77

0-
17

3

Figure 174. InitCals Tab with Default Settings

Transmit Configuration

The Tx tab is primarily informative and is based on the profile selection in the Overview tab (Figure 172). In this tab, the user can check
clock rates at each filter node as well as filter characteristics and pass-band flatness. Quick zooming capability allows zooming of the pass-
band response as well as restoring to the full-scale plot. Figure 175 shows an example of the Tx tab with the resulting composite filter
response for the chosen profile.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 256 of 336

22
77

0-
17

4

Figure 175. Tx Summary Tab

Receive Configuration

The Rx tab is primarily informative and is based on the profile selection in the Overview tab (see Figure 172). In this tab, the user can
check clock rates at each filter node as well as filter characteristics and pass-band flatness. Quick zooming capability allows zooming of
the pass-band response as well as restoring to the full-scale plot. Figure 176 shows an example of the Rx tab with the resulting composite
filter response for the chosen profile.

22
77

0-
17

5

Figure 176. Rx Summary Tab

Observation Receive Configuration

The ORx tab is primarily informative and is based on the profile selection in the Overview tab (Figure 172). In this tab, the user can check
clock rates at each filter node as well as filter characteristics and pass-band flatness. Quick zooming capability allows zooming of the pass-
band response as well as restoring to the full-scale plot. Figure 177 shows an example of the ORx tab with the resulting composite filter
response for the chosen profile.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 257 of 336

22
77

0-
17

6

Figure 177. ORx Summary Tab

JESD Configuration

The JESDb tab is primarily informative and is based on the profile selection in the Overview tab (see Figure 172). In this tab, the user can
check the transmit deframer settings and the receive and observation receive framer settings. Figure 178 shows an example of the JESDb
tab with the settings for Use Case 13.

22
77

0-
17

7

Figure 178. JESD204B Summary Tab

Programming the Evaluation System

When all tabs are configured, press the Program button in the top menu line (highlighted in red text) to start initialization programming.
The TES sends a series of API commands that are executed by a dedicated Linux application on the ADS9 platform.

When programming is complete, the system is ready to operate. There is a progress bar at the bottom of the window. Figure 179 shows
the window with the progress bar and message when the device has been programmed.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 258 of 336

22
77

0-
17

8

Figure 179. Device Programmed

Initialization Script

The TES allows the user to create a script with all API initialization calls in the form of IronPython functions. When the user clicks the
Tools > Save Python Script option, the script can be given a file name and stored in a chosen location for future use. The TES generates
the script in the form of a python (.py) file. That file can then be executed using the IronPython Script tab shown in Figure 185.

The commands ultilized by the TES to initialize the transceiver are different than those described in the System Initialization section.
These commands perform the same underlying task as the API initialization procedure. The three main commands used to initialize
using the TES are shown in Figure 180. Help for these commands can be found in the client dynamic link library (DLL) help file. The first
command loads the profile, the second command configures the AD9528, and the third command runs all the initialization API
commands. It is not possible to initialize the transceiver in any other way using the TES platform.

Figure 180 Iron Python Initialization Script Example

TRANSMITTER OPERATION
Select the Transmit tab to open a page as shown in Figure 181. The upper plot displays the FFT of the digital input data and the lower
plot shows its time domain waveform. When multiple transmit outputs are enabled, the user can select desired data to be displayed in the
spectrum plot using the checkboxes below the plot. In the time domain plot, the user can select Tx1, Tx2, Tx3, Tx4, or any combination
of the data input channels, with I and/or Q data displayed.

When the Transmit tab opens, the user can enter the RF transmit center frequency in MHz for transmit LO1 (used for transmit
operation), change attenuation level, and transmit continuous wave tones.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 259 of 336

 22
77

0-
17

9

Figure 181. Transmit Data Tab

Transmitter Data Options

The TES provides the following options for inputting transmitter data:

• A single tone from the internal NCO can be generated on each channel by the evaluation system using the Tone Parameters window
shown in Figure 182. TO acces this window, click the TONES button near the upper left of the Transmit page. In that window, the
user can enable the tone (Number of Tones value = 0 to 3) to be transmitted on the selected transmit output.

• The user can also choose to input a waveform file instead of using the internal NCO by selecting the LoadFile checkbox and entering
the path to the waveform file.

22
77

0-
18

0

Figure 182. Transmit Tone Parameters Setup Menu

Press the play symbol in Figure 181 to move the transceiver to the transmit state and start a process where the NCO generated continuous
wave data is enabled.

The Tx2 Attenuation (dB) input allows the user to control analog attenuation in the Tx2 channel. The input provides 0.05 dB of attenuation
control accuracy. The Tx3 Attenuation (dB) and Tx4 Attenuation (dB) perform the same operation on the Tx3 and Tx4 channels.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 260 of 336

RECEIVER OPERATION
Receive Signal Chain

The Receive tab opens the window shown in Figure 183. The upper plot displays the FFT of the received input data and the lower plot
shows its time domain waveform. When multiple receive inputs are enabled, the user can select the desired data to be displayed in the
spectrum plot using the checkboxes below the plot. In the time domain plot, the user can select Rx1, Rx2, Rx3, Rx4, or any combination
of the input channels, with I and/or Q data displayed.

When the Receive tab is open, the user can enter the RF LO frequencies for the LO1 and LO2 PLLs, select which LO is used by Rx1 and
Rx2, select which LO is used by Rx3 and Rx4, select the receive trigger type, enter the sample time for the data, and select the gain levels
and tracking calibrations for each channel. Press the play symbol to enable the selected receivers and display their waveform data.

22
77

0-
18

1

Figure 183. Receive Data Tab

Observation Receive Signal Chain

The Obs Rx tab opens the window shown in Figure 184. The upper plot displays the FFT of the received input data and the lower plot
shows its time domain waveform. When multiple observation receive inputs are enabled, the user can select the desired data to be
displayed in the spectrum plot using the checkboxes below the plot. In the time domain plot, the user can select Obs1, Obs2, Obs3, Obs4,
or any combination of the input channels, with I and/or Q data displayed.

When the Obs Rx tab is open, the user can enter the RF LO frequencies for the LO1, LO2, and Aux LO PLLs, select which LO is used by ObsRx1
and ObsRx2, select which LO is used by ObsRx3 and ObsRx4, select the observation receive trigger type, enter the sample time for the data, and
select the gain levels and QEC for each channel. Press the play symbol to enable the selected receivers and display their waveform data.

Note that only Rx1 is enabled for use at this stage in product development. All four channels are available in future software revisions.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 261 of 336

22
77

0-
18

2

Figure 184. Obs Rx Data Tab

SCRIPTING
The Iron Python tab allows the user to use IronPython language to write a unique sequence of events and then execute them using the
evaluation system. Scripts generated using this tab can be loaded, modified if needed, and run on the evaluation system. Figure 185 shows
the Iron Python tab after executing the File > New script function. The top part of the window contains the IronPython commands while
the bottom part of the window displays the script output. Scripts are run by clicking Build > Run. To save scripts that provide useful
functions that may be useful in the future, click File > Save and enter the path and file name for saving the script.

When the user configures the part to the desired profile, a script can be generated with all API initialization calls in the form of IronPython
functions. Click Tools > Create Script > Python to accomplish this task. This function generates a script with the initialization sequence
and opens a dialogue box to save the file. Basic script with no initializaion sequence can be generated by clicking File > New option.

22
77

0-
18

3

Figure 185. Iron Python Scripting Window

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 262 of 336

IronPython Script Example

The following example sets the RF LO frequency of LO1 and LO2 and reads back the configured values:

#GUI Version: 0.1.0.19

#DLL Version: 0.1.0.11

#Cmd Server Version: 0.1.0.11

#FPGA Version: 0xC900000F

#ARM Version: 0.1.0.5(ADI_ADRV9025_ARMBUILD_TESTOBJ)

#StreamVersion: 0.0.0.28

#Import Reference to the DLL

import System

import clr

import time

from System import Array

clr.AddReferenceToFileAndPath("C:\\Program Files (x86)\\Analog Devices\\ADRV9025 Transceiver
Evaluation Software_x86_FULL\\adrvtrx_dll.dll")

from adrv9025_dll import AdiEvaluationSystem

from adrv9025_dll import Types

from adrv9025_dll import Ad9528Types

#Create an Instance of the Class

Link = AdiEvaluationSystem.Instance

if (Link.IsConnected):

 fpga9025 = Link.FpgaGet()

 adrv9025 = Link.ADRV9025Get(1)

 print "Setting PLL LO1 and LO2"

 adrv9025.RadioCtrl.PllFrequencySet(Types.adi_adrv9025_PllName_e.ADI_ADRV9025_LO1_PLL,
3500000000)

 adrv9025.RadioCtrl.PllFrequencySet(Types.adi_adrv9025_PllName_e.ADI_ADRV9025_LO2_PLL,
3550000000)

 print "Readback PLL"

 lo1 = adrv9025.RadioCtrl.PllFrequencyGet(Types.adi_adrv9025_PllName_e.ADI_ADRV9025_LO1_PLL,
0)

 print "LO1 set to :" + str(lo1[1])

 lo2 = adrv9025.RadioCtrl.PllFrequencyGet(Types.adi_adrv9025_PllName_e.ADI_ADRV9025_LO2_PLL,
0)

 print "LO2 set to :" + str(lo2[1])

else:

 print "Not Connected"

print "Finished Setting RF PLL"

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 263 of 336

22
77

0-
18

4

Figure 186. Python Script Example

When using the Iron Python tab window, the user can execute any API command that is available in the loaded software build.

C CODE GENERATION
It is possible to generate C initialization structure from the GUI. To generate this code, click Tools > Create Script > Init c files.

22
77

0-
18

5

Figure 187. C Initialization Structure Save Screen

When this option is selected, the GUI opens a dialogue box to select a location and file name to store this code. The preferred file name is
initdata.c. The user can choose to store resource files at the same location or another location by clicking Yes or No on the prompt (see
Figure 188).

22
77

0-
18

6

Figure 188. C Initialization Structure File Storage Confirmation Screen

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 264 of 336

To use this code, take the following steps:

1. Copy the c_src folder from Adi.ADRV9025.Api\public\src to the /home/analog/adrv9025_c_example/ location on the platform.
(create the adrv9025_c_example directory if not present).

2. Copy the generated resources folder to the platform at the same /home/analog/adrv9025_c_example/ location.
3. Copy the generated files, initdata.h, initdata.c, and main.c, to /home/analog/adrv9025_c_example/c_src/app/example/.
4. Use the terminal to navigate to the example directory and run following the command to enter the directory (see Figure 189).

22
77

0-
18

7

Figure 189. Linux Command Line to Enter Example Directory

5. Run the make command at this location to compile the code. If no errors occur, this command generates an executable called main
in /home/analog/adrv9025_c_example/c_src/app/example/.

22
77

0-
18

8

Figure 190. Linux Command Line make Execution Example

6. Run the ./main command in the same folder to run the initialization sequence.

NCO SETUP
The NCO is a digital block that can be used to provide an offset center frequency in the digital domain. This function can be used to
offset signals in the frequency domain to allow multiple frequency bands to be processed when received on a single channel. The setup of
these functions can be configured in the TES using the NCO tab Figure 191 shows the options and settings available for the NCO control
for both receivers and transmitters.

22
77

0-
18

9

Figure 191. NCO Setup Options

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 265 of 336

DIGITAL FRONT END TAB SETUP
The ADRV9029 variant provides additional digital front end (DFE) functions to linearize power amplifier performance using digital
predistortion and cress factor reduction (see the Digital Predistortion and Crest Factor Reduction (CFR) sections for details). The TES
determines which variant is connected to the system when the platform is connected. If the ADRV9029 is detected, the TES automatically
allows access to the DFE features tab for setup and evaluation. To use these features, select a use case that includes DPD capability prior to
programming. In the Overview tab, highlight a use case profile such as the 50_LinkSharing option. This use case supports a transmitter
sample rate of 122.88 Msps and a DPD actuator rate of 491.52 Msps, which translates into a 450 MHz DPD bandwidth. When this setting
is selected, switch to the Initialization tab and ensure that all transmitter and receiver channels are running with the same LO. On this
menu, setup the transmit channel to observation receive channel mapping and ensure that the observation receive LO is set to TXLO.
Figure 192 and Figure 193 illustrate where these selections are made. When these settings are confirmed, click on the Program menu
option to program the device with the appropriate settings.

22
77

0-
19

0n

Figure 192. TES Overview Selection Tab

22
77

0-
19

1

Figure 193. TES Initialization Tab

When programming is complete, click the Tx tab and setup the transmit data file and signal level. Ensure that the signal level is adequate
to produce a signal at the observation receiver input with a power level between −20 dBm and −25 dBm. When the transmitter levels are
set, click the Obs Rx tab and clear the enable box for each observation receive channel so that these channels can be controlled by the
DPD tracking calibrations. When the observation receiver signal level is confirmed to be in the proper range, go back to the Tx tab and
disable the transmitter outputs so that they can be controlled by the DFE functions.

DPD Setup

There are three subtabs on the DFE setup tab. Select the DPD tab to select the configuration page for DPD functions. To evaluate DPD
performance, take the following steps (see Figure 194 and Figure 195):

1. Select the DPD model by clicking the Load Model from file… button.
2. Configure the DPD tracking parameters (it is recommended to start with the default settings).
3. Select which transmit channels will be evaluated.
4. Click Apply Tracking Config.
5. Click Run Path Delay Init Cal.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 266 of 336

6. Check the signal level reported. If the level is not in the −20 dBm to −25 dBm range, check the cable connections. If still not at the
expected level, try reprogramming the device with the desired settings.

7. Click Apply Model on Device from M Table.
8. Click Apply Model on Device from C Table.
9. Click Enable DPD on select channels (only).
10. Click the Transmit tab and click the play button to send data.
11. Click the DFE tab and then the DPD tab, and click Reset DPD.
12. Click Get Status & Statistics to evaluate the performance.

22
77

0-
19

2

Figure 194. DPD Model and Tracking Configuration Setup

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 267 of 336

22
77

0-
19

3

Figure 195. DPD Function Setup and Performance Statistics

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 268 of 336

DIGITAL PREDISTORTION (DPD)
This section provides an overview of the DPD function provided in the ADRV9029 transceiver, including a hardware architecture
overview, an overview of the DPD algorithm with references to features that enhance DPD robustness and performance in dynamic
signaling conditions, and a summary of API software interface functions to configure these DPD functions. This functionality is only
available in the ADRV9029 variant. The DPD enables users to achieve higher power amplifier efficiency by extending the linear operating
region of the power amplifier, while still meeting adjacent channel leakage ratio (ACLR) requirements in the transmit signal chain for
compliance with 3GPP and European Telecommunications Standards Institute (ETSI) standards for 5GNR, LTE, and other technologies.
The ADRV9029 DPD supports a carrier bandwidth of up to 200 MHz.

DFE SYSTEM LEVEL OVERVIEW
The transceiver provides digital signal processing capabilities in the embedded ARM processor using closed-loop feedback signals from
the observation receiver channels. These functions improve transmitter performance, measure system output, and reduce system power
consumption. The list of functions includes the following: DPD, closed-loop gain control (CLGC), and crest factor reduction (CFR).
These functions are collectively grouped together as the transceiver DFE.

Figure 196 is a simplified system level overview of the transceiver signal chain with DFE processing blocks highlighted. There are five
main DFE processing blocks that include the following:

1. The CFR and hard clipper are used to reduce peak to average power ratio (PAPR) of the baseband signal, especially for multicarrier
waveforms such as orthogonal frequency division multiplexing (OFDM). With reduced PAPR, the PA can operate at a higher output
power, increasing the power amplifier efficiency. This function is explained in the Crest Factor Reduction (CFR) section.

2. There are two half-band filters with a total interpolation factor of 4× before the DPD actuator. These blocks can provide a total of 1×,
2×, or 4× interpolation.

3. There are three DPD capture buffers, which include a pre-DPD actuator, a post DPD actuator, and observation buffers. Each buffer
can capture a maximum of 4096 samples.

4. The DPD actuator applies the inverse power amplifier model to the baseband signal for power amplifier linearization.

5. There is a dual core embedded ARM processor in which the DPD and CLGC algorithms reside. One of the dual core ARM
processors is a control processor (ARM-C), which is the master, and the second core is a dedicated ARM core for DPD processing
(ARM-D).

BBIC
Tx

UPSAMP
AND LPF

DPD
ACTUATOR LPF PA

LPF

DAC

ADCPFIRBBIC
Rx

LO

AT
TE

N
Tx

ANALOG
ATTEN

ORx
ATTEN

CFR PFIR

ORx OBS
BUFFER

DPD AND CLGC DATA
CAPTURE AND
COMPUTATION

ORx
DDC

(OPTIONAL)

CLGC LOOP GAIN CTRL

DFE SIGNAL PROCESSING

22
77

0-
19

4

Figure 196. ADRV9029 Signal Chain with DFE Processing Blocks Highlighted

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 269 of 336

DPD INTRODUCTION AND PRINCIPLE OF OPERATION
DPD is a technique for improving the linearity of a nonlinear system such as a power amplifier by introducing precise antidistortion into
the input waveform that compensates for the power amplifier in-band nonlinear products. DPD works on the principle of predistorting
the transmit data in the digital domain to cancel the distortion caused by power amplifier compression in the analog domain. In this way,
DPD can improve power amplifier power added efficiency by double or more to allow the power amplifier to be pushed further into
saturation while maintaining linearity requirements.

A baseband model of the power amplifier is created and trained on the input and output digital baseband samples that pass through the
power amplifier, as shown in Figure 197. The predistorter then applies an inverse of the power amplifier model function to input samples
before passing them to the transmitter output. The cascade of the predistorter response and the power amplifier response becomes a
nearly linear system.

PA-1 PA

IN

OUT OUT OUT

IN IN

PA
 RESPONSE

COMBINED

LINEAR

OUTPUT

22
77

0-
19

5

Figure 197. Concept of Digital Predistortion for Linearizing the Power Amplifier Response

The intermodulation distortion products between various subcarriers because of power amplifier nonlinearities in a wideband
transmission protocol such as LTE/NR manifest as power leaked into adjacent channels. ACLR is defined as the ratio of the transmitted
power on the assigned channel to the power leaked in the adjacent radio channel. The ACLR performance improvement following the
application of DPD to the baseband data is captured in Figure 198. These plots illustrate how the out of band nonlinearities because of
intermodulation products of an LTE 20 MHz signal are reduced by 15 dB to 20 dB after the application of DPD.

22
77

0-
19

6

Figure 198. Power Spectral Density Showing Improvement in ACLR After Application of DPD for a 20 MHz LTE Signal

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 270 of 336

TRANSCEIVER DPD OVERVIEW
The DPD feature on this transceiver enables users to offload power amplifier linearization tasks from the baseband processor to the
transceiver. With the DPD implemented on the transceiver, the user does not need to allocate JESD serializer/deserializer resources for
observing power amplifier feedback data through the observation receiver channels, which results in significant system power savings.
Interpolators leading to the DPD actuator allow the baseband processor to transmit data at a lower rate on the JESD204B and JESD204C
link than is needed for the full DPD correction bandwidth. The lower data rate at JESD translates directly into power savings and less
lanes. Integration of the DPD into the transceiver chip results in significant system level cost, space, and power savings when compared to
conventional FPGA/ASIC-based implementations.

A simplified block diagram of the transceiver DPD system is shown in Figure 199. The individual blocks include the following:

• Transmit datapath. The digital baseband signal from the JESD deframer output goes through an optional CFR block for reduction of
the overall PAPR of the signal, followed by a digital interpolation filter that interpolates the baseband signal by a factor of 1×, 2×, or
4× for analyzing the baseband signal over the DPD analysis bandwidth. The inverse power amplifier model is applied by the DPD
engine, followed by the rest of the transmit signal chain including digital to analog conversion and upconversion by a mixer before
the signal is fed into the actual amplifier.

• Observation datapath. The DPD algorithm relies on observing the nonlinearities via a feedback path. The feedback path is realized
using an integrated observation receiver. The power amplifier output data is sampled through the observation receiver,
downconverted, and digitized for further analysis by the firmware.

• DPD processing. The DPD engine is based on an abbreviated implementation of generalized memory polynomial (GMP) that is a
generalized subset of the well-known Volterra series. The simplified polynomial models a large number of power amplifier
characteristics such as weak nonlinearities, temperature variation, and memory effects. The inverse power amplifier model is applied
on the interpolated digital baseband samples through DPD actuator hardware. A dedicated embedded ARM processor (ARM-D) is
used for computation of the GMP coefficients.

HB 1,2,4

Model

Tx PA FILTER/DUPLEXER

ORxARM-C, ARM-DHW ACCEL

PA-1Data From
CFR

Firmware

DPD Actuator

Figure 199. Simplified Block Diagram of Transceiver DPD

DPD Actuator Overview

The DPD actuator implements a programmable GMP calculator using the following equation:

 (3)

where:
xGMP is the output of the actuator.
u is the input of the actuator.
i is the memory term.
j is the cross term.
k is the order term.
ci,j,k is the complex valued coefficient of the GMP terms.

To compensate for memory effects in a large bandwidth signal, a higher order polynomial is required. The DPD actuator can be programmed to
support up to 190 coefficients for wide bandwidth signals. The structure of the DPD actuator is shown in Figure 200. For every predistorted
output, the GMP model calculates the sum of product expression. The product terms consist of a modeling coefficient (ci,j,k), a magnitude
power term (|u(n-i)|k), and cross memory term u(n − j). Each DPD model consisting of GMP terms can utilize up to 31 LUTs on one

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 271 of 336

specified bank. The LUTs are 1k samples deep and organized in four banks of 8-bit tables (256 entries). Refer to the GMP Model and
Look Up Table section for more information on the mapping GMP terms to LUTs.

SATURATE

COMPANDER

JESD Tx
u

x

i Delay

i = 0:16, j = 0:16

OFF-DIAGONAL
BASIS

Z–1

Z–1

LUT0, 0, k0

LUT1, 1, k1

LUT2, 2, k2

LUT3, 3, k3

LUTi, j, kn

Z–1

Z–1

Z–1

Z–1 Z–1

I2 + Q2

x

x = 1, 2, 4

22
77

0-
19

8

Figure 200. ADRV9029 DPD Actuator Functional Diagram

DPD Half-Band Filters

There are two half-band filters that can be enabled based on the input data rate and the desired DPD actuator rate. Two important
characteristics of the half-band filters are that the passband and stopband ripples are the same, and the passband edge and stopband edge
frequencies are equidistant from the half-band frequency, FS/4.

Each DPD half-band filter provides either a 1× or 2× interpolation rate. A maximum of 4× interpolation can be achieved by cascading
two DPD half-band filters. DPD Half-Band 1 (HB1) supports a bandwidth of approximately 82% with respect to the input data rate. For
example, DPD HB1 supports a 100 MHz bandwidth signal at a 122.88 MSPS input rate. DPD Half-Band 2 (HB2) supports a bandwidth of
approximately 41% with respect to the input data rate. For example, DPD HB2 supports a 100 MHz bandwidth signal at a 245.76 MSPS
input rate. These two characteristics of the half-band filters are shown in Figure 201 and Figure 202 for 2× interpolation, and in
Figure 203 and Figure 204 for 4× interpolation.

22
77

0-
29

9

0

–10

–20

–30

–40

–50

–60

–70

–80

–90
0 20 40 60

FREQUENCY (MHz)
80 100 120

M
AG

NI
TU

DE
 (d

B)

MAGNITUDE RESPONSE ESTIMATE

Figure 201. Magnitude Response for HB1 Enabled (×2), 82% of FS

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 272 of 336

Figure 202. Zero Phase Response for HB1 Enabled (×2), 82% of FS

MAGNITUDE RESPONSE ESTIMATE

0

–50

–100

–150

0 50 100 150
FREQUENCY (MHz)

200

M
AG

NI
TU

DE
 (d

B)

22
77

0-
30

0

Figure 203. Magnitude Response for Both HB1 and HB2 Enabled (×4), 41% of FS

22
77

0-
20

0

0

–10

–20

–30

–40

–50

–60

–70

–80

–90
0 20 40 60

FREQUENCY (MHz)
80 100 120

M
AG

NI
TU

DE
 (d

B)

MAGNITUDE RESPONSE ESTIMATE

Figure 204. Zero Phase Response for Both HB1 and HB2 Enabled (×4), 41% of FS

22
77

0-
19

9

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 20 40 60
FREQUENCY (MHz)

80 100 120

AM
PL

IT
UD

E
(A

)

ZERO-PHASE RESPONSE

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 273 of 336

DPD ALGORITHM OVERVIEW
The ADRV9029 DPD algorithm supports both indirect learning and direct learning DPD mechanisms for extracting DPD model
coefficients. The details of direct and indirect DPD learning mechanisms are provided in the following sections.

The user can configure the transceiver DPD learning algorithm through the adi_adrv9025_DpdTrackingConfigSet() API using the
settings listed in Table 249.

Table 249. DPD Direct Learning Setting
adi_adrv9025_DpdTrackingConfig_t. enableDirectLearning DPD Learning Mechanism Selected
0 Indirect learning
1 Direct learning

Indirect Learning

Indirect learning involves using the observation receiver data (power amplifier output data) as a reference for predicting the input
samples corresponding to the reference. The function used for predicting the input samples is known as the inverse power amplifier
model. When the prediction of input samples corresponding to the observed data is good, the estimated inverse power amplifier model is
used to predistort the transmit data. In Figure 205, Y represents the observed samples at the output of the power amplifier and X
represents the input samples to the power amplifier. The estimation engine computes the inverse power amplifier model that is applied to
transmit data (U) in the DPD actuator.

DPD PA YXU

ESTIMATION

22
77

0-
20

1

Figure 205. DPD Indirect Learning Architecture

The mathematical representation of the DPD coefficient estimation is shown in Figure 206. The DPD engine observes N samples of
power amplifier input samples (X) and power amplifier output samples (Y), and computes M coefficients (c) corresponding to the inverse
power amplifier function F(x).

y1
y2
y3
y4
.
.
.
yN

f1(×1)
f1(×2)
f1(×3)
f1(×4)

f2(×1)
f2(×2)
f2(×3)
f2(×4)

f3(×1)
f3(×2)
f3(×3)
f3(×4)
.
.
.
f3(×N)

...

...

...

...

fM(×1)
fM(×2)
fM(×3)
fM(×4)

f1(×N) f2(×N) f4(×N) ͙ ... fM(×N)

c1
c2
c3
c4
.
.
.
cM

f4(×1)͙
f4(×2)
f4(×3)
f4(×4)

22
77

0-
20

2

Figure 206. DPD Indirect Learning Coefficient Computation

The coefficient set (c) is estimated through a least squares approximation as described in matrix multiplication equations in Figure 207.

Y = F × C
FH Y = (FHF)C

(FHF)–1 (FH Y) = C

AUTO-
CORRELATION

CROSS-
CORRELATION

(1) INITIAL STEP

(2) MULTIPLY BY COMPLEX CONJUGATE OF F ON BOTH SIDES

(3) TAKE THE INVERSE OF THE AUTOCORRELATION FUNCTION TO OBTAIN C

22
77

0-
20

3

Figure 207. Formulas to Estimate the DPD Coefficient Set

DPD Direct Learning

DPD direct learning involves using the pre-DPD actuator transmit signal (U) as reference to minimize the error between the observed
(Y) and reference data (U), as shown in Figure 208.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 274 of 336

DPD PA
YXU

ESTIMATION

22
77

0-
20

4

Figure 208. DPD Direct Learning Architecture

The mathematical representation of the DPD coefficient estimation via direct learning is described as an error, E, defined as the
difference between the observed (Y) and pre-DPD actuator data (U) as follows:

E = Y – U

The power amplifier is modeled as the function, Fx, multiplied by adaptive coefficients, C, through the error matrix, E, as shown in Figure 209.

e1
e2
e3
e4
.
.
.
eN

f1(×1)
f1(×2)
f1(×3)
f1(×4)

f2(×1)
f2(×2)
f2(×3)
f2(×4)

f3(×1)
f3(×2)
f3(×3)
f3(×4)
.
.
.
f3(×N)

...

...

...

...

fM(×1)
fM(×2)
fM(×3)
fM(×4)

f1(×N) f2(×N) f4(×N) ͙ ... fM(×N)

c1
c2
c3
c4
.
.
.
cM

f4(×1)͙
f4(×2)
f4(×3)
f4(×4)

22
77

0-
20

5

Figure 209. DPD Direct Learning Coefficient Computation

The direct learning outcome is an iterative solution, where the current coefficients are based on the memory of previously computed
coefficients and currently estimated coefficients (C).

The direct learning approach uses a parameter, μ, which is the convergence factor that defines the step size for learning coefficients. The
convergence factor μ lies in the range 0% to 100% and is user configurable in the transceiver using the
adi_adrv9025_DpdTrackingConfigSet() through the parameter adi_adrv9025_DpdTrackingConfig_t.dpdMu API. A higher value of the
convergence factor, μ, results in faster convergence. However, a significantly high value of μ can result in an unstable system. The user can
start with a convergence factor of 50% and tune the value based on characterization of the system for convergence time and stability.

Comparison Between DPD Indirect Learning and Direct Learning

The DPD indirect learning algorithm is time efficient because it estimates coefficients through inversion in a single update. The DPD
indirect learning algorithm is preferred when a quicker adaptive response is required by the system.

The DPD direct learning algorithm is more accurate but iterative in nature as described in the previous section, and requires a longer
time to converge compared to indirect learning. The direct learning algorithm is less sensitive to bandwidth mismatches and is preferred
when the signal bandwidth is more than 100 MHz (for example, 2xNR100 or 8xLTE20 systems).

DPD Coefficient Estimation

The maximum number of coefficients is limited to 190 (M = 190), and the number of samples used to calculate the coefficients is typically
16384 samples (N = 16384). Although the number of samples, N, is user configurable using the adi_adrv9025_DpdTrackingConfigSet() API, it
is recommended to set the number of samples to 16384, which provides a balance between estimation time and sample size.

The DPD algorithm runs on an ARM-D and calculates the coefficients corresponding to GMP terms of the inverse power amplifier
model. This model predistorts the digital baseband signal before digital-to-analog conversion and transmission of samples to the
transmitter upconverter (this output becomes the RF input to the power amplifier). The power amplifier output is sampled using an
external loopback to an observation receiver channel input.

The DPD engine then correlates the observation receiver and transmitter samples to calculate the latest set of coefficients. The DPD
engine performs a brief check on model error before updating the LUTs that feed the correction coefficients into the DPD actuator
hardware. Details regarding the GMP model, the actuator and the LUTs are provided in sections to follow. Because of the relatively simple
implementation of this algorithm, the overall time taken to react to sudden changes in transmit waveforms is relatively short and is
typically less than 1 second per transmitter channel (actual time depends on the configurable parameters of the DPD and ARM
scheduling). Certain protection criteria are designed into the algorithm to prevent damage to the power amplifier because of large model
errors. The DPD algorithm is scheduled once every second per transmitter channel in the firmware, which means the coefficients are
updated once every second per transmitter channel.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 275 of 336

GMP Model and Look Up Table

For wideband signals such as LTE and 5GNR, power amplifiers begin to exhibit short term memory effects, which are effectively
nonuniform frequency responses in certain components such as the biasing network, decoupling capacitors, or supply circuitry. A given
output of the power amplifier depends not only on the current input, but also on past input values (similar to an FIR filter model). These
memory effects can usually be captured with memory taps in the model if the power amplifier frequency response is locally smooth over
the band. As bandwidth increases, more memory taps are required to accurately model the power amplifier.

In this DPD implementation, the GMP is used to model the power amplifier in the baseband. A GMP model is represented using
Equation 3.

The DPD supports a sparse GMP model that consists of a maximum of 190 GMP terms and coefficients in which the memory term (i),
the cross term (j) and the power term (k) are each restricted to a value from 0 to 15. A more complete equation for the GMP model with
the limits on GMP terms is shown in the Figure 210.

The GMP model is user programmable through the adi_adrv9025_DpdModelConfigSet() API. Details pertaining to programming the
DPD model are captured later in this section. The GMP model for a particular operating point of the power amplifier is determined by
the user and programmed into the transceiver during initialization.

The GMP model is mapped to LUTs in the DPD actuator. Each feature is specified with a unique combination of i, j, and k indices. In
general, low index values are more significant in sparse GMP models. Therefore, restrictions are placed on the actuator datapath
accordingly. The LUT restrictions are shown in Figure 210. Note that the range of i and j are labeled per LUT. Each row shares the same
multiplier, therefore, the same j value. Roaming A, B, C, and D LUTs are assigned to the top or bottom half of the table.

LUT0
i≤8, j0≤8

LUT1
i≤9, j0

LUT2
i≤10, j0

LUT3
i≤11, j0

LUT4
i≤12, j0

LUT5
i≤13, j0

LUT6
i≤14, j0

LUT7
i≤15, j0

LUT26
=LUTA

i≤15

LUT27
=LUTB

i≤15

LUT8
i≤10, j1≤9

LUT9
i≤11, j1

LUT10
i≤12, j1

LUT11
i≤13, j1

LUT12
i≤14, j1

LUT13
i≤15, j1

LUT14
i≤12, j2≤10

LUT15
i≤13, j2

LUT16
i≤14, j2

LUT17
i≤15, j2

LUT19
i≤13, j3

LUT20
i≤14, j3

LUT21
i≤15, j3

LUT18
i≤12, j3≤11

LUT22
i≤15, j4≤12

LUT23
i≤15, j5≤13

LUT24
i≤15, j6≤14

LUT25
i≤15, j7≤15

22
77

0-
20

6

Figure 210. GMP Mapping to DPD Actuator LUTs

The restrictions placed on the GMP terms mapped to the LUTs shown in Figure 210 include the following:

• More LUTs are available for smaller i and j values clustered at the top of the LUT banks compared to fewer LUTs for high i and j
values towards the bottom of the LUT bank. In general, low index values are more significant in sparse GMP models, therefore the
user has more LUTs that can be mapped to lower i and j memory terms.

• Each row in the LUT bank shown in Figure 210 share the same j values, which means that the GMP terms mapped to LUT0 to LUT7
must have the same j value. Similarly, GMP terms mapped to LUT8 to LUT13, LUT14 to LUT17, and LUT18 to LUT25 must have the
same j values, respectively.

• LUT28, LUT29, LUT30, and LUT31 are reserved for internal use. These LUTs are not available for the user to program GMP terms.
• LUT26 and LUT27 are floating LUTs, which means that these two LUTs can take a j value that is assigned to one of the four rows in

the upper half of the LUT bank. For example, if LUT0 to LUT7 have j = 1, LUT8 to LUT13 have j = 2, LUT14 to LUT17 have j = 3
and LUT18 to LUT21 have j = 4, the GMP terms mapped to LUT26 and LUT27 can have a j value in the range 1 to 4.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 276 of 336

A part of the user programmed GMP model is shown in Figure 211. Each row of the GMP model table consisting of the i,j,k LUT and
coefficients is called a feature.

i
2
2
3
3
3
4
4
4

j
1
1
1
1
1
1
1
1

k
2
3
1
5
7
1
3
8

LUT
10
10
11
11
11
12
12
12

REAL
COEFF
0
0
0
0
0
0
0
0

IMAGINARY
COEFF
0
0
0
0
0
0
0
0 22

77
0-

20
7

Figure 211. Example of User Programmed GMP Model

The following equations represent the GMP terms that are mapped to LUT10, LUT11, and LUT12, as described in Figure 211.

Xlut10 = |x(n − 2)|2× x(n − 1) + |x(n − 2)|3× x(n − 1)

Ylut11 = |x(n − 3)| × x(n − 1) + |x(n − 3)|5× x(n − 1) + |x(n − 3)|7× x(n − 1)

Ylut12 = |x(n − 4)| × x(n − 1) + |x(n − 4)|3× x(n − 1) + |x(n − 4)|8× x(n − 1)

where Ylutxx is the output of the LUTxx.

The user can program the complex coefficients to 0. The DPD tracking calibration determines the coefficients and applies them to the
GMP terms on each update.

The GMP model can be programmed using the adi_adrv9025_DpdModelConfigSet() API through the data structure adi_adrv9025_
DpdModelConfig_t. The total number of features in the model is conveyed through the adi_adrv9025_DpdModelConfig_t.dpdNumFeatures
variable. Each row of the table or the ‘feature’ is programmed through the adi_adrv9025_DpdModelConfig_t.dpdFeatures array. Each
element of the array corresponds to one row in the table shown in Figure 211.

The values to load the adi_adrv9025_DpdModelConfig_t structure for the example in Figure 211 include the following (only values for
feature [0] are shown):

• adi_adrv9025_DpdModelConfig_t.dpdNumFeatures = 8
• adi_adrv9025_DpdModelConfig_t.dpdFeatures[0].i = 2
• adi_adrv9025_DpdModelConfig_t.dpdFeatures[0].j = 1
• adi_adrv9025_DpdModelConfig_t.dpdFeatures[0].k = 2
• adi_adrv9025_DpdModelConfig_t.dpdFeatures[0].lut = ADI_ADRV9025_DPD_LUT10
• adi_adrv9025_DpdModelConfig_t.dpdFeatures[0].coeffReal = 0
• adi_adrv9025_DpdModelConfig_t.dpdFeatures[0].coeffImaginary = 0

INITIALIZING PRECALIBRATED COEFFICIENTS DURING STARTUP
The DPD functionality on the transceiver provides a mechanism for loading precalibrated coefficients into the GMP model to prevent
emissions and to guide DPD updates at the beginning during startup. There are three different use cases for loading precalibrated
coefficients.

Single Frequency Band Use Case

In the single frequency band use case, all four transmit channels work in the same frequency band, as shown in Figure 212. Note that the
power amplifier model is the same for all four channels.,

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 277 of 336

DACDPD

DPD
MODEL PA1

UPCONVERTER

DACDPD

DPD
MODEL PA1

UPCONVERTER

DACDPD

DPD
MODEL PA1

UPCONVERTER

DACDPD

DPD
MODEL PA1

UPCONVERTER

PA1

ANTENNA

fBAND
FREQUENCY

PA1

ANTENNA

fBAND
FREQUENCY

PA1

ANTENNA

fBAND
FREQUENCY

PA1

ANTENNA

fBAND
FREQUENCY

22
77

0-
20

8

Figure 212. Single Frequency Band (fBAND) Use Case Configuration

For the API sequence for programming DPD models in a single frequency band use case, the factory calibrated coefficients can be
programmed into the transceiver using the adi_adrv9025_DpdModelConfigSet API, as described in the previous section. The DPD reset
with the LUT restore option must be exercised consecutively on all four channels to program the coefficients into the DPD actuator
hardware. The API sequence for programming DPD models in a single frequency band use case is as follows:
adi_adrv9025_DpdModelConfigSet()
adi_adrv9025_DpdReset(ADI_ADRV9025_TX1, ADI_ADRV9025_DPD_LUT_RESTORE)
adi_adrv9025_DpdReset(ADI_ADRV9025_TX2, ADI_ADRV9025_DPD_LUT_RESTORE)
adi_adrv9025_DpdReset(ADI_ADRV9025_TX3, ADI_ADRV9025_DPD_LUT_RESTORE)
adi_drv9025_DpdReset(ADI_ADRV9025_TX4, ADI_ADRV9025_DPD_LUT_RESTORE)

Dual Frequency Band Use Case

In the dual frequency band use case, the signals of Transmit Channel 1 and Transmit Channel 2 are centered at fband1 and those of
Transmit Channel 3 and Transmit Channel 4 at fband2. Power amplifier characteristics are band dependent, so the DPD model that is
loaded into Transmit Channel 1 and Transmit Channel 2 must be different than the model loaded into Transmit Channel 3 and Transmit
Channel 4, as shown in Figure 213.

DACDPD

DPD
MODEL PA1

UPCONVERTER

DACDPD

DPD
MODEL PA1

UPCONVERTER

DACDPD

DPD
MODEL PA2

UPCONVERTER

DACDPD

DPD
MODEL PA2

UPCONVERTER

PA1

ANTENNA

fBAND1
FREQUENCY

PA1

ANTENNA

fBAND1
FREQUENCY

PA2

ANTENNA

fBAND2
FREQUENCY

PA2

ANTENNA

fBAND2
FREQUENCY

22
77

0-
20

9

Figure 213. Case 2 Dual Frequency Band Use Case Configuration

For the API sequence for programming DPD models in a dual frequency band use case, the factory calibrated coefficients can be
programmed into the transceiver through the adi_adrv9025_DpdModelConfigSet() API for the two pairs of transmit channels, as

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 278 of 336

described in the previous section. The DPD reset with the LUT restore option must be exercised for two channels at a time. The API
sequence for programming DPD models in a dual frequency band use case are as follows:
adi_adrv9025_DpdModelConfigSet() /* Load model for Tx12 */
adi_adrv9025_DpdReset(ADI_ADRV9025_TX1, ADI_ADRV9025_DPD_LUT_RESTORE)
adi_adrv9025_DpdReset(ADI_ADRV9025_TX2, ADI_ADRV9025_DPD_LUT_RESTORE)
adi_adrv9025_DpdModelConfigSet()/* Load model for Tx34 */
adi_adrv9025_DpdReset(ADI_ADRV9025_TX3, ADI_ADRV9025_DPD_LUT_RESTORE)
adi_adrv9025_DpdReset(ADI_ADRV9025_TX4, ADI_ADRV9025_DPD_LUT_RESTORE)

Unique GMP Model Per Transmit Channel

In addition to the use cases previously described, the user can initialize each transmit channel with a unique GMP model. This approach
is typically used when each power amplifier exhibits a slightly different nonlinearity, which requires a different set of coefficients, as
shown in Figure 214.

DACDPD

DPD
MODEL PA1

UPCONVERTER

DACDPD

DPD
MODEL PA2

UPCONVERTER

DACDPD

DPD
MODEL PA3

UPCONVERTER

DACDPD

DPD
MODEL PA4

UPCONVERTER

PA1

ANTENNA

PA2

ANTENNA

PA3

ANTENNA

PA4

ANTENNA

22
77

0-
21

0

Figure 214. Use Case Where each Transmit Path Requires a Different Set of DPD Coefficients

For the API sequence for programming a unique DPD model per transmit channel, the factory calibrated coefficients can be
programmed into the transceiver through the adi_adrv9025_DpdModelConfigSet() API for the two pairs of transmit channels, as
described in the previous section. The DPD reset with the LUT restore option must be exercised for each channel. The API sequence for
programming a unique DPD model per transmit channel is as follows:
adi_adrv9025_DpdModelConfigSet() /* Load model for Tx1 */
adi_adrv9025_DpdReset(ADI_ADRV9025_TX1, ADI_ADRV9025_DPD_LUT_RESTORE)
adi_adrv9025_DpdModelConfigSet() /* Load model for Tx2 */
adi_adrv9025_DpdReset(ADI_ADRV9025_TX2, ADI_ADRV9025_DPD_LUT_RESTORE)
adi_adrv9025_DpdModelConfigSet() /* Load model for Tx3 */
adi_adrv9025_DpdReset(ADI_ADRV9025_TX3, ADI_ADRV9025_DPD_LUT_RESTORE)
adi_adrv9025_DpdModelConfigSet() /* Load model for Tx4 */
adi_adrv9025_DpdReset(ADI_ADRV9025_TX4, ADI_ADRV9025_DPD_LUT_RESTORE)

DPD SAMPLE CAPTURE
The DPD algorithm relies on observing the samples distorted by the power amplifier through an observation channel to estimate the DPD
coefficients. The DPD algorithm captures the observation samples after the samples have been processed by the observation receiver channel,
and before and after the DPD actuator in batches of 4096 samples. The total number of samples that the DPD algorithm must capture is
configured using the adi_adrv9025_DpdTrackingConfigSet() API through the adi_adrv9025_DpdTrackingConfig_t.dpdSamples parameter.
The number of samples must be a multiple of 4096. Increasing the number of samples increases the processing time and computation
load. Conversely, a decreased number of samples can impact the accuracy of coefficient estimation. It is recommended that the number of
samples be set to 16384, which provides a balance between accuracy of estimation of coefficients and processing time.

For successful captures, the transmitter to observation channel external signal routing must be conveyed to the firmware through the
adi_adrv9025_TxToOrxMappingSet() API.

For accurate estimation of predistortion coefficients, the transmitter and observation receiver samples are aligned in time by the sample
capture engine in the transceiver. To align the samples, the external path delay initial calibration must be executed using the

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 279 of 336

adi_adrv9025_InitCalsRun() API with a mask value of ADI_ADRV9025_EXTERNAL_PATH_DELAY (= 0x00200000) along with the
requisite transmit channel mask.

DPD Sample Capture Process

The DPD algorithm implements a peak detection-based capture strategy because the high power signal levels contain more useful
information for deriving DPD coefficients. The device calibration scheduler can initiate DPD capture at any available point in time when
the transmit signal chain is enabled. The sequence of events involved in DPD sample capture process is shown in Figure 215.

DPD TRACKING
CALIBRATION SCHEDULED

END OF DPD CAPTURE PROCESS
FOR COEFF ESTIMATION

DPD TRACKING CALIBRATION
TRIGGERS A PEAK DETECTION

BASED SAMPLE CAPTURE.
THE PEAK SEARCH WINDOW

IS DEFINED BY
adi_adrv9025_

DpdTrackingConfig_t.
dpdPeakSearchWindowSize

FIRMWARE RETRIEVES
PEAK + 4095 SAMPLES FROM

HW CAPTURE OVER THE PEAK
SEARCH WINDOW

FALSE

FALSE
NUMBER OF SAMPLES CAPTURED ≥

adi_adrv9025_DpdTrackingConfig_t.dpdSamples?

TRUE

CAPTURE
COMPLETE?

DPD CAPTURE IN
PROGRESS IN

THE HW

22
77

0-
21

1

Figure 215. DPD Tracking Calibration Sample Capture Sequence

Peak Search Window and Peak Detection-Based Capture

The DPD capture engine contains a peak detector that triggers captures on the largest peak seen in a specified time window, as shown in
Figure 216. Peak detection occurs at the DPD input and after CFR correction is applied.

The peak detection time window is specified in the number of samples at the DPD actuator rate using the adi_adrv9025_
DpdTrackingConfgSet() API through the adi_adrv9025_DpdTrackingConfig_t.dpdPeakSearchWindowSize parameter. While longer
peak search windows result in more accurate high power DPD modeling, the capture process also takes longer to complete. The goal of
peak search window optimization is to increase the probability of capturing high power data without penalizing the rest of the system
operation. To do so, the system designer must study the worst case signal statistics. This DPD contains only one adaptation engine, so the
capture mechanism is shared between all active channels.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 280 of 336

TIME DOMAIN SAMPLES OF AN NR100 SIGNAL UNDER TEST

1. ADRV9029 DPD
ALGORITHM SCHEDULES
THE SAMPLE CAPTURE
VIA SAMPLE CAPTURE
ENGINE, WHICH SEARCHES
FOR A PEAK WITHIN THE
PEAK SEARCH WINDOW
REPRESENTED B Y
THE BOX IN RED

2. THE ADRV9029
SAMPLE CAPTURE
ENGINE DETECTS THE
HIGHEST PEAK WITHIN
THE PEAK SEARCH
WINDOW (RED DOT),
AND CAPTURES
4096 SAMPLES
FOLLOWING THE
HIGHEST PEAK
DETECTED.

A ZOOMED IN VIEW OF
THE TIME ALIGNED Tx
CAPTURE BUFFER AND
ORx CAPTURE BUFFER
DATA WHICH CONSISTS
OF 4096 SAMPLES
FOLLOWING THE
DETECTION OF THE
HIGHEST PEAK WITHIN
THE PEAK SEARCH
WINDOW

22
77

0-
21

2

Figure 216. DPD Peak Detection-Based Sample Capture Process for DPD Adaptation

DPD Sample Capture in TDD Mode

There are additional considerations that a system developer must take into account to configure the DPD in TDD mode. In TDD mode,
the DPD sample capture process spans multiple TDD downlink slot periods (transmit on periods), with each batch of 4096 samples
captured during one TDD downlink slot period (transmit on period) through the peak detection process described in the previous
section. The peak search window size is specified by the adi_adrv9025_DpdTrackingConfig_t.dpdPeakSearchWindowSize parameter and
configured using the adi_adrv9025_DpdTrackingConfgSet() API. The search window size is restricted to a maximum of one TDD
downlink slot period (one transmit on period) − 4096 samples.

An example of a typical sample capture process in TDD mode is illustrated in Figure 217. In this example, the total number of DPD
samples specified by the adi_adrv9025_DpdTrackingConfig_t.dpdSamples parameter is set to 16384 samples or four batches of 4096
samples. Each batch of 4096 samples corresponding to the P1, P2, P3, and P4 peaks, respectively, are captured over four TDD downlink
slot periods (four transmit on periods). If each TDD downlink slot periods consists of M samples at the DPD actuator rate, the maximum
peak search window size that can be configured using the adi_adrv9025_DpdTrackingConfig_t.dpdPeakSearchWindowSize parameter is
restricted to (M − 4096) samples. At the end of four TDD downlink slot periods, a composite capture data consisting of four batches of
4096 samples corresponding to the P1, P2, P3 and P4 peaks, respectively, are used to estimate the DPD coefficients, as described in the
Indirect Learning section.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 281 of 336

TDD Tx ON
PERIOD

MAX PEAK SEARCH
WINDOW SIZE

P1

0 0 0 0 P
1

P
1

P
2

P
1

P
2

P
3

P
1

P
2

P
3

P
40 0 0 0 0 0

P2
P3 P4

TDD DOWNLINK
DATA

DPD CAPTURE
BUFFER

EMPTY CAPTURE
MEMORY TO HOLD

16k SAMPLES

COMPOSITE CAPTURE
DATA USED FOR
DPD ADAPTION

MAX PEAK SEARCH
WINDOW SIZE

MAX PEAK SEARCH
WINDOW SIZE

MAX PEAK SEARCH
WINDOW SIZE

22
77

0-
21

3

Figure 217. DPD Sample Capture Process in TDD Mode

DPD DYNAMICS
The transceiver DPD is designed to react to dynamic signaling conditions. The algorithm defines four models that can be implemented
depending on the power levels to achieve the best dynamic performance. The four DPD models are defined in Table 250.

Table 250. DPD Models Explained
DPD Model Description
M Table (Maximum Power Table)
(ADI_ADRV9025_DPD_MODEL_TABLE_M)

Default model in all three DPD modes. The conditions for updating this table in different
DPD modes include the following:

 DPD MODE0. The model defined by the M table updates on every DPD iteration if the update
criteria is met, as described in the ADI_ADRV9025_DPD_MODE0 section in Table 251. The
update criteria is described in the following section.

 DPD MODE1. The model defined by the M table updates when the rms power of the DPD
capture samples exceeds previously recorded maximum rms power, as described in the
ADI_ADRV9025_DPD_MODE1 section in Table 251.

 DPD MODE2. The model defined by the M table updates only when the rms power of
DPD capture samples exceeds the M threshold specified by the
adi_adrv9025_DpdTrackingConfig_t.dpdMThreshold configuration, and the rms power of
DPD capture samples exceeds the previously recorded maximum rms power. Refer to
Table 251 for more details on DPD Mode 2 operation.

C Table (Current Table)
(ADI_ADRV9025_DPD_MODEL_TABLE_C)

The model defined by the C table is a low power model only applicable in DPD MODE2
when the rms power of DPD capture samples is below the M threshold value specified by
adi_adrv9025_DpdTrackingConfig_t.dpdMThreshold configuration, as described in the
ADI_ADRV9025_DPD_MODE2 section in Table 251.

R Table (Recovery Table)
(ADI_ADRV9025_DPD_MODEL_TABLE_R)

The R table, or recovery table, is a recovery model that stores the coefficients generated
from the highest power data captured by the DPD. The maximum power recorded by the
recovery model does not decay unlike the maximum power recorded by the M table,
which decays by 0.2 dB per update period.

U Table (Unity Gain Table)
(ADI_ADRV9025_DPD_MODEL_TABLE_U)

The unity gain model in which the output is equal to the input. This model is usually
activated in low power conditions where predistortion is not necessary.

DPD Modes of Operation

The DPD functionality supports three modes of operation that are listed in Table 251. The user can select one of the three modes based
on the application. The DPD engine must react to changing signal conditions, and Analog Devices has developed proprietary algorithms
that address this requirement. Within a cost bounded implementation, there is no solution that achieves absolute performance on any
time scale of measurement. The Analog Devices solution is an optimized compromise between performance and complexity.

The DPD mode of operation can be configured through the adi_adrv9025_DpdTrackingConfigSet() API using the
adi_adrv9025_DpdTrackingConfig_t.dpdUpdateMode parameter. The DPD update mode can be set to one of the three enumerated lists
of options represented by adi_adrv9025_DpdTrackingUpdateMode_e.

Table 251. DPD Modes of Operation
DPD Mode of Operation Description
ADI_ADRV9025_DPD_MODE0 DPD coefficients corresponding to the GMP model are updated once every second. This mode offers the best

sustained performance for any signal at the expense of transient emissions when the signal changes rapidly.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 282 of 336

DPD Mode of Operation Description
 Figure 218 shows the DPD updates in Mode 0. The DPD updates coefficients once every update period

independent of the rms power measured by the DPD captures for coefficient computation.
ADI_ADRV9025_DPD_MODE1 DPD coefficients corresponding to the GMP model are updated only if the rms power measured by the

DPD exceeds the previously recorded maximum rms power by the DPD algorithm. The rms power is
calculated on the samples captured by the DPD for coefficient computation. The number of samples to
capture for a DPD update is specified by adi_adrv9025_DpdTrackingConfig_t.dpdSamples. Typically, this
number is set to 16384 samples. The recorded maximum power decays at a fixed rate of 0.2 dB per update.

 Figure 219 shows an illustration of DPD updates in Mode 1. The DPD algorithm updates coefficients only
when the rms power measured by the DPD during the update exceeds the previously recorded
maximum power. In this example, there is no update between Update 1 and Update 2 because the rms
power is below the maximum power recorded.

 DPD Mode 1 offers the best mitigation of transient emissions when the signal changes rapidly at the
expense of sustained performance in certain low power signal conditions.

ADI_ADRV9025_DPD_MODE2 In this mode, the DPD algorithm maintains two separate look up tables, one for the low power region
and the other for the high power region. Depending on the RMS power measured by the DPD on the
samples captured for coefficient computation, the DPD algorithm either switches to the high power look
up table (M table) or the low power look up table (C table), and the same look up table is active until the
next DPD update. The rms power threshold separating the low power and high power region is user
configurable through the adi_adrv9025_DpdTrackingConfig_t. dpdMThreshold parameter. The rms
power is calculated on the samples captured by the DPD for coefficient computation. The number of
samples to capture for a DPD update is specified by adi_adrv9025_DpdTrackingConfig_t.dpdSamples.
Typically, this number is set to 16384 samples, which offers a compromise between Mode 0 and Mode 1.
There is some mitigation of transient emissions when the signal changes rapidly and sustained
performance in many signaling conditions.

POWER

TIME
UPDATE 1 UPDATE 2 UPDATE 3 UPDATE 4 UPDATE 5 UPDATE 6

RMS POWER
MEASURED

BY DPD

22
77

0-
21

4

Figure 218. DPD Mode 0 Update Example

POWER

VERY FIRST
UPDATE

UPDATE 1 UPDATE 2 NO M-TABLE
UPDATE SINCE
Tx RMS POWER
< MAX POWER

NO M-TABLE
UPDATE SINCE
Tx RMS POWER
< MAX POWER

NO M-TABLE
UPDATE SINCE
Tx RMS POWER
< MAX POWER

RMS POWER
MEASURED

BY DPD

RMS POWER MEASURED BY DPD
MAX POWER RECORDED BY DPD
 DECAYING AT 0.2dB PER ITERATION

22
77

0-
21

5

Figure 219. DPD Mode 1 Update Example

POWER

UPDATE 2
M-TABLE

UPDATE 1
M-TABLE

UPDATE 2
C-TABLE

UPDATE 3
C-TABLE

UPDATE 1
C-TABLE

NO UPDATE IN
M-TABLE SINCE
Tx RMS POWER
< MAX POWER

RMS POWER
MEASURED

BY DPD

DPDM-THRESHOLD
RMS POWER MEASURED BY DPD
MAX POWER RECORDED BY DPD
 DECAYING AT 0.2dB PER ITERATION

22
77

0-
21

6

Figure 220. Illustration of DPD Updates in Mode 2

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 283 of 336

Transmitter Low Power Threshold

The DPD continuously integrates the baseband power level at the input of the DPD actuator so that the DPD can switch between the different
models described in Table 251. The power is measured for a period of 10 ms through a leaky integrator that runs continuously in the
background. If the 10 ms integrated rms power of the DPD input samples is below the transmitter low power threshold specified by
adi_adrv9025_DpdTrackingConfig_t.minAvgSignalLevel in linear scale, the unity gain table is activated, If the 10 ms integrated rms power of the
DPD input samples is higher than the transmit low power threshold specified by adi_adrv9025_DpdTrackingConfig_t.minAvgSignalLevel in
linear scale, the DPD model defined by the M table is activated in DPD Mode 0 and Mode 1. In DPD Mode 2, there is an additional
threshold specified by adi_adrv9025_DpdTrackingConfig_t.dpdMThreshold described in the next section. The dynamics of the DPD
based on the transmit baseband input level is shown in Figure 221.

UNITY GAIN TABLE
ACTIVATED BELOW
Tx LOW POWER
THRESHOLD

DPD ACTUATOR
OUTPUT GAIN

EXPANSION

DPD ACTUATOR
OUTPUT = DPD

ACTUATOR INPUT

M-TABLE/C-TABLE
ACTIVATED ABOVE
Tx LOW POWER
THRESHOLD

PIN
(DPD ACTUATOR)

adi_adrv9025_DpdTrackingConfig_t.minAvgSignalLevel

POUT
(DPD ACTUATOR)

22
77

0-
21

7

Figure 221. DPD Dynamics and Transmit Low Power Threshold

Transmitter M Threshold

The M threshold is a maximum power threshold specified by adi_adrv9025_DpdTrackingConfig_t.dpdMThreshold that is valid only in
DPD Mode 2 operation (adi_adrv9025_DpdTrackingConfig_t.dpdUpdateMode = ADI_ADRV9025_DPD_MODE2). There are two DPD
models (M table, C table) that the DPD tracking calibration maintains and updates. The DPD model update mechanism in DPD Mode 2
operation is described in Table 251. Note that the switching mechanism between the M table (high power), C table (low power), and U
table (unity gain) models is based on the 10 ms integrated rms power of the DPD actuator input samples.

The dynamics of the DPD based on the transmit baseband input level with the M threshold taken into consideration is shown in Figure 222.

M-TABLE

C-TABLE

U-TABLE

DPD ACTUATOR
OUTPUT GAIN

EXPANSION

DPD ACTUATOR
OUTPUT = DPD

ACTUATOR INPUT PIN
(DPD ACTUATOR)

adi_adrv9025_DpdTrackingConfig_t.minAvgSignalLevel
adi_adrv9025_DpdTrackingConfig_t.dpdMThreshold

POUT
(DPD ACTUATOR)

22
77

0-
21

8

Figure 222. ADRV9025 DPD Dynamics in DPD Mode 2

Observation Receiver Low Power Threshold

The observation receiver low power threshold can be used to compare observation samples against the threshold specified by
adi_adrv9025_DpdTrackingConfig_t.minAvgSignalLevelOrx in linear scale to determine if a DPD update must be applied. This
comparison can help avoid DPD updates when the signal level is low and, consequently, the signal-to-noise ratio of the observed samples
is poor. If the rms power of the DPD capture samples is greater than the observation channel low power threshold, an update is applied to
the appropriate DPD model if the transmit low power threshold condition described in the previous section is also satisfied. Table 252
captures the various conditions related to the power levels and updates of transmitter and observation receiver captured samples.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 284 of 336

Table 252. DPD Update Criteria Based on the Signal Level of Captured Samples

DPD Capture Samples RMS Power Condition

DPD Captured Transmit samples >
adi_adrv9025_DpdTrackingConfig_
tminAvgSignalLevel

DPD Captured Transmit
samples < adi_adrv9025_
DpdTrackingConfig_
tminAvgSignalLevel

DPD Captured Observation Receive Samples > adi_
adrv9025_DpdTrackingConfig_t.minAvgSignalLevelOrx

DPD Update applied to M table in DPD Mode 0
and Mode 1

No DPD update applied.

 DPD Update applied to C table/M table
depending on
adi_adrv9025_DpdTrackingConfig_t.dpdMThr
eshold in DPD Mode 2

DPD Captured Observation Receive Samples < adi_
adrv9025_DpdTrackingConfig_t.minAvgSignalLevelOrx

No DPD update applied No DPD update applied

DPD REGULARIZATION
DPD regularization is used to make the DPD coefficient estimation less sensitive to missing data and prevent overfitting. The DPD is
essentially a curve fitting process, and Figure 223 outlines the optimum fitting to achieve in a system. A higher regularization prevents
overfitting, which improves stability but limits the ACLR improvement. On the other hand, a low regularization allows better ACLR
improvement, but stability of the DPD must be kept in check.

Y

X

Y

X

Y

XUNDERFITTING BALANCED OVERFITTING 22
77

0-
21

9

Figure 223. Comparison of Underfitting, Overfitting, and Balanced Fitting

The AM to AM characteristics of a power amplifier for a case where there is sparse data in the high power region is shown in Figure 224.
In this case, a low regularization value results in overfitting and causes instability.

22
77

0-
42

2

G
AI

N

INPUT MAGNITUDE
0 2000 4000 6000 8000 10000 12000 14000 16000

0

3.0

2.5

2.0

1.5

1.0

0.5

Figure 224. Gain vs Input Magnitude of an Example PA. DPD Regularization helps Decrease Sensitivity to Sparse

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 285 of 336

22
77

0-
42

3

O
UT

PU
T

PH
AS

E
(D

eg
re

es
)

INPUT MAGNITUDE
0 2000 4000 6000 8000 10000 12000 14000 16000

–150

150

100

50

0

–50

–100

Figure 225. Output Phase vs Input Magnitude of an Example PA. DPD Regularization helps Decrease Sensitivity to Sparse Data

For the AM to AM characteristics shown in Figure 224, the effect of low regularization and optimum regularization on DPD is shown in
Figure 226. With low regularization, the DPD algorithm has a tendency to overfit resulting in high power scattering. With the optimum
regularization, the sensitivity of DPD algorithm to sparse data in high power is minimized.

22
77

0-
42

4

O
UT

PU
T

M
AG

NI
TU

DE

INPUT MAGNITUDE
0 2000 4000 6000 8000 10000 12000 14000 16000

0

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

Figure 226. Effect of Low DPD Regularization on DPD Stability

22
77

0-
42

4

O
UT

PU
T

M
AG

NI
TU

DE

INPUT MAGNITUDE
0 2000 4000 6000 8000 10000 12000 14000 16000

0

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

Figure 227. Effect of Optimum DPD Regularization on DPD Stability

The DPD provides user configuration for regularization via adi_adrv9025_DpdModelConfig_t. dpdIndirectRegularizationValue and
adi_adrv9025_DpdModelConfig_t.dpdDirectRegularizationValue for indirect learning and direct learning mechanisms configured via
the adi_adrv9025_DpdTrackingConfigSet() API.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 286 of 336

DPD Regularization in DPD Mode 2

For DPD Mode 2 operation where separate predistortion coefficients are maintained for low power (C table) and high power (M table)
data, a separate regularization value can also be applied to low power (C table) and high power (M table) models. This separate value is
typically intended to be used with GaN PA applications where the power amplifier nonlinearity characteristics can vary for low power and
high power signals.

Table 253. DPD Regularization Parameters in DPD Mode 2
Regularization Parameter Target DPD Actuator Model
adi_adrv9025_DpdModelConfig_t.dpdIndirectRegularizationValue M table
adi_adrv9025_DpdModelConfig_t.dpdIndirectRegularizationLowPowerValue C table

Note that separate low power and high power regularization values are only applicable using the DPD indirect learning mechanism.

DPD ROBUSTNESS
This section provides an overview of the features that enhance DPD robustness. These features include DPD stability metrics and flexible
architecture for setting up recovery actions based on these predefined DPD metrics. The user can optionally turn on the DPD robustness
feature to protect the DPD against erroneous adaptations in abnormal conditions.

In the transceiver DPD, abnormal conditions are detected by monitoring the following metrics:

• Indirect error that indicates if the predistorted samples match the expected result after experiencing power amplifier distortion
• Transmit capture rms power
• Transmit capture peak power
• Observed capture rms power
• Observed capture peak power
• Post DPD capture transmit to observation receive EVM (indirect EVM), which is a measure of nonlinearity in the gain line up
• Pre-DPD capture transmit to observation receive EVM (direct EVM), which is a measure of DPD linearization performance

From a user point of view, there are two sets of actions that are required to be taken:

• Define the fault conditions via the adi_adrv9025_DpdFaultConditionSet() API.
• Provide user configurable thresholds and actions for fault conditions defined in the previous step via the

adi_adrv9025_DpdRecoveryActionSet() API.

For example, measure the transmit capture power, and if the power < the threshold, abandon the adaptation.

Calculation of Metrics

When the DPD coefficients are estimated, the error between the predicted and measured predistortion is computed to determine the
expected DPD performance. Detection of a large error prevents the application of bad coefficients, and can be calculated using the
following equation:

IndirectError = ||xtx − Fyc||/||xtx||

where:
xtx is a vector of the transmit samples after DPD actuator (post DPD data).
Fy is a matrix of features (such as items in GMP) formulated by observation receive samples.
c is the DPD coefficients vector.
|| ||is the operator and the (Euclidean) norm of vectors.

Similarly, indirect EVM and direct EVM are calculated using the following equations:

IndirectEVM = ||xtx − y||/||xtx||

DirectEVM = ||xtu − y||/||xtx||

where:
xtu is a vector of the transmit samples before the DPD actuator (pre-DPD data).
y is a vector of observation receive samples.

All samples are time aligned and gain and phase equalized. The size of the vectors is the number of samples used in each update of the
DPD coefficients.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 287 of 336

The transmit signal mean and peak power are calculated from the pre-DPD samples in xtu and post DPD samples in xtx, respectively.

The observation receiver mean and peak power are calculated by the samples in y.

Defining Fault Conditions

The user can define fault conditions through the adi_adrv9025_DpdFaultCondition_t data structure described in Table 254. The fault
conditions are programmed through the adi_adrv9025_DpdFaultConditionSet() API.

Table 254. DPD Fault Condition Definition Data Structure adi_adrv9025_DpdFaultCondition_t
Member Data Type Description
dpdMetric adi_adrv9025_DpdMetric_e This member is one of the seven DPD stability metrics described in the previous section.

comparator adi_adrv9025_DpdComparator_e

The user can select a greater than or less than comparator for defining a fault
condition. For example, the user can define a fault condition where the transmit rms
power is greater than a certain threshold and the observation receive rms power is
lesser than a certain threshold.

threshold0 Int16 This member defines a threshold for a lower severity level
threshold1 Int16 This member defines a threshold for a higher severity level

persistentCount UInt16
The persistence count is defined with the expectation that more aggressive recovery
actions are required in case the fault conditions persist.

The list of currently available actions is shown in Table 255. The fault conditions defined in Table 254 can be associated with a recovery
action programmed through the adi_adrv9025_DpdRecoveryActionSet() API.

Table 255 ADRV902x Recovery Action Bit Mask Definition
Action Index Description
ADI_ADRV9025_DPD_RECOVERY_ACTION_SKIP_LUTS_UPDATE Abandon DPD adaptation on this iteration.
ADI_ADRV9025_DPD_RECOVERY_ACTION_REVERT_LUTS_TO_UNITY Revert all DPD Models to unity gain coefficients
ADI_ADRV9025_DPD_RECOVERY_ACTION_RESET_ADAPTATION_STATE Reset DPD firmware internal state variables that

includes max power recorded by DPD applicable to
M-Table in DPD Mode 1 and DPD Mode 2 that is
relevant to the user.

ADI_ADRV9025_DPD_RECOVERY_ACTION_SWITCH_LUTS_TO_M Switch to the max Power model. Please refer to
DPD models section for more details on M-Table

ADI_ADRV9025_DPD_RECOVERY_ACTION_SWITCH_LUTS_TO_R Switch to Recovery model defined as the model
estimated on the highest power data seen by the
DPD tracking calibration since reset.

ADI_ADRV9025_DPD_RECOVERY_ACTION_6DB_DIG_ATTEN Attenuate transmit signal by 6dB.
NOTE: Currently this action is NOT Supported.

ADI_ADRV9025_DPD_RECOVERY_ACTION_RESET_FIRST_DPD_FLAG Resetting the first DPD flag runs 3 back to back
DPD updates in indirect learning mode similar to
the DPD behavior on very first update to speed up
convergence.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 288 of 336

The DPD fault conditions configured in the firmware on startup are listed in Table 256.

Table 256. Default Definition of Fault Condition Matrix

Metric Comparator
Low
Threshold

High
Threshold

Persistent
Count

Mean TU Power (Pre-DPD) Less Than −37 dBFS −46 dBFS 10
Peak TU Power (Pre-DPD) Less Than −26 dBFS −35 dBFS 10
Mean Transmit Power (Post DPD) Less Than −37 dBFS −46 dBFS 10
Peak Transmit Power (Post DPD) Less Than −26 dBFS −35 dBFS 10
Mean Observation Receive power (Post DPD) Less Than −34 dBFS −43 dBFS 10
Peak Observation Receive power (Post DPD) Less Than −23 dBFS −32 dBFS 10
Pre-DPD Capture Transmit to Observation Receive EVM (Direct EVM) Greater Than 5% 15% 10
Post DPD Capture Transmit to Observation Receive EVM (Indirect EVM) Greater Than 8% 15% 10
Indirect Error Greater Than 3% 12% 10
Select Error Greater Than 3% 13% 10

The DPD recovery actions configured in the firmware on startup are listed in Table 257.

Table 257. Default Recovery Action Matrix

Metric
Recover Action if Low
Threshold is Violated Once

Recover Action if Low
Threshold Violation Persists

Recover Action if
High Threshold
is Violated Once

Recover Action if
High Threshold
Violation Persists

Mean TU Power (Pre-DPD) Abandon DPD LUT update Take no action Take no action Take no action
Peak TU Power (Pre-DPD) Abandon DPD LUT update Take no action Take no action Take no action
Mean Transmit Power (Post DPD) Abandon DPD LUT update Take no action Take no action Take no action
Peak Transmit Power (Post DPD) Abandon DPD LUT update Take no action Take no action Take no action
Mean Observation Receive Power
(Post DPD)

Abandon DPD LUT update Take no action Take no action Take no action

Peak Observation Receive power
(Post DPD)

Abandon DPD LUT update Take no action Take no action Take no action

Pre-DPD Capture Transmit to
Observation Receive EVM (Direct
EVM)

Take no action Take no action Take no action Take no action

Post DPD Capture Transmit to
Observation Receive EVM
(Indirect EVM)

Take no action Take no action Take no action Take no action

Indirect Error Abandon DPD LUT update Abandon the DPD LUT
update, revert the LUTs to
unity, reset DPD adaptation
state, hardware reset the DPD
actuator

Take no action Take no action

Select Error Abandon DPD LUT update Abandon the DPD LUT
update, revert the LUTs to
unity, reset DPD adaptation
state, hardware reset the DPD
actuator

Take no action Take no action

Note that the recovery actions follow a many to one mapping. Each of the four columns in the table indicate error conditions and each
error condition has a unique metrics mask to which multiple fault condition metrics can be mapped by ‘OR’ing the metrics.

For example, in the matrix shown in Table 258, Persistent0 looks for violation of lower thresholds from either indirect EVM, mean TU
power, or peak transmit power, whereas Persistent1 looks for high threshold violations from indirect EVM only to trigger a recovery
action.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 289 of 336

Table 258. Example settings for Recovery Actions

Error Condition

Error0, Fault
Condition
Threshold0 Violated
Once

Persistent0, Fault Condition
Threshold0 Violated Persistently

Error1, Fault
Condition
Threshold0 Violated
Once

Persistent1, Fault Condition
Threshold0 Violated Persistently

Recovery Action Do nothing Skip the DPD LUT updates Do nothing Skip the DPD LUT updates and reset
the DPD coefficients to unity gain
(actuator output = actuator input)

Fault Condition

Indirect EVM, mean TU power, or
peak TU power

Indirect EVM only

The following block of code shows an example of how to setup the recovery actions shown in Table 258.
#Setup Recovery Action
dpdRecoverActionArr = Array.CreateInstance(Types.adi_adrv9025_DpdRecoveryActionConfig_t, 2)

#Recovery Action for violation of threshold0 – Only skip LUT updates for violation of soft threshold
Thresh0ActionMask = int(Types.adi_adrv9025_DpdRecoveryAction_e.ADI_ADRV9025_DPD_RECOVERY_ACTION_SKIP_LUTS_UPDATE)

#Recovery Action for violation of threshold1 –skip LUT updates, restore LUT to unity and reset adaptation state for
violation of hard threshold
thresh1ActionMask = 0
thresh1ActionMask |= int(Types.adi_adrv9025_DpdRecoveryAction_e.ADI_DPD_RECOVERY_ACTION_SKIP_LUTS_UPDATE)
thresh1ActionMask |= int(Types.adi_adrv9025_DpdRecoveryAction_e.ADI_DPD_RECOVERY_ACTION_REVERT_LUTS_TO_UNITY)
thresh1ActionMask |= int(Types.adi_adrv9025_DpdRecoveryAction_e.ADI_DPD_RECOVERY_ACTION_RESET_ADAPTATION_STATE)

#Configure Recovery Action for persistent violation of thershold0
dpdRecoveryActionArr[0] = Types.adi_adrv9025_DpdRecoveryActionConfig_t()
dpdRecoveryActionArr[0].dpdErrorState = Types.adi_adrv9025_DpdErrorState_e.ADI_DPD_ERR_STATE_PERSISTENT_0
dpdRecoveryActionArr[0].dpdRecoveryAction.dpdMetricsMask =

int(Types.adi_adrv9025_DpdMetric_e.ADI_ADRV9025_DPD_METRIC_INDIRECT_EVM) |
int(Types.adi_adrv9025_DpdMetric_e.ADI_ADRV9025_DPD_METRIC_MEAN_TU_POWER) |
int(Types.adi_adrv9025_DpdMetric_e.ADI_ADRV9025_DPD_METRIC_PEAK_TX_POWER)

dpdRecoveryActionArr[0].dpdRecoveryAction.dpdActionMask = thresh0ActionMask

#Configure Recovery Action for persistent violation of thershold1
dpdRecoveryActionArr[1] = Types.adi_adrv9025_DpdRecoveryActionConfig_t()
dpdRecoveryActionArr[1].dpdErrorState = Types.adi_adrv9025_DpdErrorState_e.ADI_DPD_ERR_STATE_PERSISTENT_1
dpdRecoveryActionArr[1].dpdRecoveryAction.dpdMetricsMask = int(Types.adi_adrv9025_DPD_METRIC_INDIRECT_EVM)
dpdRecoveryActionArr[1].dpdRecoveryAction.dpdActionMask = thresh1ActionMask

#Program the recovery action in the device
Link.platform.board.Adrv9025Device.Dfe.DpdRecoveryActionSet(txChannelMask, dpdRecoveryActionArr, 2)

DPD ACTUATOR GAIN MONITORING FOR ROBUSTNESS
Principle of Operation

The DPD gain monitoring mechanism uses power meters at the input and output of the DPD actuator to determine when to switch
between DPD models if the actuator gain violates a programmable threshold. The gain monitoring mechanism can be used to monitor
gain over range as well as gain under range. Gain over range can occur when DPD is trying to expand gain to compensate for gain
compression. A gain under range condition can occur because of bad coefficients or gain compression.

Gain can be monitored either sample by sample or averaged over a number of samples. The maximum number of samples that can be
averaged is 128k samples (~266 µs worth of samples at a 491.52 MSPS rate). The average gain over several thousands of samples should
not typically exceed 1 dB. The gain monitoring mechanism can be setup to switch to a unity gain or any other model if the
gain/attenuation across the actuator is in the range of several dBs. Figure 228 represents a high level overview of the DPD actuator
hardware in the signal chain.

Table 250 explains the DPD models implemented in the transceiver. The user has an option to switch to either one of these four DPD
models in case the actuator output experiences high gain or high attenuation as explained in the previous section.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 290 of 336

1, 2, 4

HW ACCELL

DATA FROM
CFR

ORx

Tx FILTER/DUPLEXERPAPA1

U XIF XAVG/UAVG > UPPER THRESH
OR

XAVG/UAVG < LOWER THRESH,
THEN SWITCH MODEL

ARM PROCESSOR

MODEL

ADRV9029 DPD

22
77

0-
22

3

Figure 228. DPD Actuator Gain Monitoring Functional Diagram

DPD Actuator Gain Monitoring Configurations

The adjustments listed in Table 259 can be used to configure the DPD actuator gain monitoring feature.

Table 259. DPD Gain Monitoring Configurations
Gain Monitor Configuration Description
adi_adrv9025_DpdActGainMonitorCtrl_t.dpdGainMonitorEnable Enable/Disable gain monitoring.
adi_adrv9025_DpdActGainMonitorThresh_
t.dpdGainMonitorQualThresh

Minimum signal level above which gain monitoring is exercised. MSB
16 bits of I2 + Q2 32 bit data.

adi_adrv9025_DpdActGainMonitorCtrl_
t.highGainModelAutoLoadEnable

Configuration to explicitly enable/disable high gain over range detection.

adi_adrv9025_DpdActGainMonitorCtrl_t Configuration to explicitly enable/disable low gain under range detection.
adi_adrv9025_DpdActGainMonitorThresh_
t.dpdGainMonitorUpperThresh

High gain threshold above which a model switch can be initiated by the
gain monitoring hardware. This configuration is only applicable if gain
overrange detection is enabled.

adi_adrv9025_DpdActGainMonitorThresh_
t.dpdGainMonitorLowerThresh

Low gain threshold(attenuation) below which a model switch can be
initiated by the gain monitoring hardware. This configuration is only
applicable if gain under range detection is enabled.

adi_adrv9025_DpdActGainMonitorCtrl_
t.dpdGainMonitorUpperThreshModelSel

Switch to this model upon violation of the high gain threshold.

adi_adrv9025_DpdActGainMonitorCtrl_
t.dpdGainMonitorLowerThreshModelSel

Switch to this model upon violation of the low gain threshold.

adi_adrv9025_DpdActGainMonitorCtrl_t.
dpdGainMonitorIIRDecay

This configuration controls the number of samples over which gain is
averaged. The decay rate can be calculated as N = (65536/(averaging_
window_size/2)) where the decay rate is equal to log2(N).

DPD Actuator Gain Monitoring API

The API functions used to control gain monitoring are listed in Table 260.

Table 260. DPD Actuator Gain Monitoring API
API Function Description
adi_adrv9025_DpdActuatorGainMonitorConfigSet() This function sets the DPD gain monitor configuration described in Table 261. Gain

monitoring can be used to automatically switch to selected models when the
actuator gain overrange or underrange is seen. Gain violation thresholds are user
configurable. This function takes in as argument, a pointer to the device data
structure, and a pointer to an adi_adrv9025_DpdActGainMonitorConfig_t structure
that contains the configurations shown in Table 261.

adi_adrv9025_DpdActuatorGainMonitorConfigGet() This function returns the DPD gain monitor configuration applied in the device for
the requested transmit channel.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 291 of 336

Table 261. Gain Monitor Configuration Parameters
Configuration Value
Gain Monitor Enable Enabled
Gain Detection Qualifying Threshold −42 dBFS
Gain Overrange Detection Enable Enabled
Gain Underrange Detection Enable Enabled
Gain Overrange Threshold 6 dB
Gain Underrange Threshold −6 dB
Gain Overrange Model Select Unity gain (Model 3)
Gain Underrange Model Select Recovery table (Model 2)
Decay Rate 1

The following code is an example python script to set up the gain monitor with the configuration described in Table 261.
def setupDpdGainMonitor():

dpdGainMonitorCfg = Types.adi_adrv9025_DpdActGainMonitorConfig_t()

dpdGainMonitorCfgGet = Types.adi_adrv9025_DpdActGainMonitorConfig_t()

dpdGainMonitorCfg.txChannelMask = 0x01

dpdGainMonitorCfg.dpdGainMonitorCtrl.dpdGainMonitorEnable = 1 #Enable Gain Monitoring

dpdGainMonitorCfg.dpdGainMonitorCtrl.dpdGainMonitorIIREnable = 1 #Enable IIR for averaging samples. If set to 0, sample by sample gain
detection is carried out

dpdGainMonitorCfg.dpdGainMonitorCtrl.dpdGainMonitorIIRDecay = 1 #Sets the sample averaging window size to 128K samples

dpdGainMonitorCfg.dpdGainMonitorCtrl.lowGainModelAutoLoadEnable = 1 #Enable DPD model switching on low gain threshold violation

dpdGainMonitorCfg.dpdGainMonitorCtrl.highGainModelAutoLoadEnable = 1 #Enable DPD model switching on high gain threshold violation

dpdGainMonitorCfg.dpdGainMonitorCtrl.dpdGainMonitorLowerThreshModelSel = Types.adi_adrv9025_DpdModelSel_e.ADI_ADRV9025_DPD_MODEL2 #Switch to
R-Table on low gain violation

dpdGainMonitorCfg.dpdGainMonitorCtrl.dpdGainMonitorUpperThreshModelSel = Types.adi_adrv9025_DpdModelSel_e.ADI_ADRV9025_DPD_MODEL3 #Switch to
unity gain table on high gain violation

dpdGainMonitorCfg.dpdGainMonitorThresh.dpdGainMonitorQualThresh = 1 #Upper 16 bits of I^2 +Q^2 32 bit data. A value of 1 equals -42dBFS

dpdGainMonitorCfg.dpdGainMonitorThresh.dpdGainMonitorLowerThresh = 0x20 #Low gain threshold in 2.6 integer linear scale format

dpdGainMonitorCfg.dpdGainMonitorThresh.dpdGainMonitorUpperThresh = 0x80 #High gain threshold in 2.6 integer linear scale format

link.platform.board.Adrv9025Device.Dfe.DpdActuatorGainMonitorConfigSet(dpdGainMonitorCfg) |

retVal = link.platform.board.Adrv9025Device.Dfe.DpdAtuatorGainConfigGet(Types.adi_adrv9025_TxChannels_e.ADI_ADRV9025_TX1,
dpdGainMonitorCfgGet)

dpdGainMonitorCfgGet = retVal[1]

print “DPD Gain Monitor Enable = “, dpdGainMonitorCfgGet.dpdGainMonitorCtrl.dpdGainMonitorEnable

print “DPD Gain Monitor IIR Enable = “, dpdGainMonitorCfgGet.dpdGainMonitorCtrl.dpdGainMonitorIIREnable

print “DPD Gain Monitor IIR Decay = “, dpdGainMonitorCfgGet.dpdGainMonitorCtrl.dpdGainMonitorIIRDecay

print “DPD Gain Monitor Low Gain Auto Model Ld En = “, dpdGainMonitorCfgGet.dpdGainMonitorCtrl.lowGainModelAutoLoadEnable

print “DPD Gain Monitor High Gain Auto Model Ld En = “, dpdGainMonitorCfgGet.dpdGainMonitorCtrl.highGainModelAutoLoadEnable

print “DPD Gain Monitor Qual Thresh = “, dpdGainMonitorCfgGet.dpdGainMonitorThresh.dpdGainMonitorQualThresh

print “DPD Gain Monitor Low Gain Thresh = “, dpdGainMonitorCfgGet.dpdGainMonitorThresh.dpdGainMonitorLowerThresh

DPD Actuator Gain Monitoring and Model Switching State Machine Representation

The flow chart in Figure 229 describes the function of the gain monitoring state machine. The DPD gain monitoring, when enabled, runs
independently from the DPD actuator. The DPD gain monitoring monitors the gain of the signal across the actuator until the DPD is
turned off, as shown in the state diagram.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 292 of 336

START

SAMPLE CAPTURE
FOR

DPD ADAPTATION

COEFF GENERATION
AND LUT UPDATE +
SET M/C TABLE AS

ACTIVE MODEL

DPD UPDATE
CONDITIONS MET?

DPD SCHEDULED?

GAIN THRESHOLD
VIOLATION ?

MODEL SWITCH TO
UNITY GAIN/R-TABLE

YES

OTHER CALS

FW SCHEDULING TIMER

NO

NO

NO

YES

YES

YES

YES

22
77

0-
22

4

Figure 229. DPD Gain Monitoring State Machine

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 293 of 336

DPD ACTUATOR BYPASS
The ADRV9029 DPD provides a mechanism to bypass predistortion through GPIO control. The GPIO input is level sensitive and
activates the unity gain model for the duration of time where the GPIO level is high. The GPIO-based DPD actuator bypass is typically
used for antenna calibrations in M-MIMO applications, where the predistortion must be disabled for the duration of antenna calibration
to prevent predistortion from affecting antenna calibration accuracy. Figure 230 shows how this process is implemented.

UNITY GAIN
MODEL

PREDISTORTION
MODEL

DPD ACTUATOR

DATA FROM DPD
HALF-BAND FILTERS

DPD ACTUATOR
OUTPUT

GPIO

ADRV9029 STREAM
PROCESSOR CTRL

1

0

22
77

0-
22

5

Figure 230. DPD Actuator Bypass through GPIO

The GPIO control for DPD actuator bypass is managed by the stream processor in the transceiver. To enable this feature, take the
following steps:

1. Configure the stream to associate a GPIO with DPD actuator bypass control and generate a stream binary. The TES can be used to
configure the GPIO for DPD actuator bypass and generate the stream binary. The Tx Ant Cal GPIO Pin value in the Stream
Settings in the initialization page can be used to configure the GPIO, and the stream binary can be generated using the Tools >
Create Script function shown in Figure 231.

22
77

0-
22

6

Figure 231. DPD Actuator Bypass GPIO Pin Stream Configuration Using TES

2. Convey this stream configuration to the TES software by assigning the stream general-purpose input pins in the post MCS init structure.
The following code is an example configuration where GPIO_06 is assigned to Stream GP Input 6 in the post MCS init structure.

{ // streamGpioCfg
ADI_ADRV9025_GPIO_INVALID, // streamGpInput0
ADI_ADRV9025_GPIO_INVALID, // streamGpInput1
ADI_ADRV9025_GPIO_INVALID, // streamGpInput2
ADI_ADRV9025_GPIO_INVALID, // streamGpInput3
ADI_ADRV9025_GPIO_INVALID, // streamGpInput4
ADI_ADRV9025_GPIO_INVALID, // streamGpInput5
ADI_ADRV9025_GPIO_06, // streamGpInput6
ADI_ADRV9025_GPIO_INVALID, // streamGpInput7
ADI_ADRV9025_GPIO_INVALID, // streamGpInput8
ADI_ADRV9025_GPIO_INVALID, // streamGpInput9
ADI_ADRV9025_GPIO_INVALID, // streamGpInput10
ADI_ADRV9025_GPIO_INVALID, // streamGpInput11
ADI_ADRV9025_GPIO_INVALID, // streamGpInput12
ADI_ADRV9025_GPIO_INVALID, // streamGpInput13
ADI_ADRV9025_GPIO_INVALID, // streamGpInput14
ADI_ADRV9025_GPIO_INVALID, // streamGpInput15

},

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 294 of 336

Ensure that the GPIO assigned for controlling the DPD actuator bypass is driven to a low state during initialization to prevent
interference with initial calibrations.

DPD STATUS
The user can obtain the status of the DPD tracking calibration during runtime through the adi_adrv9025_DpdStatusGet() API
command, which updates a adi_adrv9025_DpdStatus_t data structure supplied by the user. The DPD status data structure returns the
information shown in Table 262.

Table 262. DPD Recovery Action Bit-mask Definition
Member Data Type Description
dpdErrorCode adi_adrv9025_DpdError_e DPD error status. Refer to the adi_adrv9025_dfe_types.h file for a full list of

DPD error codes returned by the DPD status. If the DPD is functioning
correctly, this parameter returns ADI_ADRV9025_DPD_NO_ERROR.

dpdPercentComplete UInt32 Percentage of DPD update completed.
dpdIterCount UInt32 Number of DPD updates scheduled.
dpdUpdateCount UInt32 Number of successful DPD updates.
dpdSyncStatus adi_adrv9025_

TrackingCalSyncStatus_e
DPD and CLGC tracking calibrations are synchronized through a semaphore
mechanism. This member returns SYNC_OK if both the DPD and CLGC are
synchronized. If the CLGC is not enabled, this field can be ignored.

dpdModelTable adi_adrv9025_DpdModelTableSel_e Currently active DPD model (M table, C table, or U table) described in Table 250.
dpdStatistics adi_adrv9025_DpdStatistics_t Current values of DPD stability metrics described in Table 256.

RECOMMENDED SEQUENCE FOR ENABLING THE DPD TRACKING CALIBRATION
The sequence for running DPD tracking calibrations is shown in Table 263.

Table 263. DPD Tracking Calibration Bring Up Sequence
Step Action APIs used
1 Program the device and run initial calibrations(including transmit QEC

initial calibration) with the power amplifier turned off.
Utility function adi_daughterboard_Program() can be
used to program the device

2 Setup external transmit to observational receive mapping. adi_adrv9025_TxToOrxMappingSet
3 Adjust observational receive gain to an appropriate value to avoid

saturation. The default gain index in ADRV9025 is 255 (0dB attenuation).
adi_adrv9025_RxGainSet

4 Turn on the power amplifier and run the external path delay initial
calibration. Alternatively, factory calibrated path delay values can be
programmed via ExternalPathDelaySet() commands.

adi_adrv9025_InitCalsRun for calibrating path delay,
adi_adrv9025_ExternalPathDelaySet(), and
adi_adrv9025_ClgcExternalPathDelaySet()

5 Run the transmit external LO Leakage initial calibration. adi_adrv9025_InitCalsRun
6 If using ADRV9025 CFR, configure the CFR settings. adi_adrv9025_CfrConfigSet, adi_adrv9025_CfrEnableSet,

and adi_adrv9025_CfrCorrectionPulseWrite_v2
7 If using ADRV9025 CFR, run the CFR initial calibration. adi_adrv9025_InitCalsRun
8 Load the DPD model. adi_adrv9025_DpdModelConfigSet
9 Assert DPD reset. adi_adrv9025_DpdReset
 If a unique DPD model is required to be applied to each Model, proceed

to follow Step 10 to Step 17.

10 Setup the DPD mode of operation, DPD peak search window size, and
low power threshold.

adi_adrv9025_DpdTrackingConfigSet

11 Set up the DPD fault conditions and recovery actions(optional). adi_adrv9025_DpdFaultConditionSet,
adi_adrv9025_DpdRecoveryActionSet

12 Set up CLGC configurations and target loop gain. adi_adrv9025_ClgcConfigSet
13 Enable the transmit QEC and transmit LO Leakage tracking calibrations. adi_adrv9025_TrackingCalsEnableSet
14 Enable DPD tracking calibration. adi_adrv9025_TrackingCalsEnableSet
15 Enable CLGC tracking calibration. adi_adrv9025_TrackingCalsEnableSet
16 Monitor DPD tracking calibration status. adi_adrv9025_DpdStatusGet
17 Monitor CLGC tracking calibration status. adi_adrv9025_ClgcStatusGet

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 295 of 336

DPD STABILITY METRICS CHARACTERIZATION
The following stability metrics are at the disposal of the user for defining stability:

• Transmit power thresholds
• Observed power thresholds
• Direct EVM, the difference between measured pre-DPD transmitted and observed samples
• Indirect EVM, the difference between measured post DPD transmitted and observed samples
• Indirect error, the difference between measured post DPD transmitted and predicted samples (predicted samples are obtained by

applying the DPD model to the observed samples)
• Select error, the same as indirect error but computed for post DPD transmitted samples whose amplitude is greater than –30 dBFS

All of these metrics are user configurable. The following section provides characterization data that can provide some guidance regarding
factors that can influence the configuration of the stability metrics defined.

Measuring DPD Adaptation Performance Through Direct EVM and Indirect Error

The following are three cases where the stability metrics direct EVM and indirect error parameters are compared for different ACLR
performance levels of an NR100 signal TM3.1 signal.

Case 1

The ACLR performance is ~46.6 dBc in L3 channel and corresponds to a direct EVM of 2%.

22
77

0-
22

8

Figure 232. Bad ACLR Performance Correlation with a High Direct EVM Value

Case 2

The ACLR performance is better (~47.5 dBc) than Case 1, which also corresponds to reduced direct EVM.
22

77
0-

22
9

Figure 233. Improved ACLR Performance Corresponds to Improved Direct EVM

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 296 of 336

Case 3

The ACLR performance is optimal amongst the three cases (~48.5 dBc), which is reflected in the reduced direct EVM numbers.

22
77

0-
23

0

Figure 234. Direct EVM for the Optimal ACLR Performance

Observation Receiver Attenuation vs. Stability Metrics

Shown below is the trend for the EVM and error stability metrics for different observation receiver channel attenuation values. It can be
observed that as observation receiver attenuation is increased, the error percentage also increases. The same can be true for a low SNR
transmitter to observation receiver channel. It is advised to increase the threshold for stability metrics as the observation receiver
attenuation increases or the channel SNR decreases.

22
77

0-
23

1

ORx ATTENUATION (dB)

ST
AB

IL
IT

Y
M

ET
RI

CS

0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5 10 15 20 25 30

DIRECT EVM%
INDIRECT EVM%
INDIRECT ERROR%
SELECT ERROR%

Figure 235. Observation Receive Attenuation vs. Stability Metrics

Observation Receiver Interference

Although unlikely, any interference in the observation receiver channel can cause DPD instability and can cause the firmware to derive
incorrect DPD coefficients that result in poor performance, as shown in Figure 236, which includes the bench characterization of the
observation receiver interference levels affecting ACLR and stability metrics. Depending on the application and the ACLR performance,
the user can budget for the threshold of stability metrics. T1 represents the ACLR degradation at 5% indirect EVM, and T2 represents
ACLR degradation at 15% EVM. Data2 represents the absolute value of ACLR in dBm as the power level of the interferer injected into the
observation receiver increases. The total carrier power of the primary signal used for characterization is 26.23 dBm.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 297 of 336

22
77

0-
23

2

ITERATIONS
0

0

0

–5

–10

–15

–20

–25

–30

–35

–40

5

10

15

20

30
INJECT INTERFERER TO ORx

25

5 10 15 20 25 30 35 40 45

AC
P

(d
Bm

)

PE
RC

EN
TA

G
E

(%
)

dpdDirectEvm
dpdIndirectEvm
dpdSelectError
dpdIndirectError
data2

Figure 236. Observation Receive Interference vs. Stability Metrics

Transmit Signal vs. Stability Metrics

Shown in Figure 237 is the degradation of stability metrics with decreasing transmitter signal power. When the signal level is close to –36
dBFS, it can be observed that the EVM percentages are close to 5%. At a transmitter signal level close to –46 dBFS, the EVM percentages
are close to 15%, which causes further ACLR degradation.

22
77

0-
23

2

ITERATIONS
0

0

0

–5

–10

–15

–20

–25

–30

–35

–40

5

10

15

20

30
INJECT INTERFERER TO ORx

25

5 10 15 20 25 30 35 40 45

AC
P

(d
Bm

)

PE
RC

EN
TA

G
E

(%
)

dpdDirectEvm
dpdIndirectEvm
dpdSelectError
dpdIndirectError
data2

Figure 237. Transmit Signal Level vs. ACLR Degradation

Summary

The following are some of the scenarios that could cause degradation of DPD performance. However, it is advised that the user
characterize the system under test for EVM corruption that is specific to the system or conditions prevalent before configuring the
thresholds.

• The DPD performance can be measured by direct EVM. The direct EVM numbers are lower when the performance on the DPD
adaptation is acceptable.

• As observation receive attenuation increases, an increase in EVM percentages can be observed.
• Interference or high noise levels in transmit and observation receive channels can cause the EVM and error percentages to increase.

Fault conditions and corresponding recovery actions can be defined for EVM numbers to avoid incorrect DPD updates.
• As the transmit signal level decreases, the EVM percentages increase. However, an argument can be made that DPD might not be

required at lower signal levels for certain power amplifiers.
• Take note of the DPD model that the user configures the part with. An incompatible prior DPD model configured by the user can

cause the EVM and error percentages to increase leading to poor DPD performance.
• Catastrophic conditions such as loss of signals can also lead to high EVM and error percentages that can be monitored by the user.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 298 of 336

DPD CHARACTERIZATION FOR OPTIMIZING THE M THRESHOLD
To complete a DPD characterization test for optimizing the M table threshold in DPD Mode 2, take the following steps:

3. Bring up the DPD with a full power, full bandwidth signal (for example, TM3.1a at −14 dBFS and +100 MHz bandwidth).
4. When the DPD converges, turn off the DPD.
5. Sweep the power in 1 dB steps from full power to a ~15 dB backed off level.
6. Record the ACPR, ACP, and EVM of the demodulated data at each level. See Figure 238 for an example tabulation of characterization data.

22
77

0-
23

4

Figure 238. DPD Characterization for Optimizing M-Threshold in DPD Mode 2

For this example, the characterization data relative to a 45 dBc ACP specification and 2.5% EVM is plotted in Figure 239, which shows
that, although DPD performance is sustained across power levels, the EVM violates the 2.5% specification at approximately –24 dBFS.
Based on the characterization data, it can be determined that that optimum M table threshold in DPD Mode 2 is –24 dBFS.

22
77

0-
23

5

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

–6

–7

–8

AC
P

(d
Bm

)

EV
M

 (%
)

(dBFS)

–9

–10

–11

–12
–26 –24 –22 –20 –18 –16 –14

–45dBc SPEC
ACP ABS MODE 1
EVM

Figure 239. DPD Characterization Data Plot for Characterizing the M Threshold

SETTING UP THE DPD USING THE GUI
The DPD tab on the ADRV9029 TES GUI is the primary evaluation tool for the DPD feature. In addition, the DPD API and DLL can be used
to interact and control the DPD via Python or C#. The ADRV9029 GUI supports an IronPython tab that can be used for scripting purposes.

Pay close attention when adjusting signal levels at the transmit output and observation receive input to protect the power amplifier under
evaluation and achieve the desired performance. Before enabling the DPD, enable the ADRV9029 power amplifier protection feature to
prevent unexpected signal levels that damage the power amplifier under evaluation.

The following section describes how to set up the DPD on the device using the TES. The user must ensure that the device is programmed
using one of the DPD profiles where either one or both of the DPD half-bands are enabled. Use Case 51 is shown in Figure 240. While
programming the device, the power amplifier must be turned off to avoid any damage from high amplitude signals transmitted during
initial calibration. The user must ensure that the transmit to observation receive mapping is correct and that the observation receive LO is
configured to use the transmit LO. When initialization is complete, the power amplifier can be turned on.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 299 of 336

22
77

0-
23

6

Figure 240. Use Case 51 Transmit Datapath Overview

The user can load the desired waveform using the Tone Parameters pop-up window in the Transmit tab in the TES, as shown in
Figure 241. If desired, the peak to average ratio (PAR) of the waveform can be adjusted using the ADRV9029 CFR feature (refer to the
Crest Factor Reduction (CFR) section). Alternatively, a waveform with CFR applied to it can be loaded.

22
77

0-
23

7

Figure 241. Load Waveform Using TES

The DPD adaptation results in an expansion at the peak values of the waveform. The user can allow adequate headroom (3 dB to 5 dB) by
typing the correct value in the Scaling (dB) textbox shown in Figure 241. Alternatively, the waveform can be scaled prior to loading.

When the waveform is loaded, set the Tx Attenuation (dB) value to get the desired output power as shown in Figure 242. To transmit the
waveform, click the play button in the Transmit tab. When the waveform has been played, the user can read the power at the output of
the power amplifier via a spectrum analyzer or a power meter (more accurate method).

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 300 of 336

22
77

0-
23

8

Figure 242. Setting Transmit Attenuation and Playing the Waveform

The user can check to make sure observation receive is not saturated or too close to the noise floor. The observation receive gain can be
adjusted to get appropriate signal levels.

In the DFE tab shown in Figure 243, there is a specific subtab for DPD. The DPD subtab allows the user to fully configure and observe the
DPD. The ACLR measurement window is not available at this point (the play button is not functional and is not used to enable any DPD
feature). To configure the DPD, take the following steps:

1. Load the model file from the PC (model files are provided by Analog Devices). Ensure that the real coefficient of the linear term (i = 1, j = 1,
k = 0) is set to 1.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 301 of 336

Figure 243. Load DPD Model File

2. Configure the parameters in the DPD Tracking Config, shown in Figure 244. (the default values provide a sufficient starting point).

22
77

0-
24

0

Figure 244. Configure DPD Tracking Config

3. Select the desired transmit channel to apply the settings to.
4. Apply the DPD tracking configuration by clicking Apply Tracking Config, as shown in Figure 245.
5. Run the path delay initial calibration by clicking Run Path Delay Init Cal.
6. Apply the DPD model on the M table or C table by clicking Apply Model on Device from M Table or Apply Model on Device from

C Table (see Figure 245).
7. Click Enable DPD on selected channels (only) to enable the DPD tracking.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 302 of 336

22
77

0-
24

1

Figure 245. Apply DPD Settings

8. Click Get Status & Statistics to reveal the DPD status and statistics for the respective transmit channel (see Figure 246).
9. Click Reset DPD, as shown in Figure 246, to apply a full reset to the DPD.
10. From the functional window in Figure 246, the user can fetch the model on the device by clicking Fetch Model from M Table and

Save As and Fetch Model from C Table and Save As.
11. To fetch the DPD tracking configuration that the chip is currently in, click Get Tracking Config in the same window.

22
77

0-
24

2

Figure 246. Get DPD Status and Statistics

To change the DPD model or apply a different tracking configuration parameter, take the following steps:

1. Clear the transmit channel under consideration in Figure 245 and click Enable DPD on selected channels (only) to disable the DPD
tracking.

2. Click Reset DPD to apply a full reset.
3. Load the model file from the PC (model files are provided by Analog Devices). Ensure that the real coefficient of the linear term (i =

1, j = 1, k = 0) is set to 1.
4. Configure the parameters in the DPD Tracking Config.
5. Select the desired transmit channel to apply the settings to (Figure 245).
6. Click Apply Tracking Config, as shown in Figure 245, to apply the DPD tracking configuration.
7. Apply DPD model on the M or C tables by clicking Apply Model on Device from M Table and Apply Model on Device from C

Table buttons (see Figure 245).
8. Click Enable DPD on selected channels (only) to enable DPD tracking.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 303 of 336

CREST FACTOR REDUCTION (CFR)
The ADRV9029 variant provides CFR to assist in keeping power amplifiers linear. This functionality is only available in the ADRV9029
variant. A typical communications RF subsystem consists of an antenna, power amplifier, and RF transceiver that translates digital
baseband signals to RF, as shown in Figure 247.

22
77

0-
24

3

DUC = DIGITAL UP-CONVERSION LO

BASEBAND
SAMPLES DUC DPD DAC PA

Figure 247. Typical RF Subsystem

It is highly desirable to drive the power amplifier at the highest input power possible without having the power amplifier saturate. Most
modern communications protocols such as LTE are OFDM-based in which the final waveform is an orthogonal summation of subcarriers
that carry information, and where each subcarrier has its own center frequency and modulation scheme. In the time domain, sometimes
the peaks of these subcarriers can align to produce an aggregate large OFDM waveform peak (see Figure 251).

22
77

0-
24

4

1.0

0.8

0.6

0.4

0.2

0

–0.2AM
PL

IT
UD

E

TIME

SUBCARRIER 0

–0.4

–0.6

–0.8

–1.0
0 1 2 3 4 5 6

×10–3

Figure 248. Time Domain View of a 1 kHz Carrier

1.0

0.8

0.6

0.4

0.2

0

–0.2AM
PL

IT
UD

E

TIME

–0.4

–0.6

–0.8

–1.0
0 1 2 3 4 5 6

×10–3

22
77

0-
34

5

SUBCARRIER 1

Figure 249. Time Domain View of a 2 kHz Carrier

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 304 of 336

1.0

0.8

0.6

0.4

0.2

0

–0.2AM
PL

IT
UD

E

TIME

–0.4

–0.6

–0.8

–1.0
0 1 2 3 4 5 6

×10–3 22
77

0-
34

6

SUBCARRIER 2

Figure 250. Time Domain View of a 5 kHz Carrier

22
77

0-
24

5

Figure 251. Example illustration of Orthogonal Summation of Subcarriers Causing Large Peaks in an OFDM Waveform

These peaks increase the overall dynamic range needed for the OFDM signal through a signal chain, which leads to an increase in the
PAR of the signal.

Modern communication power amplifiers used to amplify such OFDM waveforms are only linear for a certain power range. Most of the
input signal (average power) are within this linear range. However, the signal can have peaks that exceed the power amplifier linear
operation range. To avoid saturation of the output signal because of these peaks, the user can potentially attenuate the desired signal. This
method ensures that the range required by the signal is within the power amplifier linear range. However, this method is undesirable as it
reduces the average power at the expense of maintaining a given PAR, which makes the system less efficient. An alternative to attenuation
is to use CFR where, instead of attenuating the whole signal, the user attenuates portions of the signal that are above the power amplifier
linear range. This method results in a constant output power while reducing the PAR and thus ensuring that the signal remains within the
power amplifier linear range (see Figure 252 for a summary).

PA Psat SIGNAL ATTENUATION CREST FACTOR REDUCTION

M
AG

NI
TU

DE

TIME 22
77

0-
24

6

Figure 252. Effect of Signal Attenuation vs. CFR

It is important to note that CFR leads to higher in-band and out of band noise levels. This effect results in EVM degradation while also
increasing the noise power spectral density, which results in an increase in ACLR. It is important to optimize the CFR algorithm to make
sure that the CFR block impact is within the user system level specifications (derived from 3GPP specifications or other regulatory standards).

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 305 of 336

CFR ALGORITHM OVERVIEW
Several CFR algorithms and implementations have been published in the CFR literature. Only a few have been commercially viable.
Clipping and filtering and pulse cancellation are two of the more popular techniques. Even though optimal cancellation of peaks is
technically achievable (target PAR requested is met exactly), the latency requirements imposed by modern communication standards
makes the design of a real-time CFR engine challenging. Spectral regrowth of corrected peaks by interpolating stages in the datapath,
such as interpolating filters and DACs, is also a concern. An ideal CFR block has low latency and zero missed peaks.

The ADRV9029 implements CFR using a variation of the pulse cancellation technique by subtracting a precomputed pulse from the
detected peaks to bring the signal within the power amplifier linear range. The CFR block consists of three copies of CFR engines, each of
which uses a detection threshold to detect the peaks and a correction threshold to which the detected peaks are attenuated. The
precomputed pulses can be stored within the device at startup or be updated during runtime. These spectrally shaped correction pulses
are subtracted from the data stream to bring the signal within the power amplifier linear range. The correction pulse must be spectrally
shaped to manage the noise leakage into adjacent bands. Figure 253 shows the architecture implemented in each of the CFR engines.

M
AG

NI
TU

DE THRESHOLD
Є0

Є0 ... ЄP – 1

Є1

l1l0

MULTIPLE PEAK DETECT
PEAK LOCATIONS l0 ... lP – 1

VALUES ABOVE THRESHOLD

COMPLEX SIGNAL

DELAY FIFO
N

I2 + Q2
LINEAR SYSTEM

SOLVER

PRE-CALCULATED
SPECTRALLY

SHAPED PULSE
p[n]

22
77

0-
24

7

Figure 253. CFR Engine Architecture in ADRV9029

The complex IQ signal (transmitter data) goes into a variable delay FIFO and correction is applied at its output. The input data also goes
into an interpolator, which can interpolate by 1×, 2×, or 4× times the input sample rate. This interpolated data is then fed into a peak
detector. The peak detector determines the location of all peaks in the signal and the delta by which they exceed the programmable
threshold. This information is then fed into a linear system solver. These peaks can be corrected using a precomputed spectrally shaped
pulse (also called correction pulse) which is stored in a pulse RAM. Multiple peaks can be simultaneously cancelled by time shifting and
combining these spectrally shaped pulses.

The linear system solver calculates the correction coefficients that get combined with the input signal (at the output of the delay FIFO) to
produce an output signal which has a significantly lower peak to average ratio. This corrected output signal is then passed to two more
similar CFR engines to correct missed peaks, as well as peaks that need further correction after passing through the first engine.

The CFR block within the transceiver consists of three cascaded CFR engines followed by a hard clipper to clip the few peaks that are
skipped by all three CFR engines. At the output of each engine, there is a multiplexer that can be programmed to bypass CFR or apply a
correction (shown in Figure 254).

CFR ENGINE 1 CFR ENGINE 2 CFR ENGINE 3 HARD
CLIPPERINPUT

SIGNAL
OUTPUT

A = BYPASS CFR ENGINE
B = DELAYED UNCORRECTED OUTPUT
C = DELAYED CORRECTION OUTPUT

A
B
C

A
B
C

A
B
C

A

C

22
77

0-
24

8

Figure 254. ADRV9029 Cascaded CFR Engine Blocks

The hard clipper unit at the very end of the CFR block clips any signal above a programmable threshold. This threshold generally should
not be lower than the thresholds used in the CFR engines as it leads to an increase in noise (both in-band and out of band). Each of the
individual units in Figure 254 can be bypassed depending on the use case and desired performance.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 306 of 336

The transceiver incorporates the CFR block at the very beginning of the transmitter datapath directly after the JESD block. Note that the
CFR engine can handle a maximum input sampling rate of 245.76 MHz with an internal interpolation up to 4×. Therefore, the maximum
sampling rate for the base and correction pulses is 983.04 MHz.

OVERVIEW OF BLOCKS USED IN CFR
This section provides a brief summary of the major blocks used in each of the CFR engines.

Interpolator

The interpolator can be programmed to interpolate the data by 4, 2, or 1. The main purpose of the interpolator is to produce finer timing
resolution so that the peak detector can find the location of the peaks more accurately. The interpolator takes in the transmitter data and
outputs the interpolated data to the peak detector.

Peak Detector

The purpose of the peak detector block is to find groups of peaks that are above a certain threshold and then output the peak I and Q
values along with peak locations relative to the first peak. The peak detector looks for peaks that are above a certain programmable
threshold. Because peaks do not occur often, a coarse peak detection on every sample is performed using the following method:

1. Coarse peak detection, I or Q > Threshold/√2
If this condition is false, then there is no need to compute the , I2 + Q2 complex calculation, which saves some power by avoiding
frequent multiplications. In the case when the sample is larger, the magnitude of the incoming complex signal is checked to
determine if the magnitude is above the threshold using the inequality shown in Step 2.

2. Fine peak detection, I2 + Q2 > Threshold2
If the condition in Step 1 is true, multiple consecutive samples that exceed the threshold can be found. These peaks can be corrected
using a single pulse which is superimposed on to the maximum valued peak of the group of samples.

The peak detector sends this peak location along with the values of the peak samples into the linear system solver.

Linear System Solver

When the peak location and its corresponding values are received, the linear solver calculates the complex difference between the peak
value and the threshold. The linear solver calculates the weights for various pulses required to cancel the peak.

These weights and peak location values are then used to scale and time shift the spectrally shaped pulses and generate the correction
pulse. This correction pulse is then subtracted from the transmitter input data to generate the output signal (with a low PAR).

Pulse RAM

The pulse RAM holds the correction pulse for the carrier. It is possible to load two correction pulses corresponding to two desired carrier
configurations. The user can pre-load these two correction pulses and be able to switch between two carrier configurations on-the-fly.
This mode is known as the hot swap mode and is addressed by the adi_adrv9010_CfrCorrectionPulseWrite_v2 API command.

API SOFTWARE INTEGRATION
The API functions described in this section are required to set up the CFR block in the transceiver. This section first outlines the
procedures required to use the CFR functionality and provides steps where each API function is called, and then discusses the various
data structures used to set up the CFR engine as well as lists out the different API functions used to configure the CFR block.

Setting Up the CFR

The CFR can be set any time after part initialization. When the CFR parameters are set up and the correction pulses are loaded, use the
initial calibration enumeration ADI_ADRV9025_CFR to run the CFR initial calibration. To configure the CFR engine, take the following
steps:

1. Program the CFR control configuration via adi_adrv9025_CfrControlConfigSet.
2. Verify the CFR control configuration via adi_adrv9025_CfrCtrlConfigGet.
3. Program the CFR correction pulse using adi_adrv9025_CfrCorrectionPulseWrite_v2.
4. Enable the CFR engine via adi_adrv9025_CfrEnableSet.
5. Optionally configure the hard clipper via adi_adrv9025_CfrHardClipperConfigSet.
6. Execute the CFR initial calibration via adi_adrv9025_InitCalsRun.
7. Optionally, set the active correction pulse to use in Mode 1 via the adi_adrv9025_CfrActiveCorrectionPulseSet API for carrier config

hot swapping.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 307 of 336

Updating Correction Pulses On-the-Fly

The ADRV9029 provides the flexibility to change correction pulses on-the-fly without needing to run CFR initialization calibration. The
recommended procedure assumes that the user has already successfully followed the initial procedure for setting up the CFR given in the
Setting Up the CFR section. To update correction pulses on-the-fly, take the following steps:

1. Program the CFR correction pulse using adi_adrv9025_CfrCorrectionPulseWrite_v2.
2. Program the active correction pulse using adi_adrv9025_CfrActiveCorrectionPulseSet.

This sequence allows users to upload CFR pulses during run-time operation. However, to change the CFR control settings (except for the
CFR thresholds), the sequence in the Setting Up the CFR section must be followed.

Modifying CFR Thresholds On-the-Fly

The ADRV9029 permits changing CFR thresholds without needing to run CFR initial calibration. To modify CFR thresholds on-the-fly,
take the following steps:

1. Program the CFR thresholds using adi_adrv9010_CfrControlConfigSet.
2. Enable modified thresholds using adi_adrv9025_CfrThresholdsRunTimeUpdate.

API Functions and Data Structures

This section outlines the API functions and data structures required for setting up the CFR.

adi_adrv9025_CfrCtrlConfigSet(…)

The following function sets up CFR mode, the peak threshold, the interpolation factor, and the delay through the CFR blocks.
int32_t adi_adrv9025_CfrCtrlConfigSet (adi_adrv9025_Device_t *device,
adi_adrv9025_CfrCtrlConfig_t cfrCtrlConfig[], uint8_t cfrCtrlCfgArraySize)

This API must be called to setup the CFR control configuration before executing the CFR initial calibration. Currently,
ADI_ADRV9010_CFR_MODE1 is the only mode of operation supported by the CFR engine. The user must provide the final correction
pulse to be applied to the CFR input in this mode. To calculate the threshold (cfrPeakThreshold), use the following equation:

cfrPeakThreshold = 10(Target PAR dB/20) × RMS_INPUT

The user can setup an interpolation factor of 1×, 2×, or 4× to be applied to the transmitter data before peak detection. The user can also
setup the CFR engine delay (cfrTxDelay) between n = 129 and n = 511, which translates to n+1 cycles per engine. The delay is applied to
all enabled CFR engines. CFR latency is (cfrTxDelay +1) × numCfrEnginesEnabled + 3, where the additional 3 cycles comes from the
hard clipper. The sample rate for the cycles here are at the transmitter JESD rate.

Each transmitter channel CFR block consists of three cascaded CFR engines followed by a hard clipper to clip the few peaks that are
skipped by all three CFR engines. The CFR control configuration is applied to all three CFR engines by this function. The threshold is
adjusted internally by the device firmware before applying it to each of the three CFR engines. The hard clipper can be optionally enabled
via the adi_adrv9025_CfrHardClipperConfigSet API function.

This function can be called any time after device initialization and the ARM boot up is complete. The hard clipper setting is currently set
at initialization and has to be setup before running the CFR initial calibration.

This function can be called after device initialization and the ARM processor boot up is complete but before the CFR initial calibration is
executed. See Table 264 and Table 265 for the adi_adrv9025_ CfrCtrlConfigSet(…) Parameters and the adi_adrv9025_CfrCtrlConfig_t
data structure, respectively.

Table 264. adi_adrv9025_CfrCtrlConfigSet(…) Parameters
Parameter Description
*device A pointer to the device settings structure
cfrCtrlConfig An array of CFR control configuration structures
cfrCtrlCfgArraySize The number of configurations contained in the cfrCtrlConfig array

Table 265. adi_adrv9025_CfrCtrlConfig_t Data Structure
Data Type Structure Member Valid Values Description
uint32_t txChannelMask 0 to 15 A mask consisting of 'OR'ed transmitter channels for which the

CFR core configuration is applied (1 bit for each channel).

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 308 of 336

Data Type Structure Member Valid Values Description
adi_adrv9010_
CfrModeSel_e

cfrMode 1 Selects the mode in which the CFR is required to operate in.
Currently, Mode 1 is the only supported mode.

uint16_t cfrTxDelay 129…511 Sets the CFR delay per engine in units of samples at the CFR
input rate (JESD 204B/C transmitter rate).

float cfrPeakThreshold 0…1 Sets the target CFR peak detection and correction
threshold. The threshold is calculated as:
cfrPreakThreshold = 10(Target PAR/20) × RMS_INPUT
The peak threshold is set to 0.79 by default.

float cfrEngine1PeakThresholdScaler 0…1 Threshold scaler for engine CFR Engine 3
float cfrEngine2PeakThresholdScaler 0…1 Threshold scaler for engine CFR Engine 2
float cfrEngine3PeakThresholdScaler 0…1 Threshold scaler for engine CFR Engine 1
float cfrCorrectionThresholdScaler 0…1 Threshold scaler for CFR correction
adi_adrv9010_
CfrInterpolationSel_e

cfrInterpolationFactor 1, 2, 4 Selects the interpolation factor to apply to the CFR input
before peak detection. The CFR peak detectors can run at a
higher (interpolated) rate to enable more optimal peak
detection.

uint8_t cfrEngine1MaxNumOfPeaks 0…5 Sets the maximum number of peaks to remove in one
group for the respective CFR engines (default value = 5).
The user must set this value to 0 when engine is disabled. It
is suggested to have a descending order of the maximum
number of peaks where Engine 1 has the highest value.

uint8_t cfrEngine2MaxNumOfPeaks 0…5
uint8_t cfrEngine3MaxNumOfPeaks 0…5

adi_adrv9025_CfrCtrlConfigGet(…)

The following function retrieves the core control configuration parameters for the CFR engine.
int32_t adi_adrv9025_CfrCtrlConfigGet(adi_adrv9025_Device_t * device, adi_adrv9025_TxChannels_e
txChannel, adi_adrv9025_CfrCtrlConfig_t * cfrCtrlConfig)

This function reads the CFR mode, peak threshold, interpolation factor, and the delay currently programmed into the device.

This function can be called after the device initialization and the ARM processor boot up are complete.

Table 266. adi_adrv9025_CfrCtrlConfigGet(…) Parameters
Parameter Description
*device A pointer to the device settings structure
txChannel A target transmitter channel whose CFR control configuration is required to be read back
*cfrCtrlConfig A pointer to the CFR control configuration structure which is updated with the CFR control settings from the device

adi_adrv9025_CfrCorrectionPulseWrite_v2(…)

The following function can be used to program the complex coefficients of the final CFR correction pulse.
int32_t adi_adrv9025_CfrCorrectionPulseWrite_v2(adi_adrv9025_Device_t * device, uint32_t
txChannelMask, adi_adrv9025_CfrCorrectionPulse_t cfrCorrectionPulses[], uint8_t
numCorrectionPulses);

This function is intended to be used when the CFR engine is operating in ADI_ADRV9025_CFR_MODE1 mode.

This function expects the user to provide only the first half the correction pulse because it is assumed that the correction pulse is
conjugate symmetric. This API supports the programming of the correction pulses in the following use cases:

• A final correction pulse of a maximum length of 1025 (maximum half pulse length of 512) in Mode 1 for a single carrier configuration.
Note that run-time carrier hot swapping is not supported if a pulse length of 1025 (half pulse length of 512) is used. In this case, the
full pulse must be switched during transmit off.

• Two final correction pulses of a maximum length of 513 (maximum half pulse length of 256) corresponding to two carrier configurations
for on-the-fly carrier configuration switching for Mode 1 operation. Run-time carrier switching can be executed via the adi_adrv9025_
CfrActiveCorrectionPulseSet() API which activates the correction pulse corresponding to the requested carrier configuration.

This function cab be called after device initialization and the ARM processor boot up is complete.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 309 of 336

Table 267. adi_adrv9025_CfrCorrectionPulseWrite_v2(…) Parameters
Parameter Description
*device A pointer to the device settings structure.
txChannelMask A transmitter channel selection mask to write cfrCorrectionPulses with multiple channel selection allowed.
cfrCorrectionPulses An array that consists of the final correction pulse(s) in Mode 1 operation. Note that in the case of programming two

correction pulses for carrier hot swapping, cfrCorrectionPulses[0] corresponds to ADI_ADRV9025_CFR_CARRIER_HOT_
SWAP_CORR_PULSE_1 and cfrCorrectionPulses[1] corresponds to
ADI_ADRV9025_CFR_CARRIER_HOT_SWAP_CORR_PULSE_2.

numCorrectionPulses The number of correction pulse coefficients to be programmed in the CFR engine. Note that a maximum of two correction
pulses can be programmed if the half pulse length of the two correction pulses are less than or equal to 256, and a
maximum of 1 correction pulse can be programmed if the half pulse length of the correction pulse is greater than 256.

Table 268. adi_adrv9025_CfrCorrectionPulse_t Data Structure
Data Type Structure Member Valid Values Description
int16_t coeffRealHalfPulse

An array consisting of the first half of the real part of the complex CFR
correction pulse coefficients

int16_t coeffImaginaryHalfPulse

An array consisting of the first half of the imaginary part of the complex
CFR correction pulse coefficients

uint16_t numCoeffs 512 (maximum) Number of coefficients contained in the coeffReal and coeffImaginary arrays

adi_adrv9025_CfrCorrectionPulseRead_v2(…)
The following function can be used to read back the current complex coefficients of the final CFR correction pulse programmed in the device.
int32_t adi_adrv9025_CfrCorrectionPulseRead_v2(adi_adrv9025_Device_t * device,
adi_adrv9025_TxChannels_e txChannel, uint8_t maxCorrectionPulsesToRead,
adi_adrv9025_CfrCorrectionPulse_t cfrCorrectionPulses[], uint8_t * numCorrectionPulsesRead);

This function reads the final correction pulse to be used by the CFR engine to perform CFR correction when the CFR engine is
configured to operate in (ADI_ADRV9025_CFR_MODE1). A maximum of two correction pulses of a half pulse length of 256 or a
maximum of one correction pulse of a half pulse length of 512 can be read back from the device.

Note that this function can be called only when the transmitter channel is off and the CFR engines are not active. This function can be
called only when the target transmitter channel is off after the device initialization and the ARM processor boot up are complete.

Table 269. adi_adrv9025_CfrCorrectionPulseRead_v2(…) Parameters
Parameter Description
*device A pointer to the device settings structure.
txChannel A target transmitter channel whose correction pulse coefficients are requested.
maxCorrectionPulsesToRead The maximum number of correction pulses to read, which is also the size of the cfrCorrectionPulses parameter.

The maximum number of correction pulses supported for readback is currently two.
cfrCorrectionPulses An array of CFR correction pulses that is updated with the CFR correction pulses retrieved from the device.
numCorrectionPulsesReturned The number of correction pulses actually read back from the CFR engine. The user can pass a NULL

statement to this parameter if this information is not required.

adi_adrv9010_CfrEnableSet(…)

The following function enables or disables the CFR engines present before the DPD engine in the transmitter datapath.
int32_t adi_adrv9025_CfrEnableSet(adi_adrv9025_Device_t *device, adi_adrv9025_CfrEnable_t
cfrEnable[], uint8_t cfrEnableArraySize);

The CFR control configuration settings can be applied via adi_adrv9025_CfrCtrlConfigSet.

To apply CFR correction to transmitter data, the user can set adi_adrv9025_CfrEnable_t.cfrEngineXEnable to 1 and adi_adrv9025_
CfrEnable_t.cfrEngineXBypassEnable to 0. To bypass the CFR engine, the user can set adi_adrv9025_CfrEnable_t.cfrEngineXEnable to 1
and adi_adrv9025_CfrEnable_t.cfrEngineXBypassEnable to 1. To disable the CFR engine completely, the user can set
adi_adrv9025_CfrEnable_t.cfrEngineXEnable to 0.

Note that this is a function run at initialization and the enabling/disabling of CFR engine cannot be performed during runtime.

This function can be called after the device initialization and the ARM processor boot up are complete but before the CFR initial
calibration is executed.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 310 of 336

Table 270. adi_adrv9025_CfrEnableSet(…) Parameters
Parameter Description
*device A pointer to the device settings structure
cfrEnable An array of CFR enable control configuration structures
cfrEnableArraySize The number of configurations contained in the cfrEnable array

adi_adrv9025_CfrEnableGet(…)

The following function retrieves the current state of CFR engine enables.
int32_t adi_adrv9025_CfrEnableGet(adi_adrv9025_Device_t *device, adi_adrv9025_TxChannels_e
txChannel, adi_adrv9025_CfrEnable_t *cfrEnable);

This function can be called after the device initialization and the ARM processor boot up are complete.

Table 271. adi_adrv9025_CfrEnableGet(…) Parameters
Parameter Description
*device A pointer to the device settings structure
txChannel A target transmitter channel whose enable status is requested
*cfrEnable A pointer to a CFR enable structure that updates with the enable settings in the device

adi_adrv9025_CfrHardClipperConfigSet(…)

The following function enables/disables the CFR hard clipper and configures the hard clipper threshold.
int32_t adi_adrv9025_CfrHardClipperConfigSet(adi_adrv9025_Device_t *device,
adi_adrv9025_CfrHardClipperConfig_t cfrHardClipperConfig[], uint8_t cfrHardClipperCfgArraySize);

The CFR hard clipper threshold is applied to an approximation of √I2 + Q2.The threshold is normalized to 1 and is relative to 0 dBFS
which means that a threshold of 1 corresponds to a threshold of 0 dBFS. It is not recommended to set the hard clipper threshold to a value
less than −7 dBFS to ensure optimum performance.

This function can be called any time after the device initialization and the ARM boot up are complete. The hard clipper setting is
currently an initialization setting and must be setup before running the CFR initial calibration. There is no support for dynamically
changing the hard clipper threshold during runtime.

Table 272. adi_adrv9025_ CfrHardClipperConfigSet(…) Parameters
Parameter Description
*device Pointer to the device settings structure
cfrHardClipperConfig An array consisting of the CFR hard clipper configurations
cfrHardClipperCfgArraySize Number of configurations in cfrHardClipperConfig array

adi_adrv9025_CfrHardClipperConfigGet(…)

The following function retrieves the CFR hard clipper setting for the requested transmitter channel.
int32_t adi_adrv9025_CfrHardClipperConfigGet (adi_adrv9025_Device_t *device,
adi_adrv9025_TxChannels_e txChannel, adi_adrv9025_CfrHardClipperConfig_t *cfrHardClipperConfig);

This function can be called any time after the device initialization and the ARM boot up are complete.

Table 273. adi_adrv9025_ CfrHardClipperConfigGet(…) Parameters
Parameter Description
*device A pointer to the device settings structure
txChannel A target transmitter channel for which the CFR hard clipper status is requested
*cfrHardClipperConfig A pointer to the CFR hard clipper configuration that updates with the device hard clipper configuration settings

adi_adrv9025_CfrHardClipperConfig_t

The adi_adrv9025_CfrHardClipperConfig_t data structure contains the information to set up the hard clipper unit in the device.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 311 of 336

Table 274. CFR Hard Clipper Settings Structure Member Description
Data
Type Structure Member

Valid
Values Description

uint32_t txChannelMask 0..15 This mask consists of OR'ed transmitter channels for which the hard clipper
configuration is applied (1 bit for each channel).

uint8_t cfrHardClipperEnable 0..1 1: enable the hard clipper on the channels requested
 0: disable hard clipper
float cfrHardClipperThreshold 0..1 This normalized threshold for the hard clipper ranges from 0 to 1. The threshold is

relative to 0 dBFS, which means that a threshold value of 1 corresponds to 0 dBFS. The
threshold is applied to an approximation of √I2 + Q2

adi_adrv9025_CfrStatusGet(…)

The following function reads the CFR status for the requested transmitter channel.
int32_t adi_adrv9025_CfrStatusGet(adi_adrv9010_Device_t * device, adi_adrv9010_TxChannels_e
txChannel, adi_adrv9025_CfrStatus_t * cfrStatus);

This function retrieves the CFR error code for the last CFR error occurred, along with the statistics information that includes the number
of peaks skipped, number of peaks detected, and the number of peaks clipped by each CFR engine. The user can also monitor the CFR
status to retrieve errors encountered during CFR initial calibration execution. The CFR statistics can be retrieved using this function.

This function can be called any time after the device initialization.

Table 275. adi_adrv9025_CfrStatusGet(…) Parameters
Parameter Description
*device Pointer to the device settings structure
txChannel Enum to select the target transmitter channel whose CFR status is requested
*cfrStatus Pointer to the status structure that will be updated with the status retrieved from the device

adi_adrv9025_CfrStatus_t

The adi_adrv9025_CfrStatus_t data structure holds the transmitter CFR engine status for each channel.

Table 276. CFR Status Structure Member Description
Structure Member Description
adi_adrv9025_CfrError_e Enumerated list of CFR Errors.
adi_adrv9025_CfrStatistics_t Data structure to hold transmitter CFR engine statistics.

adi_adrv9025_CfrError_e

The adi_adrv9025_CfrError_e data structure holds the enumerated list of CFR errors.

Table 277. CFR Error Structure Member Description
Structure Member Description
ADI_ADRV9025_CFR_CONFIGURATION_ERROR Error code to convey that the mandatory CFR configurations were not done

(not active/used).
ADI_ADRV9025_CFR_PROG_PULSE_MODE_ERROR Error code to convey that an unsupported pulse mode was selected.
ADI_ADRV9025_CFR_INPUT_RATE_HIGH_ERROR Error code to convey that the transmitter channel sample rate is higher than

245.76 MHz.
ADI_ADRV9025_CFR_CTRL_CMD_NOT_SUPPORTED_ERROR Error code to convey that the control command is not supported

adi_adrv9025_CfrStatistics_t

The adi_adrv9025_CfrStatistics_t data structure holds the transmitter CFR engine statistics for each transmitter channel.

mk:@MSITStore:C:%5CProgram%20Files%5CAnalog%20Devices%5CADRV9025%20Transceiver%20Evaluation%20Software_x64_FULL%5CResources%5CAdi.ADRV9025.Api%5Cpublic%5Cdoc%5Cadrv9025.chm::/adi__adrv9025__dfe__types_8h.html#a42f1baf42cce434ee62663e0c2f5d656
mk:@MSITStore:C:%5CProgram%20Files%5CAnalog%20Devices%5CADRV9025%20Transceiver%20Evaluation%20Software_x64_FULL%5CResources%5CAdi.ADRV9025.Api%5Cpublic%5Cdoc%5Cadrv9025.chm::/adi__adrv9025__dfe__types_8h.html#a89c2e4ae0cade907c595697732c077fb
https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 312 of 336

Table 278. CFR Statistics Structure Member Description
Data Type Structure Member Description
uint64_t cfrEngine1PeaksDetected Number of peaks detected by CFR Engine 1 since the last reset
uint64_t cfrEngine1PeaksSkipped Number of peaks skipped by CFR Engine 1 since the last reset
uint64_t cfrEngine2PeaksDetected Number of peaks detected by CFR Engine 2 since the last reset
uint64_t cfrEngine2PeaksSkipped Number of peaks skipped by CFR Engine 2 since the last reset
uint64_t cfrEngine3PeaksDetected Number of peaks detected by CFR Engine 3 since the last reset
uint64_t cfrEngine3PeaksSkipped Number of peaks skipped by CFR Engine 3 since the last reset
uint64_t cfrNumSamplesClipped Number of samples clipped by the CFR engine since the last reset

adi_adrv9025_CfrActiveCorrectionPulseSet(…)

The following function switches the final correction pulse to apply in the CFR engine in Mode 1 (ADI_ADRV9025_CFR_MODE1) operation.
int32_t adi_adrv9025_CfrActiveCorrectionPulseSet(adi_adrv9025_Device_t *device, uint32_t
txChannelMask, adi_adrv9025_CfrCarrierHotSwapCorrPulseSel_e cfrCorrectionPulseSel);

This function can be used to activate one of the two final correction pulses corresponding to two carrier configurations when the active
carrier configuration is changed during runtime (carrier configuration hot swapping).

This function can only be executed if two correction pulses of a length of 512 (half pulse length of 256) or lesser are programmed into the device
prior to calling this function. If a single correction pulse of a length of 512 or lesser (half pulse length of 256 or lesser) is programmed in
the device, this function has no effect. The correction pulses can be programmed via the adi_adrv9025_CfrCorrectionPulseWrite_v2() API.

Note that this function does not change the CFR configuration including the peak threshold or interpolation factor, and the CFR engine
enables when the active correction pulse is switched. By default, the device activates ADI_ADRV9025_CFR_CARRIER_HOT_SWAP_
CORR_PULSE_1 on reset. The CFR engines must be enabled for the active correction pulse switching to take place. Calling this function
when the CFR engines are disabled has no effect.

This runtime function can be called any time after device initialization and two correction pulses of a length of 512 or less (half pulse
length of 256 or less) are programmed via the adi_adrv9025_CfrCorrectionPulseWrite_v2() API and the CFR initial calibration has been
executed. The CFR initial calibration can be executed via the adi_adrv9025_InitCalsRun() API. The mode of operation must be set to
ADI_ADRV9025_CFR_MODE1 via the adi_adrv9025_CfrCtrlConfigSet() API. At the time of calling this function, the CFR engine must
be enabled. Otherwise, the active correction pulse switching does not occur.

Table 279. adi_adrv9025_CfrActiveCorrectionPulseSet(…) Parameters
Parameter Description
*device A pointer to the device settings structure
txChannel A mask consisting of OR’ed transmitter channels for which the requested correction pulse is required to be activated
cfrCorrectionPulseSel Selection for the correction pulse to activate

adi_adrv9025_CfrCarrierHotSwapCorrPulseSel_e

The adi_adrv9025_CfrStatistics_t data structure holds the transmitter CFR engine statistics for each transmitter channel.

Table 280. CfrCarrierHotSwapCorrPulseSel_e Member Description
Structure Member Description
ADI_ADRV9025_CFR_CARRIER_HOT_SWAP_CORR_PULSE_1 Sets the active CFR correction pulse to Pulse 1 when two correction pulses of

half pulse lengths of 256 or less are programmed
ADI_ADRV9025_CFR_CARRIER_HOT_SWAP_CORR_PULSE_2 Sets the active CFR correction pulse to Pulse 2 when two correction pulses of

half pulse lengths of 256 or less are programmed

adi_adrv9025_CfrActiveCorrectionPulseGet(…)

The following function returns the correction pulse currently activated in the CFR engine in Mode 1 (ADI_ADRV9025_CFR_MODE1)
operation.
int32_t adi_adrv9025_CfrActiveCorrectionPulseGet(adi_adrv9025_Device_t *device,
adi_adrv9025_TxChannels_e txChannel, adi_adrv9025_CfrCarrierHotSwapCorrPulseSel_e
*cfrCorrectionPulseSel);

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 313 of 336

This function can be used to retrieve the status of the correction pulse currently activated in the device. By default, the device activates
ADI_ADRV9025_CFR_CARRIER_HOT_SWAP_CORR_PULSE_1 on reset.

This runtime function can be called any time after device initialization and two correction pulses of a length of 512 or less (half pulse
length of 256 or less) are programmed via the adi_adrv9025_CfrCorrectionPulseWrite_v2() API and the CFR initial calibration has been
executed. The CFR initial calibration can be executed via the adi_adrv9025_InitCalsRun() API.

Table 281. adi_adrv9025_CfrActiveCorrectionPulseGet(…) Parameters
Parameter Description
*device A pointer to the device settings structure
txChannel A target transmitter channel for which the active correction pulse status is requested
*cfrCorrectionPulseSel A pointer to memory that updates with the currently active CFR correction pulse

TYPICAL PROCEDURE TO SET UP CFR USING THE GUI
This section describes how to set up CFR on the device using Transceiver Evaluation Software (TES). The user can load the desired
waveform using the Tones pop-up window in the Transmit tab on TES as shown in Figure 255.

22
77

0-
24

9

Figure 255. Load Waveform Using Transceiver Evaluation Software

When the waveform loads, it is transmitted using the play button on the transmit tab. As an example, an LTE 20 MHz waveform with
PAR of 12.2 dB is uploaded as shown in Figure 255. The uncorrected waveform complementary cumulative distribution function (CCDF)
is shown in Figure 256.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 314 of 336

22
77

0-
25

0

Figure 256. CCDF of Example 20 MHz LTE Signal with PAR of 12.2 dB (Uncorrected Waveform)

The DFE tab is used in the TES to set up the CFR engines as shown in Figure 257.

22
77

0-
25

1

Figure 257. CFR Engine Setup Using the TES

Load File can be used to load the correction pulse (see Figure 258). This correction pulse is specific to the waveform being used (LTE 20 MHz
in the example shown) and is sampled at the peak detection rate. The CFR peak threshold is set to 0.47, which corresponds to a target
PAR calculated using the following equation:

Target PAR = 0 × log10 (CFR Peak Threshold/RMSInputSignal)

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 315 of 336

Using the previous equation, the target PAR is around 8.75 dB. However, if the user wants to derive the CFR peak threshold value needed
to achieve a desired target PAR, use the following equation:

CFR Peak Threshold = RMSInputSignal × 10 (Target PAR/20)

The user must then enable the required number of CFR engines, as shown in Figure 258.

22
77

0-
25

2

Figure 258. Enabling CFR Using TES

When Apply is clicked (which runs the CFR initial calibration), the CFR engines enable, and the corrected waveform can be observed on
the spectrum analyzer, as shown in Figure 259.

22
77

0-
25

3

Figure 259. CCDF of Corrected Waveform Using CFR

As shown in Figure 259, the corrected CCDF curve has a PAR of 8.75 dB, which corresponds to the CFR peak threshold that was
previously set. No spectral regrowth is shown and the desired PAR can be achieved.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 316 of 336

Impact on EVM

This section describes the impact of using the CFR engines within the transceiver on EVM performance. The same LTE 20 MHz tone
(PAR = 12.67 dB) used in the previous section is also used in this example. The setup information for this waveform is as follows:

• Carrier 1 center frequency = 0 MHz
• Output sample rate = 245.76 MHz
• DAC resolution = 16
• Output data format = 2s Complement
• Scaling = 0 dB
• Modulation = 64QAM
• Test model = 3.1
• Final PAR (dB) = 12.2

The EVM observed before applying the CFR is shown in Figure 260.

22
77

0-
25

4

Figure 260. Observed EVM Before Applying CFR

Applying the CFR settings discussed in the Typical Procedure to Set Up CFR Using the GUI section where the target PAR is set to 8 dB,
the degradation observed in EVM is shown in Figure 261.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 317 of 336

22
77

0-
25

5

Figure 261. Observed EVM After Applying CFR (Target PAR = 8 dB)

We can see above that the rms EVM degraded from 0.6% to 2% due to application of CFR. From a quick sweep of the rms EVM at
different target PAR, we see the trend shown in Figure 262. Note that different systems have different requirements for maximum
tolerable EVM degradation due to CFR, which would drive the minimum achievable PAR for a given waveform configuration. Note also
that the performance shown here is highly dependent on the “goodness” of the CFR correction pulse. With a different pulse, we should
expect a different result.

6

5

4

EV
M

 (%
rm

s)

TARGET PAR (dB)

3

2

1

0
6 7 8 9 10 11 12 13

22
77

0-
25

6

Figure 262. Target PAR vs. EVM

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 318 of 336

CLOSED LOOP GAIN CONTROL (CLGC)
CLGC OVERVIEW
CLGC is a closed-loop tracking calibration that adjusts front-end transmit attenuations to maintain a constant desired gain in the
transmit path from baseband input to power amplifier output such that the power amplifier output power is constant with respect to
changes in temperature or other variations. To set the desired transmit gain, adjust the transmit front-end attenuation such that the power
amplifier output reaches the desired power with the maximum nominal level of the baseband signal. The digital swing of the baseband
signal is not affected because the attenuation is applied on the analog front end of the transmit channel.

The power amplifier output power can fluctuate around the target level over the time because of temperature changes and other factors
given a constant baseband signal level. The CLGC helps reduce the fluctuation and meet the standard and regulatory requirements (for
example, ±2 dB fluctuation is required by the LTE/5GNR standard). The baseband signal level can change significantly because of the
dynamics of power control and traffic load in a network (for example, dynamic range can be up to 20 dB in LTE). The CLGC helps keep
the output power linearly proportional to the baseband signal level.

ELEMENTS OF CLGC
Figure 263 shows a simplified block diagram of the CLGC system. The CLGC algorithm observes the transmit data (x(n)), the post power
amplifier observation data (y(n)), and adjusts the transmit front-end attenuation such that the overall loop gain (observation receive
data/transmit data) remains constant.

DUC 1, 2, 4 Tx PA FILTER/DUPLEXER

ORxARM-C

DATA FROM
CFR

FIRMWARE

DPD
ACTUATOR

Tx ATTENUATION

Tx ATTEN CONTROL

x(n)

y(n)

22
77

0-
25

7

FE

Figure 263. CLGC Simplified Block Diagram

The elements of the CLGC system include the following:

• Transmit datapath. The digital baseband signal from the ADRV9025 deframer output goes through a CFR block for reduction of the
overall peak to average ratio of the signal followed by a digital upconverter that interpolates the baseband signal by a factor of 1×, 2×,
or 4× for analyzing the baseband signal over the DPD analysis bandwidth. The upconverted data before the DPD actuator is then
used as the reference transmit data for the closed loop gain control algorithm.

• Observation datapath. The CLGC algorithm relies on observing any fluctuations in the power amplifier output power through a
feedback path. The feedback path is realized through the observation receiver. The power amplifier output data is coupled into the
observation receiver, downconverted, and digitized for loop gain estimation and correction by the firmware.

• Capture engine. The transmit and observation receive samples for CLGC measurement are captured and aligned in the capture
engine, preprocessing is performed, and the preprocessed samples are passed onto the embedded ARM processor for CLGC
measurement and loop gain control.

• CLGC processing. The CLGC algorithm itself is implemented in the firmware running on an embedded ARM-C in the transceiver.
The CLGC is a tracking calibration that tracks the observed and baseband data and uses a loop gain estimator to track changes in the
overall loop gain. Refer to the CLGC Algorithm Overview section for an overview of the CLGC algorithm.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 319 of 336

CLGC ALGORITHM OVERVIEW
The CLGC algorithm is designed to maintain a constant loop gain and overcome any minor fluctuations in the power amplifier output
power because of variations in temperature and other operating conditions. Loop gain is defined as the ratio of the power level of
observed data to the power level of the baseband transmit data as follows:

Loop Gain = Observation Receive RMS Power/Transmit RMS Power

The CLGC algorithm relies on the post power amplifier feedback data to estimate the loop gain and adjust the front-end transmit
attenuation on the transceiver. The observation points of the CLGC algorithm are shown in Figure 264.

DPD AND Tx
CHAIN

LOOP GAIN ESTIMATION
AND Tx ATTEN CTRL

PA

Tx FE
ATTENUATION

+
+ V

xFROM DPD HALF-BAND
INTERPOLATORS

y

22
77

0-
25

8

Figure 264. CLGC Algorithm Observation Points

The signal path from the reference baseband transmit input to the observed data for loop gain estimation can be divided into four
sections, as listed in Table 282. The total loop gain observed at the observation receiver includes the front-end attenuation out of the
transceiver, the gain of the power amplifier, the coupling attenuation for feedback, and the observation receiver front-end attenuation.

Table 282. Observed Data for Loop Gain Estimation
Section Gain Equation Comments
Transmit Section Xtx(n) = gTX + (x(n) +

vtx_DAC_Quant(n))
gTX = total transmit attenuation

 x(n) = transmit baseband data
 vtx_DAC_Quant = transmit DAC quantization noise
Power Amplifier Section XPA(n) = gPA. Xtx(n) + vPA(n) gPA = power amplifier gain at the power amplifier operating point
 vPA = additive noise determined by ACLR
Coupling Section Yorx(n) = gCPL.XPA(n) + vorx(n) gCPL = coupling attenuation in the observation receive path
 vorx = in-band thermal noise and additive noise determined by noise

figure in observation receive path
Observation Receive
Section

y(n) = gorx. Yorx(n) +
vorx_ADC_Quant(n)

gorx = front-end observation receive attenuation

 vorx_ADC_Quant = observation receive ADC quantization noise.

Total gain seen at y(n),

g = gorx × gCPL × gPA × gTX

Observation

To relate the observation receive samples to the transmit samples in the loop gain estimation engine, use the following equation:

y(n) = gx(n) + v(n)

where:
x(n) is the input transmit samples from a user BBIC.
y(n) is the output samples from observation receive.
v(n) is the equivalent additive noise from the entire loop, which can include thermal noise, quantization noise, phase noise, and nonlinear
distortions.
g is the desired loop gain set by the user based on a nominal level of x(n) and an expected output power of the power amplifier.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 320 of 336

Loop Gain Estimation and Convergence

A simplified equation of the loop gain estimation is described below. The rms power is calculated on captured transmit samples (x(n))
and observation receive samples (y(n)), where N is the total number of samples captured per CLGC update. The value N is configured by
the user. Refer to the CLGC Measurement section for details on CLGC sample capture.

Estimated Loop Gain = Observation Receive RMS Power/Transmit Power =

2

2

0 ()

0 ()

N y n
n
N y x
n

=

=

∑

∑

With the loop gain estimated, a loop gain error can be defined as follows:

Loop Gain Error = Estimated Loop Gain/Expected Loop Gain

The estimated loop gain is determined by the CLGC algorithm, and the expected loop gain is configured by the user. The objective of the
CLGC is to reduce the loop gain error ratio to 1 dB or 0 dB. The CLGC converges to the expected loop gain by tuning the transceiver
front-end transmit attenuation, as shown in Figure 264.

ENABLING THE CLGC TRACKING CALIBRATION
The CLGC tracking calibration can be enabled using the adi_adrv9025_TrackingCalsEnableSet() API. The user can pass the CLGC tracking
calibration mask values defined in the adi_adrv9025_cals_types.h file as argument to the adi_adrv9025_TrackingCalsEnableSet() API. The
mask values are described in Table 283.

Table 283 CLGC Tracking Calibration Mask
CLGC Tracking Calibration Mask Value Description
ADI_ADRV9025_TRACK_TX1_CLGC 0x0000000000100000 Enable CLGC tracking calibration on Tx1
ADI_ADRV9025_TRACK_TX2_CLGC 0x0000000000200000 Enable CLGC tracking calibration on Tx2
ADI_ADRV9025_TRACK_TX3_CLGC 0x0000000004000000 Enable CLGC tracking calibration on Tx3
ADI_ADRV9025_TRACK_TX4_CLGC 0x0000000008000000 Enable CLGC tracking calibration on Tx4

There are at least three prerequisites for enabling the CLGC tracking calibration including the following:

1. The correct transmit to observation receive mapping must be configured during initialization. The adi_adrv9025_TxToOrxMappingSet()
API can be used for this purpose. The correct mapping of the transmit path to the observation path must be communicated to the
firmware to capture data from the correct observation receiver.

2. The path delay initial calibration must be executed through the adi_adrv9025_InitCalsRun() API with the mask value equal to
ADI_ADRV9025_EXTERNAL_PATH_DELAY. The external path delay from the transmit to observation receive path is required to
align the transmit and observation receive samples for estimating loop gain.

3. The DPD model must be loaded and the DPD reset must be asserted. This step is required to initialize the DPD actuator.

Please refer to the Recommended Sequence for Enabling CLGC Tracking Calibration section in this document for the list of commands
to be used for bringing up CLGC.

The user can pass a 64-bit unsigned integer with OR’d values of the CLGC mask to enable the CLGC tracking calibration on the requested
transmit channel. For example, to enable the CLGC tracking calibration on all four transmit channels, the user can pass the parameters
shown in Table 284 as arguments to the adi_adrv9025_TrackingCalsEnableSet() API.

Table 284. CLGC Tracking Calibration Enable Example Arguments to the adi_adrv9025_TrackingCalsEnableSet() API
Parameter Data Type Description Value
enableMask uint64_t The 64-bit ‘OR’ed mask that consists of tracking calibrations to

enable/disable
(ADI_ADRV9025_TRACK_TX1_CLGC |
ADI_ADRV9025_TRACK_TX2_CLGC |
ADI_ADRV9025_TRACK_TX3_CLGC |
ADI_ADRV9025_TRACK_TX4_CLGC)

enableDisableFlag Enumeration Indicates whether the mask value passed in the enableMask
parameter is to be used for enabling or disabling the tracking
calibration

ADI_ADRV9025_TRACKING_CAL_ENABLE

Similarly, to disable the CLGC tracking calibration, the user can set the argument enableDisableFlag to an enumeration value
ADI_ADRV9025_TRACKING_CAL_DISABLE to disable the CLGC tracking calibration on the requested channels.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 321 of 336

Note that when the CLGC tracking calibration is enabled, the CLGC does not actively control the loop gain. The user must explicitly
configure the loop gain control enable via the adi_adrv9025_ClgcConfigSet() API to enable actively control the CLGC loop gain. Details
regarding the CLGC modes of operation are described in the CLGC Measurement section.

The CLGC tracking calibration works in synchronization with the DPD algorithm, and the CLGC is scheduled once per second by the firmware.

CLGC MODES OF OPERATION
The CLGC functionality can operate in either of the following two modes:

• Passive loop gain measurement. This mode of operation is typically activated to determine the initial operating point of the power
amplifier. When a transmitter is activated, the user determines the power amplifier operating point by sending traffic and measuring
the overall loop gain from observation receive to transmit. During this stage, the user can take advantage of the passive loop gain
measurement mode in which the CLGC algorithm measures the loop gain without actively adjusting the transmit front-end
attenuation. When the ideal operating point is determined, the user can then enable active loop gain control mode.

• Active loop gain control. In this mode, the CLGC measures the loop gain from observation receive to the transmit baseband and
adjusts the transmit front-end gain to maintain the loop gain. This mode of operation is typically activated during runtime when the
initial operating points are determined, and the initial observation receive gain and transmit attenuation settings are configured. For
the active loop gain control mode, the user must configure the expected loop gain using the adi_adrv9025_ClgcConfigSet() API
through the clgcExpectedLoopGain_dB parameter in the adi_adrv9025_ClgcConfig_t data structure.

The user can select the CLGC mode of operation through the adi_adrv9025_ClgcConfigSet() API using the clgcEnableGainControl
parameter in the adi_adrv9025_ClgcConfig_t data structure, as shown in Table 285.

Table 285. CLGC Mode of Operation Configuration
clgcEnableGainControl CLGC Mode Activated
0 Passive loop gain measurement
1 Active loop gain control

Figure 265 captures a typical CLGC bring up sequence during which the passive and active loop gain control modes are active at various stages.

In passive loop gain measurement mode, the user can retrieve the observation receive rms power and transmit rms power as well as the
loop gain estimated by the CLGC algorithm using the adi_adrv9025_ClgcStatusGet() API. The adi_adrv9025_ClgcStatus_t structure has
the clgcLoopGain, clgcTxRmsPower, and clgcOrxRmsPower members that can be monitored to adjust the initial operating point of the
power amplifier and determine the desired loop gain.

The passive loop gain measurement mode is mostly used in a factory calibration setting. The optimal operating point for the power amplifier is
determined, the loop gain, transmit attenuation and observation receive gain values are noted, and the values are used in the field.

END OF CLGC SETUP

USER ADJUSTS Tx
ATTENUATION,

ORx GAIN

ClgcStatusGet()
FOR LOOP GAIN,

Tx AND ORx
RMS POWER

ClgcConfigSet() –
SET DESIRED LOOP GAIN,

ENABLE ACTIVE LOOP
GAIN CONTROL MODE

CLGC TRACKING
CAL ENABLE –

PASSIVE LOOP GAIN
MEASUREMENT

PA OPERATING
POINT REACHED?

PASSIVE
LOOP GAIN
MEASUREMENT

ACTIVE
LOOP GAIN
CONTROL

YES

NO

22
77

0-
25

9

Figure 265. CLGC Modes of Operation During Bring Up

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 322 of 336

CLGC MEASUREMENT
The CLGC measurement cycle is common to both passive loop gain measurement and active loop gain control modes. In active loop gain
control mode, the transmit attenuation is also adjusted by the CLGC algorithm. The transmit attenuation adjustment is described in the
following section.

The CLGC measurement relies on the sample batch size, the power level of the samples and the SNR of the observed data. The CLGC captures
samples in batches specified by the clgcMeasurementBatchTime_us parameter defined in the adi_adrv9025_ClgcConfig_t data structure.
The user must tune the measurement batch size based on the signal characteristics that they are most likely to encounter. Refer to the
Case Study for Configuring CLGC Batch Sampling Period section, which goes through an example case study for determining the
optimum batch measurement size. The list of parameters used to determine a successful capture is listed in Table 286.

Table 286. CLGC Measurement Configuration
Parameter Description User Configuration Access
Capture
Batch Time

This parameter determines the duration of samples to be captured per batch
specified in microseconds. A maximum of 65536 µs can be configured.

adi_adrv9025_ClgcConfig_t.
clgcMeasurementBatchTime_us

Maximum
Number of
Batches

The CLGC measurement continues to capture samples in batches until the
required SNR criteria is met or the number of batches exceeds 512. If the
number of batches captured exceeds 512 and the requisite SNR criteria is not
met, an error is flagged and the CLGC aborts the calibration.

Fixed value of 512, not user configurable

Transmit
Qualifying
Threshold

If the captured transmit samples are below this user configured threshold, the
samples are discarded.

adi_adrv9025_ClgcConfig_t.
clgcTxQualifyingThreshold_dBFS

Observation
Receive
Qualifying
Threshold

If the captured observation receive samples are below this user configured
threshold, the samples are discarded.

adi_adrv9025_ClgcConfig_t.
clgcOrxQualifyingThreshold_dBFS

Transmit and Observation Receive Qualifying Threshold

As described in Table 286, the CLGC samples are required to meet the threshold criteria to be considered for loop gain estimation. The
thresholds are configured by the user through the adi_adrv9025_ClgcConfigSet() API using the clgcTxQualifyingThreshold_dBFS and
clgcOrxQualifyingThreshold_dBFS parameters that are part of the adi_adrv9025_ClgcConfig_t data structure. If either one of the
transmit or observation receive samples do not meet the criteria, the entire batch of transmit and observation receive captured data is
discarded. An example scenario in which the transmit/observation receive signals meet the threshold criteria in Batch 1 where the rms
power in Batch 2 fails to meet the threshold criteria is shown in Figure 266. Therefore, samples in Batch 2 are discarded and not
considered for measurement.

Tx/ORx
SIGNAL

RMS

BATCH 1 BATCH 2

Tx/ORx
SIGNAL

THRESHOLD

RMS POWER
OF BATCH 2
DOES NOT
MEET THE

THRESHOLD,
SAMPLES

DISCARDED

BATCH 1 HAS
RMS POWER
ABOVE THE
THRESHOLD.
THEREFORE,

THE SAMPLES
ARE USED

FOR LOOP GAIN
ESTIMATION

22
77

0-
26

0

Figure 266. Transmit and Observation Receive Qualifying Threshold for CLGC Measurement

The complete CLGC measurement cycle for a single update period is shown in Figure 267. The flowchart explains the measurement, and
its interactions with the measurement parameters are described in Table 286. Note that the CLGC only captures samples until the
transmit/observation receive threshold and the observation receive SNR criteria are met. When the threshold and SNR criteria are met,
the CLGC proceeds to measure the loop gain and does not capture any further samples.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 323 of 336

END OF CLGC SETUP

FLAG AN ERROR THAT
SIGNAL LEVEL IS

BELOW THE THRESHOLD
AND ABORT UPDATE

DELAY FOR 3ms
AND RETRY

CAPTURE A BATCH
OF SAMPLES FOR A

TIME PERIOD
SPECIFIED BY

adi_adrv9025_ClgcConfig_t.
clgcMeasurementBatchTime_usTHE QUALIFYING THRESHOLDS

ARE CONFIGURED BY
THE USER THROUGH

adi_adrv9025_ClgcConfig_t.
clgcTxQualifyingThreshold_dBFS,

adi_adrv9025_ClgcConfig_t.
clgcTxQualifyingThreshold_dBFS

ESTIMATE LOOPGAIN

START OFCLGC
MEASUREMENT

ORx AND Tx
CAPTURED DATA

MEETS THE THRESHOLD
CRITERIA?

YES

YES

YES

ORx SAMPLES
MEET SNR CRITERIA

OFTHE CLGC
ALGORITHM?

NUMBER OF
RETRIES >5

YES

NO

NO

FLAG AN ERROR THAT
MAXIMUM NUMBER OF

BATCHES HAVE EXCEEDED
AND ABORT UPDATE

NUMBER OF
BATCHES < 512

NO

NO

22
77

0-
26

1

Figure 267. CLGC Measurement Cycle

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 324 of 336

CLGC TRANSMIT ATTENUATION CONTROL
As shown in Figure 263, the CLGC algorithm tunes the transmit front-end attenuation in the transceiver to converge to the requested loop gain.
The user is required to configure the attenuation limits and the step size parameters through the adi_adrv9025_ClgcConfigSet() API.
The transmit attenuation control parameters that a user must configure are described in Table 287.

Table 287. transmit attenuation control user configuration
Parameter Description User Configuration Access
Minimum Transmit
Attenuation

The absolute value of the lower limit of transmit attenuation is configured in dB.
For example, if the lower transmit attenuation limit is configured as 3 dB, the
CLGC algorithm cannot adjust the transmit front-end attenuation beyond 3 dB.

adi_adrv9025_ClgcConfig_t.
clgcMinTxAttenAdjust_dB

 This parameter can be used to mitigate CLGC over compensating during any
catastrophic situations when observation receive data is corrupted and loop
gain estimated is bad. Setting the minimum transmit attenuation limit
ensures that the power amplifier is not over driven.

Maximum Transmit
Attenuation

The absolute value of the upper limit of transmit attenuation is configured in dB.
For example, if the upper transmit attenuation limit is configured as 30 dB, the
CLGC algorithm cannot adjust the transmit front-end attenuation beyond 30 dB.

adi_adrv9025_ClgcConfig_t.
clgcMaxTxAttenAdjust_dB

 This parameter can be used to mitigate CLGC over compensating during any
catastrophic situations when observation receive data is corrupted and loop
gain estimated is bad. Setting the maximum transmit attenuation limit
ensures that the transmit front-end attenuation does not go underrange.

Transmit Gain
Adjustment Step

This parameter sets the maximum step size for adjusting the transmit
attenuation per CLGC update with a resolution of 0.05 dB.

adi_adrv9025_ClgcConfig_t.
clgcMaxGainAdjustmentStepSize_dB

The transmit gain adjustment step size is a trade-off between the time required to converge vs. transient spectral emissions due. A smaller
transmit gain adjustment step results in smaller transient emissions but takes a longer time to converge. A large step size can result in
transient emissions because of a large change in power, but the convergence time is lower compared to a smaller step size.

An example of this adjustment is shown in Figure 268 where the desired loop gain is 2.8 × transmit gain adjustment step size relative to
the initial loop gain. The CLGC algorithm adjusts the transmit attenuation over three update periods to reach the desired loop gain, as
shown in in Figure 268. Note that the CLGC update period is 1 second.

DESIRED
LOOPGAIN

ESTIMATED
LOOPGAIN

1× STEP SIZE

CLGC
UPDATE1

CLGC
UPDATE2

CLGC
UPDATE3

INITIAL
LOOPGAIN

1× STEP SIZE

Tx ATTENUATION
ADJUSTMENT 2

Tx ATTENUATION
ADJUSTMENT1

Tx ATTENUATION
ADJUSTMENT 3

0.8× STEP SIZE

22
77

0-
26

2

Figure 268. CLGC Loop Gain Convergence for 2.8× Step Size

Figure 269 represents the complete CLGC update cycle including the measurement and transmit attenuation control for a single CLGC update.
The flow diagram represents the measurement and update for a single CLGC update cycle.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 325 of 336

END OF CLGC SETUP

FLAG AN ERROR THAT
SIGNAL LEVEL IS

BELOW THE THRESHOLD
AND ABORT UPDATE

DELAY FOR 3ms
AND RETRY

CAPTURE A BATCH
OF SAMPLES FOR A

TIME PERIOD
SPECIFIED BY

adi_adrv9025_ClgcConfig_t.
clgcMeasurementBatchTime_us

ESTIMATE LOOP GAIN
AND ADJUST Tx
ATTENUATION

START OF CLGC
MEASUREMENT

ORx AND Tx
CAPTURED DATA

HAS 30 CONTINUOUS
SAMPLES BELOW
THE THRESHOLD?

YES

NO

YES

ORx SAMPLES
MEET SNR CRITERIA?

NUMBER OF
RETRIES >5

YES

NO

YES

FLAG AN ERROR THAT
MAXIMUM NUMBER OF

BATCHES HAVE EXCEEDED
AND ABORT UPDATE

INCREMENT THE UPDATE
COUNT, CLEAR MEASUREMENT

PARAMETERS (NUMBER OF
BATCHES, RETRY COUNT etc.)

NUMBER OF
BATCHES <512?

NO

NO

22
77

0-
26

3

Figure 269. CLGC Active Loop Gain Control Update Cycle

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 326 of 336

CLGC API SUMMARY
Table 288. CLGC API Software Overview
API Function Description
adi_adrv9025_ClgcConfigSet This function configures the CLGC measurement and transmit attenuation control parameters as described

in previous sections. This API can also be used to turn the loop gain control on or off.
adi_adrv9025_ClgcConfigGet This function retrieves the CLGC configuration currently active in the transceiver device.
adi_adrv9025_ClgcStatusGet This function retrieves the CLGC status.

CLGC CONFIGURATION SUMMARY
Table 289. Summary of CLGC Parameters Configurable in the adi_adrv9025_ClgcConfig_t Data Structure
Parameter Description Range
txChannelMask This parameter is a mask that consists of OR'ed transmit

channels for which the CLGC configuration is applied.
0x00 to 0x0F, Bit0 to Bit3
represent channels Tx1 to Tx4.

clgcEnableGainControl This parameter enables the tracking and adjustment of the loop
gain in CLGC. If this parameter is set to 0, the CLGC tracking
calibration only measures the power levels and does not execute
loop gain control.

0: disable loop gain control
1: enable loop gain control

clgcMeasurementBatchTime_us This parameter is a sampling period per batch of CLGC samples. 10 µs to 65536 µs
clgcExpectedLoopGain_dB This parameter is configured by the user depending on the

optimum operating point of the power amplifier.
No limits imposed, the expected
loop gain depends on the
application

clgcTxQualifyingThreshold_dBFS This parameter is the minimum threshold for the transmit signal
required to run CLGC tracking.

The qualifying threshold must
not go below −70 dBFS for
optimum performance

clgcOrxQualifyingThreshold_dBFS This parameter is the minimum threshold for the observation
receive signal required to run CLGC tracking.

The qualifying threshold must
not go below −70 dBFS for
optimum performance

clgcMaxGainAdjustmentStepSize_dB This parameter is the maximum loop gain adjustment step size
(ranging from 0 dB to 6 dB) for transmit attenuation in dB.

The maximum step size that a
user can configure is 6 dB

clgcMinTxAttenAdjust_dB This parameter is the minimum transmit attenuation in dB allowed. The minimum transmit attenuation
value that can be set on the
transceiver transmit front end is
0 dB

clgcMaxTxAttenAdjust_dB This parameter is the maximum transmit attenuation in dB allowed. The maximum transmit
attenuation value that can be set
on the transceiver transmit front
end is 41.95 dB

CLGC STATUS
The CLGC status can be retrieved using the adi_adrv9025_ClgcStatusGet() API. The CLGC status is contained in the adi_adrv9025_
ClgcStatus_t data structure. Table 290 contains a summary of CLGC status parameters in the adi_adrv9025_ClgcStatus_t data structure.

Table 290. Summary of CLGC Status Information
Parameter Description
clgcLoopGain Transmit to observation receive loop gain equal to (observation receive rms power)/(transmit rms power) in linear

scale measured during the last CLGC update
clgcTxRmsPower Transmit rms power in linear scale measured during the last CLGC update
clgcOrxRmsPower Observation receive rms power in linear scale measured during the last CLGC update
activeTxAttenIndex Active transmit attenuation table index applied to the transmit path, the attenuation applied to the transmit

channel is equal to (activeTxAttenIndex × 0.05) dB
activeOrxGainIndex Active gain index of the observation receive channel mapped to the transmit channel for which measurements are requested
clgcTrackingCalStatus Generic calibration status data structure that includes the update count, the iteration count, and so on
clgcCaptureStatus Enumeration to denote the CLGC transmit to observation receive data capture status for loop gain control/power

measurement (refer to the CLGC Errors section for details regarding this enumeration)
clgcState Enumeration to denote the current CLGC runtime state (refer to the CLGC Errors section for details regarding this

enumeration)
clgcSyncStatus Enumeration to denote the status of CLGC and DPD synchronization, the CLGC and DPD algorithms on the

transceiver are synchronized so that the gain and phase is coherent

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 327 of 336

CLGC ERRORS
The CLGC error status is captured in parameters clgcState and clgcCaputreStatus members of structure adi_adrv9025_ClgcStatus_t.
Table 291 captures the CLGC runtime errors (clgcState) and the recommend user actions. Table 292 captures the CLGC capture errors
(clgcCaputreStatus).

Table 291. CLGC Runtime Errors
ClgcState Error Enumeration Description Recommended Recovery Actions
ADI_ADRV9025_CLGC_
INITIAL_RUN

CLGC algorithm is still in initialization state. This runtime state does
not necessarily indicate error because the CLGC remains in this state
perpetually if the loop gain control is disabled.

Reducing the capture time and/or
the number of batches to capture
can help recover from this error.

 If the loop gain control is enabled via adi_adrv9010_ClgcConfigSet() and
the CLGC status returns this runtime error status, the status can then be
classified as an error state. The most likely cause of this error is that the
data capture required to compute CLGC loop gain was not completed.

Verify that a correct transmit to
observation receive mapping is
configured.

ADI_ADRV9025_CLGC_LO_
LIMIT_TX_ATTEN

The absolute value of the lower limit of transmit attenuation has been
reached. For example, if the minimum transmit attenuation limit has
been configured as 3 dB and the user requests a loop gain that causes
CLGC to decrease the transmit attenuation to less than 3 dB, the CLGC
limits the transmit attenuation to 3 dB and returns this error status.

Adjust the transmit attenuation
lower limit to increase the range of
transmit attenuation accessible to
the CLGC algorithm.

 The minimum transmit attenuation can be configured via the
adi_adrv9025_ClgcConfigSet() API.

If the absolute minimum value of
transmit attenuation is reached (0
dB), it is recommended to adjust
the loop gain such that the loop
gain falls within the range
acceptable to the user.

ADI_ADRV9025_CLGC_HI_
LIMIT_TX_ATTEN

The absolute value of the upper limit of transmit attenuation has
been reached. For example, if the maximum transmit attenuation limit
has been configured as 10 dB and the user requests a loop gain that
causes CLGC to increase the transmit attenuation to a value greater
than 30 dB, the CLGC limits the transmit attenuation to 30 dB and
returns this error status.

Adjust the transmit attenuation
upper limit to increase the range
of transmit attenuation accessible
to the CLGC algorithm.

 The maximum transmit attenuation can be configured via the
adi_adrv9010_ClgcConfigSet() API.

If the absolute maximum value of
transmit attenuation is reached, it
is recommended to adjust the loop
gain such that the loop gain falls
within the range acceptable to the
user.

ADI_ADRV9025_CLGC_USER_
CHANGE_LOOP_GAIN

An expected loop gain change from the user has been detected and
CLGC reinitializes.

No action is expected from the user.
If the CLGC does not recover from
this state, examine the observation
receive qualifying threshold.

ADI_ADRV9025_CLGC_
USER_CHANGE_TX_ATTEN

A transmit attenuation change from the user has been detected and
CLGC reinitializes.

No action is expected from the user.
If the CLGC does not recover from
this state, examine the transmit
qualifying threshold.

ADI_ADRV9025_CLGC_
MAX_LIMIT_NUM_BATCHES

The limit for the maximum number of batches per CLGC run has been
breached and the CLGC is not able to estimate the loop gain correctly
for the CLGC to converge.

Increase the batch sample time.

 The observation receive channel
has a low SNR that can be causing
this error. Examine the observation
receive path.

ADI_ADRV9025_CLGC_
ASSERT_PA_PROTECTION

The CLGC algorithm has detected a power amplifier protection assertion. Decrease transmit attenuation of
the signal to recover from a power
amplifier protection error.

 Increase the digital backoff in the
baseband transmit signal.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 328 of 336

CLGC CAPTURE ERRORS

Table 292. CLGC Capture Errors
ClgcState Error Enumeration Description Recommended Recovery Actions
ADI_ADRV9025_CLGC_CAP_START_FUNC_
ORX_ERR

The CLGC observation receive capture did not
complete successfully.

Verify that the observation receive
channel in question is not enabled.

 Verify that a valid path exists between
the transmit channel and observation
receive channel in question.

ADI_ADRV9025_CLGC_CAP_SAVE_FUNC_ERR The CLGC capture did not complete
successfully. This error occurs if the correlator
hardware in the device did not successfully
stop or the observation receive channel did
not successfully release after a CLGC capture.

Disable CLGC. Verify that other
calibrations are still running. If other
calibrations are still running, a full
firmware reset can be required.

ADI_ADRV9025_CLGC_CAP_DONE_ERR The CLGC capture aborted because of an error. This error can be because of other errors
in the system. Examine that other parts of
the system are operating correctly.

 A full firmware reset can be required if the
CLGC gets stuck in this state.

RECOMMENDED SEQUENCE FOR ENABLING CLGC TRACKING CALIBRATION

Table 293. DPD Tracking Calibation Bring Up Sequence
Step Action ADRV9025 APIs used
1 Program the device and run initial calibrations (including the TxQEC

initial calibration) with the power amplifier turned off.
Utility function adi_daughterboard_Program() can be
used to program the device

2 Setup external transmit to observation receive mapping. adi_adrv9025_TxToOrxMappingSet
3 Adjust observation receive gain to an appropriate value to avoid saturation.

The default gain index in the ADRV9029 is 255 (0 dB attenuation).
adi_adrv9025_RxGainSet

4 Turn on the power amplifier and run the external path delay initial
calibration.

adi_adrv9025_InitCalsRun

5 Run the transmit external LO leakage initial calibration. adi_adrv9025_InitCalsRun
6 If using ADRV9029 CFR, configure the CFR settings. adi_adrv9025_CfrConfigSet,

adi_adrv9025_CfrEnableSet,
adi_adrv9025_CfrCorrectionPulseWrite_v2

7 If using ADRV9029 CFR, run the CFR initial calibration. adi_adrv9025_InitCalsRun
8 Load the DPD model. adi_adrv9025_DpdModelConfigSet
9 Assert the DPD reset. adi_adrv9025_DpdReset
10 Setup the DPD mode of operation, DPD peak search window size, and

low power threshold.
adi_adrv9025_DpdTrackingConfigSet

11 Setup the DPD fault conditions and recovery actions(optional). adi_adrv9025_DpdFaultConditionSet,
adi_adrv9025_DpdRecoveryActionSet

12 Setup the CLGC configurations and target the loop gain. adi_adrv9025_ClgcConfigSet
13 Enable the transmit QEC and transmit LO leakage tracking calibrations. adi_adrv9025_TrackingCalsEnableSet
14 Enable the DPD tracking calibration. adi_adrv9025_TrackingCalsEnableSet
15 Enable the CLGC tracking calibration. adi_adrv9025_TrackingCalsEnableSet
16 Monitor the DPD tracking calibration.status. adi_adrv9025_DpdStatusGet
17 Monitor the CLGC tracking calibration status. adi_adrv9025_ClgcStatusGet

CASE STUDY FOR CONFIGURING CLGC BATCH SAMPLING PERIOD
Signal Under Test

Figure 270 shows the demodulated version of the 5GNR TM2 signal under test. The signal has a bandwidth of 100 MHz, and a subcarrier
spacing of 30 kHz (numerology µ = 1). The signal has a rms power of ~−38.14 dBFS.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 329 of 336

22
77

0-
26

4

Figure 270. VSA Demodulated 5GNR TM2 Signal Under Test

Time and Frequency Resource Block Allocations

Time and frequency resource allocation on the 5GNR signal under test is shown in Figure 271. The signal has most of the resource blocks
allocated to PDCCH (downlink control information) and PDSCH_DMRS reference symbols that are QPSK modulated.

There are 48 resource blocks allocated to the downlink control information PDCCH data. The User Equipment (UE) performs blind
decoding for synchronization with the help of PDCCH symbols.

There are at least 48 resource blocks allocated to PDSCH DMRS reference symbols that are used for channel estimation. Because the
5GNR standard does not have cell specific reference symbols, which is why DMRS symbols are used.

The remaining resource blocks (<10) are allocated for PDSCH physical layer user data.

22
77

0-
26

5

Figure 271. Time and Frequency Resource Block Allocations of 5GNR TM2 Signal Under Test

Frequency Spectrum of the Signal

The signal has most of the synchronization data and reference symbols concentrated in two subcarriers at the edges of the spectrum, and
one subcarrier in the middle of the 100 MHz bandwidth. The subcarrier spacing is 30 kHz.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 330 of 336

22
77

0-
26

6

Figure 272. Frequency Domain Spectrum of the Subcarriers

Time Domain Analysis of the Signal

A time domain view of the signal zoomed in for ~860 µs is shown in Figure 273. The time has been further subdivided into four timing
intervals (T1, T2, T3, and T4) during which different resource blocks are active and consist of different frequency contents. The symbol
period is ~33.34 µs for normal Cyclic Prefix (CP).

T1 T2 T3 T4

22
77

0-
26

7

Figure 273. Time Domain View of the 5GNR TM2 Signal Under Test

Power Amplifier Characteristics

The gain vs. Output Power (POUT) over frequency of the SKY66397-12 power amplifier for a single carrier continuous wave (CW) tone at
2.49 GHz, 2.59 GHz, 2.63 GHz, and 2.69 GHz, respectively, in band n41 operation (2.5 GHz to 2.7 GHz) is shown in Figure 274. The
carrier at 2.69 GHz experiences a gain of less than 1 dB compared to the carrier at 2.49 GHz at lower powers, and a gain of less than 2 dB
at higher power levels.

G
AI

N
(d

B)

POUT (dBm)

10
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

12 14 16 18 20 22 24 26 28 30 32 34 36 38

2490MHz

2590MHz

2630MHz

2690MHz

22
77

0-
26

8

Figure 274. SKY66397 Gain vs. Pout over varios Operating Frequency

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 331 of 336

The forward gain (S21) of the power amplifier vs frequency is shown in Figure 275. The operating range of this power amplifier is
2.5 GHz to 2.7 GHz. The gain is not constant across the operating frequency of the power amplifier.

50

40

30

20

10

0

–20
1200 1700 2200 2700

FREQUENCY (MHz)

S2
1

(d
B)

3200 3700 4200

–10

22
77

0-
26

9

Figure 275. Forward Gain of SKY66397 Power Amplifier vs. Frequency

CLGC Loop Gain Estimation

Shown in Figure 276 is a simplified overview of CLGC loop gain estimation. A more detailed flow of measurement can be found in CLGC
Measurement section. The CLGC algorithm captures transmit and observation receive data in batches. If the captured data meets the required
threshold and SNR criteria, the CLGC algorithm proceeds to estimate the loop gain and apply the transmit attenuation correction.

CAPTURE Tx
AND ORx DATA

LOOPGAIN
ESTIMATION

AND
CORRECTION

RETURN ERROR,
WAIT FOR NEXT

ITERATION

START

FINISH

Tx/ORx
THRESHOLD

CRITERIA SATISFIED,
SNR CRITERIA

MET?

YES

NUMBER OF
BATCHES >512?

YES

NO

NO

22
77

0-
27

0

Figure 276. Simplified Flow Diagram of CLGC Data Sampling

Analysis of Results With 10 µs Batch Sampling Period

Based on experiment results, a direct correlation between transmit output power variation and CLGC loop gain variation was noticed.
Shown in Figure 277 is the CLGC loop gain variation data collected with the 5GNR TM2 signal (described in the Signal Under Test section) as
the test vector, with target loop gain set to 1.5 dB. A dynamic range of ±1.2 dB can be noticed over time with the CLGC batch sampling
period configured as 10 µs.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 332 of 336

22
77

0-
27

1

3.0

2.5

2.0

1.5

1.0

0.5

0
0 5000 10000 15000 20000 25000 30000 35000 40000

Figure 277. CLGC Loop Gain vs. Time

Factors Affecting CLGC Loop Gain Estimation

The following are the several factors that could affect CLGC loop gain estimation.

• Signal characteristics. As outlined in the Signal Under Test section, the TM2 signal has a symbol period of 33.34 µs and each symbol
period does not have all subcarriers active. The time and frequency resource block allocation is highlighted in the Time and Frequency
Resource Block Allocations section, and the time distribution of the frequency content is captured in the Time Domain Analysis of the
Signal section.

• Power amplifier characteristics. The power amplifier gain over frequency is not constant, as captured in the Power Amplifier
Characteristics section. Given that the signal under test has subcarriers separated by approximately 50 MHz, and that the subcarriers
are all not active in the same symbol period, the gain estimated depends on the symbols captured by the observation receive.

• CLGC sampling period. As noted by the signal characteristics and the power amplifier characteristics, the CLGC might have to sample
multiple symbols to get a composite view of the loop gain across frequencies. The default CLGC sampling period of 10 µs per batch is
less than one symbol period of the signal under test. To get a composite view of the overall gain, the CLGC must sample a larger
amount of data for loop gain estimation. Contrast this sample with a fully filled TM3.1 signal in Figure 278, which has all the subcarriers
active in one symbol period and it does not require a larger sampling period to get a composite view of the gain.

22
77

0-
27

2

Figure 278. Fully Occupied TM3.1 Signal, Time and Frequency Resource Block View

Results With Increased CLGC Sampling Period

Figure 279 captures CLGC loop gain monitored over one hour with the TM2 signal described in Signal Under Test section with the
CLGC sampling period increased to 1.5 ms from 10 µs. The loop gain by and large remains stable within ±0.05 dB variation, with only
three iterations where the loop gain varies by greater than 0.05 dB. The loop gain stability is significantly better compared to the 10 µs
sampling period shown in Figure 277.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 333 of 336

22
77

0-
27

3

2.5

2.0

1.5

1.0

0.5

0
0 5000 10000 15000 20000 25000 30000 35000 40000

Figure 279. CLGC Loop Gain vs. Time, with CLGC Sampling Period Increased to 1.5 ms

CLGC RECOMMENDATIONS
A recommendation for the user to overcome the issue described in Analysis of Results With 10 µs Batch Sampling Period section is to
tune the CLGC sampling period to be at least equal to the time period of minimum number of symbols during which they expect to see a
good variety in subcarrier frequencies across the carrier bandwidth, so as to capture the power amplifier gain across frequencies as
described in the Results With Increased CLGC Sampling Period section.

In 5G NR traffic carrying only synchronization and reference symbols for channel estimation, there can be several different combinations
of demodulation reference symbols (DMRS) locations, number of symbols carrying DMRS, and up to four bandwidth parts in a single
carrier bandwidth.

Given the different combinations and frequencies of reference symbols, an approach to determine the CLGC sampling period is to carry
out a statistical analysis of the signal that can be considered a tough case and use that analysis as a starting point for the CLGC sampling
period. A signal such as TM2 used in this case, with sparsely populated subcarriers at the edges of the carrier bandwidth, can qualify as a
tough case for the CLGC.

In the signal under test described in Signal Under Test section where the power is distributed across resource blocks that are sparse, for
average power level of the captured samples to be close to the average frame power level, resource blocks in different subcarrier
frequencies must be accounted for. This ensures a sufficient statistical probability of different subcarriers being engaged, and therefore a
variety in gain response of the power amplifier seen by the CLGC algorithm.

A statistical analysis of the NR TM2 signal described in the Signal Under Test section is described in Table 294. The expected value
(average) of the waveform over 1 frame = −37.1 dBFS A statistical analysis of the 5GNR TM2 signal under test with different moving
average durations yields the results in Table 294.

Table 294. Statistical Analysis of Moving the Average of 5GNR TM2 Signal Under Test
Sl Number Moving Average Duration (µs) Mean (dBFS) Standard Deviation (dB)
1 10 −36.5 2.95
2 100 −37.55 1.49
3 1000 −37.14 0.012

Compare the statistics from a TM2 signal from 1 with a fully filled TM3.1 NR100 signal in Figure 278 that has a rms value of −12 dBFS
per frame. A 10 µs moving average of the TM3.1 NR100 signal results in a mean of −11.99 dBFS and a standard deviation of 0.12 dB,
which is close to the frame rms of −12 dBFS.

To further illustrate the point of Table 294, the distribution of moving average computed for the waveform under test for an average
duration equal to 10 µs, 100 µs. and 1000 µs is shown in Figure 280 and Figure 281. The standard deviation decreases and convergence
towards the expected value increases as the averaging duration increases for the signal under test.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 334 of 336

22
77

0-
27

4

0.30

0.25

0.20

PD
F

0.15

1.00

0.05

0
–45 –40 –35

PDF OF MOVING AVERAGE FUNCTION OF TM2 WAVEFORM UNDER TEST

–30
Figure 280. Distribution of Moving Average 10 µs and 100 µs

22
77

0-
27

5

1.0

0.9

0.8

PD
F

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
–37.9 –37.8 –37.7 –37.6 –37.5 –37.4 –37.3 –37.2 –37.1 –37.0

PDF OF MOVING AVERAGE DURATION = 1ms FOR A 5GNR TM2 WAVEFORM UNDER TEST

–36.9
Figure 281. Moving Average Distribution with Duration = 1 ms

The cumulative distribution function of the waveform for different averaging durations also provides insight into averaging duration that
can ensure stability for the signal under test by engaging different subcarriers across frequencies in a CLGC sampling period.

With the averaging duration set to 1 ms, the CDF of the signal is guaranteed to lie between −37.2 dBFS to −37.1 dBFS for 99.83% of the time.

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

ADRV9026/ADRV9029 System Development User Guide UG-1727

Rev. 0 | Page 335 of 336

22
77

0-
27

6

–40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
CDF FOR AVERAGING DURATION = 10µs

–38 –36 –34 –32 –30
Figure 282. CDF Function for Signal Averaged over 10 µs

–40
0

0.2

0.4

0.6

0.8

1.0
CDF FOR AVERAGING DURATION = 100µs

–38 –36 –34 –32 –30 22
77

0-
27

7

Figure 283. CDF Function for Signal Averaged over 100 µs

–40
0

0.2

0.4

0.6

0.8

1.0
CDF FOR AVERAGING DURATION = 1ms

–38 –36 –34 –32 –30 22
77

0-
27

8

Figure 284. CDF Function for Signal Averaged over 1 ms

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

UG-1727 ADRV9026/ADRV9029 System Development User Guide

Rev. 0 | Page 336 of 336

These finding can be summarized as follows:

• The channel output power instability is directly proportional to the CLGC loop gain variation observed.
• The channel output power stability depends on the signal characteristics, power amplifier characteristics, and the CLGC sampling period.
• As a starting point, the user can perform a statistical analysis of the signal and can use the averaging period with least standard

deviation from the expected frame power level as the CLGC sampling period, which ensures sufficient statistical probability of
engaging subcarriers across frequencies.

I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

ESD Caution
ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection
circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third
parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their
respective owners. Information contained within this document is subject to change without notice. Software or hardware provided by Analog Devices may not be disassembled, decompiled or reverse
engineered. Analog Devices’ standard terms and conditions for products purchased from Analog Devices can be found at: http://www.analog.com/en/content/analog_devices_terms_and_conditions/fca.html.

©2022 Analog Devices, Inc. All rights reserved. Trademarks and
 registered trademarks are the property of their respective owners.
 UG22770-6/22(0)

https://www.analog.com
https://www.analog.com/adrv9026
https://www.analog.com/adrv9029

	Scope
	Revision History
	System Overview
	System Architecture Description
	Software Architecture
	API Folder Structure
	Devices Folder (/c_src/devices)
	Platforms Folder (/c_src/platforms)
	API doxygen (adrv9025.chm) File (/c_src/doc)

	Private vs. Public API functions
	Hardware Abstraction Layer
	Hardware Functions
	Logging Functions
	Multiple Device Support
	devHalInfo

	Software Integration
	Software Integration Process Overview
	Software Package Folder Structure Overview
	API Software Architecture
	Implementing Hardware Abstraction Interface
	Developing the Application
	Include Files
	API Error Handling and Debug
	API Recovery Action: ADI_COMMON_ACT_NO_ACTION
	API Recovery Action: ADI_COMMON_ACT_WARN_RERUN_FEATURE
	API Recovery Action: ADI_COMMON_ACT_WARN_CHECK_INTERFACE
	Issue: Logging Interface When the Log File Cannot Be Opened Or Written to
	Issue: Baseband Processor GPIO Failed to Operate Correctly, but the API Circumvented the Error by Using the SPI Port or Other Control Mechanism
	Issue: adi_common Returns an Error Reporting that the Timer Is Not Working as Expected
	Issue: adi_common Layer Reports a HAL Error While Attempting to Control the Baseband Processor GPIO Pins

	API Recovery Action: ADI_COMMON_ACT_ERR_CHECK_PARAM
	API Recovery Action: ADI_COMMON_ACT_ERR_CHECK_DEVICE
	API Recovery Action: ADI_COMMON_ACT_ERR_RESET_INTERFACE
	API Recovery Action: ADI_COMMON_ACT_ERR_RESET_FEATURE
	API Recovery Action: ADI_COMMON_ACT_ERR_RESET_MODULE
	API Recovery Action: ADI_COMMON_ACT_ERR_RESET_DEVICE
	Restrictions
	Multiple Thread and Multiple Transceiver Application Considerations
	Delays, Waits, and Sleeps

	Serial Peripheral Interface (SPI)
	SPI Bus Signals
	CSB
	SCLK
	SDIO and SDO

	SPI Data Transfer Protocol
	Phase 1 Instruction Format

	SPI Configuration Using API Function
	Single Byte Data Transfer
	Multiple Byte Data Transfer (SPI Streaming)

	Timing Diagrams

	System Initialization
	Initialization Sequence

	Serializer/Deserializer (SERDES) Interface
	JESD204B and JESD204C Standard
	Differences Between JESD204B and JESD204C
	Clock Distribution
	Receiver (ADC) Datapath
	Supported Framer Link Parameters
	Serializer Configuration
	Framer
	Other Useful Framer IP Features
	PRBS Generator
	Pattern Generator

	API Software Integration
	JESD204B/JESD204C Framer API Data Structures
	adi_adrv9025_FrmCfg_t

	JESD204B/JESD204C Framer Enumerated Types
	adi_adrv9025_FramerDataSource
	adi_adrv9025_FramerDataInjectPoint
	adi_adrv9025_FramerSel

	API Functions
	adi_adrv9025_FramerSysrefCtrlSet(…)
	Precondition
	Dependencies
	Parameters
	Return Values

	adi_adrv9025_FramerStatusGet(…)
	Precondition
	Dependencies
	Parameters
	Return Values

	adi_adrv9025_FramerTestDataSet(…)
	Precondition
	Dependencies
	Parameters
	Return Values

	adi_adrv9025_FramerTestDataInjectError (…)
	Precondition
	Dependencies
	Parameters
	Return Values

	adi_adrv9025_FramerLinkStateSet(…)
	Precondition
	Dependencies
	Parameters
	Return Values

	Transmitter (DAC) Datapath
	Supported Deframer Link Parameters
	Deserializer Configuration
	Deframer
	Other Useful Deframer IP Features
	PRBS Checker

	API Software Configuration
	JESD204B/JESD204C Deframer API Data Structures
	adi_adrv9025_DfrmCfg_t
	adi_adrv9025_DataInterfaceCfg _t

	JESD204B/JESD204C Deframer Enumerated Types
	adi_adrv9025_DeframerSel
	adi_adrv9025_DeframerPrbsOrder
	adi_adrv9025_DeframerPrbsCheckLoc

	API Functions
	adi_adrv9025_DeframerSysrefCtrlSet(…)
	Precondition
	Dependencies
	Parameters
	Return Values

	adi_adrv9025_DfrmLinkStateSet(…)
	Precondition
	Dependencies
	Parameters
	Return Values

	adi_adrv9025_DeframerStatusGet(…)
	Precondition
	Dependencies
	Parameters
	Return Values

	adi_adrv9025_DfrmPrbsCheckerStateSet(…)
	Precondition
	Dependencies
	Parameters
	Return Values

	adi_adrv9025_DfrmPrbsCountReset(…)
	Precondition
	Dependencies
	Parameters
	Return Values

	adi_adrv9025_DfrmPrbsErrCountGet(…)
	Precondition
	Dependencies
	Parameters
	Return Values

	API Software Integration
	JESD204B/JESD204C API Data Structures
	adi_adrv9025_DataInterfaceCfg_t

	Implementation Recommendations
	Link Initialization and Debugging
	JESD204B
	JESD204C

	First Time System Bring Up—Checking Link Integrity
	Sample Iron Python Code for PRBS Testing
	PRBS Errors
	Static Phase Offset (SPO) TEST to Verify Eye Width
	SPO Test Example Python Script

	Checking JESD204C Link Status
	Selecting the Optimal LMFC and LEMC Offset for a Deframer
	Deterministic Latency in JESD204B Mode
	Deterministic Latency in JESD204C Mode
	Programming the LMFC Offset for a Deframer
	Setting the LMFC/LEMC Offset in the Profile File
	Setting the LMFC/LEMC Offset in the adi_adrv9025_DfrmCfg Data Structure
	Setting the LMFC/LEMC Offset Through SPI Registers Controls
	Deframer 0:
	Deframer 1:
	Deframer 0:
	Deframer 1:

	Reading Back the Buffer Depths for Each Deframer Lanes
	Deframer 0:
	Deframer 1:

	Buffer Protection
	Checking if the Buffer Protection is Active

	Disabling the Automatic Buffer Protection
	Selecting the Optimal LMFC/LEMC Offset for a System
	Selecting the Optimal LMFC Offset for a System in JESD204B Mode with Buffer Protection Enabled
	Selecting the Optimal LMFC Offset for a System in a JESD204B Mode with Buffer Protection Disabled
	Selecting the Optimal LEMC Offset for a System in JESD204C Mode When E ≤ 2 with Buffer Protection Enabled
	Selecting the Optimal LEMC Offset for a System in JESD204C Mode When E ≤ 2 with Buffer Protection Disabled
	Selecting the Optimal LEMC Offset for a System in JESD204C Mode When E > 2

	Synthesizer Configuration
	Overview
	Connections for External Reference Clock (DEVCLK)
	External Reference Clock (DEVCLK) Requirements
	Clock Synthesizer
	RF Synthesizer
	Auxiliary Synthesizer
	Setting the LO Frequencies
	API Functions
	adi_adrv9025_PllFrequencySet(…)
	Description
	Precondition
	Parameters

	adi_adrv9025_PllFrequencyGet(…)
	Description
	Precondition
	Parameters

	adi_adrv9025_PllFrequencySet_v2(…)
	Description
	Precondition
	Parameters

	adi_adrv9025_PllLoopFilterSet(…)
	Description
	Precondition
	Parameters

	adi_adrv9025_PllLoopFilterGet(…)
	Description
	Precondition
	Parameters

	RF PLL Phase Synchronization
	System Level Considerations
	Enabling the RF PLL Phase Synchronization Function Using the API
	RF PLL Phase Synchronization Demo Setup

	ARM Processor and Device Calibrations
	ARM State Machine Overview
	System Initialization
	Pre-MCS initialization
	Post-MCS initialization
	Device Calibrations
	Initial Calibrations
	System Considerations for Initial Calibrations
	Receiver QEC Initial Calibration
	Observation Receiver QEC Initial Calibration
	Receiver/Observation Receiver TIA Initial Calibration
	Internal Transmitter LO Leakage and Transmitter QEC Initial Calibrations
	External Transmitter LO Leakage Initial Calibration
	Receiver Gain Delay Initial Calibration
	Receiver Gain Phase
	Transmitter Attenuation Phase Initial Calibration
	Transmitter Attenuation Delay
	Transmitter to Observation Receiver Feedback
	Note Regarding Auxiliary LO Settings During Initialization Calibrations
	Summary of Initial Calibration Requirements

	Tracking Calibrations
	System Considerations for Tracking Calibrations
	Receiver QEC Tracking Calibration
	Observation Receiver QEC Tracking Calibration
	Transmitter QEC Tracking Calibration
	Transmitter LOL Tracking Calibration

	Calibration Guidelines after PLL Frequency Changes
	Type 1 Frequency Change Procedure
	Type 2 Frequency Change Procedure
	Initialization Calibrations Durations

	Initialization Calibrations to Be Run after Device Initialization
	Tracking Calibration Timing
	ARM Memory Dump
	adi_adrv9025_ArmMemDump(…)
	Description
	Precondition
	Parameters

	Stream Processor and System Control
	Slice Stream Processors
	Core Stream Processor

	System Control
	API Control
	adi_adrv9025_RxTxEnableSet(…)
	Description
	Parameters

	Pin Control
	adi_adrv9025_PostMcsInit(…)
	Description
	Parameters

	ADC Crossbar Control

	Use Cases
	4 Transmitter/4 Receiver/2 Observation Receiver Input Use Case
	4 Transmitter/4 Receiver/4 Observation Receiver Input Use Case
	4 Transmitter/4 Receiver/2 Observation Receiver Input – Single Point of Feedback from 4 Transmitter to Observation Receiver Use Case

	Transmitter Overview and Path Control
	API Commands
	adi_adrv9025_TxAttenCfgSet
	Description
	Parameters

	adi_adrv9025_TxAttenCfgGet
	Description
	Parameters

	adi_adrv9025_TxAttenSet
	Description
	Parameters

	adi_adrv9025_TxAttenGet
	Description
	Parameters

	adi_adrv9025_TxAttenModeSet
	Description
	Parameters

	adi_adrv9025_TxTestToneSet
	Description
	Parameters

	DAC Full Scale Function (DAC Boost)
	adi_adrv9025_TxChannelCfg API Structure

	Transmitter Power Amplifier Protection
	PA Protection Description
	PA Protection Configuration
	adi_adrv9025_TxPaProtectionCfgSet(…)
	Description
	Parameters

	PA Protection Run Time Commands
	adi_adrv9025_TxPaProtectionErrFlagsGet(…)
	Description
	Parameters

	Clearing PA Protection Error Flags
	adi_adrv9025_TxPaProtectionErrFlagsReset(…)
	Description
	Parameters

	adi_adrv9025_TxPaProtectionStatusGet(…)
	Parameters

	adi_adrv9025_PaPllDfrmEventRampDownEnableSet(…)
	Description
	Parameters

	Sticky Control for Transmitter Attenuation Ramp Down
	adi_adrv9025_TxAttenuationRampUpStickyModeEnable(…)
	Description
	Parameters

	Determining the Interrupt Source of an Attenuation Ramp Down
	adi_adrv9025_PaPllDfrmEventGet(…)
	Description
	Parameters

	Clearing Transmitter Attenuation Ramp Down Events
	adi_adrv9025_PaPllDfrmEventClear(…)
	Description
	Parameters

	Receiver Gain Control and Gain Compensation
	Overview
	Receiver DataPath
	Gain Control Modes
	adi_adrv9025_RxGainCtrlModeSet(…)
	Description
	Parameters

	rxChannelMask

	Manual Gain Control (MGC)
	adi_adrv9025_RxGainSet(…)
	Description
	Parameters

	adi_adrv9025_RxGainGet(…)
	Description
	Parameters

	adi_adrv9025_RxGainPinCtrlCfgSet(…)
	Description
	Parameters

	Automatic Gain Control
	Peak Detect Mode
	Priorities and Overall Operation
	Power Detect Mode

	AGC Clock and Gain Block Timing
	Analog Peak Detector (APD)
	Half-Band 2 Peak Detector
	Power Detector
	adi_adrv9025_RxDecPowerGet(…)
	Description
	Parameters

	API Programming
	adi_adrv9025_AgcCfgSet(…)
	Description
	Parameters

	AGC Holdover Function
	Receiver Gain Mode Switching Using GPIO
	StreamGpioConfigSet Function

	Gain Control Data Structures
	Sample Python Script—Peak Detect Mode with Fast Attack
	Gain Compensation, Floating Point Formatter and Slicer
	Mode 1: No Digital Gain Compensation
	Mode 2: Digital Gain Compensation with Slicer GPIO Outputs
	Mode 3: Digital Gain Compensation with Embedded Slicer Position
	Mode 4: Digital Gain Compensation and Slicer Input
	Mode 5: Digital Gain Compensation and Floating Point Formatting

	Receiver Data Format Data Structure
	adi_adrv9025_RxDataFormatSet(…)
	Description
	Parameters

	Digital Filter Configuration
	Overview
	Receiver Signal Path
	TIA
	Decimation Stages
	DEC5
	Finite Impulse Response 2 Filter (FIR2)
	Finite Impulse Response 1 Filter (FIR1)
	Receive Half-Band 3 Filter (RHB3)
	Receive Half-Band 2 Filter (RHB2)
	Receive Half-Band High Rejection 1 Filter (RHB1 (HR))
	Receive Half-Band Low Power 1 Filter (RHB1 (LP))
	Receive PFIR Filter
	IF Conversion

	Complex Low IF to Zero IF
	Complex Low IF to Real IF
	Zero IF to Real IF
	Dual Band Mode
	Dual Band Mode (Real IF)
	HB Filter Only Mode
	Receiver Signal Path Example
	Receiver Filter API Structure
	Receive PFIR Settings
	Receive DDC Mode
	Receive NCO Shifter Configuration
	Range Checks
	Rule 1: Input Center Frequency Setup
	Rule 2: Output Center Frequency Setup NCO1 (If DDC HB is Enabled)
	Rule 3: Output Center Frequency Setup NCO2

	Transmitter Signal Path
	Analog LPF
	Interpolation By 5 Filter (INT5)
	Transmit Half-Band 3 Filter (THB3)
	Transmit Half-Band 2 Filter (THB2)
	Transmit Half Band 1 Filter (THB1)
	Programmable TFIR

	Transmit Signal Path Example
	Transmitter Filter API Structure
	Transmit FIR Settings

	Observation Receivers Signal path
	TIA
	DEC5 Filter
	Finite Impulse Response 1 Filter (FIR1)
	Receive Half-Band 3 Filter (RHB3)
	Receive Half-Band 2 Filter (RHB2)
	Receive Half-Band 1 High Rejection Filter (RHB1 (HR))
	Receive Half-Band 1 Low Power Filter (RHB1 (LP))
	PFIR Filter
	IF Conversion

	Observation Receiver Signal Path Example
	Observation Receiver Filter API Structure

	Dual Band Overview: Dual-Band 2T2R Solution
	LO Assignment
	Dual-Band Configuration and Example Use Cases

	GPIO Configuration
	Digital GPIO Operation
	adi_adrv9025_GpioInputDirSet(…)
	Description
	Parameters

	adi_adrv9025_GpioOutputDirSet(…)
	Description
	Parameters

	Input GPIO Features
	SPI2
	adi_adrv9025_Spi2CfgSet(…)
	Description
	Parameters

	adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(…)
	Description
	Parameters

	Pin-Based Receive Gain Control
	adi_adrv9025_RxGainPinCtrlCfgSet(…)
	Description
	Parameters

	Pin-Based Transmit Attenuation Control
	adi_adrv9025_TxAttenPinCtrlCfgSet(…)
	Description
	Parameters

	External Slicer Mode
	adi_adrv9025_RxDataFormatSet(…)
	Description
	Parameters

	Transmitter to Observation Receiver Mapping
	adi_adrv9025_StreamGpioConfigSet(…)
	Description
	Parameters
	Description
	Parameters
	Manual Pin Toggle (Bitbang) Mode
	adi_adrv9025_GpioOutPinLevelSet(…)
	Description
	Parameters
	Slicer Output Mode

	GPIO_ANA Operation
	Gain Table External Control Word
	adi_adrv9025_RxGainTableExtCtrlPinsSet(…)
	Description
	Parameters

	General-Purpose Interrupt (GPINT)
	PLL GPINT Sources
	PLL Unlock Event Bits
	Charge Pump Overrange Event Bits

	JESD204B and JESD204C GPINT Sources
	Power Amplifier Protection GPINT Sources
	ARM GPINT Sources
	ARM Has Forced Interrupt
	ARM Watchdog Timer Timeout
	Slew Rate Limiter IRQ
	ARM System Error

	Stream Processor Sources
	Memory ECC Error
	Software Procedures for GPINT
	API Commands for GPINT
	adi_adrv9025_GpIntMaskSet(…)
	Description
	Parameters
	adi_adrv9025_GpInt1Handler(…)
	Description
	Parameters
	adi_adrv9025_GpInt0Handler(…)
	Description
	Parameters
	adi_adrv9025_GpIntStatusGet(…)
	Description
	Parameters
	adi_adrv9025_GPIntClearStatusRegister(…)
	Description
	Parameters

	Auxiliary Converters and Temperature Sensor
	Auxiliary DAC (AUXDAC)
	AUXDAC Configuration
	adi_adrv9025_AuxDacCfgSet(…)
	Description
	Parameters
	adi_adrv9025_AuxDacValueSet(…)
	Description
	Parameters

	Auxiliary ADC (AUXADC)
	AUXADC Configuration
	adi_adrv9025_AuxAdcCfgSet(…)
	Description
	Parameters
	adi_adrv9025_AuxAdcValueGet(…)
	Description
	Parameters

	Temperature Sensor
	adi_adrv9025_TemperatureGet(…)
	Description
	Parameters

	SPI2 Description
	SPI2 Configuration
	Transmitter Control with SPI2
	adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(…)
	Description
	Parameters

	Receiver and Observation Receiver Control with SPI2

	RF Port Interface Overview
	RF Port Impedance Data
	ADS Setup Using Data Access Component and SEDZ File
	Transmitter Bias and Port Interface
	General Receiver Path Interface
	Impedance Matching Network Examples
	Matching Component Recommendations

	Power Management Considerations
	Supply Capacity
	Power Supply Sequence
	Power Supply Domain Connections
	Power Supply Architecture
	Current Consumption
	Current Measurements: Use Case 26 Non Link Sharing Profile

	PCB Layout Considerations
	Overview
	PCB Material and Stack Up Selection
	Fanout and Trace Spacing Guidelines
	Component Placement and Routing Guidelines
	Signals with Highest Routing Priority
	Signals with Second Routing Priority
	Signals with Lowest Routing Priority

	RF and JESD Transmission Line Layout
	RF Routing Guidelines
	Transmit Bias Supply Guidelines
	JESD204B/JESD204C Routing Recommendations

	Isolation Techniques
	Isolation Goals
	Isolation Between RF I/O Ports
	Isolation Between SERDES Lines

	Power Management Layout Design
	Analog Power Ring Approach
	Analog Power Star Connections
	Digital Power Routing
	JESD 1.0 V Supply Inputs
	Interface Supply Input
	Ground Returns
	Input Bypass Component Placement

	Analog Signal Routing Considerations
	Digital Signal Routing Considerations
	Unused Pin Instructions

	Transceiver Evaluation Software (TES) Operation
	Initial Setup
	Hardware Kit
	Requirements
	Hardware Setup
	Hardware Operation
	TES Installation
	Starting the Transceiver Evaluation Software
	Demo Mode

	Normal Operation
	Configuring the Device
	Profile Options
	Initialization
	InitCals
	Transmit Configuration
	Receive Configuration
	Observation Receive Configuration
	JESD Configuration
	Programming the Evaluation System
	Initialization Script

	Transmitter Operation
	Transmitter Data Options

	Receiver Operation
	Receive Signal Chain
	Observation Receive Signal Chain

	Scripting
	IronPython Script Example

	C Code Generation
	NCO Setup
	Digital Front End Tab Setup
	DPD Setup

	Digital Predistortion (DPD)
	DFE System Level Overview
	DPD Introduction and Principle of Operation
	Transceiver DPD Overview
	DPD Actuator Overview
	DPD Half-Band Filters

	DPD Algorithm Overview
	Indirect Learning
	DPD Direct Learning
	Comparison Between DPD Indirect Learning and Direct Learning
	DPD Coefficient Estimation
	GMP Model and Look Up Table

	Initializing Precalibrated Coefficients During Startup
	Single Frequency Band Use Case
	Dual Frequency Band Use Case
	Unique GMP Model Per Transmit Channel

	DPD Sample Capture
	DPD Sample Capture Process
	Peak Search Window and Peak Detection-Based Capture
	DPD Sample Capture in TDD Mode

	DPD Dynamics
	DPD Modes of Operation
	Transmitter Low Power Threshold
	Transmitter M Threshold
	Observation Receiver Low Power Threshold

	DPD Regularization
	DPD Regularization in DPD Mode 2

	DPD Robustness
	Calculation of Metrics
	Defining Fault Conditions

	DPD Actuator Gain Monitoring for Robustness
	Principle of Operation
	DPD Actuator Gain Monitoring Configurations
	DPD Actuator Gain Monitoring API
	DPD Actuator Gain Monitoring and Model Switching State Machine Representation

	DPD Actuator Bypass
	DPD STATUS
	Recommended Sequence for Enabling the DPD Tracking Calibration
	DPD Stability Metrics Characterization
	Measuring DPD Adaptation Performance Through Direct EVM and Indirect Error
	Case 1
	Case 2
	Case 3

	Observation Receiver Attenuation vs. Stability Metrics
	Observation Receiver Interference
	Transmit Signal vs. Stability Metrics
	Summary

	DPD Characterization for Optimizing the M Threshold
	Setting Up the DPD Using the GUI

	Crest Factor Reduction (CFR)
	CFR Algorithm Overview
	Overview of Blocks Used in CFR
	Interpolator
	Peak Detector
	Linear System Solver
	Pulse RAM

	API Software Integration
	Setting Up the CFR
	Updating Correction Pulses On-the-Fly
	Modifying CFR Thresholds On-the-Fly
	API Functions and Data Structures
	adi_adrv9025_CfrCtrlConfigSet(…)
	adi_adrv9025_CfrCtrlConfigGet(…)
	adi_adrv9025_CfrCorrectionPulseWrite_v2(…)
	adi_adrv9025_CfrCorrectionPulseRead_v2(…)
	adi_adrv9010_CfrEnableSet(…)
	adi_adrv9025_CfrEnableGet(…)
	adi_adrv9025_CfrHardClipperConfigSet(…)
	adi_adrv9025_CfrHardClipperConfigGet(…)
	adi_adrv9025_CfrHardClipperConfig_t
	adi_adrv9025_CfrStatusGet(…)
	adi_adrv9025_CfrStatus_t
	adi_adrv9025_CfrError_e
	adi_adrv9025_CfrStatistics_t
	adi_adrv9025_CfrActiveCorrectionPulseSet(…)
	adi_adrv9025_CfrCarrierHotSwapCorrPulseSel_e
	adi_adrv9025_CfrActiveCorrectionPulseGet(…)

	Typical Procedure to Set Up CFR Using the GUI
	Impact on EVM

	Closed Loop Gain Control (CLGC)
	CLGC Overview
	Elements of CLGC
	CLGC Algorithm Overview
	Observation
	Loop Gain Estimation and Convergence

	Enabling the CLGC Tracking Calibration
	CLGC Modes of Operation
	CLGC Measurement
	Transmit and Observation Receive Qualifying Threshold

	CLGC Transmit Attenuation Control
	CLGC API Summary
	CLGC Configuration Summary
	CLGC Status
	CLGC Errors
	CLGC Capture Errors
	Recommended Sequence for Enabling CLGC Tracking Calibration
	Case Study for Configuring CLGC Batch Sampling Period
	Signal Under Test
	Time and Frequency Resource Block Allocations
	Frequency Spectrum of the Signal
	Time Domain Analysis of the Signal
	Power Amplifier Characteristics
	CLGC Loop Gain Estimation
	Analysis of Results With 10 µs Batch Sampling Period
	Factors Affecting CLGC Loop Gain Estimation
	Results With Increased CLGC Sampling Period

	CLGC Recommendations

