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SCOPE 
This user guide is the main source of information for system engineers and software developers using the Analog Devices, Inc., ADRV902x 
family of software defined radio transceivers. This family consists of the ADRV9026 integrated quad RF transceiver and the ADRV9029 
integrated quad RF transceiver with digital predistortion (DPD) and crest factor reduction (CFR) capability. The content of the user guide 
covers all functions that are common to both devices and some that are unique to the ADRV9029 device. Throughout the user guide, the 
term transceiver is used with functions that are common to both devices. Functions that are unique to the ADRV9029 device use 
ADRV9029 in the description. This user guide must be used in conjunction with the product data sheets to incorporate all necessary 
specifications and descriptions when designing these devices into new equipment. 
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SYSTEM OVERVIEW 
The ADRV9026 and ADRV9029 are part of a family of highly integrated RF agile transceivers designed for use in small cell, massive 
MIMO, and macro base station equipment used in advanced communications systems. The transceiver contains four independently 
controlled transmitters, dedicated observation receiver inputs for monitoring transmitter channel outputs, four independently controlled 
receivers, integrated synthesizers, and digital signal processing functions to provide a complete transceiver solution. The transceiver 
provides the high radio performance and low power consumption demanded by cellular infrastructure applications, such as macro 
2G/3G/4G/5G and massive MIMO base stations. This user guide is designed to encompass description of all functions available in the 
these transceivers. Note that some variants may be developed for specific design targets that do not encompass all available functions, 
therefore, refer to the data sheets for the specific transceiver to determine which features are included. To avoid confusion, the term 
transceiver is used throughout this user guide to refer to any variant that employs a specific function. When a function that applies to a 
specific device is described, the device part number is used to delineate which transceiver is being described.  

These transceivers are designed to operate over the wide frequency ranges of 650 MHz to 6 GHz. The receiver channels support 
bandwidth up to 200 MHz with data transfer across (up to) four JESD204B/JESD204C lanes at rates up to 24.33 Gbps (see data sheets for 
specifications). The transmitter channels operate over the same frequency range as the receivers. Each transmitter channel supports up to 
450 MHz synthesis bandwidth with data input across (up to) four JESD204B/JESD204C lanes. In addition, local oscillator (LO) routing 
allows the transmitters to operate at different frequencies than the receivers for additional flexibility. Two observation receiver channels 
are included to provide the capability to monitor feedback from the transmitter outputs. The feedback loops can be used to implement 
error correction, calibration, and signal enhancing algorithms. These receivers operate in the same frequency range as the transmitter 
channels, and they support up to 450 MHz channel bandwidth to match the output synthesis bandwidth of the transmitter channels. 
These channels provide digital datapaths to the internal ARM processor for use in calibration and signal enhancement algorithms. 

Multiple fully integrated PLLs are included in the transceiver to provide a high level of flexibility and performance. Two are high 
performance, low power fractional-N RF synthesizers that can be configured to supply the transmitters and receivers in different 
configurations. A third fractional-N PLL supports an independent frequency for the observation receiver channels. Other clock PLLs are 
included to generate the converter and digital clocks for signal processing and communication interfaces. 

The power supply for each block is distributed across four different voltage supplies, three analog voltage supplies and one digital voltage 
supply. The analog supplies are 1.8 V, 1.3 V, and 1.0 V. These supplies are fed directly to the power inputs for some blocks and buffered by 
internal low dropout (LDO) regulators for other functions for maximum performance. The digital processing blocks are supplied by a 
1.0 V source. In addition, a 1.8 V supply supplies all GPIO and interface ports that connect with the baseband processor.  

See the functional block diagram in the respective data sheets for a high level view of the functions in each transceiver. Descriptions of 
each block with setup and control details are provided in subsequent sections of this document. 
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SYSTEM ARCHITECTURE DESCRIPTION 
Analog Devices developed a proprietary application programming interface (API) software for the these transceiver devices. However, 
this section outlines the overall architecture, folder structure, and methods for using API software on the customer platform, but this 
section does not explain the API library functions. Detailed information regarding the API functions is in the doxygen file included with 
the API software (adrv9025.chm) located at /c_src/doc. This file can also be viewed in the Help tab on the ADRVTRX transceiver 
evaluation software (TES) used for controlling the evaluation platform. Note that ADRV9025 is the generic transceiver reference number 
for the ADRV902x family; all API functions use the ADRV9025 number to delineate the product from other transceiver products. With 
respect to this user guide, ADRV9025 is interchangeable with ADRV9026 and ADRV9029. 

SOFTWARE ARCHITECTURE 
Figure 2 illustrates the software architecture for the system evaluation platform. 

This architecture can be broadly divided into the following three main layers: 

• Hardware abstraction layer: consists of device drivers and device specific code. 
• Middleware layer: consists of device APIs and other auxiliary layer functions, and resides in the platform layer. 
• Application layer: consists of radio application software running on a baseband processor. The baseband processor can be an 

embedded processor or a PC running a digital signal processing application, such as MATLAB®, that processes baseband data. 

API FOLDER STRUCTURE 
Source files are provided by Analog Devices in the folder structure shown in Figure 1. Note that the baseline device, ADRV9025, is used 
in the source file folder structure. Analog Devices understands that each developer may desire to use a different folder structure. Whereas 
Analog Devices provides API source code releases in the folder structure shown in Figure 1, the developer can organize the API into a 
custom folder organization. Creating a new folder structure, however, does not permit the developer the right to modify the content of 
the API source code. Modifying the content of any API source file is not allowed because such modification causes issues with supporting 
the API and complicates updates to future API code releases. 
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Figure 1. API Folder Structure 
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Figure 2. ADRV9025 API Software Architecture (Analog Devices Evaluation Platform) 

Devices Folder (/c_src/devices) 

The devices folder (/c_src/devices) includes the main API code for the transceiver as well as the Analog Devices clock chip AD9528 
(/ad9528 folder). The /adrv9025 folder contains the high level function prototypes, data types, macros, and source code to build the final 
user software system. The user is strictly forbidden to modify the files contained in the /adrv9025 and /ad9528 folders. Note that 
software support cannot be provided if these files have been modified. Analog Devices maintains this code. The only exception is that the 
developer may modify user-selectable #define macros, such as ADI_ADRV9025_VERBOSE mode to enable or disable API logging, and 
user configurable macros defined in /adrv9025/public/include/adi_adrv9025_user.h. 

Platforms Folder (/c_src/platforms) 

The platforms folder, named /c_src/platforms, provides the means for a developer to insert custom platform hardware driver code for 
system integration with the API. The adi_platform.c/.h files contain function pointers and the required prototypes necessary for the API 
to work correctly. It is important that the function prototypes in adi_platform.c do not change. The developer is responsible for 
implementing the code for each adi_platform.c function to insure the correct hardware drivers are called for the platform hardware of 
the user. In the example code provided by Analog Devices in adi_platform.c, the function pointers are assigned to call the Analog 
Devices ADS9 platform functions used by the evaluation system. To allow for easy platform swapping, Analog Devices maintains a 
generic implementation of adi_platform.c. To support another platform, assign the function pointers in adi_platform.c to call the 
platform functions specific for the platform hardware of the user. 

API doxygen (adrv9025.chm) File (/c_src/doc) 

The /c_src/doc folder contains the device API doxygen (adrv9025.chm) file for user reference. It is in compressed HTML format. For 
security reasons, .chm files can only be opened from a local drive. If you attempt to open from a network drive, the file may look empty. 

PRIVATE vs. PUBLIC API FUNCTIONS 
The API is made up of multiple .c and .h files. The API is written in the C computer programming language, so there are no language 
modifiers to identify a function as private or public as commonly used in object oriented languages. Per the Analog Devices coding 
standard, public API functions are denoted by the function name prepended with adi_adrv9025_FunctionName(). The application layer 
is free to use any API function prepended with the adi_adrv9025_ naming. Private helper functions lack the adi_ prefix, and are not 
intended to be called by the customer application.  

Most functions in the API are prefixed with adi_adrv9025_ and are for public use. However, many of these functions are never called 
directly from the application layer of the developer. Utility functions that abstract some common operations, specifically initialization of 
the device, are provided in adi_adrv9025_utility.c. For this reason, the majority of the initialization and other helper functions have been 
separated from the top level adi_adrv9025.c/adi_adrv9025.h files to help the developer focus on the most commonly and widely used 
functions by the application layer program. 
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HARDWARE ABSTRACTION LAYER 
The hardware abstraction layer (HAL) interface is a library of functions that the transceiver API uses when it must access the target 
platform hardware. The implementation of this interface is platform dependent and must be implemented by the end user in adi_platform.c. 
The current adi_platform.c provides example code that calls the HAL functions for the ADS9 evaluation platform specific functions. 

The adi_platform.c HAL functions are function pointers that must be initialized by creating a customer supplied, platform specific 
function and pointing the associated HAL function pointer to the customer supplied function.  

The following is a snippet from the adi_platform.c provided for the ADS9 mother board, demonstrating assignment of adi_hal_ function 
pointers to ADS9 specific functions: 
adi_hal_HwOpen = ads9_HwOpen; 

adi_hal_HwClose = ads9_HwClose; 

adi_hal_HwReset = ads9_HwReset; 

adi_hal_DevHalCfgCreate = ads9_DevHalCfgCreate; 

adi_hal_DevHalCfgFree = ads9_DevHalCfgFree; 

         

adi_hal_SpiInit = ads9_SpiInit; 

adi_hal_SpiWrite = ads9_SpiWrite_v2; 

adi_hal_SpiRead = ads9_SpiRead_v2; 

 

adi_hal_LogFileOpen = ads9_LogFileOpen; 

adi_hal_LogLevelSet = ads9_LogLevelSet; 

adi_hal_LogLevelGet = ads9_LogLevelGet; 

adi_hal_LogWrite = ads9_LogWrite; 

adi_hal_LogFileClose = ads9_LogFileClose; 

         

         

adi_hal_Wait_us = ads9_TimerWait_us; 

adi_hal_Wait_ms = ads9_TimerWait_ms; 

 

/* only required to support the ADI FPGA*/ 

adi_hal_BbicRegisterRead   = ads9_BbicRegisterRead; 

adi_hal_BbicRegisterWrite  = ads9_BbicRegisterWrite; 

adi_hal_BbicRegistersRead  = ads9_BbicRegistersRead; 

adi_hal_BbicRegistersWrite = ads9_BbicRegistersWrite; 

Hardware Functions 

Access to the SPI controller that communicates with the Analog Devices transceiver is required. The SPI details are illustrated in the 
Serial Peripheral Interface (SPI) section. In addition, control of the hardware reset signal that controls the RESET pin is required. This is 
usually implemented using a platform processor GPIO. For more details of the RESET pin, refer to the target platform schematic and 
transceiver data sheet that can be found in the folder at the following link: ADRV9026 Datasheet and Product Info.  

Logging Functions 

The API provides a simple logging feature function that may be enabled for debugging purposes. This feature requires an implementation 
for the adi_hal_LogWrite function. The APIs optionally call to send debug information to the system via the HAL. The function 
adi_hal_LogLevelSet may be used to configure HAL flags to configure how the HAL processes the various message types from the API 
layer. The open hardware function, adi_hal_HwOpen, calls adi_hal_LogWrite to set the desired logging operation. Available logging 
levels are given by the functions shown in Table 1. 
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Table 1. Logging Levels 
Function Name Purpose 
ADI_COMMON_LOG_NONE All types of log messages not selected 
ADI_COMMON_LOG_MSG Log message type 
ADI_COMMON_LOG_WARN Warning message type 
ADI_COMMON_LOG_ERR Error message type 
ADI_COMMON_LOG_API API function entry for logging purposes 
ADI_COMMON_LOG_API_PRIV Private API function entry for logging purposes 
ADI_COMMON_LOG_BF Bit field function entry for logging purposes 
ADI_COMMON_LOG_HAL Analog Devices HAL function entry for logging purposes 
ADI_COMMON_LOG_SPI SPI transaction type 
ADI_COMMON_LOG_ALL All types of log messages selected 

Multiple Device Support 

For applications with multiple transceivers, the HAL layer requires a reference to the targeted device and its hardware particulars, such as 
SPI chip select and reset signal. The HAL function prototypes first parameter, void* devHalCfg, provides the platform layer functions 
with device specific settings, such as SPI chip select and log file names. The devHalCfg pointer is void to the device API layer because the 
device API layer has no knowledge of the platform. This allows each platform to use a different devHalCfg structure that properly 
represents the specific hardware on the platform. 

Note that for the Analog Devices transceiver API, there is a requirement that only one thread may control and configure a specific device 
instance at any given time.  

devHalInfo 

To pass a target device information from the application to the adi_platform.c HAL functions, the API layer passes a void pointer 
parameter, called devHalInfo. This void pointer acts as a state container for the relevant hardware information for a particular device. 
Note that within the platform layer (adi_platform.h), devHalInfo is the same as devHalCfg. 

The API user must define this state container as per system HAL implementation requirements. The user may implement any structure to 
pass any hardware configuration information that the hardware requires between the application layer and platform layer. This state 
container may be used to transfer device reference information in multithreaded and multitransceiver systems. 

The application passes the device state container, devHalInfo, via the API transceiver device structure, for example the adi_adrv9025_Device_t. 
The API function does not read or write the (void *) devHalInfo, but passes it as a parameter to all HAL function calls.  

Table 2. HAL Interface Functions for User Integration 
Function Name Purpose 
adi_hal_HwOpen Open and initialize all platform drivers/resources and peripherals required to control the transceiver device (for example, SPI, 

timer, and logging) 
adi_hal_HwClose Close any resources opened by adi_hal_HwOpen 
adi_hal_HwReset Toggle the hardware reset signal for the transceiver device 
adi_hal_SpiWrite Write an array of data bytes on a targeted SPI device (address bytes are packed into the byte array before calling this function) 
adi_hal_SpiRead Read an array of data bytes from a targeted SPI device (address bytes are provided by a TxData array, which are packed into 

the byte array before calling this function) 
adi_hal_Wait_us Perform a wait/thread sleep in units of microseconds 
adi_hal_Wait_ms Perform a wait/thread sleep in units of milliseconds 
adi_hal_LogFileOpen Open a file for logging 
adi_hal_LogLevelSet Mask to set the severity of information to write to the log (Error/Warning/Message) 
adi_hal_LogLevelGet Get the current log level setting 
adi_hal_LogWrite Log a debug message (message, warning, error) from the API to the platform log 
adi_hal_LogFileClose Function to close the log file 
adi_hal_DevHalCfgCreate This function allows the platform to allocate and configure the devHalCfg structure  
adi_hal_DevHalCfgFree This function allows the platform to deallocate the devHalCfg structure 
adi_hal_BbicRegisterRead This function is used to communicate with the baseband processor (FPGA) 
adi_hal_BbicRegisterWrite This function is used to communicate with the baseband processor (FPGA) 
adi_hal_BbicRegistersRead This function is used to communicate with the baseband processor (FPGA) 
adi_hal_BbicRegistersWrite This function is used to communicate with the baseband processor (FPGA) 
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SOFTWARE INTEGRATION 
The ADRV9025 API package was developed on the Analog Devices ADS9 reference platform utilizing a Xilinx® MicroZed™ running a 
Linux variant. This section describes how to use the provided API in a custom hardware/software environment. This is readily 
accomplished because the API was developed abiding by ANSI C constructs while maintaining Linux system call transparency. The ANSI 
C standard was followed to ensure agnostic processor and operating system integration with the API code. 

SOFTWARE INTEGRATION PROCESS OVERVIEW 
The following steps can be followed to integrated Analog Devices API into functioning system software: 

• Transceiver Device API Integration: The API source code can be integrated into the radio system software deployed on the baseband 
processor to control the Analog Devices transceiver operations. 

• Integration of Transceiver Specific Files: Platform files which are necessary for the Analog Devices transceiver to function are added 
to the system software. 

• Integration of Drivers in Hardware Abstraction Layer: The API software provided by Analog Devices communicates with the 
transceiver through an SPI interface, accessed via the HAL. The references to the SPI driver must be updated by the user in the HAL. 

• Compilation and Programming: When the files required for software integration are available, the device API can be compiled, and 
the transceiver specific platform files programmed into the transceiver. 

TRANSCEIVER DEVICE
API INTEGRATION

INTEGRATION OF
TRANSCEIVER SPECIFIC

FILES (FW, STREAM,
GAIN TABLES, PROFILE)

INTEGRATION OF
DRIVERS IN THE

HARDWARE
ABSTRACTION LAYER

COMPILATION AND
PROGRAMMING

22
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00

3

 
Figure 3. Software Integration Process Steps 

SOFTWARE PACKAGE FOLDER STRUCTURE OVERVIEW 
The software package delivered follows the structure shown in Figure 4. The software package consists of the following four main folders: 

• API—contains the API C source code for the ADRV902x family of transceiver devices. 
• Firmware—contains the firmware binaries generated for the embedded ARM processor core in the ADRV902x family devices. 
• Gain Tables—contains the receiver gain table, receiver gain compensated gain table, and the transmit path attenuation table used by 

the ADRV902x family devices. 
• GUI—contains an installation package for the transceiver evaluation software, which can be used to evaluate the transceiver, and 

generate important platform files such as the stream and the use case profile used to initialize the device. 
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Figure 4. Software Package Folder Structure 
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API SOFTWARE ARCHITECTURE 
The API architecture is implemented as three main layers, as shown in Figure 5. This section describes how to use the API in a custom 
embedded software environment. This is readily accomplished because the API was developed abiding by ANSI C constructs while 
maintaining Linux system call transparency. The ANSI C standard was followed to ensure agnostic processor and operating system 
integration with the ADRV902x transceiver family-based API code. 
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Figure 5. Software Integration 

IMPLEMENTING HARDWARE ABSTRACTION INTERFACE 
Users that develop code to target custom hardware platforms use different drivers for the peripherals, such as the SPI and GPIO compared to the 
drivers chosen for the Analog Devices evaluation platform. The Analog Devices HAL interface is a library of functions that the API uses 
when it must access the target platform hardware. The Analog Devices HAL is defined by adi_platform.h. The implementation of this 
interface is platform dependent and is implemented by the developer in a platform specific subfolder. The prototypes of the required 
functions defined in adi_platform.h may not be modified, because this breaks the API. Refer to Table 2 for the functions required by the 
HAL interface for integration.  

DEVELOPING THE APPLICATION 
The /c_src/app/main.c file provides a user example demonstrating top level initialization. The example application was written to 
demonstrate initialization of one device, initialize the transmitter, and provide examples of calling the HAL functions and key initialization 
functions, such as adi_adrv9025_PreMcsInit_v2. Initialization of the transmitter and loading of the adi_adrv9025_Init_t structure are 
omitted from the example code contained here for brevity. The example project also demonstrates how to load the adi_adrv9025_Init_t 
structure from a JSON file or using initdata.c files. 

The user application must allocate and clear the device and init structures. The adi_adrv9025_Device_t data structure is used to describe 
or point to a particular device. The adi_adrv9025_Init_t structure is used to contain the init profile of the user.  

An adi_adrv9025_Device_t pointer to the specific device instance is as follows:  
typedef struct adi_adrv9025_Device 

{ 

    adi_common_Device_t       common;  

    adi_adrv9025_Info_t       devStateInfo;  

    adi_adrv9025_SpiSettings_t  spiSettings;  

} adi_adrv9025_Device_t; 

 

typedef struct adi_adrv9025_Init 

{ 

    adi_adrv9025_ClockSettings_t   clocks;             

    adi_adrv9025_GpInterruptSettings_t    gpInterrupts;  

    adi_adrv9025_RxSettings_t        rx; 

    adi_adrv9025_TxSettings_t        tx; 
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    adi_adrv9025_DataInterfaceCfg_t  dataInterface;  

} adi_adrv9025_Init_t; 

To support multiple devices in a single system, the application layer code must instantiate multiple adi_adrv9025_Device_t structures to 
describe each physical device. Multiple devices can have their own adi_adrv9025_Init_t structure instance, or share a common init 
structure if they are configured the same.  

The devHalInfo is defined as a void pointer and allows the user to define and pass any platform hardware settings to the platform HAL 
layer functions. For example, devHalInfo might contain information such as the SPI chip select to be used for the physical device. The 
API does not use the devHalInfo member, and therefore does not define the information it contains. Note that the API functions are 
shared across all instances of physical devices. The devHalInfo structure defined by the developer identifies which physical device is 
targeted (SPI chip select) when a particular API function is called. The developer may need to store other hardware information unique 
to a particular device in this structure, such as timer instances, log file information to allow for multithreading. It is expected that only 
one thread uses the API to a particular device. 

The devStateInfo member is of the adi_adrv9025_Info_t structure type in the C programming and is a runtime state container for the API. The 
application layer must allocate memory for this structure, but only the API writes to the structure. The application layer allocates the devStateInfo 
structure with all zeroes. The API uses the devStateInfo structure to keep up with the current state of the API (for example, has it been initialized 
and ARM loaded), as well as a debug store for any run-time data, such as error codes and error sources. It is not intended for the application layer 
to access the devStateInfo member directly, as API functions are provided to access the last error code and source information. 

The adi_adrv9025_Init_t structure is used to contain the customer profile initialization settings to configure a device. This init structure 
is passed to the API init functions during the initialization phase. This structure contains the receiver/transmitter/observation receiver 
profile settings, system clock settings, JESD204B/JESD204C settings, and transceiver specific SPI slave controller settings. The application 
layer passes a pointer to an instance of the adi_adrv9025_Init_t structure for a particular device to handle the majority of the device core 
initialization. After initialization is complete, the adi_adrv9025_Init_t structure may be disposed of or deallocated if desired.  
 

#include <stdio.h> 

 

#include "adi_platform.h" 

#include "adi_adrv9025_utilities.h" 

#include "adi_adrv9025.h" 

#include "adi_adrv9025_radioctrl.h" 

 

static void adi_LoadADRV9025InitStructUseCase24(adi_adrv9025_Init_t *init); 

static int32_t adi_ADRV9025InitExample(adi_adrv9025_Device_t *adrv9025Device); 

static int32_t adi_ADRV9025EnableTxExample(adi_adrv9025_Device_t *adrv9025Device); 

int main() 

{ 

     int32_t recoveryAction = 0; 

     adi_adrv9025_Device_t adrv9025Device = {0} ;       

     adi_ADRV9025InitExample(&adrv9025Device); 

     adi_ADRV9025EnableTxExample(&adrv9025Device_) ;    

     recoveryAction = adi_adrv9025_HwClose(&adrv9025Device); 

     if (recoveryAction != ADI_ADRV9025_ACT_NO_ACTION) 

     { 

           printf("Failed closing platform hardware drivers\n"); 

           return -1; 

     } 

    adi_hal_DevHalCfgFree(adrv9025Device.devHalInfo); 

   return 0; 

} 
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static int32_t adi_ADRV9025InitExample(adi_adrv9025_Device_t *adrv9025Device) 

{ 

                int32_t recoveryAction = 0; 

                 

                printf("Example Init sequence for ADRV9025\n"); 

                 

                if (adrv9025Device == NULL) 

                { 

                                printf("NULL ADRV9025 device pointer\n"); 

                                return -1 

                } 

                 

                adi_adrv9025_Init_t adrv9025Init = {0}; 

                 

                /* Platform layer function adi_hal_DevHalCfgCreate allocates platform specific 
settings structure for SPI               

                     driver, logging, etc (per device)*/ 

               void *adrv9025hal = adi_hal_DevHalCfgCreate((ADI_HAL_INTERFACE_SPI | 
ADI_HAL_INTERFACE_LOG |                   

                                                    ADI_HAL_INTERFACE_HWRESET | 
ADI_HAL_INTERFACE_TIMER), 0, "adrv9025Log.txt"); 

                if (adrv9025hal == NULL) 

                { 

                                printf("Failed allocating platform hardware settings 
structure\n"); 

                                return -1; 

                } 

                adrv9025Device->devHalInfo = adrv9025hal; 

                 

                /* Load ADRV9025 init structure */ 

                adi_LoadADRV9025InitStructUseCase24(&adrv9025Init); 

                 

                recoveryAction = adi_adrv9025_HwOpen(adrv9025Device); 

                if (recoveryAction != ADI_ADRV9025_ACT_NO_ACTION) 

                { 

                                printf("Failed opening platform hardware drivers\n"); 

                                return -1; 

                } 

                 

                /* Initialize ADRV9025 */ 

                recoveryAction = adi_adrv9025_PreMcsInit_v2(adrv9025Device, 

                                             &adrv9025Init, 

                                             
"/home/analog/adrv9025_server/resources/Tokelau_M4.bin",  

                                             "/home/analog/adrv9025_server/resources/stream_imag
e.bin", 

                                             
"/home/analog/adrv9025_server/resources/RxGainTable.csv", 
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"/home/analog/adrv9025_server/resources/TxAttenTable.csv"); 

                 

                recoveryAction = adi_adrv9025_PllFrequencySet(adrv9025Device, 
ADI_ADRV9025_LO1_PLL, 3500000000); 

                 

                return 0; 

} 

Include Files 

For each major function block, there are generally three files: adi_feature.c, adi_feature.h, and adi_feature_types.h. For core API 
functionality, Table 3 shows the mandatory .h header files that must be included in the application layer program. Optional add-on API 
functions can be included if the application of the developer requires those features. Note that the API places typedef definitions in files 
with _types.h suffixes, such as ADRV9025_types.h. These _types.h files are included within their corresponding .h files and do not need 
to be manually included in the application layer code. 

Note that the ADRV9025_user.h contains the #defines for API timeouts and SPI read intervals, which may be set as needed by the 
customer platform. The user files are the only API files that the developer may change.  

Table 3. API Mandatory .h Header Files 
Mandatory Include Files Description 
adi_adrv9025.h Core init functions 
adi_adrv9025_error.h Error extension from common error 
adi_adrv9025_arm.h ARM related functions 
adi_adrv9025_cals.h Calibration related functions 
adi_adrv9025_gpio.h General-purpose input/output (GPIO) related functions 
adi_adrv9025_data_interface.h Data interface related functions, JESD204B/JESD204C 
adi_adrv9025_hal.h Contains prototypes and macro definitions for transceiver specific HAL wrapper functions 
adi_adrv9025_radioctrl.h Functions for controlling the radio 
adi_adrv9025_rx.h Receiver related functions 
adi_adrv9025_tx.h Transmitter related functions 
adi_adrv9025_user.h API timeout and retry definitions 
adi_adrv9025_utilities.h Higher level utility functions for init, loading ARM and stream binaries, loading receiver gain table, 

transmitter attenuation table (most require file system support) 
adi_adrv9025_version.h Version structure 

Table 4. API Optional .h Files 
Optional (Add On) Include Files Description 
adi_adrv9025_agc.h Add-on receiver automatic gain control (AGC) functionality 
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API Error Handling and Debug 

Each API function returns an int32_t value representing a recovery action. Recovery actions are divided into the following: 

• Warning actions are those that do not have an impact at the time of executing the device API, but can cause performance issues or 
logging problems. The value of these actions are positive. 

• Error actions are those that cause API not to be able to run and an action is required for API to go back to a good state. The value of 
these actions are negative. 

The API error structure that is accessed via device.error contains the following various members to narrow the action to be taken: 

• errSource: current source of error detected, indicating the source file where the error occurred. 
• errCode: current error code  
• errLine: line of the source code where the error was returned  
• errFunc: function name where the error occurred  
• errFile: file name where the error occurred 
• varName: variable name which has the error 
• errorMessage: error message to describe the error 
• lastAction: last action detected  
• newAction: new action detected 

API functions respond by telling the application layer what action must be taken due to a possible error in the API function call. The 
error structure contains further information to take the adequate action. The possible recovery action return values are listed in Table 5. 

Table 5. API Recovery Actions 
Recovery Action Name Value Description 
ADI_COMMON_ACT_WARN_CHECK_PARAM 3 API OK: parameter exceeds the range of values allowed 
ADI_COMMON_ACT_WARN_RERUN_FEATURE  2 API OK: rerun device feature (ARM init cals) 
ADI_COMMON_ACT_WARN_CHECK_INTERFACE 1 API OK: log not working, this is a warning device programing can continue, 

upper layer must decide action to be taken 
ADI_COMMON_ACT_NO_ACTION 0 API function completed: no error handling action is required. 
ADI_COMMON_ACT_ERR_CHECK_TIMER −1 API OK: timer not working 
ADI_COMMON_ACT_ERR_CHECK_PARAM  −2 API OK: invalid parameter detected in API 
ADI_COMMON_ACT_ERR_RESET_INTERFACE  −3 API NG: interface not working, device cannot be program or access, 

timer/I2C/SPI/data interface 
ADI_COMMON_ACT_ERR_RESET_FEATURE −4 API NG: reset device feature (for example, arm init cals)  
ADI_COMMON_ACT_ERR_RESET_MODULE  −5 API NG: module of device not working (arm not accessible) 
ADI_COMMON_ACT_ERR_RESET_FULL −6 API NG: full system reset required 

The actions can be divided into the following different blocks: 

• Parameter 
• Parameter either passed to function or member of structure 
• This action can be assigned to set a feature/module/interface when it is not configured correctly  

• Feature (parts of a module or device) 
• GPIO control for transmitter attenuation 
• General purpose interrupt 
• ARM initial calibrations 
• ARM tracking calibrations 
• ARM control 
• AGC control 
• Power amplifier protection 

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029


UG-1727 ADRV9026/ADRV9029 System Development User Guide 
 

Rev. 0 | Page 16 of 336 

• Module (individual blocks that are contained in the device that are to contain features) 
• ARM 
• Caching/merging/streaming 

• Interface: 
• Device interface 
• SPI/I2C/data interface 
• Log 

• Device: 
• Target device 

API Recovery Action: ADI_COMMON_ACT_NO_ACTION  

The ADI_COMMON_ACT_NO_ACTION API recovery action is returned when an API function completes. There is no recovery action 
to be performed. 

API Recovery Action: ADI_COMMON_ACT_WARN_RERUN_FEATURE 

The ADI_COMMON_ACT_WARN_RERUN_FEATURE recovery action is returned when the API detects a failure in any of the device 
features. 

If a tracking calibration error is detected, it usually is not a catastrophic error, usually resulting in degraded radio performance. The 
application layer attempts to recover by resetting the tracking calibration.  

If the API detects an error with the transceiver init calibrations, at this point the error severity is high enough that re-running all init 
calibrations is required. A full transceiver device reset is not required. It is also not required to reload the ARM firmware of the device. 

The following procedure is the suggested application layer action: 

1. Set PA and other RF front-end components in powered down state. 
2. Call adi_adrv9025_ErrorCodeGet() to determine the specific ADIHAL error code and verify ADIHAL is the error source. Log error 

code and source. 
3. Read ARM calibration status to log debug information on calibration failure, call adi_adrv9025_InitCalDetailedStatusGet() 
4. Call adi_adrv9025_InitCalsRun() to rerun the init calibrations 
5. Call adi_adrv9025_InitCalsWait () and adi_adrv9025_InitCalDetailedStatusGet () to confirm that there is no error in init 

calibrations. 

API Recovery Action: ADI_COMMON_ACT_WARN_CHECK_INTERFACE 

The ADI_COMMON_ACT_WARN_CHECK_INTERFACE API recovery action is returned if the adi_platform has returned an error in 
any interface. Further information can be extracted by reading the error structure, which contains extended information about the error.  

The following issues are possible scenarios for a check interface action. 

Issue: Logging Interface When the Log File Cannot Be Opened Or Written to  

The API layer does not return this as an error because it does not directly affect transceiver performance. In addition, this recovery action 
does not prevent the API function from completing. Analog Devices suggests that the application layer attempt to close the log file and 
reopen to resolve the log file access issue. 

Issue: Baseband Processor GPIO Failed to Operate Correctly, but the API Circumvented the Error by Using the SPI Port or 
Other Control Mechanism  

Because the API was able to complete the API function, the issue is not critical, but the application layer attempts to debug and fix the 
issue reported by the adi_common layer with respect to the baseband processor GPIO control. The device.common.error contains the 
information for decoding the error, the application layer can use it to debug the root cause of the error further. 

Issue: adi_common Returns an Error Reporting that the Timer Is Not Working as Expected 

The API uses the timer adi_common functions to perform thread blocking waits to insure that the API does not poll the SPI bus with 
100% utilization.  

If the timer is reporting an error from the adi_common, it is possible that the API function works correctly, but there may be an impact 
on the system due to incorrect usage of system resources.  
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Issue: adi_common Layer Reports a HAL Error While Attempting to Control the Baseband Processor GPIO Pins 

If the API function cannot circumvent the error, this action is returned. If the API can circumvent the error, only a warning is returned. 
Currently, the only baseband processor GPIO pin used in the adi_common is to reset the transceiver device (RESET pin).  

If this error is reported, the application layer attempts to reset the baseband processor GPIO pins that are used within the adi_common 
layer of code. If the application layer can resolve the GPIO hardware driver issue, normal operation of the API can resume by retrying the 
failed API function. 

The following are suggested application layer actions: 

• Attempt to reset interface. 
• Continue use of API monitoring for future check interface recovery action reports. 
• If continued reports of ADI_COMMON_ACT_WARN_CHECK_INTERFACE, a system diagnostic may be required for the 

particular hardware. 

API Recovery Action: ADI_COMMON_ACT_ERR_CHECK_PARAM 

The ADI_COMMON_ACT_ERR_CHECK_PARAM API recovery action is returned if an API parameter range check or null parameter 
check failed. In the event that this recovery action is returned, the API function did not complete. It is expected that this recovery action 
is only found during the debug phase of development. During application software development, this recovery action informs the 
developer to double check the value passed into the API function parameters. When the parameters are corrected to be in the valid range, 
or null pointers are corrected, recalling the function allows the API function to complete. 

For debug, the developer may access further information located in the error structure, like error code, file name, function name or 
variable name, a message is stored in the error message variable describing the error in more detail. 

If the application software passes the development test but this recovery action is returned in the field, a bug in the application layer is 
highly possible, causing an out of range or null pointer error. 

API Recovery Action: ADI_COMMON_ACT_ERR_CHECK_DEVICE 

The ADI_COMMON_ACT_ERR_CHECK_DEVICE recovery action is returned when the device detected is not compatible with the 
API being executed. 

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_INTERFACE 

The ADI_COMMON_ACT_ERR_RESET_INTERFACE API recovery action is returned if the ADIHAL layer reports a HAL error while 
attempting a SPI read or write transaction. If the ADIHAL function returns a timeout error due to SPI hardware being busy or used by 
another thread, the API attempts to retry the SPI operation once. If the SPI transaction fails again, the API reports this recovery action. 
This action is also returned if an ADIHAL error is returned due to inability to access the driver.  

The following recommended sequence is to implement the suggested application layer actions:  

1. Call to determine the specific ADIHAL error code and verify that ADIHAL is the error source. 
2. Log error code and source. 
3. If the ADIHAL error is a timeout, the API function may be retried. 
4. If the ADIHAL error is not a timeout, application tries resetting the SPI driver and retrying the function call. 
5. If recovery action persists, verify SPI communication with other SPI devices and assess the need for a baseband processor system 

reset. 

If an API function has detected a condition, only the baseband processor can determine if it is a true error or not. An example is a data 
interface error counter threshold overflow. If a data interface counter were to overflow once an hour or once a month, only the baseband 
processor can determine if the counter overflow constituted an actual error condition. 

The following recommended sequence is to implement the suggested application layer actions:  

1. Record the error. 
2. Perform any baseband processor determined recovery actions. 
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API Recovery Action: ADI_COMMON_ACT_ERR_RESET_FEATURE  

The ADI_COMMON_ACT_ERR_RESET_FEATURE API recovery action is returned by the API when an error has been detected that 
required the reset of a feature of the device. To reset the feature, perform a reconfiguration of the same feature.  

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_MODULE 

The ADI_COMMON_ACT_ERR_RESET_MODULE API recovery action is returned if the API detects an issue in any of the following modules:  

• ARM processor module that requires a complete reset and reload of the ARM firmware. This type of action may be required if the 
communication interface to the ARM processor fails or the ARM watchdog timer reports an error. These events are not expected in 
production code, but are failsafe mechanisms in the event of a catastrophic error. 
• Issue adi_adrv9025_RxTxEnableSet() to disable transmitter to keep hardware in a safe state. If this fails, a full transceiver reset is 

required. 
• Set power amplifier and other RF front-end components in powered down state.  
• Call adi_adrv9025_ErrorCodeGet() to determine the specific error code and verify the error source.  
• Log error code and source.  
• Dump ARM memory if necessary for debug. 

• Dump SPI registers if necessary for debug. 
• Reload the stream processor and ARM binary firmware files. 
• Continue with normal init sequence to run init calibrations and enable tracking calibrations. 

API Recovery Action: ADI_COMMON_ACT_ERR_RESET_DEVICE 

The ADI_COMMON_ACT_ERR_RESET_DEVICE recovery action is returned if an API function cannot complete due to a detected error. If 
the API cannot correct or circumvent the error, and the severity of the error requires a complete reset of the transceiver device, this action is returned.  

The following is the recommended sequence to implement the suggested application layer actions:  

1. Put system hardware in safe state. 
a. Set the power amplifier and other RF front-end components in powered down state. 
b. Hard reset transceiver device (adi_adrv9025_HwReset()) 

2. Read API error code information for debug. 
a. Dump ARM memory if necessary 
b. Dump SPI registers if necessary 

3. Reinitialize transceiver using normal full initialization sequence. 

Restrictions 

Developers may not modify any code located in the /c_src/devices/* folder other than changing the adi_platform.c and adi_platform.h 
code bodies for hardware driver insertion. Analog Devices maintains the code in /c_src/devices/adrv9025 and /c_src/devices/ad9528. 
Analog Devices provides new releases to fix any code bugs in these folders.  

No direct SPI read/write operation is permitted when configuring the transceiver or Analog Devices clock chip device. Only use the high-
level API functions defined in /c_src/devices/ad9528/ad9528.h or other public .h files. Do not directly use any SPI read/write functions in 
the application layer code for transceiver configuration or control. Analog Devices does not support any customer code containing SPI 
writes reverse-engineered from the original API. 

Multiple Thread and Multiple Transceiver Application Considerations 

For applications with multiple transceivers, the API requires a reference to the targeted device and its hard and soft particulars (for 
example, SPI chip-select, reset, and configuration status). The adi_adrv9025_Device_t structure is used to identify each instance of a 
physical transceiver device.  

For multithreaded applications, there is a requirement that a particular device may only be controlled and configured by a single thread. 
Concurrent thread configuration of the same instance of a physical transceiver device is not supported by the API. 

Delays, Waits, and Sleeps  

A small number of APIs require some time to allow the hardware to complete internal configurations, for example, 
adi_adrv9025_PllFrequencySet(). These APIs request the system to perform a wait or sleep by calling the HAL interface function 
adi_hal_Wait_us/adi_hal_Wait_ms. If the HAL interface implementation of the target platform chooses to implement a thread sleep, it is 
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not permitted for the application to call another API targeting the same transceiver device. The application is required to enter wait/sleep 
state and the API to complete before continuing with the configuration of the device.  

Table 6 lists the wait/sleep period used by the API. They are defined in adi_adrv9025_user.h. The timeout period values are the 
recommended period required to complete the operation. Modifying these values is not recommended and may impact performance. 
During this timeout period the status of the transceiver is polled. The frequency of polling the status during this timeout period may be 
modified by the user by adjusting the value of the polling interval. 

Note that these recommendations may change after evaluation of the device is fully complete. 

Table 6. API Internal Wait/Sleep Intervals  

Wait/Sleep Reference Purpose 
Recommended Timeout 
Period Per μs 

Recommended Poll 
Interval Per μs 

VERIFY_ARM_CHKSUM_XXX Calculation of arm checksum 200000 5000 
CLKPLL_CPCAL_XXX Internal clock and PLL configuration 1000000 100000 
CLKPLL_LOCK_XXX Internal clock and PLL locking period 1000000 100000 
SETARMGPIO_XXX Update ARM information on GPIOs for 

TDD pin control 
1000000 100000 

SETRFPLL_XXX Configure RF PLL frequency 1000000 100000 
GETRFPLL_XXX Retrieve RF PLL frequency 1000000 100000 
ABORTINITCALS_XXX Abort initial calibrations 1000000 100000 
GETINITCALSTATUS_XXX Retrieving initial calibrations status 1000000 100000 
RADIOON_XXXS Enabling radio transmit and receive 1000000 100000 
READARMCFG_XXX Reading ARM configurations 1000000 100000 
WRITEARMCFG_XXX Updating ARM configurations 1000000 100000 
RADIOOFF_XXX Disabling radio transmit and receive  1000000 100000 
ENTRACKINGCALS_XXX Enabling tracking calibrations 1000000 100000 
RESCHEDULETRACKINGCALS_XXX Schedule a tracking calibration to run 1000000 100000 
SETTXTOORXMAP_  Set transmitter to observation 

receiver external signal routing 
1000000 100000 

GETTXLOLSTATUS_  Status of transmitter local oscillator 
leakage external tracking cal 

1000000 100000 

GETTXQECSTATUS_  Status of transmitter QEC tracking cal 1000000 100000 
GETRXQECSTATUS_  Status of receiver QEC tracking cal 1000000 100000 
GETORXQECSTATUS_  Status of observation receiver QEC 

tracking cal 
1000000 100000 

GETRXHD2STATUS_  Status of receiver HD2 tracking cal 1000000 100000 
SENDARMCMD_XXX Sending requests to arm firmware 2000000 100000 
GETTEMPERATURE_  Read current temperature  1000000 100000 
GETARMBOOTUP_  Waiting for ARM to boot up 1000000 100000 
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SERIAL PERIPHERAL INTERFACE (SPI) 
The SPI bus provides the interface for digital control by a baseband processor. Each SPI register is 8 bits wide, and each register contains 
control bits, status monitors, or other settings that control all functions of the transceiver. This section is mainly an information only 
section meant to give the user an understanding of the hardware interface used by the baseband processor to control the device. All 
control functions are implemented using the API detailed within this user guide and in the documentation included with the software 
package. This section contains descriptions and parameters that explain the specifics of this interface.  

SPI BUS SIGNALS  
The SPI bus consists of the four signals described in this section.  

CS 

CS is the active low chip select that functions as the bus enable signal driven from the baseband processor to the transceiver. This signal is 
an input to the SPI_EN pin. CS is driven low before the first SCLK rising edge and is normally driven high again after the last SCLK 
falling edge. The transceiver ignores the clock and data signals while CS is high. CS also frames communication to and from the 
transceiver and returns the SPI interface to the ready state when it is driven high.  

Forcing CS high in the middle of a transaction aborts part or all of the transaction. If the transaction is aborted before the instruction is 
complete or in the middle of the first data word, the state machine returned to the ready state. Any complete data byte transfers prior to 
CS deasserting are valid, but all subsequent transfers in a continuous SPI transaction are aborted. 

SCLK 

SCLK is the serial interface reference clock driven by the baseband processor. This signal is an input to the SPI_CLK pin. It is only active 
while CS is low. The minimum SCLK frequency is 10 MHz and the maximum SCLK frequency is 25 MHz. These limits are determined 
based on the practical timing requirements of the transceiver system and the physical limitations of the transceiver. 

SDIO and SDO 

When configured as a 4-wire bus, the SPI utilizes two data signals: SDIO and SDO. SDIO is the data input line driven from the baseband 
processor. The signal input to the transceiver is the SPI_DIO pin. SDO is the data output from the transceiver to the baseband processor 
in this configuration. The output signal is driven by the SPI_DO pin. When configured as a 3-wire bus, SDIO is used as a bidirectional 
data signal that both receives and transmits serial data. The SDO port is disabled in this mode.  

The data signals are launched on the falling edge of SCLK and sampled on the rising edge of SCLK by both the baseband processor and 
the transceiver. SDIO carries the control field from the baseband processor to the transceiver during all transactions, and it carries the 
write data fields during a write transaction. In a 3-wire SPI configuration, SDIO carries the returning read data fields from the transceiver 
to the baseband processor during a read transaction. In a 4-wire SPI configuration, SDO carries the returning data fields to the baseband 
processor. 

The SPI_SDO and SPI_SDIO pins transition to a high impedance state when the CS input is high. The transceiver does not provide any 
weak pull-ups or pull-downs on these pins. When SPI_SDO is inactive, it is floated in a high impedance state. If a valid logic state on 
SPI_SDO is required at all times, add an external weak pull-up/down (10 kΩ value) on the PCB.  

SPI DATA TRANSFER PROTOCOL 
The SPI is a flexible, synchronous serial communication bus allowing seamless interfacing to many industry standard microcontrollers 
and microprocessors. The serial I/O is compatible with most synchronous transfer formats, including both the Motorola SPI and Intel 
scalable source routing (SSR) protocols. The control field width for this transceiver is limited to 16 bits, and multibyte IO operation is 
allowed. This device cannot be used to control other devices on the bus, it only operates as a slave.  

There are two phases to a communication cycle. Phase 1 is the control cycle, which is the writing of a control word into the transceiver. 
The control word provides the serial port controller with information regarding the data field transfer cycle, which is Phase 2 of the 
communication cycle. The Phase 1 control field defines whether the upcoming data transfer is read or write. It also defines the register 
address being accessed.  
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Phase 1 Instruction Format 

The 16-bit control field contains the information in Table 7. 

Table 7. 16-Bit Control Field 
MSB D14:D0 
R/W A[14:0] 

R/W, Bit 15 of the instruction word, determines whether a read or write data transfer occurs after the instruction byte write. Logic high 
indicates a read operation, logic zero indicates a write operation. 

D14:D0, Bits A[14:0], specify the starting byte address for the data transfer during Phase 2 of the IO operation.  

All byte addresses, both starting and internally generated addresses, are assumed to be valid. That is, if an invalid address (undefined 
register) is accessed, the IO operation continues as if the address space were valid. For write operations, the written bits are discarded, and 
read operations result in logic zeros at the output. 

Phase 2 data transfer is performed in 8 bit words. Both single byte and multibyte transfers can be configured using the API, as described 
in the SPI Configuration Using API Function section. 

SPI CONFIGURATION USING API FUNCTION 
SPI operation is configured via calling adi_adrv9025_SpiCfgSet(). This function is called by the adi_adrv9025_Initialize(), which is called 
by adi_adrv9025_PreMcsInit_v2().  

The input parameters for adi_adrv9025_PreMcsInit_v2() include the init structure, which is of type adi_adrv9025_Init_t. The 
adi_ADRV9025InitExample() function shows an example of configuring a hard coded init function, which includes the SPI related parameters.  

Users can configure SPI settings for the transceiver with different SPI controller configurations by configuring member values of the 
adi_adrv9025_SpiSettings_t data structure. The adi_adrv9025_SpiSettings_t data structure parameters are listed in Table 8. Any value 
that is not listed in Table 8 is invalid. 
typedef struct adi_adrv9025_SpiSettings 

{ 

    uint8_t msbFirst;                            

    uint8_t enSpiStreaming;                      

    uint8_t autoIncAddrUp;                       

    uint8_t fourWireMode;                        

    adi_adrv9025_CmosPadDrvStr_e cmosPadDrvStrength;    

} adi_adrv9025_SpiSettings_t; 

Table 8. SPI Bus Setup Parameters 
Structure Member Value Function  Default 
MSBFirst 0x00 Least significant bit first 0x01 

0x01 Most significant bit first 
enSpiStreaming 0x00 Enable single-byte data transfer mode. All communication between the baseband processor and the 

device uses this mode. Note that this parameter is not implemented in the Analog Devices platform 
layer. 

0x00 

0x01 Enable streaming to improve SPI throughput for indirect data transfer using an internal DMA 
controller. Note that this parameter is not implemented in the Analog Devices platform layer. 

autoIncAddrUp 0x00 Autoincrement. Functionality intended to be used with SPI streaming. Sets address 
autoincrement -> next addr = addr − 4. Note that this parameter is not implemented in the 
Analog Devices platform layer. 

0x01 

0x01 Autodecrement. Functionality intended to be used with SPI streaming. Sets address 
autodecrement -> next addr = addr + 4. Note that this parameter is not implemented in the 
Analog Devices platform layer. 

fourWireMode 0x00 SPI hardware implementation. Use 3-wire SPI (SDIO pin is bidirectional). Figure 8 shows example of 
SPI 3-wire mode of operation. Note that Analog Devices FPGA platform always uses 4-wire mode. 

0x01 

0x01 SPI hardware implementation. Use 4-wire SPI. Figure 6 and Figure 7 show examples of SPI 4-wire 
mode of operation. The default mode for Analog Devices FPGA platform is 4-wire mode. 
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Structure Member Value Function  Default 
cmosPadDrvStrength 0x00 5 pF load at 75 MHz. 0x01 

0x01 100 pF load at 100 MHz. 

Single Byte Data Transfer 

When enSpiStreaming = 0, a single byte data transfer is chosen. In this mode, CS goes active low, the SCLK signal activates, and the 
address is transferred from the baseband processor to the transceiver. This mode is always used in direct communication between the 
baseband processor and the transceiver. 

In LSB mode, the LSB of the address is the first bit transmitted from the baseband processor, followed by the next 14 bits in order from 
next LSB to MSB. The next bit signifies if the operation is read (set) or write (clear). If the operation is a write, the baseband processor 
transmits the next 8 bits LSB to MSB. If the operation is a read, the transceiver transmits the next 8 bits LSB to MSB.  

In MSB mode, the first bit transmitted is the R/W bit that determines if the operation is a read (set) or write (clear). The MSB of the 
address is the next bit transmitted from the baseband processor, followed by the remaining 14 bits in order from next MSB to LSB. If the 
operation is a write, the baseband processor transmits the next 8 bits MSB to LSB. If the operation is a read, the transceiver transmits the 
next 8 bits MSB to LSB.  

Single byte data transfer can continue in either mode for multiple byte transfers using the transfer format of address followed by data (A 
D A D …) until the CS signal is driven high. The address must be written for each data byte transfer when using this mode. 

Multiple Byte Data Transfer (SPI Streaming) 

Multiple byte data transfer (also called SPI streaming) is not utilized in standard communication between the baseband processor and the 
transceiver. When enSpiStreaming = 1, data is transferred in multibyte packets, depending on the streaming mode that is enabled. This 
mode is used to transfer data indirectly to internal ARM memory using a direct memory access (DMA) controller.  

TIMING DIAGRAMS 
The diagrams in Figure 6 and Figure 7 illustrate the SPI bus waveforms for a single register write operation and a single register read 
operation, respectively. In Figure 6, the value 0x55 is written to Register 0x00A. In Figure 7, Register 0x00A is read and the value returned 
by the transceiver is 0x55. If the same operations are performed with a 3-wire bus, the SDO line in Figure 6 is eliminated, and the SDIO 
and SDO lines in Figure 7 are combined on the SDIO line. Note that both operations use MSB first mode and all data is latched on the 
rising edge of the SCLK signal. 
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Figure 6. Nominal Timing Diagram, SPI Write Operation 
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Figure 7. Nominal Timing Diagram, SPI Read Operation 
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Table 9 lists the timing specifications for the SPI bus. The relationship between these parameters is shown in Figure 8. This diagram 
shows a 3-wire SPI bus timing diagram with the timing parameters marked. Note that this is a single read operation. Therefore, the bus 
ready parameter after the data is driven from the transceiver (tHZS) is not shown in Figure 8. Note that the byte to byte delay time (tINT) is 
also not shown in Figure 8 because Figure 8 only shows a single byte write operation. 

Table 9. SPI Bus Timing Constraint Values 
Parameter Min Typ Max Description 
tCP 40 ns  100 ns SCLK cycle time (clock period) 
tMP 10 ns   SCLK pulse width 
tSC 4 ns   CS setup time to first SCLK rising edge 

tHC 0 ns   Last SCLK falling edge to CS hold 

tS 4 ns   SDIO data input setup time to SCLK 
tH 0 ns   SDIO data input hold time to SCLK 
tCO 10 ns  16 ns SCLK falling edge to output data delay (3-wire or 4-wire mode) 
tHZM tH  tCO (max) Bus turnaround time after baseband processor drives the last address bit 
tHZS 3 ns  tCO (max) Bus turnaround time after transceiver drives the last data bit 
tINT    400 ns Byte to byte delay time during any single read or write operation 
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Figure 8. 3-Wire SPI Timing with Parameter Labels 
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SYSTEM INITIALIZATION 
This section provides information about the initialization process for the transceiver utilizing the API developed by Analog Devices. Each 
subsection describes the developer preparation requirements and the initialization sequence. This section does not explain the API 
library functions. Detailed information regarding the API functions can be found in the API doxygen document (adrv9025.chm) located 
at /src/doc. Details about API integration and the hardware abstraction interface can be found in the Software Integration section and the 
Hardware Abstraction Layer section. 

INITIALIZATION SEQUENCE 
The initialization sequence is comprised of API calls intermixed with user defined function calls specific to the hardware platform. The 
API functions perform all of the necessary tasks for transceiver configuration, calibration, and control. The user is required to insert the 
code into the initialization sequence specific to the hardware platform requirements. These platform requirements include but are not 
limited to user clock device, user FPGA\ASIC\baseband processor JESD204B and JESD204C interface, data path control, and various 
system checks governed by the application.  

The initialization process consists of the following steps. Some of the steps are done by the ARM. All functions before loading the stream 
must be write only (use SPI write or bit field write, no SPI read). 

The following steps are the pre-multichip synchronization (MCS) initialization sequence:  

1. adi_adrv9025_Initialize 
a. Set SPI controller settings 
b. Set master bias 
c. Enable pin pads  
d. Set device clock hsdig divider 
e. Load PFIRs per channel  
f. Load gain tables 
g. Load transmitter attenuation tables 
h. Load stream binary 
i. Load ARM binary 
j. Write initialization structure/receiver/transmitter profile info into ARM memory 
k. ARM run = 1 
l. Wait for ARM boot to complete 
m. Verify ARM checksum 

2. ARM configuration 
a. Receiver/transmitter channel configuration (all half-band filter enables, clock dividers) 
b. Clock PLL and SERDES PLL configuration 
c. JESD204B and JESD204C configuration 
d. ARM switches to clock PLL output after PLL locked 

The following steps are the post MCS initialization sequence:  

1. MCS: 
a. Set ARM run = 0 
b. Enable MCS state machine to listen for new SYSREF pulses  
c. Customer sends SYSREF pulses 
d. When MCS state machine complete, ARM run = 1 

2. Run ARM init calibrations  
3. Enable tracking cals 

a. Enable radio control pin mode or not 
b. Setup any GPIO for ARM/streams  

The system is now ready.  
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SERIALIZER/DESERIALIZER (SERDES) INTERFACE 
The transceiver employs a SERDES high speed serial interface based on the JESD204B and JESD204C standards to transfer ADC and 
DAC samples between the transceiver and a baseband processor. The transceiver can support high speed serial lane rates up to 24.33 
Gbps. An external clock distribution solution provides a device clock and SYSREF to both the transceiver and the baseband processor. 
The SYSREF signal ensures deterministic latency between the transceiver and the baseband processor. 

Note that the initialization sequence of the device is critical to guarantee deterministic latency. Specifically, the ARM init calibrations 
must be run before the SERDES links are established, as described in the Initialization Sequence section. It is also imperative to check the 
FIFO depth after the link has been established. Major blocks in the interface include clock distribution, SERDES framer, and SERDES 
deframer.  

JESD204B AND JESD204C STANDARD 
The JESD204B and JESD204C specification defines four key layers that implement the protocol data stream, as shown in Figure 9. The 
transport layer maps the conversion between samples and framed, unscrambled octets. The optional scrambling layer scrambles one 
direction of data of the octets and descrambles the other direction of data of the octets, spreading the spectral peaks to reduce EMI. The data 
link layer handles link synchronization, setup, and maintenance. The data link layer also encodes/decodes the optionally scrambled octets 
to/from 10-bit characters in the case of JESD204B (8-bit/10-bit encoding) and 66-bit characters in the case of JESD204C (64-bit/66-bit 
encoding). The physical layer is responsible for transmission and reception of characters at the bit rate. 
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Figure 9. Key Layers of the JESD204B and JESD204C Standard 

Figure 10 and Figure 11 illustrate how the JESD204B and JESD204C transmit and receive protocols are implemented. 

The data interface blocks in the transceiver can operate in either JESD204B or JESD204C modes. Fewer number of lanes may be needed 
when operating in JESD204C, which results in simpler PCB layout and less power consumption.  
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Figure 10 JESD204B and JESD204C Framer (JTX) 
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Figure 11 JESD204B and JESD204C Deframer (JRX) 
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DIFFERENCES BETWEEN JESD204B AND JESD204C 
The initial revision of the interface provided supports both single and multiple lanes per converter device. Revision B added programmable 
deterministic latency, usage of device clock as main clock source, and data rate up to 12.5 Gbps. In the Revision C specification, the data rate 
is increased up to 32 Gbps and three link layers are defined as 8-bit/10-bit, 64-bit/66-bit, and 64B/80B, where the 8-bit/10-bit link layer is 
the same as the JESD204B link layer.  

In the 8-bit/10-bit link layer, the data is organized into multiframes where in the 64-bit/66-bit link layer data is organized into multiblocks 
of 32 blocks where each block contains 8 octets. In the 8-bit/10-bit link layer, phase synchronization is done by the local multiframe clock 
(LMFC) where 64-bit/66-bit uses the local extended multiblock clock (LEMC). In the 8-bit/10-bit link layer, LMFC marks multiframe 
boundaries where in 64-bit/66-bit link layer LEMC is used to mark extended multiblock boundaries. Deterministic latency can be 
achieved by both LMFC or LEMC as per the link layer used. 

The 8-bit/10-bit link layer does the alignment between multiple converters by the alignment of their LMFCs to an external signal SYSREF. 
In the 64-bit/66-bit link layer, the alignment between multiple converter devices is done by the alignment of the LEMC to an external 
signal SYSREF/multireference in Subclass 1. Each converter device can then adjust its LEMC phase to match with the common LEMC of 
the logic device. The 64-bit/66-bit link layer only supports Subclass 1-based LEMC alignment. In this case, the release buffer delay (RBD) 
adjustment resolution must not be greater than 255 steps, and if more than one multiframe or multiblock per lane fits in the buffer, the 
RBD adjustment resolution must be at least 16 steps per multiframe or multiblock. The 64-bit/66-bit link layer also defines a 
synchronization header stream, which transmits the information parallel to the user data. This information is encoded using the 
synchronization header portion of the 66-bit word block. One synchronization header per block is decoded to a single bit, and 32 of these 
bits across a multiblock makes a 32-bit synchronization word. The synchronization word can contain the following information: 

• Pilot signal (used to mark the borders of the multiblocks and extended multiblocks) 
• CRC-3 signal (used for error detection) 
• CRC-12 signal (used for error detection) 
• FEC signal (used for error detection and correction) 
• Command channel (used for transmitting commands and status information) 

With the 8-bit/10-bit link layer, JESD204B uses the SYNC interface for synchronization and error reporting. The 64-bit/66-bit encoding 
synchronization headers within the encoded data are used for the synchronization process and the reporting of errors is left to the 
application layer. 

CLOCK DISTRIBUTION 
The clock distribution in the transceiver allows the SERDES to be driven either by the SERDES PLL or the clock PLL depending on the 
use case. Analog Devices provides tested predefined profiles with the appropriate settings so that each use case has known working setup 
configurations. For other profile configurations, a profile generator application is planned for future release, allowing customers to change 
bandwidths and sampling rates for custom configuration support. 

RECEIVER (ADC) DATAPATH 
Figure 12 is a block diagram of the transceiver receive side (SERDES framer).  
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Figure 12. High Level JESD204B/JESD204C Interface Block Diagram (Receiver Only) 

The framers take care of all the encoding functions of the interface and is highly configurable with regard to interface rates and 
combinations of RF receiver and observation receiver data streams, either separately or utilizing link sharing (receiver and observation 
receiver data time multiplexed on the same lane according to the receiver and transmitter frame timing) for up to four lanes. To assist in 
debugging, the framers contain an internal data generator allowing a number of test patterns and PBRS patterns to be sent across the link.  

There are three framers in the transceiver to allow flexibility in configuring the output data streams. Data samples from the receivers and 
observation receivers can be routed through a cross bar to put specific data on a particular lane. The framer supports separate lanes for 
receiver and observation receiver, as well supporting link sharing in TDD mode that reduces the number of physical lanes needed by 
putting receiver data on the lanes during the receiver slot and observation receiver data on the same lanes during the transmitter slot. 
Figure 13 shows the configuration for use case 83C with link sharing (UC83C-LS) where all the signals are routed into Framer 0. Framer 1 
and Framer 2 are not needed and are unused. This profile is a 25G 204C profile. 
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Figure 13. Example Framer Configuration for UC83C-LS 

UC26C-NLS

22
77

0-
01

4

 
Figure 14. Example Framer Configuration for UC26C-NLS 

Figure 14 shows a configuration for a non-link sharing use case UC26C-NLS. This profile has a unique configuration where the datalink 
on the observation receiver must have the data in a specific format (IIQQ). Framer 0 has more flexibility than the other two framers. For 
this case Framer 0 is used to format the observation receiver data as needed, and the other two framers are used to route the receiver data 
on the lanes. This is a 16G JESD204C profile. 

The transport and link layers for JESD204B/JESD204C are performed in the framers. This transceiver has three JESD204B/JESD204C 
framers that get OR’ed together into four serial lanes. There are 20 logical converters to choose from, and samples from any of the logical 
converters can be connected to any framer using the sample crossbar. Each framer has its own SYNC signal. This allows links to be 
brought up or down for reconfiguration without interrupting the other links.  

The three framers are capable of operating at different sample rates. The highest sample rate must be a power of two multiple of the lower 
sample rates (2×, 4×, 8×). There are two options to make this work: oversample at the framer input or bit repeat at the framer output.  
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Oversample mode samples the same converter samples of the lower sample rate multiple time, essentially oversampling the converter 
output. This allows for all serializers to run at the same bit rate. In oversample mode, the baseband processor must decimate the data after 
the transport layer to remove the extra samples. 

Bit repeat mode repeats each bit at the framer output on the lane or lanes that carry the slower data, before it enters the serializer. Because this is 
after the 8B/10B or 64B/66B encoding, it appears as if the lane is running at a slower data rate than the other lanes. This essentially expands the 
eye of the signal in the horizontal direction. In bit repeat mode, the baseband processor must be able to configure the lane rates on the individual 
lanes independently as the lanes with the slower link must be sampled at a slower lane rate than the lanes with the faster link. 

All framers must share the four serializer lanes. Each framer must be configured for 0, 1, 2, or 4 lanes such that at a time all framers 
combine for no more than 4 lanes.  

Each framer is capable of generating a pseudo-random bit sequence (PRBS) on the enabled lanes. After the PRBS is enabled, errors can be 
injected. Enabling the PRBS generator disables the normal JESD204B/JESD204C framing, and causes the link to drop. 

The serializers can be configured to adjust the amplitude and preemphasis of the physical signal to help combat bit errors due to various 
PCB trace lengths. 

Supported Framer Link Parameters 

This transceiver supports a subset of possible JESD204B/JESD204C link configurations. The number of virtual converters and the 
number of serial lanes implemented in the silicon limit these configurations.  

Table 10. JESD204B/JESD204C Framer Parameters 
JESD204B/JESD204C Parameter Description 
M Number of converters. Framer 0 supports M maximum of 8, Framer 1 and Framer 2 support M maximum of 4.  
L Number of lanes (L can be 1, 2, or 4).  
S Number of samples per converter per frame cycle (S can be 1, 2, or 4).  
N Converter resolution (N can be 12, 16, or 24). 
N’ Total number of bits per sample (N’ can be 12, 16, or 24). 
CF Number of control words/frame clock. Cycle/converter device. 
CS Number of control bits/conversion sample. 
K JESD204B only: Number of frames in 1 multiframe, (20 ≤ F × K ≤ 256), F × K must be a multiple of 4. 
E JESD204C only: Number of multiblocks in an extended multiblock. 

For the JESD204B/JESD204C configuration to be valid, the lane rate must be within the range 3686.4 Mbps to 16220.16 Mbps. The lane 
rate is the serial bit rate for one lane of the JESD204B/JESD204C link. The lane rates can be calculated using Equation 1 for JESD204B 
configurations and using Equation 2 for JESD204C configurations. 

′× × × ÷
10
8

JESD204B Lane Rate = IQ Sample Rate M N L  (1)  

′× × × ÷
66
64

JESD204C Lane Rate = IQ Sample Rate M N L (2) 

Serializer Configuration 

The amplitude of the serializer is represented by a 3-bit number that is not linearly weighted. The JESD204B/JESD204C transmitter mask 
requires a differential amplitude greater than 360 mV and less than 770 mV.  

Table 11. Serializer Amplitude Settings 
Serializer Amplitude (Decimal) Average Differential Amplitude (VTT = 1 V) 
0 1.00 × VTT  
1 0.85 × VTT 
2 0.75 × VTT 
3 0.50 × VTT 

It is always recommended to verify the eye diagram in the system after building a PCB to verify any layout related performance 
differences. If possible, verify the eye using an internal eye monitor after the equalizer circuit of the receiver as this shows the true eye that 
the receiver circuit receives. 
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A three-tap FIR equalizer is implemented in the serializer, as shown in Figure 15. Here, the cursor or largest tap weight multiplying ak is in the 
center. There is a precursor tap, b−1, multiplying ak+1 and a postcursor tap, b1, multiplying ak−1 to realize the following difference equation for yk. 
Transmit preemphasis is used because it is simpler to realize bit delays with flip flops than trying to implement analog delays at the receiver.  
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Figure 15. Serializer Emphasis Implementation 

This serializer preemphasis circuit allows boosting the amplitude anytime the serial bit changes state. If no bit transition occurs, the 
amplitude is left unchanged. Preemphasis helps open the eye for longer PCB traces or when the parasitic loading of connectors has a 
noticeable effect. In most cases, to find the best setting, a simulation or measurement of the eye diagram with a high-speed scope at the 
receiver is recommended, or as mentioned above an internal eye monitor after the equalizer is the optimum solution. The serializer 
preemphasis is controlled by setting a precursor and a postcursor setting, which are listed in Table 12 and Table 13, respectively. 

Table 12. Precursor Amplitude Settings 
Emphasis (Decimal) Emphasis (dB) 
0 0 
1 3 
2 6 
Table 13. Postcursor Amplitude Settings 
Emphasis (Decimal) Emphasis (dB) 
0 0 
1 3 
2 6 
3 9 
4 12 

The adi_adrv9025_SerCfg_t data structure contains the information required to properly configure the serializer. Details of each member 
can be found in API documentation (/c_src/doc). The transceiver evaluation software has the option to output example data structures 
with values chosen from the configuration tab of the software. 
typedef struct adi_adrv9025_SerCfg 

{ 

    uint8_t serAmplitude;   

    uint8_t serPreEmphasis;                     

    uint8_t serPostEmphasis;                    

    uint8_t serInvertLanePolarity;               

} adi_adrv9025_SerCfg_t; 

Framer 

Each framer receives logical converter samples and maps them to high speed serial lanes. The mapping changes depending on the 
JESD204B/JESD204C configuration chosen, specifically the number of lanes, the number of converters, and the number of samples per 
converter. Figure 16 provides one valid framer configuration for this device.  

The converter samples are passed into the framer through a sample crossbar. The sample crossbar allows any of the 20 logical converters 
to be mapped to any input of any framer. For example, this can be used to swap I and Q samples or to mix and match different receivers’ 
data across different logical lanes. The framer lane data outputs also pass through a lane crossbar. This allows mapping of any framer 
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output lane (internal to the silicon) to any physical JESD204B/JESD204C lane at the package pin. The framer packs the converter samples 
into lane data following the JESD204B/JESD204C specification. Figure 16 shows the data packing for M = 2, L = 1, and S = 1 as an example.  
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Figure 16. Framer Data Packing for M = 2, L = 1, and S = 1 

Other Useful Framer IP Features 

PRBS Generator 

Each framer has a built in PRBS test pattern generator to aid in debugging the JESD204B/JESD204C serial link. The pattern generator is 
capable of generating PRBS7, PRBS9, PRBS15, PRBS23, or PRBS31 patterns. If errors caused by signal integrity exist, it may be difficult to 
get the JESD204B/JESD204C framer-to-deframer link to work properly. The PRBS generator built into the framer allows the transceiver 
to output serial data even when the link cannot be established. With this mode enabled, the serializer amplitude and preemphasis can be 
adjusted to find the best setting to minimize bit errors seen by the PRBS checker at the receiver side of the link. For this mode to be 
utilized, the baseband processor must have a PRBS checker to check the PRBS sequence for errors. 

The following list is the typical PRBS generator usage sequence:  

1. Initialize the device as outlined in the Link Initialization and Debugging section 
2. Run the adi_adrv9025_FramerTestDataSet(…) with the required framer, test data source set to desired PRBS order, and injection 

point set to serializer input  
3. Enable PRBS checker on the baseband processor and reset its error count 
4. Wait a specific amount of time to allow an adequate number of samples to be transmitted, and then check the PRBS error count of 

the baseband processor. 
5. Adjust framer amplitude and preemphasis settings and/or deframer equalization settings and repeat Step 3 and Step 4 to find the 

optimum settings. 
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Pattern Generator 

The framer also has the capability to generate some other patterns that can be used during debug like ramp and checkerboard. There is 
also a way the user can load a custom pattern into the framer, which can be verified on the baseband processor. The pattern can be sent 
once or be repeated continuously. 

API Software Integration 

Configuration of the serializer and framers are all handled by the adi_adrv9025_Initialize(…) API function. Set all JESD204B/JESD204C 
link options for the framer in the adi_adrv9025_FrmCfg_t data structure before calling adi_adrv9025_Initialize(…). After initialization, 
there are some other API functions to aid in debugging and monitoring the status of the JESD204B/JESD204C link. 

JESD204B/JESD204C Framer API Data Structures 

adi_adrv9025_FrmCfg_t  

The adi_adrv9025_FrmCfg_t data structure contains the information required to properly configure each framer. Details of each member 
can be found in API documentation. The transceiver evaluation software has the option to output example data structures with values 
chosen from the configuration tab of the software. 
typedef struct adi_adrv9025_FrmCfg 

{ 

    uint8_t enableJesd204C;              

    uint8_t bankId;                      

    uint8_t deviceId;                    

    uint8_t lane0Id;                  

    uint8_t jesd204M;                    

    uint16_t jesd204K;                  

    uint8_t jesd204F;                    

    uint8_t jesd204Np;              

    uint8_t jesd204E;                   

    uint8_t scramble;               

    uint8_t externalSysref;        

    uint8_t serializerLanesEnabled;    

    uint16_t lmfcOffset;         

    uint8_t reserved;   

    uint8_t syncbInSelect;       

    uint8_t overSample;  

    uint8_t syncbInLvdsMode;             

    uint8_t syncbInLvdsPnInvert;         

    uint8_t enableManualLaneXbar;        

    adi_adrv9025_SerLaneXbar_t serializerLaneCrossbar;  

    adi_adrv9025_AdcSampleXbarCfg_t adcCrossbar; 

    uint8_t newSysrefOnRelink; 

    uint8_t sysrefForStartup; 

    uint8_t sysrefNShotEnable; 

    uint8_t sysrefNShotCount; 

    uint8_t sysrefIgnoreWhenLinked; 

} adi_adrv9025_FrmCfg_t; 
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Table 14. JESD204B/JESD204C Framer Configuration Structure Member Description 
Structure Member Valid Values Description 
enableJesd204C 0, 1 0 = enable JESD204B framer, 1 = enable JESD204C framer 
bankId 0 to 15  JESD204B/JESD204C configuration Bank ID—extension to device ID 
deviceId 0 to 255 JESD204B/JESD204C configuration Device ID—link identification number 
lane0Id 0 to 31 JESD204B/JESD204C configuration Lane ID—if more than one lane is used, each subsequent 

lane increments from this number 
jesd204M 0, 1, 2, 4, 8 Number of converters—typically two converters per receive chain 
jesd204K 1 to 32 Number of frames in a multiframe—default is 32; F × K must be a multiple of 4 
jesd204F 1, 2, 3, 4, 6, 8, 

12, 16 
Number of octets per frame 

jesd204Np 12, 16, 24 Number of bits per sample 
Scramble (JESD204B Only) 0, 1 Scrambling enabled 
  If scramble = 0, scrambling is disabled 
  If scramble = 1, scrambling is enabled 
externalSysref 0, 1 External SYSREF enabled 
  If externalSysref = 0, use internal SYSREF  
  If externalSysref = 1, use external SYSREF 
serializerLanesEnabled 0x0 to 0x0F Serializer lane enabled, one bit per lane  
serializerLaneCrossbar 0x0 to 0xFF Serializer lane crossbar, two bits per lane 
lmfcOffset 0 to 31 LMFC offset, set the local multiframe counter offset value for deterministic latency setting, 

such that 0 ≤ lmfcOffset ≤ (K − 1) 
reserved 

  

syncinbSelect 0, 1, 2 SYNC selection, selects which SYNC input is connected to the framer 

  If syncinbSelect = 0, SYNCIN0 is connected to the framer 

  If syncinbSelect = 1, SYNCIN1 is connected to the framer 

  If syncinbSelect = 2, SYNCIN2 is connected to the framer 

overSample 0, 1 Oversample mode, selects which method is chosen when oversample or bit repeat is needed 
  If oversample = 0, bit repeat mode is selected 
  If oversample = 1, oversample is selected 
enableManualLaneXbar 0, 1 0 = automatic lane crossbar mapping, 1 = manual lane crossbar mapping (using 

serializerLaneCrossbar value) 
syncbInLvdsMode 0, 1 1 = Enables LVDS input pad, 0 = enables CMOS input pad 
syncbInLvdsPnInvert 0, 1 0 = SYNC LVDS polarity not inverted, 1 = SYNC LVDS polarity inverted 

newSysrefOnRelink 0, 1 Set the flag to determine if SYSREF is set on relink, where, if >0 = set, 0 = not set 
sysrefForStartup 0, 1 1 = framer: require a SYSREF before code group synchronization (CGS) is output from serializer, 

0: Allow CGS to output before SYSREF occurs (recommended on framer to allow deframer 
clock data recovery (CDR) to lock and equalization to train) 

sysrefNShotEnable 0, 1 1 = enable SYSREF NShot (ability to ignore first rising edge of SYSREF to ignore possible runt 
pulses) 

sysrefNShotCount 0 to 15  Count value of which SYSREF edge to use to reset LMFC phase 
sysrefIgnoreWhenLinked 0, 1 When the JESD204B and JESD204C link is up and valid, 1 = ignore any SYSREF pulses 
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JESD204B/JESD204C Framer Enumerated Types 

adi_adrv9025_FramerDataSource 

The adi_adrv9025_FramerDataSource_e is an enumerated data type to select the framer test data source. The allowable values are listed in Table 15. 

Table 15. Framer Data Source Enumeration Description 
Enumeration Value Description 
FTD_ADC_DATA Framer test data ADC data source, this is used for normal operation 
FTD_CHECKERBOARD Framer test data checkerboard data source 
FTD_TOGGLE0_1 Framer test data toggle 0 to 1 data source 
FTD_PRBS31 Framer test data PRBS31 data source 
FTD_PRBS23 Framer test data PRBS23 data source 
FTD_PRBS15 Framer test data PRBS15 data source 
FTD_PRBS9 Framer test data PRBS9 data source 
FTD_PRBS7 Framer test data PRBS7 data source 
FTD_RAMP Framer test data ramp data source 
FTD_PATTERN_REPEAT Framer test data 16-bit programmed pattern repeat source 
FTD_PATTERN_ONCE Framer test data 16-bit programmed pattern executed once source 

adi_adrv9025_FramerDataInjectPoint 

The adi_adrv9025_FramerDataInjectPoint is an enumerated data type to select the framer test data injection point. The allowable values 
are listed in Table 16. 

Table 16. Framer Injection Point Enumeration Description 
Enumeration Value Description 
FTD_FRAMERINPUT Framer test data injection point at framer input 
FTD_SERIALIZER Framer test data injection point at serializer input 
FTD_POST_LANEMAP Framer test data injection point after lane mapping 

adi_adrv9025_FramerSel 

The adi_adrv9025_FramerSel is an enumerated data type to select the desired framer. The allowable values are listed in Table 17. 

Table 17. Framer Selection Enumeration Description 
Enumeration Value Description 
ADI_ADRV9025_FRAMER_0  Framer 0 selection 
ADI_ADRV9025_FRAMER_1 Framer 1 selection 
ADI_ADRV9025_FRAMER_2 Framer 2 selection 
ADI_ADRV9025_ ALL_FRAMERS All framers selected 

API Functions 

adi_adrv9025_FramerSysrefCtrlSet(…) 
adi_adrv9025_FramerSysrefCtrlSet(adi_adrv9025_Device_t *device, uint8_t framerSelMask, uint8_t 
enable); 

This function enables or disables the external SYSREF JESD204B/JESD204C signal connection to the framers.  

For the framer to retime its LMFC/local extended multiblock clock (LEMF), a SYSREF rising edge is required. The external SYSREF 
signal at the pin can be gated off internally so the framer does not see a potentially invalid SYSREF pulse before it is configured correctly. 

By default, the device has the SYSREF signal ungated. However, the multichip synchronization state machine still does not allow the 
external SYSREF to reach the framer until the other stages of multichip synchronization have completed. As long as the external SYSREF 
is correctly configured before performing MCS, this function may not be needed by the baseband processor, because the MCS state 
machine gates the SYSREF to the framer. 

Precondition  

This function is called after the device has been initialized and the JESD204B/JESD204C framer is enabled. 
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Dependencies 

device->devHalInfo  

Parameters 

Table 18. adi_adrv9025_FramerSysrefCtrlSet(…) Parameters 
Parameter Description 
*device A pointer to the device settings structure  
framerSelMask Select framer to enable/disable SYSREF input for (valid for any OR’ed combination of enums ADI_ADRV9025_FRAMER_0, 

ADI_ADRV9025_FRAMER_1, ADI_ADRV9025_FRAMER_2, or ADI_ADRV9025_ALL_FRAMERS) 
enable = 1 enables SYSREF to framer, 0 disables SYSREF to framer 

Return Values 

Table 19. General API Function Return Values  
Return Value Description 
ADI_ADRV9025_ACT_WARN_RESET_LOG Recovery action for log reset  
ADI_ADRV9025_ACT_ERR_CHECK_PARAM Recovery action for bad parameter check  
ADI_ADRV9025_ACT_ERR_RESET_SPI Recovery action for SPI reset required  
ADI_ADRV9025_ACT_NO_ACTION Function completed, no action required  

adi_adrv9025_FramerStatusGet(…) 
adi_adrv9025_FramerStatusGet(adi_adrv9025_Device_t *device, adi_adrv9025_FramerSel_e framerSel, 
adi_adrv9025_FramerStatus_t *framerStatus); 

This function reads back the status of the selected framer to determine the state of the JESD204B/JESD204C link. The framer status 
return value is an 8-bit status word, as shown in Table 20. It also returns the qbfStateStatus and sync signal used by the selected framer. 

Table 20. Framer Status Return Value 
framerStatus Description 
[7]  Reserved  
[6]  Reserved  
[5]  Reserved  
[4]  Reserved  
[3]  Current SYNCIN level (1 = high, 0 = low)  

[2]  SYSREF phase error, is set when a new SYSREF has different timing than the first that set the LMFC 
timing 

[1]  SYSREF phase established by framer  
[0]  Flag indicating that configuration parameters are not supported when set (1)  

Precondition  

The receiver JESD204B/JESD204C link(s) must be configured and running to use this function 

Dependencies 

device->devHalInfo  

Parameters 

Table 21. adi_adrv9025_FramerStatusGet(…) Parameters 
Parameter Description 
*device is a pointer to the device settings structure  
framerSel Read back the framer status of the selected framer (Framer0, Framer1 or Framer2)  
framerStatus is the framer status structure read 
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Return Values 

See Table 19. 

adi_adrv9025_FramerTestDataSet(…) 
adi_adrv9025_FramerTestDataSet(adi_adrv9025_Device_t *device, adi_adrv9025_FrmTestDataCfg_t 
*frmTestDataCfg);  

This function selects the PRBS type and enables or disables the receiver framer PRBS generation. This is a debug function used for debug 
of the receiver JESD204B/JESD204C lanes. Receiver data transmission on the JESD204B/JESD204C link(s) is not possible when the 
framer test data is activated. 

Precondition  

This function may be called any time after device initialization. 

Dependencies 

device->devHalInfo  

Parameters 

Table 22. adi_adrv9025_FramerTestDataSet(…) Parameters 
Parameter Description 
*device A pointer to the device settings structure  
frmTestDataCfg A pointer to a structure that contains the framer(s) of interest, testDataSource and injectPoint 

Return Values 

See Table 19. 

adi_adrv9025_FramerTestDataInjectError (…) 
adi_adrv9025_FramerTestDataInjectError(adi_adrv9025_Device_t *device, adi_adrv9025_FramerSel_e 
framerSelect, uint8_t laneMask);  

This function injects an error into the framer test data by inverting the data. This is a debug function used for debug of the receiver JESD204B/ 
JESD204C lanes. Receiver data transmission on the JESD204B/JESD204C link(s) is not possible when the framer test data is activated. 

Precondition  

This function is called after the framer test data is enabled. 

Dependencies 

device->devHalInfo  

Parameters 

Table 23. adi_adrv9025_FramerTestDataInjectError(…) Parameters 
Parameter Description 
*device A pointer to the device settings structure  
framerSelect Select the desired framer ADI_ADRV9025_FRAMER_0, ADI_ADRV9025_FRAMER_1, or ADI_ADRV9025_FRAMER_2  
laneMask is a four bit mask allowing selection of lanes 0-3 for the selected framer 

Return Values 

See Table 19. 

adi_adrv9025_FramerLinkStateSet(…) 
adi_adrv9025_FramerLinkStateSet(adi_adrv9025_Device_t *device, uint8_t framerSelMask, uint8_t 
enable);  

This function enables and disables the JESD204B/JESD204C framer. This function is normally not necessary. In the event that the link 
must be reset, this function allows a framer to be disabled and reenabled. 

Precondition  

This function may be called any time after device initialization. 
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Dependencies 

device->devHalInfo  

Parameters 

Table 24. adi_adrv9025_FramerLinkStateSet(…) Parameters 
Parameter Description 
*device A pointer to the device settings structure  
framerSelMask Desired framer(s) to set/reset.  
enable 0 = disable the selected framers, 1 = enable the selected framer link 

Return Values 

See Table 19. 

TRANSMITTER (DAC) DATAPATH 
Figure 17 shows a block diagram of the transceiver transmit side (SERDES deframer). 

The SERDES deframer receives the transmitter data from the baseband processor, decodes it, and distributes the data streams to the 
transmitters. The transceiver includes two deframers that share up to four lanes that can operate at up to 25G. Figure 18 shows the 
configuration for UC26C-NLS that uses Deframer 0 and utilizes four lanes at 16G to support four transmitters at maximum bandwidth. 
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Figure 17. High Level JESD204B/JESD204C Interface Block Diagram (Transmitter Only) 
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Figure 18. Example Deframer Configuration for UC26C-NLS 

Figure 19 shows the configuration for UC83C-LS that uses Deframer 0. Only two lanes are needed to realize the maximum chip RF 
bandwidth (450 MHz) across all four transmitters. This device has two JESD204B/JESD204C deframers that share four physical lanes. 
The two deframers feed a sample crossbar that connects to eight DACs. All converters must run at the same sample rate. Likewise, all 
lanes must run at the same data rate. Each deframer is capable of receiving a PRBS sequence and accumulating error counts. The 
deserializers have adjustable equalization circuits to counteract the insertion loss due to various PCB trace lengths and material. 
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Figure 19. Example Deframer Configuration for UC83C-LS 

SUPPORTED DEFRAMER LINK PARAMETERS 
The product supports a subset of possible JESD204B/JESD204C link configurations. The modes are limited by the number of DACs and 
the number of serial lanes implemented in the silicon.  
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Table 25. JESD204B/JESD204C Deframer Parameters 
JESD204B/JESD204C Parameter Description 
M Number of converters (M can be 1, 2, 4 or 8) 
L Number of lanes ( L can be 1, 2, or 4) 
S Number of samples per converter per frame cycle 
N Converter resolution (N can be 12 or 16) 
N’ Total number of bits per sample (N’ can be 12 or 16) 
CF Number of control words/frame clock cycle/converter device 
CS Number of control bits/conversion sample 
HD High density mode.  
K JESD204B only: number of frames in 1 multiframe, (20 ≤ F × K ≤ 256), F × K must be a multiple of 4, K ≤ 32 
E JESD204C only: number of multiblocks in an extended multiblock. 

For a particular converter sample rate, not all combinations listed in Table 25 are valid. Calculate the JESD204B or JESD204C lane rate 
using the equations described in the Supported Framer Link Parameters section.  

The deserializer link is allowed to run at a different lane rate than the serializer link, under the condition that both lane rates are possible 
with respect to the clock divider settings. Both the deserializer and serializer link rates are derived from the same PLL, but there are 
separate dividers to generate the deserializer clock and the serializer clock.  

Deserializer Configuration 

The deserializer includes a nonadaptive, programmable equalizer. This helps in compensating for signal integrity distortions for each 
channel due to PCB trace length and impedance. Table 26 summarizes the amount of insertion loss each equalizer setting can overcome. 
Equalizer boost settings can range from 0 (maximum boost) to 3 (default).  
Table 26. Deserializer EQ Boost Correction 
EQ Boost Settings Boost (dB) 
0 0 
1 −3 
2 −6 
3 −12 

If the insertion loss is greater than the equalizer boost setting, one of the other settings may be appropriate. Note that any setting can be 
used in conjunction with transmitter preemphasis to ensure functionality and/or to optimize for power. The equalizer setting can be 
changed in the API using the desEqGainSetting parameter in the adi_adrv9025_DesCfg_t data structure. 

The adi_adrv9025_DesCfg_t data structure contains the information required to properly configure the deserializer. Details of each 
member can be found in the API documentation. The transceiver evaluation software has the option to output example data structures 
with values chosen from the configuration tab of the software. 
typedef struct adi_adrv9025_DesCfg 

{  

    uint8_t desInvertLanePolarity;   

    uint8_t desEqBoostSetting;                     

    uint8_t desEqGainSetting;                    

    uint8_t desEqFeedbackSetting;               

} adi_adrv9025_ DesCfg_t; 

In JESD204B mode, the transceiver uses passive equalizer architecture that deemphasizes low frequencies in relation to the high 
frequencies and then amplifies the signal. This provides the required equalization, or boost, to properly capture the signal. A brief 
description of the data members in adi_adrv9025_DesCfg_t is given in Table 27. 
Table 27. Deserializer Equalizer Data Members 
Structure Member Description 
desInvertLanePolarity Deserializer lane polarity inversion select. Bit 0 = invert polarity of Lane 0, Bit 1 = invert polarity of Lane 1. 
desEqBoostSetting It sets how much high frequency attenuation the user is trying to compensate. 
desEqGainSetting Gain is setting the number of stages of limiting amplifier. This compensates for the amount of EqBoost added.  
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Structure Member Description 
desEqFeedbackSetting This is the amount of feedback set for each gain stage. The gain stage works like a basic operational amplifier, 

where the feedback network can be tuned depending on the feedback setting in the equalizer. This feedback 
setting is applied to each of the limiting amplifiers (depending on number of stages) and can cause peaking in the 
total channel response. It is not recommended to tune this data member while compensating for insertion losses. 

When operating in JESD204C mode, the equalization is done with a continuous time linear equalizer (CTLE) that is configured during 
device initialization with a SERDES INIT calibration. 

Deframer 

The active deframers receive 8B10B/64B66B encoded data from the deserializer and decode the data into converter samples. The 
deserializer-to-converter sample mapping changes depending on the JESD204B/JESD204C link configuration setting. The following is a 
list of the functions of the deframer:  

• Monitor the health of the JESD204B/JESD204C link 
• Control the JESD204B/JESD204C interrupt signal (can output on a GP_INTx pin on the device general purpose interrupt pin) to 

signal baseband processor when certain JESD204B/JESD204C error conditions arise. 
• Remove character replacement (valid for only JESD204B). 
• Perform 8B10B/64B66B decoding. 
• Map JESD204B/JESD204C lane data to converter samples. 

A lane crossbar provides the ability to reorder the lanes into each deframer input. A sample crossbar provides the ability to reorder the 
converter samples at the output of the deframers. The lane and sample crossbars enable flexiblity on which physical lanes are used and 
which data is on each link.  

The deframer unpacks the converter samples from lane data following the JESD204B/JESD204C specification. Figure 20 shows the data 
unpacking for M = 4, L = 2, and S = 1 as an example.  
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Figure 20. JESD204B Deframer Configuration (M = 4, L = 2) 
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Other Useful Deframer IP Features 

PRBS Checker 

The deframer has a built in PRBS checker. The PRBS checker can self synchronize and check for PRBS errors on a PRBS7, PRBS15, or 
PRBS31 sequence. Because this mode works even in the midst of potential bit errors on each lane, the physical link can be debugged even 
when the JESD204B/JESD204C link cannot be established. This mode can be used to check the robustness of the physical link during 
initial testing and/or factory test. For this mode to be fully utilized, the baseband processor must have a PRBS generator capable of 
creating PRBS7, PRBS15, or PRBS31 data. 

A typical usage sequence is as follows: 

1. Initialize the device as outlined in the Deserializer Configuration section. 
2. Enable the PRBS generator on the baseband processor with the desired PRBS sequence. 
3. Call the API adi_adrv9025_DfrmPrbsCheckerStateSet(…) passing the actual device being evaluated, the PRBS sequence to check, 

and the location at which to check the PRBS sequence. 
4. After some amount of time, call the API function to check the PRBS errors. This can be done by calling the API function 

adi_adrv9025_DfrmPrbsErrCountGet(…) passing the actual device being evaluated, the counter selection lane to be read and the 
error count is returned in the third parameter passed. 

To prove an error count of 0 is valid, the baseband processor may have a PRBS error inject feature. Alternatively, the baseband processor 
amplitude and emphasis settings can be set to a setting where errors occur. To reset the error count call the API function that clears the 
counters: adi_adrv9025_DfrmPrbsCountReset(…). 

API Software Configuration 

Configuration of the deserializer and deframers are handled by the adi_adrv9025_Initialize(…) API function. Set all JESD204B/JESD204C link 
options for the framer in the adi_adrv9025_DfrmCfg_t data structure before calling adi_adrv9025_Initialize(…). After initialization, 
there are some other API functions to aid in debug and monitoring the status of the JESD204B/JESD204C link. 

JESD204B/JESD204C Deframer API Data Structures 

adi_adrv9025_DfrmCfg_t  

The adi_adrv9025_DfrmCfg_t data structure contains the information required to properly configure each deframer. Details of each 
member can be found in API documentation. The transceiver evaluation software has the option to output example data structures with 
values chosen from the configuration tab of the software. 
typedef struct adi_adrv9025_DfrmCfg 

{ 

    uint8_t enableJesd204C; 

    uint8_t bankId;                          

    uint8_t deviceId;                        

    uint8_t lane0Id;                         

    uint8_t jesd204M;                        

    uint16_t jesd204K;                        

    uint8_t jesd204Np;                      

    uint8_t jesd204E;                        

    uint8_t scramble;                        

    uint8_t externalSysref;                 

    uint8_t deserializerLanesEnabled;        

    uint16_t lmfcOffset;           

    uint8_t reserved;            

    uint8_t syncbOutSelect;                  

    uint8_t syncbOutLvdsMode;             

    uint8_t syncbOutLvdsPnInvert;           

    uint8_t syncbOutCmosSlewRate;           

    uint8_t syncbOutCmosDriveLevel;         
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    uint8_t enableManualLaneXbar;         

    adi_adrv9025_DeserLaneXbar_t deserializerLaneCrossbar; 

    adi_adrv9025_DacSampleXbarCfg_t dacCrossbar; 

    uint8_t newSysrefOnRelink; 

    uint8_t sysrefForStartup; 

    uint8_t sysrefNShotEnable; 

    uint8_t sysrefNShotCount; 

    uint8_t sysrefIgnoreWhenLinked; 

 

} adi_adrv9025_DfrmCfg_t; 

Table 28. JESD204B/JESD204C Deframer Configuration Structure Member Description 
Structure Member Valid Values Description 
enableJesd204C 0, 1 0 = enable JESD204B framer, 1= enable JESD204C framer 
bankId 0 to 15  JESD204B/JESD204C Configuration Bank ID (extension to device ID) 
deviceId 0 to 255  JESD204B/JESD204C Configuration Device ID (link identification number) 
lane0Id 0 to 31  JESD204B/JESD204C Configuration Lane ID (if more than one lane is used, each subsequent 

lane increments from this number) 
jesd204M 0, 2, 4, 8 Number of converters: 2 converters per transmit chain 
jesd204K (JESD204B Only) 1 to 32  Number of frames in a multiframe (default is 32), F × K must be a multiple of 4 
jesd204Np 12, 16 Number of bits per sample 
jesd204E 0 to 255  JESD204C E parameter 
Scramble (JESD204B Only) 0, 1 Scrambling enabled 
  If scramble = 0, scrambling is disabled 
  If scramble = 1, scrambling is enabled 
externalSysref 0, 1 External SYSREF enabled 
  If externalSysref = 0, use internal SYSREF  
  If externalSysref = 1, use external SYSREF 
deserializerLanesEnabled 0x0 to 0xF Deserializer lane enabled: one bit per lane  
deserializerLaneCrossbar 0x0 to 0xFF Deserializer lane crossbar: three bits per lane 
lmfcOffset 0 to 31 LMFC offset: set the local multiframe counter offset value for deterministic latency setting, 

such that 0 ≤ lmfcOffset ≤ (K − 1) 
syncbOutSelect 0,1 New SYSREF on relink: flag to indicate that a SYSREF is required to reestablish the link 
  If newSysrefOnRelink = 0, no SYSREF is required 
  If newSysrefOnRelink = 1, SYSREF is required 
enableManualLaneXbar 0, 1 SYNC selection: selects which SYNCOUT output is driven by the deframer 

  If syncbOutSelect = 0, the deframer drives SYNCOUT0 

  If syncbOutSelect = 1, the deframer drives SYNCOUT1 

syncbInLvdsMode 0, 1 0 = automatic lane crossbar mapping, 1 = manual lane crossbar mapping (using 
deserializerLaneCrossbar value) 

syncbInLvdsPnInvert 0, 1 1 = enables LVDS input pad, 0 = enables CMOS input pad 
syncbOutCmosSlewRate 0 to 3 0 = SYNC LVDS PN not inverted, 1 = SYNC LVDS PN inverted 

syncbOutCmosDriveLevel 0, 1 0 = fastest rise/fall times, 3 = slowest rise/fall times 
newSysrefOnRelink 0, 1 Set the flag to determine if SYSREF is set on relink, 1 = set, 0 = not set 
sysrefForStartup 0, 1 1: framer requires a SYSREF before CGS outputs from serializer, 0: allow CGS to output before 

SYSREF occurs (recommended on framer to allow deframer CDR to lock and equalization to 
train) 

sysrefNShotEnable 0, 1 1 = enable SYSREF NShot (ability to ignore first rising edge of SYSREF to ignore possible runt 
pulses) 

sysrefNShotCount 0 to 15 Count value of which SYSREF edge to use to reset LMFC phase 
sysrefIgnoreWhenLinked 0, 1 When the JESD204B and JESD204C link is up and valid, 1 = ignore any SYSREF pulses 
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adi_adrv9025_DataInterfaceCfg _t 

The adi_adrv9025_DataInterfaceCfg_t data structure contains the information required to properly configure each framer, each 
deframer, the serializers, and deserializers. Details of each structure member can be found in the API documentation (/c_src/doc). 
typedef struct adi_adrv9025_DataInterfaceCfg 

{ 

    adi_adrv9025_FrmCfg_t framer[3];       

    adi_adrv9025_DfrmCfg_t deframer[2];    

    adi_adrv9025_SerCfg_t serCfg[8];       

    adi_adrv9025_DesCfg_t desCfg[8];       

    uint8_t sysrefLvdsMode;                

    uint8_t sysrefLvdsPnInvert; 

    adi_adrv9025_LinkSharingCfg_t linkSharingCfg;           

} adi_adrv9025_DataInterfaceCfg_t; 

Table 29. JESD204B/JESD204C Settings Structure Member Description 
Structure Member Valid Values Description 
framer0 data structure Framer 0 configuration data structure. 
framer1 data structure  Framer 1 configuration data structure. 
framer2 data structure Framer 2 configuration data structure. 
deframer0 data structure Deframer 0 configuration data structure. 
deframer1 data structure Deframer 1 configuration data structure. 
serAmplitude 0 to 3 Serializer amplitude setting. Default = 1. 
serPreEmphasis 0 to 2 Serializer preemphasis setting. Default = 0. 
serInvertLanePolarity 0x0 to 0x0F Serializer Lane Polarity Inversion Select. One bit per lane  
desInvertLanePolarity 0x0 to 0x0F Deserializer Lane Polarity Inversion Select. One bit per lane  
desEqSetting 0 to 3 Deserializer Equalizer setting. Applied to all deserializer lanes. 

JESD204B/JESD204C Deframer Enumerated Types 

adi_adrv9025_DeframerSel 

The adi_adrv9025_DeframerSel is an enumerated data type to select the desired deframer. The allowable values are listed in Table 30. 

Table 30. Deframer Selection Enumeration Description 
Enumeration Value Description 
ADI_ADRV9025_DEFRAMER_0  Deframer 0 selection 
ADI_ADRV9025_DEFRAMER_1 Deframer 1 selection 
ADI_ADRV9025_DEFRAMER_0_AND_1 Deframer 0 and 1 selection 

adi_adrv9025_DeframerPrbsOrder 

The adi_adrv9025_DeframerPrbsOrder is an enumerated data type to select the desired deframer PRBS pattern. The allowable values are 
listed in Table 31. 

Table 31. Deframer PRBS Polynomial Order Enumeration Description 
Enumeration Value Description 
ADI_ADRV9025_PRBS_DISABLE  Deframer PRBS pattern disable  
ADI_ADRV9025_PRBS7  Deframer PRBS7 pattern select  
ADI_ADRV9025_PRBS15  Deframer PRBS15 pattern select  
ADI_ADRV9025_PRBS31  Deframer PRBS31 pattern select  

adi_adrv9025_DeframerPrbsCheckLoc 

The adi_adrv9025_DeframerPrbsCheckLoc is an enumerated data type to select the desired location within the Deframer to check the PRBS 
pattern. The allowable values are listed in Table 32. 
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Table 32. Deframer PRBS Check Location Enumeration Description 
Enumeration Value Description 
ADI_ADRV9025_PRBSCHECK_LANEDATA Check PRBS at deserializer lane output (does not allow JESD204B/JESD204C link to be established)  
ADI_ADRV9025_PRBSCHECK_SAMPLEDATA Check PRBS at output of deframer (JESD204B/JESD204C deframed sample)  

API Functions 

adi_adrv9025_DeframerSysrefCtrlSet(…) 
adi_adrv9025_DeframerSysrefCtrlSet(adi_adrv9025_Device_t *device, adi_adrv9025_DeframerSel_e 
deframerSel, uint8_t enable) 

This function enables or disables the external SYSREF to the deframers of the transceiver.  

For the deframer to retime its LMFC/LEMC, a SYSREF rising edge is required. The external SYSREF signal at the input pins on the device 
can be gated off internally. Therefore, the deframer does not see a potential invalid SYSREF pulse before it is configured correctly. 

By default, the device has the SYSREF signal ungated. However, the multichip synchronization state machine still does not allow the 
external SYSREF to reach the deframer until the other stages of multichip synchronization have completed. As long as the external 
SYSREF is correctly configured before performing MCS, this function may not be needed by the baseband processor because the MCS 
state machine gates the SYSREF to the deframer. 

Precondition  

This function is called after the device has been initialized and the JESD204B/JESD204C deframer is enabled. 

Dependencies 

device->devHalInfo  

Parameters 

Table 33. adi_adrv9025_DeframerSysrefCtrlSet(…) Parameters 
Parameter Description 
*device Pointer to the device settings structure  
deframerSel Select deframer to enable/disable SYSREF input for valid ADI_ADRV9025_DEFRAMER_0, ADI_ADRV9025_DEFRAMER_1, or 

ADI_ADRV9025_DEFRAMER_0_AND_1 
enable 1 = enable SYSREF to deframer, 0 = disable SYSREF to deframer 

Return Values 

See Table 19. 

adi_adrv9025_DfrmLinkStateSet(…) 
adi_adrv9025_DfrmLinkStateSet(adi_adrv9025_Device_t *device, uint8_t deframerSelMask, uint8_t 
enable) 

This function is normally not necessary. In the event that the link must be reset, this function allows a deframer to be disabled and re-
enabled.  

During disable, the lane FIFOs for the selected deframer are also disabled. When the deframer link is enabled, the lane FIFOs for the 
selected deframer are reenabled (reset). The baseband processor sends valid serializer data before enabling the link. Therefore, the device 
CDR is locked.  

Precondition 

This function can be called any time after device initialization. 

Dependencies  

device->devHalInfo  
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Parameters 
Table 34. adi_adrv9025_DfrmLinkStateSet(…) Parameters 
Parameter Description 
*device Pointer to the device settings data structure  
deframerSelMask Desired deframer to reset. Valid states are ADI_ADRV9025_DEFRAMER_0, ADI_ADRV9025_DEFRAMER_1, or 

ADI_ADRV9025_DEFRAMER_0_AND_1.  
enable 0 = disable the selected deframer, 1 = enable the selected deframer link 

Return Values 

See Table 19. 

adi_adrv9025_DeframerStatusGet(…) 
adi_adrv9025_DeframerStatusGet(adi_adrv9025_Device_t *device, adi_adrv9025_DeframerSel_e 
deframerSel, adi_adrv9025_DeframerStatus_t *deframerStatus) 

After bringing up the deframer JESD204B/JESD204C link, the baseband processor can check the status of the deframer for the 
parameters shown in Table 35. 

Table 35. Deframer Status Parameters 
Deframer Status Bit Bit Name  Description 
7 Valid Checksum  = 1 if the checksum calculated by the device matched the checksum sent in the ILAS data.  
6 EOF Event  This bit captures the internal status of the end of frame event of the deframer. Value =1 if 

there is a framing error during ILAS. 
5 EOMF Event  This bit captures the internal status of the end of multiframe event of the deframer. Value = 1 

if there is a framing error during ILAS. 
4 FS Lost  This bit captures the internal status of the frame symbol event of the deframer. Value = 1 if 

there is a framing error during ILAS or user data (invalid replacement characters). 
3 Reserved 

 

2 User Data Valid = 1 when in user data (deframer link is up and sending valid DAC data). 
1 SYSREF Received Deframer has received the external SYSREF signal. 
0 SYNC level Current level of SYNC signal internal to deframer (= 1 means link is up). 

Precondition  

The transmitter JESD204B/JESD204C link(s) must be configured and running to use this function. 

Dependencies 

device->devHalInfo  

Parameters 

Table 36. adi_adrv9025_DeframerStatusGet(…) Parameters 
Parameter Description 
*device A pointer to the device settings structure  
deframerSel Select the deframer to read back the status of ADI_ADRV9025_DEFRAMER_0, ADI_ADRV9025_DEFRAMER_1, or 

ADI_ADRV9025_DEFRAMER_0_AND_1 
deframerStatus 8 bit deframer status word return value 

Return Values 

See Table 19. 

adi_adrv9025_DfrmPrbsCheckerStateSet(…) 
adi_adrv9025_DfrmPrbsCheckerStateSet(adi_adrv9025_Device_t *device, adi_adrv9025_DfrmPrbsCfg_t 
*dfrmPrbsCfg) 

This function configures and enables or disables the transceiver lane or sample PRBS checker. This is a debug function to be used for 
debug of the transmitter JESD204B/JESD204C lanes. 

If the checkerLocation parameter is ADI_ADRV9025_PRBSCHECK_LANEDATA, the PRBS is checked at the output of the deserializer. 
If the checkerLocation parameter is ADI_ADRV9025_PRBSCHECK_SAMPLEDATA, the PRBS data is expected to be framed 
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JESD204B/JESD204C data and the PRBS is checked after the JESD204B/JESD204C data is deframed. For the sample data, there is only a 
PRBS checker on DAC 0 input. The lane PRBS has a checker on each deserializer lane. 

Precondition  

This function can be called any time after device initialization. 

Dependencies 

device->devHalInfo  

Parameters 

Table 37. adi_adrv9025_DfrmPrbsCheckerStateSet(…) Parameters 
Parameter Description 
*device A pointer to the device settings structure  
polyOrder Selects the PRBS type based on enum values (ADI_ADRV9025_PRBS_DISABLE, ADI_ADRV9025_PRBS7, 

ADI_ADRV9025_PRBS15, or ADI_ADRV9025_PRBS31)  
checkerLocation Check at deserializer (deframer input) or sample (deframer output) 

Return Values 

See Table 19. 

adi_adrv9025_DfrmPrbsCountReset(…) 
adi_adrv9025_DfrmPrbsCheckerStateSet(adi_adrv9025_Device_t *device, adi_adrv9025_DfrmPrbsCfg_t 
*dfrmPrbsCfg) 

This function allows the baseband processor to clear the deframer PRBS counters by resetting the PRBS error counters for all lanes. It is 
recommended to clear the error counters after enabling the deframer PRBS checker. 

Precondition  

The transmitter JESD204B/JESD204C link(s) must be configured to use this function. 

Dependencies 

device->devHalInfo  

Parameters 

Table 38. adi_adrv9025_DfrmPrbsCountReset(…) Parameter 
Parameter Description 
*device A pointer to the device settings structure 

Return Values 

See Table 19. 

adi_adrv9025_DfrmPrbsErrCountGet(…) 
adi_adrv9025_DfrmPrbsErrCountGet(adi_adrv9025_Device_t *device, 
adi_adrv9025_DfrmPrbsErrCounters_t *counters) 

After enabling the deframer PRBS checker and clearing the PRBS error counters, use this function to read back the PRBS error counters. 
The lane parameter allows the baseband processor to select which lane error counter to read. Only one lane error counter can be read at a 
time. To read error counters for all four lanes, the baseband processor calls this function four times. 

In the case that the PRBS checker is set to check at the deframer output sample, there is only a checker on the DAC 0 input. In this case, 
the lane function parameter is ignored and the sample 0 PRBS counter is returned. The sample crossbar can be used to switch all 
deframer outputs to DAC 0 in turn. 

Precondition  

The transmitter JESD204B/JESD204C link(s) must be configured to use this function. 

Dependencies  

device->devHalInfo  
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Parameters 
Table 39. adi_adrv9025_DfrmPrbsErrCountGet(…) Parameters 
Parameter Description 
*device Pointer to the device settings structure  
counters Pointer to PRBS error counter structure to be returned 

Return Values 
See Table 19. 

API SOFTWARE INTEGRATION 
Configuration of the JESD204B/JESD204C circuitry is handled by the adi_adrv9025_Initialize(…) API function. Set all 
JESD204B/JESD204C link options in the adi_adrv9025_Init_t data structure before calling adi_adrv9025_Initialize(…).  

JESD204B/JESD204C API Data Structures 

adi_adrv9025_DataInterfaceCfg_t 

The adi_adrv9025_DataInterfaceCfg_t data structure contains the information required to properly configure each framer, each 
deframer, the serializers, and deserializers. Details of each structure member can be found in API documentation (/c_src/doc). 
typedef struct adi_adrv9025_DataInterfaceCfg 

{ 

    adi_adrv9025_FrmCfg_t framer[3];       

    adi_adrv9025_DfrmCfg_t deframer[2];    

    adi_adrv9025_SerCfg_t serCfg[8];       

    adi_adrv9025_DesCfg_t desCfg[8];       

    uint8_t sysrefLvdsMode;                

    uint8_t sysrefLvdsPnInvert; 

    adi_adrv9025_LinkSharingCfg_t linkSharingCfg;           

} adi_adrv9025_DataInterfaceCfg_t; 

 
Table 40. JESD204B/JESD204C Settings Structure Member Description 
Structure Member Valid Values Description 
framer0 data structure Framer 0 configuration data structure 
framer1 data structure  Framer 1 configuration data structure 
framer2 data structure Framer 2 configuration data structure  
deframer0 data structure Deframer 0 configuration data structure  
deframer1 data structure Deframer 1 configuration data structure  
serAmplitude 0..3 Serializer amplitude setting. Default = 1. 
serPreEmphasis 0..2 Serializer preemphasis setting. Default = 0. 
serInvertLanePolarity 0x0 to 0x0F Serializer Lane Polarity Inversion Select. One bit per lane.  
desInvertLanePolarity 0x0 to 0x0F Deserializer Lane Polarity Inversion Select. One bit per lane.  
desEqSetting 0 to 3 Deserializer Equalizer Setting. Applied to all deserializer lanes. 

IMPLEMENTATION RECOMMENDATIONS 
The following list contains the recommendations for implementing a JESD204B and JESD204C interface in hardware: 

• SYSREF must be dc-coupled. If SYSREF is generated by GPIO pins, for example, both pins being in the low state at startup is not 
valid. Ensure that the signals are active and/or in a known valid state prior to enabling the MCS gate. 

• For 25G operation, it is recommended to use deframer Lane A and Lane C to minimize crosstalk possibilities. 
• Deframer input amplitude is approximately 500 mV p-p to 700 mV p-p if insertion loss is approximately 5 dB at room temperature. 
• Minimizing data link uncertainty: 

• Ensure setup and hold times are met for each SYSREF/DCLK pair 
• Separate the SYSREF/DCLK pairs for each device in the system 
• Match the trace length within each pair so that the propagation time is the same 
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LINK INITIALIZATION AND DEBUGGING 
Link initialization occurs during the post MCS phase of device initialization. The link bring up procedure follows the steps outlined for 
both JESD204B and JESD204C configurations in the JESD204B and JESD204C subsections.  

JESD204B 

For the deframer side in JESD204B mode, follow these steps:  

1. Initialize and bring up the baseband processor framer side. 
2. Deframer is held in reset state until INIT command, then deframer issues a synchronization request by asserting the SYNC signal. 
3. Framer starts sending K28.5 characters, then deframer is brought out of reset. 
4. Deframer identifies four consecutive K28.5 characters then deasserts SYNC and goes into the ILAS phase. 
5. If SYNC stays asserted, this indicates that the interface is stuck in the CGS phase. If the link parameters match, check the signal 

integrity (refer to the Sample Iron Python Code for PRBS Testing section). 

For the framer side, link establishment follows the same procedure. First, the framer is enabled and the baseband processor deframer 
synchronizes to the signal. 

JESD204C 

For the deframer side in JESD204C mode, follow these steps:  

1. Initialize and bring up the baseband processor framer side. 
2. Send the JESD204C initialization calibration command. This brings the link up because it is now protocol based (no SYNC signal 

needed). 
3. Enable the JESD204C tracking calibrations. This maintains the link parameters on a 60 second schedule.  

For the framer side, link establishment follows the same procedure. First the framer is enabled and then the baseband processor deframer 
synchronizes to the signal. 

The adi_board_adrv9025_JesdBringup API function is used to configure and establish the data links. The overall detailed sequence, 
including the MCS, is in the adi_adrv9025_daughter_board.c file. 

FIRST TIME SYSTEM BRING UP—CHECKING LINK INTEGRITY 
The following is a list of suggested actions when checking the link integrity during first time system bring up:  

1. For ease of debug during bring up, it is recommended to start with a single lane on both sides and with the minimum possible link speed. 
2. Check that the parameters are configured the same at both ends of the transceiver and FPGA. The adi_adrv9025_DfrmCfg_t data 

structure contains the information required to properly configure each deframer. 
3. There is a PRBS checker available that can be used to check signal integrity related issues. Initialize the transceiver as outlined in the 

Link Initialization and Debugging section. Enable the PRBS generator on the baseband processor with the desired PRBS sequence. 
4. Confirm that the lanes baseband processor is transmitting PRBS on are the actually configured in the transceiver. Start with the 

PRBS errors. Ensure baseband processor and the transceiver are both using the same PRBS signal and the transceiver expects the 
same PRBS 7 from baseband processor.  

5. Call the API adi_adrv9025_DfrmPrbsCheckerStateSet(…) passing the actual device being evaluated, the PRBS sequence to check, 
and the location at which to check the PRBS sequence. 

6. After some amount of time, call the API function to check the PRBS errors. This can be done by calling the API function 
adi_adrv9025_DfrmPrbsErrCountGet(…) passing the actual device being evaluated, the counter selection lane to be read, and the 
error count is returned in the third parameter passed. 

7. The user can use adi_adrv9025_DeframerSysrefCtrlSet(…) API so that the external SYSREF signal at the pin can be gated off 
internally so the deframer does not see a potential invalid SYSREF pulse before it is configured correctly. 

8. After bringing up of the JESD204B link or for debugging the deframer, the baseband processor can check the status of the deframer 
using adi_adrv9025_DeframerStatusGet(…). 

SAMPLE IRON PYTHON CODE FOR PRBS TESTING 
The following Iron Python script can be loaded into the Iron Python tab in the GUI to run the PRBS test. To use this code, select File > 
New and place this code just after the ##### YOUR CODE GOES HERE ##### note. 
#Create an Instance of the Class 
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link = AdiEvaluationSystem.Instance  

connect = False 

adrv9025 = link.Adrv9025Get(1) 

 

FrmTestDataCfg=Types.adi_adrv9025_FrmTestDataCfg_t() 

FrmTestDataCfg.framerSelMask=int(Types.adi_adrv9025_FramerSel_e.ADI_ADRV9025_FRAMER_0) 

print FrmTestDataCfg.framerSelMask 

FrmTestDataCfg.testDataSource=Types.adi_adrv9025_FramerDataSource_e.ADI_ADRV9025_FTD_PRBS7 

FrmTestDataCfg.injectPoint=Types.adi_adrv9025_FramerDataInjectPoint_e.ADI_ADRV9025_FTD_SERIALIZE
R 

adrv9025.DataInterface.FramerTestDataSet(FrmTestDataCfg) 

 

#Enable Deserializer 

link.platform.board.Fpga.Prbs.PrbsDeserializerEnable(0xF,0x1) #1:PRBS7;2:PRBS9;3:PRBS15;5:PRBS31 

link.platform.board.Fpga.Prbs.PrbsDeserializerEnable(0xF,0x1) #1:PRBS7;2:PRBS9;3:PRBS15;5:PRBS31 

#clear PRBS error 

link.platform.board.Fpga.Prbs.PrbsErrorClear(0xF) 

#Read PRBS error 

#adrv9025.DataInterface.FramerTestDataInjectError(Types.adi_adrv9025_FramerSel_e.ADI_ADRV9025_FR
AMER_0,0x0) 

time.sleep(1) 

 

errCounts=Array[System.UInt32]([0,0,0,0,0,0,0,0]) 

errCounts=link.platform.board.Fpga.Prbs.PrbsErrorCountsRead(errCounts)[1] 

errCounts=[int(data) for data in errCounts] 

print errCounts   #[0,0,0,0,0,0,0,0] 

When this script is run, it results in the number of errors per enabled lane. Note that only the first four positions are valid and the last 
four positions are always 0. To create errors as a test, change the 0x1 in the line immediately below the Enable Deserializer comment to 
one of the other values indicated. The enabled lanes show errors by enabled lane position. 

PRBS ERRORS 
When the baseband processor is transmitting PRBS, confirm that the active lanes are also configured properly in the transceiver. Start 
with the PRBS errors. Ensure that the baseband processor and the transceiver are both using the same PRBS signal and the transceiver 
expects the same PRBS 7 from baseband processor.  

If stuck in CGS mode, or if SYNC stays at the logic low level or pulses high for less than four multiframes, take the following steps: 

1. Power down the system and check the following: 
a. SYSREF and SYNC signaling is dc-coupled. 
b. Check that the pull-down or pull-up resistors are not dominating the signaling. For example, if values are too small or shorted 

and therefore cannot be driven correctly. 
c. Verify that the differential pairs traces are length matched. 
d. Verify that differential impedance of the traces is 100 Ω. 

2. Power up the system and check the following: 
a. If there is a buffer/translator in the SYNC path, make sure it is functioning properly. 
b. Check that the SYNC source is properly configured to produce compliant logic levels.  

3. Check SYNC signaling using the following actions:  
a. If SYNC is static and logic low, the link is not progressing beyond the CGS phase. There is either an issue with the data being 

sent or the JESD204B receiver is not decoding the samples properly. Verify /K/ characters are being sent, verify receive 
configuration settings, and verify the SYNC source. Consider overdriving the SYNC signal and attempt to force link into ILAS 
mode to isolate link receiver vs. transmitter issues.  
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b. If SYNC is static and logic high, verify that the SYNC logic level is configured correctly in the source device. Check pull-up and 
pull-down resistors. 

c. If SYNC pulses high and returns to a logic low state for less than six multiframe periods, the JESD204 Link is progressing 
beyond the CGS phase but not beyond ILAS phase. This suggests that the /K/ characters are okay and the basic function of the 
CDR is working. Proceed to ILAS troubleshooting. 

d. If SYNC pulses high for a duration of more than six multiframe periods, the link is progressing beyond the ILAS phase and is 
malfunctioning in the data phase. See the Link Initialization and Debugging for troubleshooting tips. 

4. Check serial data using the following actions:  
a. Verify that the transmitter data rate and the receiver expected rate are the same. 
b. Measure lanes with a high impedance probe (a differential probe, if possible). If characters appear incorrect, ensure lane 

differential traces are matched, the return path on the PCB is not interrupted, and devices are properly soldered on the PCB. 
CGS characters are easily recognizable on a high speed scope. 

c. Verify /K/ characters with a high impedance probe. If /K/ characters are correct, the transmitter side of the link is working 
properly. If /K/ characters are not correct, the transmitter device or the board lane signals have an issue. 

d. Verify the transmitter CML differential voltage on the data lanes.  
e. Verify the receiver CML differential voltage on the data lanes. 
f. Verify that the M and L configuration parameters values match between the baseband processor and the transceiver. Otherwise, 

the data rates may not match. For example, for M = 2 and L = 2, expect ½ the data rate over the serial interface as compared to 
the M = 2 and L = 1 case.  

g. Ensure that the device clock is phase locked and at the correct frequency. 

If the user is stuck in ILAS mode, or if SYNC pulses high for approximately four multiframes, take the following steps: 

1. Link parameter conflicts 
a. Verify that ILAS multiframes are transmitting properly and verify the link parameters on the transmitter device, the receiver 

device, and those parameters transmitted in the ILAS second multiframe are all valid. 
b. Calculate expected ILAS length tFRAME, tMULTIFRAME, and 4 × tMULTIFRAME and verify that ILAS is attempted for approximately four 

multiframes. 
2. Verify that all lanes are functioning properly. Ensure that there are no multilane/multilink conflicts. 

If the interface enters data phase but occasionally the link resets (returns to CGS and ILAS before returning to data phase), look for the 
following issues and make adjustments to the link parameter to remove the condition:  

• Invalid setup and hold time of periodic or gapped periodic SYSREF or SYNC signal. 
• Link parameter conflicts 
• Character replacement conflicts 
• Scrambling problem, if enabled 
• Lane data corruption, noisy or jitter can force the eye diagram to close 
• Spurious clocking or excessive jitter on device clock 

STATIC PHASE OFFSET (SPO) TEST TO VERIFY EYE WIDTH 
High speed data rates present a tougher challenge because signal integrity is required for reliable error free data transfer. See the PCB 
Layout Considerations section for differential line layout recommendations. 

When debugging lane errors, it can be useful to understand how large the eye of the waveform is to determine how reliable the link is. In the case 
of the deframer, in JESD204C mode the channel is estimated during an initialization calibration that configures the CTLE and automatically 
adjusts the sampling position on the waveform. To gain confidence in the link stability, the opening of the eye over the operating conditions is 
one measure of robustness. A method of determining the opening size is to sweep the sampling position, searching for dead space where no 
transitions are occurring. Therefore, the sampling point is in the eye. This is an SPO test that offsets the clocks to move the sampling edge left or 
right on the waveform and the resulting dead steps total at least 4 steps left and right from center. The link is considered good overall operating 
conditions. The SPO test requires PRBS transmission in the FPGA and setup of the PRBS pattern checker in the transceiver device.  

A typical test output report is shown in the SPO Test Example Python Script section. In this case, two lanes are in use. The phase is swept 
in 128 steps The resolution is dependent on the lane rate, but in general the result shown is considered good with approximately 16 phase 
steps open in the center of the eye, as shown in the resulting output files.  
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SPO Test Example Python Script 

The SPO test code can be run in the GUI and works for both JESD204B and JESD204C. The user needs to set the first line appropriately 
and also configure the output file path to a folder on the PC. Insert these functions in the def section of the new script, as follows:  
def FpgaWrite(address, data): 

    link.platform.board.Fpga.Hal.RegisterWrite(address, data) 

    #print "FPGA Write Address " + hex(address) + ": " + hex(data) 

 

def FpgaRead(address): 

    data = link.platform.board.Fpga.Hal.RegisterRead(address, 0) 

    print "FPGA Read Address " + hex(address) + ": " + hex(data[1]) 

 

          

def FPGAPRBSSetup(mode_is_204c=0): 

    enablePRBS_ch1 = link.platform.board.Fpga.Hal.RegisterRead(0x43400220,0)            
   #Read the value in PRBS control register (FPGA ch1 testmodes register) 

    disablePRBS = enablePRBS_ch1[1] & 0xF0ffFFFF          
       #Zero bits 27-24 without affecting the other bits 
in the register. 

    enablePRBS7 = disablePRBS | 0x01000000                
       #Set the enablePRBS variable bits 27-24 to 0001 
to enable PRBS7 

    enablePRBS23 = disablePRBS | 0x05000000                
      #Set the enablePRBS variable bits 27-24 to 0101 to 
enable PRBS23 

 

    for fpgaregister in range (0x43400100, 0x43400900, 0x100):          
     #Update all FPGA ch0-7 

        if (mode_is_204c == 1): 

            FpgaWrite(fpgaregister, 0x00000004)               
      #Puts the lane transmit side in reset 

            FpgaWrite(fpgaregister + 0x48, 0x20800080)        
      #Sets the data and data mask for the DRP write to enable 
the buffer and disable the gearbox 

            FpgaWrite(fpgaregister + 0x40, 0x0003007C)        
      #Initiates the write to the DRP 

            FpgaWrite(fpgaregister + 0x10, 0x02015233)        
      #Sets the transmit clock source to the PMA clock 

        FpgaWrite(fpgaregister + 0x20, enablePRBS7)        
       #Write the new value back to the FPGA to enable PRBS7 - 
ch1(fpga) to ch7 =serdinA to H 

        if (mode_is_204c): 

            FpgaWrite(fpgaregister, 0x00000000)         
       #Remove reset 

 

    print "PRBS7 is enabled", hex(disablePRBS), hex(enablePRBS7), hex(enablePRBS23)                 
                         

 

    ErrorCount = Types.adi_adrv9025_DfrmPrbsErrCounters_t()             

    dfrmPrbsCfg = Types.adi_adrv9025_DfrmPrbsCfg_t() 

    dfrmPrbsCfg.deframerSel = dfrm_sel 

    dfrmPrbsCfg.polyOrder = Types.adi_adrv9025_DeframerPrbsOrder_e.ADI_ADRV9025_PRBS7 
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    dfrmPrbsCfg.checkerLocation = 
Types.adi_adrv9025_DeframerPrbsCheckLoc_e.ADI_ADRV9025_PRBSCHECK_LANEDATA  

    adrv9025.DataInterface.DfrmPrbsCheckerStateSet(dfrmPrbsCfg) 

    #check config matches what you've written 

    dfrmPrbsCfgRead = Types.adi_adrv9025_DfrmPrbsCfg_t() 

    adrv9025.DataInterface.DfrmPrbsCheckerStateGet(dfrmPrbsCfgRead) 

    print "PRBS config setup, Poly, location,drmrSel", dfrmPrbsCfgRead.polyOrder, 
dfrmPrbsCfgRead.checkerLocation, dfrmPrbsCfgRead.deframerSel 

 

    adrv9025.DataInterface.DfrmPrbsCountReset()       

    adrv9025.DataInterface.DfrmPrbsErrCountGet(ErrorCount)           #api method to read error 
counters + flags 

         

    for lanes in range(len(ErrorCount.laneErrors)): 

        print "Initial laneError count for lane", lanes, "is :", ErrorCount.laneErrors[lanes] 

        print "Initial ErrorStatus for lane", lanes, "is :", ErrorCount.errorStatus[lanes]  #Bit 
0 = Lane inverted, bit 1 = invalid data flag, bit 2 = sample/lane error flag  

 

    if ErrorCount.laneErrors[0] == 0: 

        print "No Errors detected as expected in PRBS7 mode. Will switch to PRBS23 now" 

    else:    

        print "Errors detected!! Link not good, please check link"  

 

    for fpgaregister in range (0x43400100, 0x43400900, 0x100):          
     #Update all FPGA ch0-7 

        link.platform.board.Fpga.Hal.RegisterWrite(fpgaregister + 0x20, enablePRBS23)        
       #Write to the FPGA to enable PRBS23 on all Ch 

    print "Changing to PRBS23"                    
            

    adrv9025.DataInterface.DfrmPrbsCountReset() 

    adrv9025.DataInterface.DfrmPrbsErrCountGet(ErrorCount)    

 

    for lanes in range(len(ErrorCount.laneErrors)): 

        print "PRBS23 laneError count for lane", lanes, "is :", ErrorCount.laneErrors[lanes] 

        print "PRBS23 ErrorStatus for lane", lanes, "is :", ErrorCount.errorStatus[lanes]   

 

    if ErrorCount.laneErrors[0] != 0: 

        print "Errors detected as expected with PRBS mismatch. Will switch back to PRBS7 now" 

    else: 

        print "Errors not detected with PRBS mismatch !! Please verify PRBS generator in FPGA" 

 

    for fpgaregister in range (0x43400100, 0x43400900, 0x100):          
     #Update all FPGA ch0-7 

        link.platform.board.Fpga.Hal.RegisterWrite(fpgaregister + 0x20, enablePRBS7)     

    print "PRBS7 is enabled again on all channels"  

    adrv9025.DataInterface.DfrmPrbsCountReset() 

    adrv9025.DataInterface.DfrmPrbsErrCountGet(ErrorCount) 

    if ErrorCount.laneErrors[0] == 0: 
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       print "No Errors detected after switching back to PRBS7 mode. Will move onto phase/amp 
eye sweep" 

    else:    

       print "Errors detected!! please check setup - may need to reboot"  

 

Insert the following in the Iron Python tab after the line: ##### YOUR CODE GOES HERE ##### (approximately Line 40). See Figure 21 for 
the SPO test measurement result. 

 
mode_is_204c = 0                    # need to setup FPGA differently for 204c vs. 204b mode, so 
set this bit appropriately. 

foldername = "C:\\tmp" 

 

errorTimeDuration = 0.001           #time duration to allow PRBS errors to accumulate 

LaneErrorFlag = []                  #containers to store ErrorFlag Data for each lane to print 
to file 

LaneErrorCntr= [] 

 

dfrmPrbsCfg = Types.adi_adrv9025_DfrmPrbsCfg_t() 

ErrorCount = Types.adi_adrv9025_DfrmPrbsErrCounters_t()       

dfrm_sel = Types.adi_adrv9025_DeframerSel_e.ADI_ADRV9025_DEFRAMER_0 

 

FPGAPRBSSetup(mode_is_204c)     #Setup PRBS TestMode on FPGA side  

 

dfrmPrbsCfg.deframerSel = dfrm_sel 

dfrmPrbsCfg.polyOrder = Types.adi_adrv9025_DeframerPrbsOrder_e.ADI_ADRV9025_PRBS7       #can 
configure PRBS mode on Madura 

dfrmPrbsCfg.checkerLocation = 
Types.adi_adrv9025_DeframerPrbsCheckLoc_e.ADI_ADRV9025_PRBSCHECK_LANEDATA  

adrv9025.DataInterface.DfrmPrbsCheckerStateSet(dfrmPrbsCfg) 

 

adrv9025.DataInterface.DfrmPrbsCountReset()                             

adrv9025.DataInterface.DfrmPrbsErrCountGet(ErrorCount)          #Run initial PRBS error check - 
should have zero errors initially 

 

for lanes in range(len(ErrorCount.laneErrors)): 

    print "Initial laneError count for lane", lanes, "is :", ErrorCount.laneErrors[lanes] 

    print "Initial ErrorStatus for lane", lanes, "is :", ErrorCount.errorStatus[lanes]  #Bit 0 = 
Lane inverted, bit 1 = invalid data flag, bit 2 = sample/lane error flag  

 

             

for phase in range (64,192,1):  

    phase = phase % 128                             #Offset the phase to centre the eye          

    spiWrite(0x6805, 0xD)           # Write the serdes submap addr 

    spiWrite(0x6808, phase | 0x80)  # Write the phase data 

    spiWrite(0x6806, 0x0F)          # Latch in phase data for all lanes 

    spiWrite(0x6806, 0x00)          #clear latch 

    adrv9025.DataInterface.DfrmPrbsCountReset()                         
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    time.sleep(errorTimeDuration)                               #Set a wait time to allow errors 
to accumulate  

    adrv9025.DataInterface.DfrmPrbsErrCountGet(ErrorCount) 

     

    for lanes in range(len(ErrorCount.laneErrors)):             #readback errors from each lanes 
and store in an array 

        LaneErrorFlag.append(int(ErrorCount.errorStatus[lanes] >> 2) & 0x1) 

        LaneErrorCntr.append(ErrorCount.laneErrors[lanes]) 

 

# Print ErrorFlag & ErrorCounter data to files         

filename = "{0}\\eyedata_lane.txt".format(foldername) 

filename2 = "{0}\\cntrdata_lane.txt".format(foldername) 

with open(filename, 'w') as f1, open(filename2, 'w') as f2: 

    f1.write("LaneErrorFlag[0]\tLaneErrorFlag[1]\tLaneErrorFlag[2]\tLaneErrorFlag[3]\n") 

    f2.write("LaneErrorCntr[0]\tLaneErrorCntr[1]\tLaneErrorCntr[2]\tLaneErrorCntr[3]\n") 

    for i in range(0, len(LaneErrorFlag),4):                #print out the eye diagram ascii 
symbols to file 

        f1.write("{0}\t{1}\t{2}\t{3}\n".format(LaneErrorFlag[i], 
LaneErrorFlag[i+1],LaneErrorFlag[i+2],LaneErrorFlag[i+3])) 

        f2.write("{0}\t{1}\t{2}\t{3}\n".format(LaneErrorCntr[i], 
LaneErrorCntr[i+1],LaneErrorCntr[i+2],LaneErrorCntr[i+3])) 
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Figure 21. SPO Test Measurement Result 

The test reported in Figure 21 was run on UC14C-LS on the evaluation board platform with the result indicating that initially there are no 
PRBS errors. Then errors are injected with the resulting error counts, and the eye sweep is run with no errors being reported. In this case, 
only two deframer lanes are in use, Lane A and Lane C. Data for the unused lanes are 0. 
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Two files are also generated by the script: cntrdata_lane.txt and eyedata_lane.txt. 

The cntrdata_lane.txt indicates the number of errors counted as the phase is adjusted, and the count goes to 0 in the center of the eye.  

In the eyedata_lane.txt file, errors are represented by 1 and the eye indicated by 0. Similarly, the 0s occur toward the center of the 
waveform, indicating an acceptable eye width. Figure 22 and Figure 23 show excerpts from the center of the files. 
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Figure 22. cntrdata_lane.txt Showing PRBS Error Counts About the Eye Center 
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Figure 23. eyedata_lane.txt Showing Center of the Eye 
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CHECKING JESD204C LINK STATUS 
JESD204C link status can be examined by using SPI commands to read the following address locations: 

• Address 0x6B2B to Address 0x6B2E are for Deframer 0 for Lane A, Lane B, Lane C, and Lane D, respectively 
• Address 0x6D2B to Address 0x6D2E are for Deframer 1 for Lane A, Lane B, Lane C, and Lane D, respectively 

It is only necessary to check as many lanes as the deframer is using. For example, if both deframers are in use and each one uses two lanes, 
it is only necessary to check the first two registers in each deframer, not all four. 

Table 41. Deframer Register Bit Function Assignments 
Bits Name Description 
7:3 Reserved Reserved 
2:0 Jrx_dl_204c_state Current Lock State  

Table 42. Deframer Register State Options  
Bits[2:0] Description 
0 Reset 
1 Unlocked  
2 Block (blocks aligned)  
3 M_Block (lanes aligned)  
4 E_M_Block (multiblock aligned) 
5 FEC_BUF  
6 FEC_READY (good state)  
7 Reserved  

SELECTING THE OPTIMAL LMFC AND LEMC OFFSET FOR A DEFRAMER 
This section describes how to set the LMFC/LEMC offset for a deframer, how to read back the corresponding elastic buffer depth, and 
how to select the optimal LMFC/LEMC offset value for a given system. 

Deterministic Latency in JESD204B Mode 

In JESD204B mode, the transceiver digital data interface follows the JESD204B Subclass 1 standard, which has provisions to ensure 
repeatable latencies across the link from power-up to power-up or over link reestablishment by using the SYSREF signal.  

To achieve this deterministic latency, the transceiver deframers include elastic buffers for each of their lanes. The elastic buffers are also 
used to deskew each lane before aligning them with the LMFC signal. The depth of the elastic buffers can therefore be different for each 
lane of a given deframer.  

A deframer starts outputting data out of its elastic buffers on the next LMFC (that is, multiframe) boundary following the reception of the 
first characters in the ILA sequence by all the active lanes. It is therefore possible to adjust when the data is output from the elastic buffers, 
and how much data is stored in those buffers (called buffer depth), by adjusting the phase relationship between the external SYSREF 
signal and the internally generated LMFC signal. This phase relationship is adjustable by using the LMFC offset parameter, which is 
programmable for each of the deframers. This is shown in Figure 24 and Figure 25. 
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Figure 24. Elastic Buffers in the Deframers 
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Figure 25. Impact of LMFC Offset on Elastic Buffer Depth in JESD204B Mode 
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Deterministic Latency in JESD204C Mode 

In JESD204C mode, deterministic latency can also be achieved because of the elastic buffers in the deframers. The elastic buffers are still 
used to de-skew each lane before aligning them with the LEMC signal. The depth of the elastic buffers can, therefore, be different for each 
lane of a given deframer.  

A deframer starts outputting data from its elastic buffers on the next LEMC boundary following the reception of the first multiblock in an 
extended multiblock by all the active lanes. As a result, it is possible to adjust when the data is output from the elastic buffers and, 
therefore, how much data is stored in those buffers (the buffer depth) by adjusting the phase relationship between the external SYSREF 
signal and the internally generated LEMC signal. This phase relationship is adjustable by using the LEMC offset parameter, which is 
programmable for each of the deframers. This is shown in Figure 24 and Figure 26. 

Note that the size of each elastic buffer is 512 octets. When the JESD204C E parameter (number of multiblocks in an extended 
multiblock) is bigger than 2, the elastic buffer is not able to store enough data for some LEMC offset values.  
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Figure 26. Impact of LEMC Offset on Elastic Buffer Depth in JESD204C Mode 

Programming the LMFC Offset for a Deframer 

The following are three ways to program the LFMC offset for a given deframer: 

• Modify the profile file being used 
• Use the adi_adrv9025_DfrmCfg data structure 
• Write directly to the relevant SPI registers 

Setting the LMFC/LEMC Offset in the Profile File 

There is a lmfcOffset field for each of the two deframers in the profile file. This field corresponds to the LMFC offset in JESD204B mode, 
and corresponds to the LEMC offset in JESD204C mode. The lmfcOffset field can be set to a decimal value between 0 and (K × S) − 1 
(where K is the number of frames per multiframe/extended multiblock, and S is the number of samples per converter per frame cycle). 
For example, for the ADRV9025Init_StdUseCase26C_nonLinkSharing.profile file, the lmfcOffset field is located around Line 189 for 
Deframer 0 and around Line 229 for Deframer 1 (see Figure 27). 
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Figure 27. Deframer 0 lmfcOffset Field for the ADRV9025Init_StdUseCase26C_nonLinkSharing.profile File 

Note that the device must be reprogrammed after changing an LMFC/LEMC offset in the profile file and loading it into ARM memory 
for the change to take effect. Also note that if the goal is to sweep the LMFC/LEMC offset values for test purposes without any need for 
RF performance (for example, to determine the optimal LMFC/LEMC value), it is not necessary to run the initialization calibrations 
when programming the transceiver. Not running the init calibrations makes the programming process quicker. 

Setting the LMFC/LEMC Offset in the adi_adrv9025_DfrmCfg Data Structure 

An alternative way of programming the LMFC/LEMC offset consists of using the lmfcOffset field of the adi_adrv9025_DfrmCfg data 
structure for the relevant deframer (see Figure 28). Note that the device must be reprogrammed after changing the LMFC/LEMC offset 
for a given deframer in the adi_adrv9025_DfrmCfg data structure for the change to take effect. Also note that if the goal is to sweep the 
LMFC/LEMC offset values for test purposes without any need for RF performance (for example, to determine the optimal LMFC/LEMC 
value), it is not necessary to run the init cals when programming the transceiver. Not running the init cals makes the programming 
process quicker. 
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Figure 28. LMFC Offset Field in adi_adrv9025_DfrmCfg Data Structure 
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Setting the LMFC/LEMC Offset Through SPI Registers Controls 

It is possible to set the LMFC/LEMC offset value by writing to the Deframer 0 and Deframer 1 SPI registers using the following steps:  

Deframer 0: 

• Register 0x6A8E, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the LMFC/LEMC phase adjustment 16-bit word for Deframer 0. 
The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per multiframe/extended multiblock, 
and S is the number of samples per converter per frame cycle). 

• Register 0x6A8F, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the LMFC/LEMC phase adjustment 16-bit word for Deframer 0. 
The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per multiframe/extended multiblock, 
and S is the number of samples per converter per frame cycle). 

Deframer 1:  

• Register 0x6C8E, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the global LMFC/LEMC phase adjustment 16-bit word for 
Deframer 1. The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per 
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle). 

• Register 0x6C8F, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the global LMFC/LEMC phase adjustment 16-bit word for 
Deframer 1. The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per 
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle). 

Note that a SYSREF pulse must be applied and then the link between the JESD204B and JESD204C framer and JESD204B and JESD204C 
deframer of the transceiver must be reestablished after changing the LMFC/LEMC offset through SPI writes for a given deframer for the 
change to take effect. 

It is also possible to set the LMFC/LEMC offset value by writing to the following SPI registers:   
Deframer 0: 

• Register 0x6A50, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the LMFC/LEMC phase adjustment 16-bit word for deframer 0. 
The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per multiframe/extended multiblock, 
and S is the number of samples per converter per frame cycle). 

• Register 0x6A51, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the LMFC/LEMC phase adjustment 16-bit word for deframer 0. 
The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per multiframe/extended multiblock, 
and S is the number of samples per converter per frame cycle). 

Deframer 1: 

• Register 0x6C50, Bits[7:0]: jrx_tpl_phase_adjust[7:0]. Bits[7:0] of the global LMFC/LEMC phase adjustment 16-bit word for 
deframer 1. The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per 
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle). 

• Register 0x6C51, Bits[7:0]: jrx_tpl_phase_adjust[15:8]. Bits[15:8] of the global LMFC/LEMC phase adjustment 16-bit word for 
deframer 1. The valid range of phase adjustment values is 0 to (K × S) − 1 (where K is the number of frames per 
multiframe/extended multiblock, and S is the number of samples per converter per frame cycle). 

Reading Back the Buffer Depths for Each Deframer Lanes 

It is possible to read back the depths of the elastic buffers for each deframer lane in the Deframer 0 and Deframer 1 SPI registers of the 
device. The corresponding registers for Deframer 0 and Deframer 1 are: 
Deframer 0:  

• Register 0x6A8A, Bits[7:0]: buffer depth for Lane 0 of Deframer 0 
• Register 0x6A8B, Bits[7:0]: buffer depth for Lane 1 of Deframer 0 
• Register 0x6A8C, Bits[7:0]: buffer depth for Lane 2 of Deframer 0 
• Register 0x6A8D, Bits[7:0]: buffer depth for Lane 3 of Deframer 0 
Deframer 1:  

• Register 0x6C8A, Bits[7:0]: buffer depth for Lane 0 of Deframer 1 
• Register 0x6C8B, Bits[7:0]: buffer depth for Lane 1 of Deframer 1 
• Register 0x6C8C, Bits[7:0]: buffer depth for Lane 2 of Deframer 1 
• Register 0x6C8D, Bits[7:0]: buffer depth for Lane 3 of Deframer 1 
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In JESD204B mode, the unit of the values read back in those registers is 4 octets. In other words, an increment of the buffer depth value 
read back by 1 unit corresponds to an actual increment by 4 octets. The values read back range from 0 to (K × F)/4 (where K is the 
number of frames per multiframe, and F is the number of octets per lane in a frame cycle). 

In JESD204C mode, the unit of the values read back in those registers is 8 octets. In other words, an increment of the buffer depth value 
read back by 1 unit corresponds to an actual increment by 8 octets. The values read back range from 0 to E × 32 (where E is the number of 
multiblocks in an extended multiblock). Note that the size of the elastic buffer is 512 octets. When E > 2, the maximum buffer depth 
values read back are therefore limited to 64, which corresponds to 512 octets. 

Note that the values reported in each of those registers correspond to a value based on the positions of the elastic buffer read and write 
pointers. The value has a fixed offset and does not represent the exact number of octets in the elastic buffer. 

Buffer Protection 

By default, an automatic buffer protection is enabled for the elastic buffers. This automatic buffer protection prevents the read and write 
pointers from being too close, which can lead to corrupted data being read out of the elastic buffers, because data can be read at the same 
time it is being written. When the automatic buffer protection detects that the read and write pointers are too close to each other for any 
of the elastic buffers, a predetermined buffer depth is used, the data out of the elastic buffer no longer aligns to the LMFC/LEMC output 
signal, and deterministic latency is lost.  

Checking if the Buffer Protection is Active 

It is possible to read back the elastic buffers if the buffer protection is active in the Deframer 0 and Deframer 1 SPI registers.  

Table 43. Deframer 0, Register 0x6A89, Bit 7: jrx_tpl_buf_protection  
Bit Setting Description 
0 Buffer protection not active for Deframer 0 
1 Buffer protection active for Deframer 0. Buffer read and write pointers are too close with the chosen LMFC/LEMC 

offset setting. A predetermined buffer depth is used. Deterministic latency is lost. 

Table 44. Deframer 1, Register 0x6C89, Bit 7: jrx_tpl_buf_protection  
Bit Setting Description 
0 Buffer protection not active for Deframer 1. 
1 Buffer protection active for Deframer 1. Buffer read and write pointers are too close with the chosen LMFC/LEMC 

offset setting. A predetermined buffer depth is used. Deterministic latency is lost. 

Disabling the Automatic Buffer Protection 

It is possible to disable the automatic buffer protection by using the Deframer 0 and Deframer 1 SPI register bits. 

Table 45. Deframer 0, Register 0x6A89, Bit 6: jrx_tpl_buf_protection_en  
Bit Setting Description 
0 Automatic buffer protection disabled for Deframer 0 
1 Automatic buffer protection enabled for Deframer 0 

Table 46. Deframer 1, Register 0x6C89, Bit 6: jrx_tpl_buf_protection_en  
Bit Setting Description 
0 Automatic buffer protection disabled for Deframer 1 
1 Automatic buffer protection enabled for Deframer 1 

Figure 29 shows an example that corresponds to the elastic FIFO buffer depths for Lane 0 and Lane 1 vs. the LMFC offset setting 
measured for Deframer 0 on an ADI customer evaluation board with the ADRV9025Init_StdUseCase50_nonLinkSharing profile. In this 
example, the buffer protection activated for LMFC offset values between 23 and 26 and the buffer depths were fixed to values between 7 
and 9 independently of the LMFC offset. For other LMFC offset values, the buffer depths read back change with the LMFC offset. 

During the measurement, the link between the JESD204B framer and JESD204B deframer of the transceiver is reestablished 10 times 
(with application of a new SYSREF pulse each time) for each LMFC offset value and each time the buffer depth is read. That is why 
several buffer depth values can be seen for a given LMFC offset. This variation in buffer depth is due to the variance in, for example, 
synchronization delays and physical lane skews during the JESD204B link establishments that the elastic buffers are to correct. 
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Figure 29. Buffer Depths for Lane 0 and Lane 1 vs. LMFC Offset on the Customer Evaluation Board with the ADRV9025Init_StdUseCase50_nonLinkSharing Profile and 

Buffer Protection Enabled 
Selecting the Optimal LMFC/LEMC Offset for a System 

The buffer depths are expected to be slightly different after power cycling the system or from one link establishment to another due to the 
variance in parameters such as synchronization delays and physical lane skews. Buffer depths are also expected to slightly change from 
system to system due to process, voltage, and temperature (PVT) variations.  

Therefore, it is recommended to select an LMFC/LEMC offset value resulting in optimal buffer depths to account for those variations and 
maintain deterministic latency on all boards for a given system. The LMFC/LEMC offset to be selected depends on whether buffer 
protection is enabled or not. 
Selecting the Optimal LMFC Offset for a System in JESD204B Mode with Buffer Protection Enabled 

To ensure deterministic latency when buffer protection is enabled, it is recommended to select an LMFC offset value that gives buffer 
depth values as close as possible to the center of the linear part of the buffer depth vs. LMFC offset plot for all the lanes used. To find the 
LMFC offset corresponding to those optimal buffer depths, read back the buffer depth values for all the used lanes for all LMFC offset 
values with buffer protection enabled on a sample board for a given system. Measuring the buffer depths per LMFC offset for 10 power 
cycles or link establishments (with application of a new SYSREF pulse each time) provides a good indication of the buffer depths spread 
for each LMFC offset value. Select an LMFC offset value that results in buffer depths as close as possible to the center of the linear part of 
the buffer depth vs. the LMFC offset plot the user creates for all the used lanes. 

Figure 29 shows this process using the customer evaluation board programmed with the ADRV9025Init_StdUseCase50_nonLinkSharing 
profile, with automatic buffer protection enabled. In that example, an LMFC offset value of 9 is optimal because it results in a buffer depth 
around 37 or 38 for each lane, which is in the middle of the linear part of the plot and, therefore, guarantees deterministic latency.  

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LMFC 
offset value that results in buffer depths as small as possible. In that case, an LMFC offset value above the highest LMFC offset resulting in 
the automatic buffer protection being active with some additional headroom to account for PVT variations can be selected. In that 
situation, carry out thorough system testing over all possible temperature, supply, and board variations to ensure that the automatic buffer 
protection never gets activated and that deterministic latency is maintained in all possible operating conditions for the system. 

Avoid LMFC offset values with large buffer depths (that is, near a value of (K × F)/4) because, for some combinations of JESD204B 
parameters, it can lead to the write and read pointers being too close and, therefore, can result in data corruption. 

Selecting the Optimal LMFC Offset for a System in a JESD204B Mode with Buffer Protection Disabled 

When buffer protection is disabled, it is recommended to select an LMFC offset value that has buffer depths as close as possible to (K × 
F)/8 to account for variations and maintain deterministic latency on all boards for a given system. 
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To find the LMFC offset corresponding to the optimal buffer depth, read back the buffer depth values for all LMFC offset values for all 
the used lanes with buffer protection disabled on a sample board for a given system. Measuring the buffer depths per LMFC offset for 
10 power cycles or JESD204B link establishments (with application of a new SYSREF pulse each time) provides an accurate indication of 
the buffer depth spread for each LMFC offset value.  

Select an LMFC offset value that results in buffer depths as close as possible to (K × F)/8 for all lanes. 

Figure 30 illustrates this process using the same customer evaluation board with the ADRV9025Init_StdUseCase50_nonLinkSharing 
profile example with automatic buffer protection disabled. 
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Figure 30. Buffer Depths Read Back for Lane 0 and Lane 1 vs. LMFC Offset on the Customer Evaluation Board with ADRV9025Init_StdUseCase50_nonLinkSharing 

Profile and Buffer Protection Disabled 
In this example, an LMFC offset value of 6 or 7 is an optimal choice because the result is buffer depths around 31 and 34 for all the used 
lanes, guaranteeing deterministic latency with no chance of data corruption due to the read and write pointers being too close.  

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LMFC 
offset value that results in buffer depths as small as possible but still above a small number (for example, 10 or 12) to avoid data corruption 
due to the read and write pointers being too close. Note that in that situation, carry out thorough system testing over all possible 
temperature, supply, and board variations to ensure that data corruption never occurs in all possible operating conditions for the system. 

Avoid LMFC offset values that results in a large buffer depth (that is, near a value of (K × F)/4) because, for some combinations of 
JESD204B parameters, it can lead to the write and read pointers being too close and, therefore, can result in data corruption. 
Selecting the Optimal LEMC Offset for a System in JESD204C Mode When E ≤ 2 with Buffer Protection Enabled 

In JESD204C mode, when E ≤ 2, it is also recommended to select an LEMC offset that results in buffer depth values as close as possible to 
the center of the linear part of the buffer depth vs. LEMC offset plot for all the lanes used. To find that LEMC offset, read back the buffer 
depth values for all the used lanes for all LEMC offset values with buffer protection enabled on a sample board for a given system. 
Measuring the buffer depths per LEMC offset for 10 power cycles or JESD204C link establishments (with application of a new SYSREF 
pulse each time) provides an optimal indication of the buffer depths spread for each LEMC offset.  

Figure 31 illustrates this process using the customer evaluation board programmed with the ADRV9025Init_StdUseCase26C_nonLinkSharing 
profile, with automatic buffer protection enabled. 

In this example, LEMC offset values between 36 and 40 are optimal choices because the result is a buffer depth around 24 for each lane, 
which is in the middle of the linear part of the plot and, therefore, guarantees deterministic latency.  

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LEMC offset 
value that results in buffer depths as small as possible. In that case, an LEMC offset value above the highest LEMC offset resulting in the 
automatic buffer protection being active with some additional headroom to account for PVT variations can be selected. In that situation, 
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carry out thorough system testing over all possible temperature, supply, and board variations to ensure that the automatic buffer 
protection never gets activated and that deterministic latency is maintained in all possible operating conditions for the system. 

Avoid LEMC offset values that result in large buffer depths (near a value of E × 32) because, for some combinations of JESD204C 
parameters, it can lead to the write and read pointers being too close and, therefore, can result in data corruption. 

22
77

0-
03

1

MADURA - UC26C-NLS - DEV CLOCK = 245.76MHz
S = 1, M = 8, N’ = 16, K = 64, L = 4, F = 4, E = 1, Tx IQRATE = 491.52MHz

BUFFER PROTECTION ENABLED

BU
FF

ER
 D

EP
TH

BU
FF

ER
 P

RO
TE

CT
IO

N
AC

TI
VE

 B
IT

LEFC OFFSET

38
36
34
32
30
28
26
24
22
20
18

8
6
4
2
0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

–2
–4

1

0

16
14
12
10

LANE 0
BUFFER DEPTH
(REGISTER 0x6a8a)

LANE 1
BUFFER DEPTH
(REGISTER 0×6a8b)

LANE 2
BUFFER DEPTH
(REGISTER 0×6a8c)

LANE 3
BUFFER DEPTH
(REGISTER 0×6a8d)

BUFFER
PROTECTION
BIT

 
Figure 31. Buffer Depths for Lane 0, Lane 1, Lane 2, and Lane 3 vs. LEMC Offset on the Customer Evaluation Board with the 

ADRV9025Init_StdUseCase26C_nonLinkSharing Profile and Buffer Protection Enabled 

Selecting the Optimal LEMC Offset for a System in JESD204C Mode When E ≤ 2 with Buffer Protection Disabled 

When buffer protection is disabled, it is recommended to select an LEMC offset value that results in buffer depths as close as possible to 
(E × 32)/2 to account for variations and maintain deterministic latency on all boards for a given system. To find the LEMC offset 
corresponding to that optimal buffer depth, read back the buffer depth values for all LEMC offset values for all the used lanes with buffer 
protection disabled on a sample board for a given system. Measuring the buffer depths per LEMC offset for 10 power cycles or JESD204C 
link establishments (with application of a new SYSREF pulse each time) provides an accurate indication of the buffer depth spread for 
each LEMC offset value. Select an LEMC offset value that results in buffer depths as close as possible to (E × 32)/2 for all lanes. 

Figure 32 shows this process using the same customer evaluation board with the ADRV9025Init_StdUseCase26C_nonLinkSharing profile 
and automatic buffer protection disabled. 

In this example, an LEMC offset value between 21 and 24 is an optimal choice because it results in buffer depths around 16 for all the 
used lanes, guaranteeing deterministic latency with no chance of data corruption due to the read and write pointers being too close.  

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LEMC 
offset value that results in buffer depths as small as possible but still above a small number (for example, 10 or 12) to avoid data 
corruption due to the read and write pointers being too close. Note that in that situation, carry out thorough system testing over all 
possible temperature, supply, and board variations to ensure that data corruption never occurs in all possible operating conditions for the 
system. 

Avoid LEMC offset values giving a large buffer depth (near a value of E × 32) because, for some combinations of JESD204C parameters, it 
can lead to the write and read pointers being too close and, therefore, can result in data corruption. 
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Figure 32. Buffer Depths for Lane 0, Lane 1, Lane 2, and Lane 3 vs. LEMC Offset on the Customer Evaluation Board with the 

ADRV9025Init_StdUseCase26C_nonLinkSharing Profile and Buffer Protection Disabled 

Selecting the Optimal LEMC Offset for a System in JESD204C Mode When E > 2 

The size of each elastic buffer is 512 octets. When E is bigger than 2, there are some LEMC offset values for which more than 512 octets 
are required to be stored in the elastic buffer to be able to release the data on the next LEMC edge. Because this is not possible due to the 
elastic buffer size, buffer protection gets activated for such LEMC offset values when it is enabled. Therefore, it is recommended to have 
buffer protection enabled when E > 2. 

In JESD204C mode, when E > 2, it is recommended to select an LEMC offset that results in buffer depth values as close as possible to the 
center of the linear part of the buffer depths vs. LEMC offset plot in Figure 33 for all the lanes used. 

To find that LEMC offset, read back the buffer depths values for all the used lanes for all LEMC offset values with buffer protection enabled 
on a sample board for a given system. Measuring the buffer depths per LEMC offset for 10 power cycles or JESD204C link establishments 
(with application of a new SYSREF pulse each time) provides an accurate indication of the buffer depths spread for each LEMC offset.  

Select an LEMC offset value that results in buffer depths as close as possible to the center of the linear part of the buffer depth vs. LEMC 
offset plot for all the used lanes. 

Figure 33 illustrates this process using a customer evaluation board programmed with the ADRV9025Init_StdUseCase14C_LinkSharing 
profile, with automatic buffer protection enabled. 

In this example, LEMC offset values between 87 and 89 are optimal choices because they result in a buffer depth around 41 for each lane, 
which is in the middle of the linear part of the Figure 33 and, therefore, guarantees deterministic latency.  

If the goal for the system is to achieve deterministic latency with a latency as short as possible, it may be desirable to select an LEMC 
offset value giving buffer depths as small as possible. In that case, an LEMC offset value above the highest LEMC offset resulting in the 
automatic buffer protection being active with some additional headroom to account for PVT variations can be selected. In that situation, 
carry out thorough system testing over all possible temperature, supply, and board variations to ensure that the automatic buffer 
protection never gets activated and that deterministic latency is maintained in all possible operating conditions for the system. 

Avoid LEMC offset values giving large buffer depths (near a value of 64) because, for some combinations of JESD204C parameters, it can 
lead to the write and read pointers being too close and, therefore, can result in data corruption. 
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Figure 33. Buffer Depths for Lane 0 and Lane 1 vs. LEMC Offset on the Customer Evaluation Board  with the ADRV9025Init_StdUseCase14C_LinkSharing Profile and 

Buffer Protection Enabled 
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SYNTHESIZER CONFIGURATION 
OVERVIEW 
The transceiver employs four phase-locked loop (PLL) synthesizers, clock, RF (×2), and auxiliary. Each PLL is based on a fractional-N 
architecture and consists of a common block made up of a reference clock divider, phase frequency detector, charge pump, loop filter, 
feedback divider, digital control block, and either a 1 or 4 core voltage-controlled oscillator (VCO). The auxiliary PLL and clock PLL VCO 
have a tuning range of 6.5 GHz to 13 GHz. The RFPLL1 and RFPLL2 VCO have a tuning range of 6.4 GHz to 12.8 GHz. Each PLL drives 
its own local oscillator (LO) generator, RF LO generator, auxiliary LO generator, and clock generator The output of the LOGEN block is a 
divided version of the VCO frequency. No external components are required to cover the entire frequency range of the transceiver. This 
configuration allows the use of any convenient reference frequency for operation on any channel with any sample rate. The reference 
frequency for the PLL is scaled from the reference clock applied to the device. Figure 35 illustrates the common PLL block used in the 
transceiver.  

CONNECTIONS FOR EXTERNAL REFERENCE CLOCK (DEVCLK) 
The external clock is used as a reference clock for the clock synthesizer, two RF synthesizers, and auxiliary synthesizer in the transceiver 
and, therefore, must be a very clean clock source with respect to noise. Connect the external clock inputs to the DEVCLK+ pin (C8) and 
DEVCLK− pin (C9) via ac coupling capacitors and terminate them with 100 Ω close to the device, as shown in Figure 34. The device 
clock receiver is a noise sensitive differential RF receiver. The frequency range of the DEVCLK signal must be between 10 MHz and 
1 GHz. Ensure that the external clock peak to peak amplitude is not less than 50 mV or greater than 1 V. 
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Figure 34. Reference Clock Input Connections 
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Figure 35. Synthesizer Interconnection, Clock, and LO Distribution Block Diagram 
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EXTERNAL REFERENCE CLOCK (DEVCLK) REQUIREMENTS 
Each RF synthesizer takes a lower frequency reference and multiplies it up to a higher frequency. The phase noise performance at the final 
frequency subsequently has some dependency on the phase noise of the input reference clock. This section discusses the impact of the 
reference (DEVCLK input) on the phase noise performance of the RF synthesizers. In general, the reference clock requirements are 
derived from the desired LO frequencies, PLL loop bandwidths, and somewhat on the phase margin.  

The phase noise plots provided in the ADRV902x family data sheets are taken with a nearly ideal reference clock. An example is shown in Figure 36. Any 
noise on the reference is an additional noise source and can be root square sum (RSS) added to the phase noise specified in the data sheets.  
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Figure 36. LO Phase Noise vs. Frequency Offset, FLO =2600 MHz, Loop Bandwidth = 500 kHz, Phase Margin = 60°, DEVCLK Supplied by a Wenzel VCXO  

The LO frequency is related to the reference clock by the following equation:  

fLO = N × fREF 

DEVCLK Noise Gain = 20 × log10(N) × H(s) 

where 
N is the multiplier applied to the reference clock frequency (fREF) to generate the desired LO frequency  
H(s) is the PLL loop transfer function  

Noise power from the reference experiences a multiplication factor equal to the 20 × log10(N) term. Outside the loop bandwidth, the 
multiplied reference noise is attenuated by the loop filter. This means the reference phase noise is typically only a contributor for close-in 
offsets less than the loop bandwidth. The loop bandwidth and phase margin are provided in the caption of the phase noise figures 
provided in the product data sheet (as shown in Figure 36). 

Figure 37 illustrates several closed loop responses with different loop bandwidths and phase margins listed. Each response is normalized 
to 0 dB using the loop gain calculation value for each to factor in the amount of gain that each response shifts. For example, for an fLO of 
2600 MHz and an fREF of 245.76 MHz, the gain is 20.5 dB. The total noise can be calculated with the reference clock noise, the RF LO 
phase noise, and this transfer function. 
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Figure 37. Normalized PLL Closed Loop Response 
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A 245.76 MHz reference with relatively high noise content is shown in Figure 38. This can be used to calculate the reference clock noise 
impact to the RF PLL using the following process:  

• Multiply the phase noise of the reference clock by the PLL closed loop transfer function. 
• RSS add the result of multiplying the phase noise of the reference clock by the PLL closed loop transfer function to the 

corresponding RF PLL phase noise response for the given LO frequency provided in the data sheet.  

The result of this process using the example data in Figure 36 through Figure 38 is shown in Figure 40. Note that the data sheet reference 
information has much better phase noise at low frequency because it was measured during device characterization testing using an 
extremely low phase noise VCXO as the reference clock. The phase noise of the AD9528 is included in Figure 40 for reference. The 
AD9528 clock device is used on the evaluation board for all clock generation. Therefore, measured phase noise is dominated by the 
AD9528. 
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Figure 38. Phase Noise Plot for a Noisy 245.76 MHz Reference Clock 
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Figure 39. Measured and Calculated Phase Noise vs. Offset Frequency 
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Figure 40. AD9528 Phase Noise Using a High Phase Noise Reference Clock 

CLOCK SYNTHESIZER 
The clock synthesizer is used to generate all the clocking signals necessary to run the transceiver. The synthesizer uses a single core VCO block. 
The reference frequency for the clock PLL is scaled from the device clock by the reference clock generator. Although the clock PLL is a fractional-
N architecture, the signal sampling relationships to the JESD204B and JESD204C interface rates typically require that the synthesizer operates in 
integer mode. Profiles that are included in the Transceiver Evaluation Software configure the clock synthesizer appropriately. Reconfiguration of 
the clock synthesizer is typically not necessary after initialization. The most direct approach to configuration is to follow the recommended 
programming sequence and utilize provided API functions to set the clock synthesizer to the desired mode of operation. The clock generation 
block of the clock synthesizer provides clock signals for the high speed digital clock, receiver ADC sample and interface clocks, observation 
receiver ADC sample and interface clocks, and the transmitter DAC sample and interface clocks.  

RF SYNTHESIZER 
The transceiver contains two RF PLLs. Each RF PLL uses the PLL block common to all synthesizers in the transceiver and employs a 4 core VCO 
block, which provides a 6 dB phase noise improvement over the single core VCO. As with the other synthesizers in the transceiver, the reference 
for RF PLL 1 and RF PLL 2 are sourced from the reference generation block of the transceiver. The RF PLLs are also fractional-N architectures 
with a programmable modulus. The default modulus of 8386560 is programmed to provide an exact frequency on at least a 2 kHz raster using 
reference clocks that are integer multiples of 122.88 MHz. More details of the divider options are given in Table 47. 

The RF LO frequency is derived by dividing down the VCO output in the LOGEN block. The tunable range of the RF LO is 400 MHz to 6400 MHz. The 
LO divider boundaries are given in Table 48. Note that it is recommend rerunning the initialization calibrations when crossing a divide by 2 boundary or 
when changing the LO frequency by ±100 MHz or more from the frequency at which the initialization calibrations were performed. 

Table 47. RF Synthesizer Divider Ranges 
LO Frequency Limits (MHz) 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Divide By 32 16 8 4 2 
Auxiliary PLL 203.125 406.25 406.25 812.5 812.5 1625 1625 3250 3250 6500 
RF PLL1 and RF 
PLL2 

200 400 400 800 800 1600 1600 3200 3200 6400 

Table 48. RF Synthesizer LO Boundaries 

DEV_CLK_IN 
(MHz) 

PLL 
PFD 
(MHz) 

Desired LO Frequency Ranges (MHz) 
Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

200 400 400 800 800 1600 1600 3200 3200 6400 
LO Step Size 
(Hz) 

491.52, 
245.76 

245.76 0.92 1.83 3.66 7.33 14.65 

307.2 307.2 1.14 2.29 4.58 9.16 18.32 
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DEV_CLK_IN 
(MHz) 

PLL 
PFD 
(MHz) 

Desired LO Frequency Ranges (MHz) 
Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

200 400 400 800 800 1600 1600 3200 3200 6400 
122.88 122.88 0.46 0.92 1.83 3.66 7.33 
153.6 153.6 0.57 1.14 2.29 4.58 9.16 

Exact 
Decimal 
Frequency 
Raster (Hz) 

491.52, 
245.76 

245.76 250 500 1000 2000 4000 

307.2 307.2 312.5 625 1250 2500 5000 
122.88 122.88 125 250 500 1000 2000 
153.6 153.6 156.25 312.5 625 1250 2500 

A switching network is implemented in the transceiver to provide flexibility in LO assignment for the two RF LO sources. The switching 
network is diagrammed in Figure 41. Note that it is not recommended to set RFLO1 = RFLO2, which can cause unwanted coupling 
between the two PLLs. To set RFLO1 = RFLO2, set either RFPLL1 or RFPLL2 to the desired frequency and mux that PLL to both the 
TXLO and RXLO. That is, set either TXLO = RXLO = RFLO1 or TXLO = RXLO = RFLO2 and power down the unused RFLO. 

AUXILIARY SYNTHESIZER 
An auxiliary synthesizer is integrated to generate the signals necessary to calibrate the transceiver. This synthesizer utilizes a single core 
VCO. The reference frequency for the auxiliary synthesizer is scaled from the device clock via the reference clock generation system. The 
output signal is connected to a switching network and injected into the various circuits to calibrate filter bandwidth corners, or into the 
receiver signal chain as an offset LO. Calibrations are executed during the initialization sequence at startup. There is no signal present at 
the receiver or observation receiver input during tone calibration time. Calibrations are fully autonomous. During the calibration, the 
auxiliary synthesizer is controlled solely by the internal ARM processor and does not require any user interactions. The auxiliary LO 
signal is also available as an LO source for the observation receiver mixers.  
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Figure 41. LO Switching Network 

SETTING THE LO FREQUENCIES 
There are two commands that the user can execute to select the LO frequency in the transceiver. One command is used when the user 
does not have special phase requirements between the transmitter LO and the auxiliary LO. The other command is used when the user 
has special phase requirements. When no phase requirements exist, the user can run the following API command. 
int32_t adi_adrv9025_PllFrequencySet(adi_adrv9025_Device_t* device, adi_adrv9025_PllName_e 
pllName, uint64_t pllLoFrequency_Hz) 

If the user has special phase requirements, relies on their own LOL/QEC tracking calibrations, or requires a faster lock time, the user can 
use the following function, which provides more control over these settings.  
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int32_t adi_adrv9025_PllFrequencySet_v2(adi_adrv9025_Device_t* device, adi_adrv9025_PllConfig_t 
*pllConfig) 

An example of this situation involves placing the auxiliary LO at a user defined offset from the transmitter LO that is typically defaulted to 
+(bandwidth/2 + 5) MHz. If the user has no specific requirements on the phase or frequency of the auxiliary LO, use the 
adi_adrv9025_PllFrequencySet(…) command. More details about these commands are in the API Functions section. 

Both commands can be run any time after device initialization, and neither command has any prerequisite commands or requirements. 
The structures and enumerators for these API commands are detailed in Table 49 through Table 53. 

Table 49. adi_adrv9025_PllConfig_t Structure 
Data Type Parameter Range Description 
PllName_e pllName Table 50 Name of the PLL the user wants to control. 
PllModeSel_e pllModeSel Table 51 The user can select between slow locking or fast locking mode. 
PllAuxLoResyncSel_e pllAuxLoResyncSel Table 52 The user can select between resyncing and not resyncing the auxiliary LO 

to the transmitter LO after a frequency change. 
PllAuxLoOffsetProgSel pllAuxLoOffsetProgSel Table 53 The user can select whether the auxiliary LO frequency is changed to be 

+(bandwidth/2 + 5) MHz or to not be changed after a frequency change. 
Uint64_t pllLoFrequency_Hz 400 × 106 to 

6000 × 106 
The LO frequency that the customer wants to set in Hz. 

Table 50. adi_adrv9025_PllName_e Enumerator 
Enumerator Enumerator Values Description 
PllName_e ADI_ADRV9025_LO1_PLL Selects LO1 PLL for transmitter/receiver/observation receiver.  
 ADI_ADRV9025_LO2_PLL Selects LO2 PLL for transmitter/receiver/observation receiver.  
 ADI_ADRV9025_AUX_PLL Selects auxiliary PLL for observation receiver. 

Table 51. adi_adrv9025_Pll_ModeSel_e Enumerator 
Enumerator Enumerator Values Description 
pllModeSel_e ADI_ADRV9025_PLL_SLOW_MODE Slow lock mode. This mode skips some calibrations to lock the PLL faster. 

Table 52. adi_adrv9025_pllAuxLoResyncSel_e Enumerator 
Enumerator Enumerator Values Description 
pllAuxLoResyncSel_e ADI_ADRV9025_PLL_AUX_LO_RESYNC_ENABLE Resyncs the auxiliary LO to the transmitter LO after a frequency 

change. 
 ADI_ADRV9025_PLL_AUX_LO_RESYNC_DISABLE Does not resync the auxiliary LO to the transmitter LO after a 

frequency change. 

Table 53. adi_adrv9025_pllAuxLoOffsetProgSel_e Enumerator 
Enumerator Enumerator Values Description 
pllAuxLoOffsetProgSel_e ADI_ADRV9025_PLL_AUX_LO_OFFSET_PROG_ENABLE Programs the auxiliary LO to be +(bandwidth/2 + 5) 

MHz from the transmitter LO after every frequency 
change. 

 ADI_ADRV9025_PLL_AUX_LO_OFFSET_PROG_DISABLE Does not set the auxiliary LO after a frequency 
change. 

API Functions 

adi_adrv9025_PllFrequencySet(…) 
int32_t adi_adrv9025_PllFrequencySet(adi_adrv9025_Device_t* device, adi_adrv9025_PllName_e 
pllName, uint64_t pllLoFrequency_Hz) 

Description  

This function sets the LO frequency of the chosen PLL.  

Precondition 

Device initialization is the only precondition.  
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Parameters  

Table 54. adi_adrv9025_PllFrequencySet(…) 
Parameter Description 
*device  Pointer to device structure. 
pllName The PLL selected for setting the frequency. 
pllLoFrequency_Hz Frequency of the LO the user wants to set in Hz. 

adi_adrv9025_PllFrequencyGet(…) 
int32_t adi_adrv9025_PllFrequencyGet(adi_adrv9025_Device_t* device, adi_adrv9025_PllName_e 
pllName, uint64_t *pllLoFrequency_Hz) 

Description  

This function gets the LO frequency of the chosen PLL. 

Precondition  

Device initialization is the only precondition.  

Parameters  

Table 55. adi_adrv9025_PllFrequencyGet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
pllName The PLL selected for getting the frequency. 
*pllLoFrequency_Hz Pointer to the frequency of the LO the user wants to set in Hz. 

adi_adrv9025_PllFrequencySet_v2(…) 
int32_t adi_adrv9025_PllFrequencySet_v2(adi_adrv9025_Device_t* device, adi_adrv9025_PllConfig_t 
*pllConfig); 

Description 

Use this function when the user has special phase constraints that must be put on certain PLLs to meet system requirements. 
adi_adrv9025_PllFrequencySet_v2(…) is equivalent to adi_adrv9025_PllFrequencySet(…) with the parameters in Table 56 set in the 
adi_adrv9025_PllConfig_t structure. 

Table 56. adi_adrv9025_PllConfig_t Structure Parameters 
Parameter Description 
pllModeSel  ADI_ADRV9025_PLL_SLOW_MODE 
pllAuxLoResyncSel ADI_ADRV9025_PLL_AUX_LO_RESYNC_ENABLE 
pllAuxLoOffsetProgSel ADI_ADRV9025_PLL_AUX_LO_OFFSET_PROG_ENABLE 

Precondition  
Device initialization is the only precondition.  

Parameters  

Table 57. adi_adrv9025_PllFrequencySet_v2(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
*pllConfig Pointer to PLL configuration structure. 

adi_adrv9025_PllLoopFilterSet(…) 
int32_t adi_adrv9025_PllLoopFilterSet(adi_adrv9025_Device_t* device, adi_adrv9025_PllName_e 
pllName, adi_adrv9025_PllLoopFilterCfg_t *pllLoopFilterConfig); 

Description  
This function allows the user to set the PLL loop filter bandwidth, phase margin, and power scale of the device. 

Precondition  
Device initialization is the only precondition.  
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Parameters  

Table 58. adi_adrv9025_PllLoopFilterSet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
pllName PLL selected for changing settings. 
*pllLoopFilterConfig Pointer to loop filter configuration structure passed to the device. 

adi_adrv9025_PllLoopFilterGet(…) 
int32_t adi_adrv9025_PllLoopFilterGet(adi_adrv9025_Device_t* device, adi_adrv9025_PllName_e 
pllName, adi_adrv9025_PllLoopFilterCfg_t *pllLoopFilterConfig); 

Description  

This function allows the user to get the PLL loop filter bandwidth, phase margin, and power scale of the device. 

Precondition 

Device initialization is the only precondition.  

Parameters 

Table 59. adi_adrv9025_PllLoopFilterGet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
pllName PLL selected for getting settings. 
*pllLoopFilterConfig Pointer to loop filter configuration structure passed to the device, returns the current configuration. 

RF PLL PHASE SYNCHRONIZATION 
This function allows the internally generated LO to be phase synchronized and aligned to the applied reference clock. In multiple 
transceiver systems, this function allows all devices to align the RF PLL to the same point. Therefore, the phase between each device is 
aligned at startup so that phasing between transceivers is repeatable and fixed. At startup, the standard JESD204B multichip 
synchronization (MCS) mechanism implemented with the device clock (DEVCLK) and system reference signal (SYSREF) are used to 
reset the data converter clocks and all other clocks at the baseband rate. These same signals are also used to initialize an on-chip counter, 
which is later used during PLL programming to synchronize the LO phase. No additional signals are required to take advantage of the LO 
phase synchronization mechanism. From the on-chip counter and PLL fractional word programming, a digital representation of the 
desired LO phase can be computed at each PLL reference clock edge and is remembered in the digital phase accumulator (DPA).  

The LO phase synchronization hardware operates by directly sampling the LO signal (in quadrature) using the PLL reference clock signal 
(DEVCLK). Averaging is required to increase the accuracy of the LO phase measurement. Therefore, at every sample, the observed LO 
phase is derotated by the digitally desired phase. Derotating is done by performing a vector multiplication of the complex conjugate of the 
digital phase. The result is a vector representing the phase difference between the LO and the digitally desired phase, and these vectors 
can be averaged over many DEVCLK cycles to obtain an accurate measurement of the phase adjustment required.  

After the phase difference has been measured, the adjustment can be applied into the first stage Σ-Δ modulator (SDM) of the PLL by 
adding it to the first stage modulator input. The total adjustment amount is added over many reference clock cycles to stay within the PLL 
loop bandwidth and not cause the PLL to come unlocked. To counteract temperature effects after calibration, a PLL phase tracking mode 
can be activated. Figure 42 is a block diagram of the phase synchronization system. 
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Figure 42. LO Phase Synchronization Functional Diagram 

System Level Considerations 

Overall phase synchronization is determined by a number of factors, including the printed circuit board (PCB) level clock routing (tCLK), 
the on-chip reference path routing (tREFPATH), the PLL and LO divider path (tPLL), and the RF and antenna paths (tRF). These time delays are 
shown in Figure 43. In a beam forming/MIMO system, there is a system level antenna calibration that is performed to equalize the sum of 
these paths between all channels. The following list is the goals of this transceiver mechanism: 

• Reduce the complexity of the antenna calibration by initializing to a more consistent startup condition with deterministic PLL phase 
and LO divider state 

• Reduce the temperature dependence of the system phase synchronization to allow the antenna calibration to run less frequently 
during operation 

• Allow transceivers to be stopped and started in an operational system and hot synchronize with the other transceiver elements 

The LO phase synchronization method addresses the initial PLL phase and LO divider state and reduces their temperature dependence to 
a negligible amount compared to other sources of phase drift in the system.  
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Figure 43. High Level Contributions to System Phase Per Antenna 

Enabling the RF PLL Phase Synchronization Function Using the API 

To enable the LO phase synchronization function, peform the following steps:  

1. Set the phase synchronization bit in the initialization data structure. 
2. Perform MCS to set the JESD204B and JESD204C deterministic latency using SYSREF pulses as normal. LO phase synchronization 

uses existing signaling and SYSREF to accomplish LO phase synchronization. The following structure definition describes the 
parameters needed for this process. 

adi_adrv9025_Init_t deviceInitStruct =  

{ 
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    { // clocks 

        245760,  // deviceClock_kHz 

        9830400,  // clkPllVcoFreq_kHz 

        9830400,  // serdesPllVcoFreq_kHz 

        0,  // ldoSelect 

        0,  // extLoFreq1_kHz 

        0,  // extLoFreq2_kHz 

        ADI_ADRV9025_INTLO_NOOUTPUT,  // rfPll1LoMode 

        ADI_ADRV9025_INTLO_NOOUTPUT,  // rfPll2LoMode 

        0,  // rfPll1LoOutDivider 

        0,  // rfPll2LoOutDivider 

        ADI_ADRV9025_RFPLLMCS_INIT_AND_CONTTRACK,  // rfPllPhaseSyncMode 

Possible enumerator values are shown in the following code: 
/** 

 * \brief Enumerated list of RFPLL phase synchronization modes 

 * 

 * RFPLL Phase sync requires extra time to sync each time the RFPLL frequency 

 * is changed. If RFPLL phase sync is not required, it may be desired to 

 * disable the feature to allow the RFPLL to lock faster. 

 * 

 * Depending on the desired accuracy of the RFPLL phase sync, several options 

 * are provided. 

 */ 

typedef enum adi_adrv9025_RfPllMcs 

{ 

    ADI_ADRV9025_RFPLLMCS_NOSYNC                = 0,    /*!< Disable RFPLL phase 
synchronization */ 

    ADI_ADRV9025_RFPLLMCS_INIT_AND_SYNC         = 1,    /*!< Enable RFPLL phase sync init 
only */ 

    ADI_ADRV9025_RFPLLMCS_INIT_AND_CONTTRACK    = 2     /*!< Enable RFPLL phase sync init and 
track continuously */ 

} adi_adrv9025_RfPllMcs_e; 

RF PLL Phase Synchronization Demo Setup 

A vector network analyzer is used to measure the phase difference between two transmitter outputs, LO1 and LO2, with the same 
frequency assigned to each transmitter output. The test setup is shown in Figure 44. It is important to use the same clock reference for all 
the equipment in the setup. In this diagram, all equipment is locked to the same 10 MHz reference. 
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Figure 44. RFPLL Phase Sync Test Setup 

Users can edit specific use case files (also referred to as JSON files or profiles) to set the RF PLL phase synchronization using the 
parameters shown here under rfPllPhaseSyncMode Options and Clock Options. When using the evaluation board system, the 
Transceiver Evaluation Software must be restarted for these changes to take effect. 

rfPllPhaseSyncMode Options (parameter in use case block below is bold):  

0:    Disable RFPLL phase synchronization 
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1:    Enable RFPLL phase sync init only  

2:    Enable RFPLL phase sync init and track continuously  

Clock Options:  

    "deviceClock_kHz": 245760, 

    "clkPllVcoFreq_kHz": 9830400, 

    "serdesPllVcoFreq_kHz": 9830400, 

    "ldoSelect": 0, 

    "extLoFreq1_kHz": 0, 

    "extLoFreq2_kHz": 0, 

    "rfPll1LoMode": 0, 

    "rfPll2LoMode": 0, 

    "rfPll1LoOutDivider": 0, 

    "rfPll2LoOutDivider": 0, 

    "rfPllPhaseSyncMode": 2,  

Figure 45 shows five power cycles of the same device with the phase synchronization function beginning in the disabled state. At each 
power up, the phase difference between the two LOs is a random value. This diagram also shows initialization and tracking results, which 
brings initial random phase to a repeatable value. 
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Figure 45. RF PLL Phase Sync Transitions from Disabled through Inititialization and into Tracking Mode (5 Independent Power Up Sequences Shown) 

Figure 46 shows a close up view of the transition from initialization to continuosly tracking.  
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Figure 46. RF PLL Phase Synchronization Initialization to Tracking Results  
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ARM PROCESSOR AND DEVICE CALIBRATIONS 
The transceiver is equipped with a built in ARM M4 processor. The firmware for this ARM processor is loaded during the initialization 
process. The firmware memory size is 224 kB, and the ARM has access to another 160 kB of data memory to utilize. The ARM is tasked 
with configuring the transceiver for the selected use case, performing initial calibrations of the signal paths, and maintaining device 
performance over time through tracking calibrations.  

ARM STATE MACHINE OVERVIEW 
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READY/IDLE

BOOT SEQUENCE
SYSTEM INITIALIZATION
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Figure 47. ARM State Machine 

When the arm core is powered up, the ARM moves into its power-up/reset state, shown as State 0 in Figure 47. The ARM firmware image 
is loaded at this point. When the ARM image has been loaded, the ARM is enabled and begins its boot sequence. 

After the arm has been booted, it enters its ready/idle state, shown as State 1 in Figure 47. In this state, it can receive configuration settings 
or commands (instructions), such as performing the initial calibrations or enabling tracking calibrations. 

SYSTEM INITIALIZATION 
This section provides a detailed description of the initialization procedure. There are three main sections to the initialization procedure. 

Pre-MCS initialization initializes the device up to the multichip synchronization procedure. The pre-MCS initalization is split into two 
commands that the application layer function calls. These commands are adi_adrv9025_PreMcsInit_v2(…) and 
adi_adrv9025_PreMcsInit_NonBroadCast(…). The adi_adrv9025_PreMcsInit_v2(…) command is a broadcastable command that can 
simultaneously issue commands to multiple transceivers to save time during system initialization for systems with multiple transceivers. 
ARM and stream binaries are programmed to the chip during this step. The broadcast functionality is realized by issuing SPI write 
commands only. The adi_adrv9025_PreMcsInit_NonBroadCast(…) command verifies that the ARM is programmed properly by 
verifying the ARM checksum and that the ARM is in the ready/idle state.  

The multichip synchronization (MCS) step uses SYSREF pulses to synchronize internal clocks within the transceiver, which is required 
for deterministic latency.  

Post-MCS initalization continues initialization following MCS. The application layer command that performs the post-MCS initialization 
is adi_adrv9025_PostMcsInit(…). This command programs the PLLs, configures the radio control initialization structure, and instructs 
the ARM to perform initialization calibrations. 

PRE-MCS INITIALIZATION 
This section explains the ARM related function calls in adi_adrv9025_PreMcsInit_v2( ). Run adi_adrv9025_PreMcsInit_v2(…) as part of 
the initialization sequence.  
adi_adrv9025_PreMcsInit_v2(adi_adrv9025_Device_t *device, 

                           adi_adrv9025_Init_t *init, 

                           const char *armImagePath,  

                           const char *streamImagePath, 

                           adi_adrv9025_RxGainTableFile_t rxGainTableFileArr[], 

                           uint8_t rxGainTableFileArrSize, 

                           adi_adrv9025_TxAttenTableFile_t txAttenTableFileArr[], 

                           uint8_t txAttenTableFileArrSize); 

An important system from the perspective of the ARM is the armImagePath, a file system location where the ARM binary is stored, 
which is required for the ARM to be loaded. 
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The adi_adrv9025_PreMcsInit_v2(…) function is in the adi_adrv9025_utilities.c/h file. This function performs a sizeable part of the full chip 
initialization. From the point of view of the ARM, it performs a number of tasks. The first step is to load the ARM image, 
adi_adrv9025_ArmImageLoad(device, armImagePath), where device is the transceiver device structure. The armImagePath is the path to the 
ARM image binary passed as a parameter to adi_adrv9025_PreMcsInit_v2( ). The ARM image is provided in the Resources/ArmFiles folder of 
the GUI installation folder. 

Following the ARM firmware image being loaded, the next step is to load the device configuration into data memory using 
adi_adrv9025_ArmProfileWrite(adi_adrv9025_Device_t *device, const adi_adrv9025_Init_t *init).  

*init is the initialization settings data structure. 

The ARM is then started and begins its boot sequence. This process is initiated by adi_adrv9025_ArmStart(adi_adrv9025_Device_t 
*device, const adi_adrv9025_Init_t *init).  

As part of the boot sequence, the ARM configures the device for the required profile (transmitter/receiver/observation receiver path  
configuration as determined by the use case), configures and enables the clock PLL (the device starts initialization on the device clock), 
and configures the JESD204B and JESD204C framers and deframers. The ARM also computes a checksum for the ARM firmware image 
loaded, for each of the streams loaded, and the profiles loaded (determining if they are valid profiles). The following API function waits for 
the ARM boot to complete and compares the computed checksums during booth to precomputed checksums. For example, comparing 
the ARM firmware checksum vs. the ARM checksum that is calculated after compilation of the ARM firmware and stored within the 
ARM firmware image adi_adrv9025_ArmStartStatusCheck(adi_adrv9025_Device_t *device, uint32_t, timeout_us), where timeout_us is 
a timing parameter that dictates the longest time that the function waits for arm booting to complete.  

If a checksum is found to be not valid, this function returns an error. 

POST-MCS INITIALIZATION 
After the MCS sequence has been completed, the ARM is ready to configure the radio, perform its initialization calibrations, and bring up 
the JESD204B and JESD204C link. When complete, the tracking calibrations can be enabled. The RF data paths can then be enabled using 
either the SPI or pin modes. 

Note that there is no absolute requirement to follow this sequence. The initialization calibrations and tracking calibrations do not have to be run 
for the paths to be enabled in the device. It is ultimately up to the user to ensure that the paths have been correctly configured prior to operation. 

DEVICE CALIBRATIONS 
The ARM is tasked with performing calibrations for the transceiver to achieve its performance specifications. These calibrations are split 
into two categories: initial calibrations, which are run either before the transceiver is operational or after LO frequency change, and 
tracking calibrations, which are used to maintain performance during runtime. 

A number of transmitter calibrations use an observation path to observe the signal at the output of the transmitter. For the most part, 
these calibrations use an internal loopback path from transmitter to observation receiver. The exception is the external LOL initialization 
and tracking algorithms that require the use of an external path connection between the transmitter output and an observation input.  

A requirement for this device is that the observation receiver channel used to calibrate a transmitter channel must be on the same side of 
the chip as that transmitter channel. Table 60 provides the possible feedback combinations. For example, it is not possible for LO leakage 
tracking to calibrate Tx4 by providing its output to ORx1 or ORx2.  

Table 60. External Feedback Path Possibilities 
Channel Available Feedback Channels 
Tx1 ORx1 or ORx2 
Tx2 ORx1 or ORx2 
Tx3 ORx3 or ORx4 
Tx4 ORx3 or ORx4 

Figure 48 shows an example of four feedback paths, each transmitter going back to an observation receiver, obeying the principle of each 
transmitter being fed back to an observation receiver on the same side of the device. It is also possible to have both Tx1 and Tx2 going 
back to a single observation receiver input (either ORx1 or ORx2) through a switch. Similarly, Tx3 and Tx4 can go back to a single 
observation receiver input (either ORx3 or ORx4).  

Note that for the diagrams outlining the operation of individual calibrations, the transmitter and observation receiver inputs are not numbered. 
Instead, it is assumed that the principle of a transmitter being fed back to an observation receiver on the same side of the device is being obeyed. 
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Figure 48. External Feedback for Transmitter Tracking Calibrations 

INITIAL CALIBRATIONS 
The ARM processor in the transceiver is tasked with scheduling/performing initial calibrations to optimize the performance of the signal 
paths prior to device operation. These calibrations are run as part of the utility API function adi_adrv9025_PostMcsInit( ). To correctly 
perform the initial calibrations, this utility function must be called. This section also provides details of the procedure invoked in 
adi_adrv9025_PostMcsInit( ) to perform the initial calibrations, principally for further information, but also in case there is a need to run 
initial calibrations outside of the post-MCS initialization procedure. The API function definition for the post-MCS initialization is:  
adi_adrv9025_PostMcsInit(adi_adrv9025_Device_t *device, adi_adrv9025_PostMcsInit_t *utilityInit) 

*utilityInit is a structure containing a structure determining the initial calibrations to be run as part of the post-MCS initialization routine. 

In some cases, it is required to run an initial calibration outside of adi_adrv9025_PostMcsInit(…). This following command instructs the 
ARM to perform the requested calibrations:  
adi_adrv9025_InitCalsRun(adi_adrv9025_Device_t *device, adi_adrv9025_InitCals_t *initCals) 

*initCals is the initial calibration structure, passed to adi_adrv9025_PostMcsInit as part of utilityInit, that informs the ARM processor 
which calibrations to run on which enabled path. initCals is composed of a uint32_t calMask and a uint8_t channelMask. calMask 
indicates which calibrations are to run in this call of adi_adrv9025_InitCalsRun( ). 

Table 61 shows the bit assignments of the calibration mask. Note that Table 61 provides a full list of initialization calibrations for the 
device. Some initial calibrations are not available for certain transceivers and applications.  

The channelMask parameter, a member of the adi_adrv9025_InitCals_t structure, advises which channels the selected calibrations run. Each bit 
of the bitmask refers to an individual channel, as shown in Table 62. The mask is universally applied to all calibrations selected in the current call 
of adi_adrv9025_initCalsRun( ), regardless of the paths for which the calibrations are being run. For example, if 0xF is chosen as a mask and both 
receiver and transmitter calibrations are selected in the calMask, when the ARM runs a receiver calibration it then does so on all four receiver 
channels. Likewise, when the ARM runs a transmitter calibration, the calibration is run on all four transmitter channels. 

Table 61. calMask Bit Assignments 
Bits Corresponding Enumerator Calibration Description 
D0 ADI_ADRV9025_TX_BB_FILTER Transmitter 

baseband filter 
calibration 

This is used to tune the corner frequency of the transmitter 
baseband filter. 

D1 ADI_ADRV9025_ADC_TUNER ADC tuner 
calibration 

This is used to configure the ADC for the required profile 
bandwidth. 

D2 ADI_ADRV9025_RX_TIA Receiver TIA filter 
calibration 

This is used to tune the corner frequency of the receiver TIA 
filter. 

D3 ADI_ADRV9025_ORX_TIA Observation 
receiver TIA filter 
calibration 

This is used to tune the corner frequency of the observation 
receiver TIA filter. 

D4 ADI_ADRV9025_LBRX_TIA Loopback receiver 
TIA filter calibration 

This is used to tune the corner frequency of the loopback 
receiver TIA filter. 

D5 ADI_ADRV9025_RX_DC_OFFSET Receiver dc offset 
calibration 

This is used to correct for dc offset within the receiver chain. 
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Bits Corresponding Enumerator Calibration Description 
D6 ADI_ADRV9025_ORX_DC_OFFSET Observation 

receiver dc offset 
calibration 

This is used to correct for dc offset within the observation 
receiver chain. 

D7 ADI_ADRV9025_LBRX_DC_OFFSET Loopback receiver 
dc offset calibration 

This is used to correct for dc offset within the loopback 
receiver chain. 

D8 ADI_ADRV9025_FLASH_CAL ADC flash calibration This is used to optimally configure the ADC flash converters. 
D9 ADI_ADRV9025_INTERNAL_PATH_DELAY Internal path delay 

calibration 
This computes the transmitter to internal loopback path delay, 
which is required for the TxQEC initial calibration and tracking. 

D10 ADI_ADRV9025_TX_LO_LEAKAGE_ INTERNAL Transmitter LO 
leakage initial 
calibration 

This performs an initial LO leakage calibration for the 
transmitter path. It utilizes the transmitter path and the 
internal loopback path (see Figure 51). 

D11 ADI_ADRV9025_TX_LO_LEAKAGE_EXTERNAL Transmitter LO 
leakage external 
initial calibration 

This performs an initial external LO leakage calibration for 
the transmitter path. It utilizes the transmitter path, a 
required external loopback path, and the observation 
receiver path (see Figure 52). The external loop must be 
enabled such that the transmitter output is observable by 
the observation receiver. 

D12 ADI_ADRV9025_TX_QEC_INIT Transmitter QEC 
initial calibration 

This performs an initial QEC calibration for the transmitter path. 
It utilizes the transmitter path and an internal loopback path 
(see Figure 51). 

D13 ADI_ADRV9025_LOOPBACK_RX_LO_DELAY Loopback receiver 
LO delay 
calibration 

This is used to perform an LO delay calibration for the 
loopback path. 

D14 ADI_ADRV9025_LOOPBACK_RX_RX_QEC_INIT Loopback receiver 
QEC initial 
calibration 

This performs an initial QEC calibration for the receiver path. 

D15 ADI_ADRV9025_RX_LO_DELAY Receiver LO delay 
calibration 

This is used to perform an LO delay calibration for the 
receiver path.  

D16 ADI_ADRV9025_RX_QEC_INIT Receiver QEC initial 
calibration 

This performs an initial QEC calibration for the receiver path. 

D17 ADI_ADRV9025_ORX_LO_DELAY Observation 
receiver LO delay 
calibration 

This is used to perform an LO delay calibration for the 
observation receiver path. 

D18 ADI_ADRV9025_ORX_QEC_INIT Observation 
receiver QEC initial 
calibration 

This performs an initial QEC calibration for the observation 
receiver path. 

D19 ADI_ADRV9025_TX_DAC Transmitter DAC 
initial calibration 

This performs a calibration of the transmitter DAC. 

D20 Reserved   
D21 ADI_ADRV9025_EXTERNAL_PATH_DELAY External 

transmitter to 
observation 
receiver path delay 
initial calibration  

This acquires an estimation of the transmitter to observation 
receiver path delay (not required if CLGC tracking is not 
used). 

D22 Reserved   
D23 ADI_ADRV9025_HD2 HD2 initial 

calibration 
This performs an initial calibration of the HD2 product in the 
receiver path (typically required only in GSM applications). 

D24 ADI_ADRV9025_TX_ATTENUATION_DELAY Transmitter 
attenuation delay 
calibration 

This is used to calculate the path delay between the transmitter 
analog and digital attenuation blocks. This delay is then used to 
delay the onset of transmitter analog attenuation when the 
transmitter attenuation changes. This synchronizes the 
attenuation change at the transmitter output.  

D25 ADI_ADRV9025_TX_ATTEN_TABLE Transmitter 
attenuation table 
linearization 
calibration 

This is used to correct for phase changes between different 
attenuation indices in the transmitter attenuation table. 
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Bits Corresponding Enumerator Calibration Description 
D26 ADI_ADRV9025_RX_GAIN_DELAY Receiver gain delay 

calibration 
This is used to calculate the path delay between the receiver 
analog and digital attenuation blocks. This delay is then used 
to delay the onset of receiver analog attenuation when the 
receiver gain index is changed. This synchronizes the gain 
change in the baseband data. This calibration does not check 
the status of the DDC filter, so if the NCO is enabled it may 
cause the calibration to fail with no warning if the calibration 
tone is placed outside the pass band. The NCO must not be 
used when doing this calibration.  

D27 ADI_ADRV9025_RX_GAIN_PHASE Receiver gain 
phase calibration 

This is used to correct for phase changes between different 
gain indices in the receiver gain table. 

D28 Reserved   
D29 ADI_ADRV9025_CFR_INIT CFR initialization 

calibration 
This performs an initialization calibration for the transceiver 
CFR hardware (ADRV9029 only). 

D30 ADI_ADRV9025_SERDES_INIT SERDES 
initialization cal 

This performs an initialization calibration for the JESD204C 
data interface. 

D31 Reserved   

Table 62. channelMask Bit Assignments 
Bits Channel 
D0 Channel 1 (either Rx1/Tx1/ORx1 depending on calibration being performed) 
D1 Channel 2 (either Rx2/Tx2/ORx2 depending on calibration being performed) 
D2 Channel 3 (either Rx3/Tx3/ORx3 depending on calibration being performed) 
D3 Channel 4 (either Rx4/Tx4/ORx4 depending on calibration being performed) 

The ARM sequences the initial calibrations as required, not necessarily in the bit order presented in Table 61. It is mandatory that the user 
wait for calibrations to complete before continuing with the initialization of the device. The following API command is used to verify that 
the initial calibrations are complete: 
adi_adrv9025_InitCalsWait(adi_adrv9025_Device_t *device, uint32_t timeoutMs, uint8_t *errorFlag) 

timeoutMs is the time in milliseconds (ms) that the function must wait for the calibrations to complete before returning an error. 
errorFlag indicates if there is an ARM error when running the initialization calibrations. 

This function implements a blocking wait until the initial calibrations have been completed. An alternative function can be used instead, 
which determines if the initial calibrations are still running using the following API command: 
adi_adrv9025_InitCalsCheckCompleteGet(adi_adrv 9025_Device_t *device, uint8_t *areCalsRunning, 

uint8_t *errorFlag); 

*areCalsRunning is a value to indicate if calibrations are still running (0 = initial calibrations have completed, 1 = initial calibrations are 
still running). errorFlag indicates if there is an ARM error when the running the initialization calibrations. 

In the case when an initial calibration error occurs, information about the error can be obtained with the following command: 
adi_adrv9025_InitCalsDetailedStatusGet(adi_adr v9025_Device_t *device, 

adi_adrv9025_InitCalStatus_t *initStatus); 

*initStatus is a pointer to a data structure that contains initial calibration status information. The adi_adrv9025_InitCalStatus_t data 
structure details are described in Table 63. 

Table 63. Definition of adi_adrv9025_InitCalStatus_t 
Parameter Interpretation 
initErrCode Returns the object ID and error code reported for the initialization calibration failure. The object ID is contained 

within Bits[D15:D8] and error bits are contained within Bits[D7:D0].  
initErrCal Returns the object ID of the calibration reporting an error. 
calsDurationUsec Time duration in microseconds of the most recent InitCalsRun invocation.  
calsSincePowerUp[4] A 4-element array indicating the bitmask of initial calibrations run after power up. Each element of the array 

corresponds to calibrations performed on each channel. 
calsLastRun[4] A 4-element array indicating the bitmask of initial calibrations run in the most recent invocation of InitCalsRun. Each 

element of the array corresponds to calibrations performed on each channel. 
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SYSTEM CONSIDERATIONS FOR INITIAL CALIBRATIONS 
Figure 49 through Figure 52 show how the transceiver is configured for notable calibrations with external system requirements, such as 
the QEC and LOL calibrations. In all diagrams, gray lines and blocks are not active in the calibration. Lines showing the path of the LOs 
are shown in color to distinguish them from the signal paths. A brief explanation of the calibration is provided. Note that as the ARM 
performs each of the calibrations, it is tasked with configuring the device as per Figure 49. For example, with respect to enabling/disabling 
paths. No user input is required in this regard.  

It is important that the user ensures that external conditions are met, such as having the PA off for all calibrations other than the external 
LOL initialization calibration, or having the receiver input properly terminated for a receiver QEC initialization calibration. 

Receiver QEC Initial Calibration 

The receiver QEC initialization calibration algorithm is utilized to improve the receiver path QEC performance. The receiver QEC 
calibration routine sweeps a number of internally generated test tones across the desired frequency band, measuring quadrature performance 
and calculating correction coefficients. Tone generation is performed by the calibration PLL (CAL PLL), which is the auxiliary PLL. 
When the receiver QEC initialization calibration runs, the ARM configures the receiver to the maximum gain index (255).  

It is a system requirement that the input port must be isolated from incoming signals or the calibration may fail to complete. The calibration 
tones appear on the receiver pins and, therefore, must be prevented from reaching the antenna through the receiver port being properly 
terminated into a 50 Ω load. If an LNA is present at the receiver input, it is recommended to disable the LNA during the calibration. 
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Figure 49. Receiver QEC Initial Calibration System Configuration  

Observation Receiver QEC Initial Calibration 

The observation receiver QEC calibration functions by sweeping a number of internally generated test tones across the band measuring 
quadrature performance and calculating correction coefficients. The ARM determines which PLL is free for use as a calibration source 
given the LO selections. In Figure 50, the transmitter LO is the LO source for the observation receiver channel and the auxiliary PLL acts 
as the calibration PLL.  

It is a system requirement that for optimum performance, it is recommended to set the internal observation receiver attenuation to 10 dB 
for TXLO ≤ 2.8 GHz or 14 dB to 16 dB for TXLO > 2.8 GHz.  

Isolate the observation receiver input from incoming signals and be properly terminated into a 50 Ω load while the calibration is running. 
The calibration tones appear on the observation receiver pins and, therefore, must be prevented from reaching the antenna. 

Receiver/Observation Receiver TIA Initial Calibration 

The receiver/observation receiver TIA calibration is used to calibrate the corner frequency of the analog baseband TIA filter in the 
receiver/observation receiver signal path. The signal path used for this calibration is the same as the receiver QEC initialization calibration 
shown in Figure 49. The calibration applies two tones sequentially, one in-band and another at the TIA corner frequency, and compares the 
amplitude of both of these signals to ensure that the corner frequency produces the appropriate roll-off.  

It is a system requirement to isolate the input port from incoming signals or the calibration may fail to complete. 
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Figure 50. Observation Receiver QEC Initial Calibration System Configuration  

Internal Transmitter LO Leakage and Transmitter QEC Initial Calibrations 

The transmitter LO leakage and transmitter QEC initial calibrations utilize the internal loopback path and the baseband section of the 
observation receiver path to calculate its initial correction factors. During these calibrations, test signals (tones and wideband signals) are 
output. These appear at the transmitter output, so it is important that the PA connected to the transceiver output be switched off. Both 
calibrations sweep through a series of attenuation values, creating a table of initial calibration values over attenuation. Then during 
operation and upon application of a new transmitter attenuation setting, the corresponding QEC and LOL correction values are applied 
to the transmitter channel by the ARM. The transceiver configuration for this calibration is shown in Figure 51. 

It is a system requirement that the PA in the transmitter path must be powered off during these calibrations to prevent potential damage 
to the PA. When the PA is disabled, ensure the load seen at the transmitter output is 50 Ω. 
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Figure 51. Device Path Configuration for Transmitter LOL and QEC Initial Calibrations  

External Transmitter LO Leakage Initial Calibration  

The external LOL initialization calibration requires that the PA be enabled such that a full external loop is made between the transmitter 
outputs and the observation receiver inputs. The purpose of this calibration is to obtain a good estimate (gain/phase) of the external loop 
channel conditions prior to operation. The transceiver configuration is shown in Figure 52. The calibration utilizes a pseudorandom noise 
signal to estimate the channel conditions. This is a broadband signal with a nominal level of −78 dBFS out of the DAC. 
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It is important that a suitable attenuator be chosen between the PA output and the observation receiver input. This is to prevent transmitter 
data from saturating the observation receiver input. This is also necessary from the perspective of digital predistortion (DPD) operation. 

Note that if the observation receiver receives an input signal larger than the ADC full scale, the channel overloads and calibration results 
are poor. The arm does not issue a warning or error condition in this case. Similarly, the arm does not issue a warning if the physical 
transmitter to observation receiver mapping does not match the programmed transmitter to observation receiver mapping. 

It is a system requirement that the output of the transmitter channel to be calibrated must be routed to the utilized observation receiver 
path to properly observe the calibration signal. If there is a PA in the path, it must be enabled during this calibration. The transmitter to 
observation receiver mapping must be configured (via API or GPIO) prior to the calibration to indicate which transmitter is routed back 
to which observation receiver (see the Transmitter to Observation Receiver Feedback section). 

Choose the combined external coupler plus attenuation to provide a peak input power close to PHIGH (as specified in the device’s 
datasheet) at the observation receiver input pin so that the peak power is close to −2 dBFS at the digital output with the programmed 
internal attenuation. For optimal external LOL initial calibration and LOL tracking calibration, it is recommended to set the internal 
observation receiver attenuation to 10 dB for TXLO ≤ 2.8 GHz or 14 dB to 16 dB for TXLO > 2.8 GHz.  
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Figure 52. External LOL System Configuration (Grayed Out Circuitry Not in Use) 

Receiver Gain Delay Initial Calibration 

The receiver datapath features an analog and a digital gain/attenuation element. If the analog and digital gain changed simultaneously, the 
received baseband data shows a two-step change in the gain index. The first gain change seen in the baseband is from the digital gain 
change and the second gain change is from the analog gain change. This is due to the nonzero data path latency between the analog and 
digital gain/attenuation elements.  

The receiver gain delay calibration measures the latency between the analog and digital gain/attenuation elements to delay the onset of 
digital gain. This ensures that when the analog and digital gain change, the baseband data shows a single coordinated gain change 
between these two elements. Because the analog gain change is not delayed, there are no consequences to automatic gain control (AGC) 
timing due to this calibration.  

Receiver Gain Phase  

The receiver gain phase calibration is used to minimize the phase differences between different gain indices. This calibration scans the 
gain table for unique analog attenuation settings and applies a phase shift for each setting to minimize the phase difference between gain 
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index settings. The auxiliary PLL is used to transmit a tone at the receiver input and measure the phase difference. The phase shift is 
introduced by a digital phase shifting element.  
Transmitter Attenuation Phase Initial Calibration 

This calibration is called ADI_ADRV9025_TX_ATTEN_TABLE in the API enumerations. This calibration corrects for phase differences 
between different attenuation settings in the transmitter attenuation table. A tone is transmitted during this calibration at −12 dBFS and it 
is advised to disable the PA during this calibration. No external loopback is necessary during the operation of this calibration.  

Run this calibration run prior to any LO leakage initial calibrations. When combined in the initial calibration mask with LO leakage 
calibrations, the ARM sequences this calibration before LO leakage initial calibrations.  

The attenuation phase calibration supports up to 20 dB of attenuation. This calibration has known performance issues below 1 GHz LO 
frequency operation.  
Transmitter Attenuation Delay 

Similar to the receiver, the transmitter datapath features an analog and digital gain/attenuation element. The transmitter attenuation delay 
calibration helps to ensure that when a change in attenuation occurs in both analog and digital, the transmitter output only sees a single 
change in output power rather than a two-step effect. This is done by delaying the onset of the analog attenuator change, unlike the 
receiver gain delay calibration, which delays the onset of digital gain or attenuation changes.  
Transmitter to Observation Receiver Feedback 

For the external transmitter LO leakage initial calibration to complete, the ARM must be advised of the current transmitter to observation 
receiver feedback paths through the external circuitry. Specify this path at initialization, through the adi_adrv9025_PostMcsInit_t structure 
that is passed to adi_adrv9025_PostMcsInit( ). In this structure, there are four variables that indicate which transmitter is being fed back 
to each observation receiver. These variables are shown in Table 64. 
Table 64. Definition of adi_adrv9025_TxToOrxMappingConfig_t  
Observation Receiver Maps Permissible Values 
orx1Map  ADI_ADRV9025_MAP_NONE_ORX1 
 ADI_ADRV9025_MAP_TX1_ORX1 
 ADI_ADRV9025_MAP_TX2_ORX1 
orx2Map  ADI_ADRV9025_MAP_NONE_ORX2 
 ADI_ADRV9025_MAP_TX1_ORX2 
 ADI_ADRV9025_MAP_TX2_ORX2 
orx3Map  ADI_ADRV9025_MAP_NONE_ORX3 
 ADI_ADRV9025_MAP_TX3_ORX3 
 ADI_ADRV9025_MAP_TX4_ORX3 
orx4Map  ADI_ADRV9025_MAP_NONE_ORX4 
 ADI_ADRV9025_MAP_TX3_ORX4 
 ADI_ADRV9025_MAP_TX4_ORX4 

Note that in the case of multiple transmitter channels being fed back to a single observation receiver, a multiple pass is required for the 
external transmitter LO leakage initial calibration. During the first pass when adi_adrv9025_PostMcsInit( ) is called, the current feedback 
paths must be advised to the device. When the external LOL initial calibration is run, the ARM performs the calibration on transmitter 
paths that have a feedback path to an observation receiver. In a second pass, the feedback paths are modified and advised to the device, 
and the external LOL initial calibration must be called again. 
Note Regarding Auxiliary LO Settings During Initialization Calibrations 

For users that intend to use an auxiliary LO frequency other than the default auxiliary LO frequency for their given use case, note that 
initial calibrations must run with the default auxiliary PLL frequency. Therefore, the user must use a procedure if a nondefault auxiliary 
PLL frequency is used in their application. This procedure is as follows:  

1. Set the transmitter PLL frequency to the desired frequency.  
a. If the user uses adi_adrv9025_PllFrequencySet(…), the auxiliary PLL is configured to the default offset frequency when the 

transmitter PLL is programmed. 
b. If the user uses adi_adrv9025_PllFrequencySet_v2(…), the auxiliary PLL is configured to the default offset frequency if the 

adi_adrv9025_PllConfig_t-> pllAuxLoOffsetProgSel parameter is set to ADI_ADRV9025_PLL_AUX_LO_OFFSET_PROG_ENABLE.  
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2. Run initialization calibrations. 
3. After all initialization calibrations are complete, the user can set the auxiliary PLL frequency to the desired application frequency. 

If the user sets the auxiliary PLL to a different frequency and requires initial calibrations to be rerun, follow this same procedure.  

Summary of Initial Calibration Requirements 

Table 65 summarizes initial calibration requirements and other related details.  

Table 65. Recommended Initial Calibrations 
Initial Calibration Recommended Values 
Receiver QEC ADI_ADRV9025_MAP_NONE_ORX1 
 ADI_ADRV9025_MAP_TX1_ORX1 
 ADI_ADRV9025_MAP_TX2_ORX1 
Receiver TIA ADI_ADRV9025_MAP_NONE_ORX2 
 ADI_ADRV9025_MAP_TX1_ORX2 
 ADI_ADRV9025_MAP_TX2_ORX2 
Observation Receiver TIA ADI_ADRV9025_MAP_NONE_ORX3 
 ADI_ADRV9025_MAP_TX3_ORX3 
 ADI_ADRV9025_MAP_TX4_ORX3 
orx4Map  ADI_ADRV9025_MAP_NONE_ORX4 
 ADI_ADRV9025_MAP_TX3_ORX4 
 ADI_ADRV9025_MAP_TX4_ORX4 

TRACKING CALIBRATIONS 
The ARM processor is tasked with ensuring that QEC and LOL (and HD2 for GSM applications) corrections are optimal throughout device 
operation over time, attenuation, and temperature. The ARM processor achieves this optimization by performing calibrations at regular intervals. 
These calibrations are termed tracking calibrations, and they utilize normal traffic data to update the path correction coefficients. 

The following API function enables the tracking calibrations in the ARM: 
adi_adrv9025_TrackingCalsEnableSet(adi_adrv9025_Device_t *device, uint32_t enableMask, 
adi_adrv9025_TrackingCalEnableDisable_e enableDiasbleFlag) 

enableMask is a mask that informs the ARM processor which tracking calibrations to run (Table 66 shows the bit assignments of the 
enable mask (presently only receiver/observation receiver QEC calibrations are available)). enableDiasbleFlag is an enable or disable 
parameter (valid enumerators are shown in Table 67). Based on the enumerator chosen for enableDiasbleFlag, the selected tracking 
calibrations in enableMask are enabled or disabled. 

Table 66. Tracking Calibrations Enable Mask Bit Assignments 
Calibration Mask Bits Function 
D0 Rx1 QEC Tracking 
D1 Rx2 QEC Tracking 
D2 Rx3 QEC Tracking 
D3 Rx4 QEC Tracking 
D4 ORx1 QEC Tracking 
D5 ORx2 QEC Tracking 
D6 ORx3 QEC Tracking 
D7 ORx4 QEC Tracking 
D8 Tx1 LOL Tracking 
D9 Tx2 LOL Tracking 
D10 Tx3 LOL Tracking 
D11 Tx4 LOL Tracking 
D12 Tx1 QEC Tracking 
D13 Tx2 QEC Tracking 
D14 Tx3 QEC Tracking 
D15 Tx4 QEC Tracking 
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Table 67. adi_adrv9025_TrackingCalEnableDisable_e Definition 
Enumerator Description 
ADI_ADRV9025_TRACKING_CAL_DISABLE When used, the selected tracking calibrations in enableMask are disabled upon the call to 

adi_adrv9025_TrackingCalsEnableSet. 
ADI_ADRV9025_TRACKING_CAL_ENABLE When used, the selected tracking calibrations in enableMask are enabled upon the call to 

adi_adrv9025_TrackingCalsEnableSet. 

The arm is tasked with the scheduling of the tracking calibrations. No user input is required to initiate a tracking calibration. 

System Considerations for Tracking Calibrations 

This section describes the operation of the tracking calibrations. Diagrams are used to show how the transceiver is configured for each 
calibration, and a brief explanation of the calibration is provided. In all configuration diagrams, grayed-out lines and blocks are not active 
in the calibration. Lines showing the path of the LOs are shown in color to distinguish them from the signal paths. As the ARM performs 
each of the calibrations, it is tasked with configuring the feedback path or observation receiver input as per the following set of diagrams. 
No user input is required in this regard. However, for external LOL tracking the user must ensure that the feedback path is available to 
use. 

The calibration description sections show the requirements for GPIO and enable pins during each of the tracking calibrations. These 
calibrations may need many milliseconds of observation to calculate an update. The ARM reduces the total time needed by splitting up 
this time into batches in a way so that observations do not have to be continuous. The ARM algorithms are optimized to process batches 
of 100 µs, but smaller batches are acceptable.  

The receiver/observation receiver tracking algorithms run while the channels are in normal use, using the data in the channel to calculate 
updates to the correction coefficients. The transmitter correction algorithms utilize the observation receiver path when run, feeding back 
transmission data for observation to calculate updates to the correction coefficients. Therefore, observation receiver paths must be time 
shared with other uses of the observation receiver path. 

Because the transceiver has two observation paths, the expectation is that the calibrations always have access to a single observation 
receiver path and an equal amount of time for observation receiver paths on either side of the device (that is, an equal amount of time on 
ORx1/ORx2 and ORx3/ORx4). When an observation receiver on one side of the device is being assigned to calibrations, the other 
observation receiver(s) on the other side of the device are available to the user for observation. 

Receiver QEC Tracking Calibration 

The receiver QEC tracking algorithm improves the receiver path QEC performance during operation. The receiver QEC utilizes normal 
traffic data to calculate updated corrected coefficients. The receiver QEC runs continuously while the receivers are active.  

It is a system requirement that the receiver channels must be enabled. For example, in TDD mode, receiver QEC tracking only runs 
during receiver periods. If only one channel is enabled, the receiver QEC only runs on this channel. Note that in FDD modes, receiver 
enable is high at all times. Receiver enable refers to the enable of any of Rx1 to Rx4. 
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Figure 53. Receiver QEC Tracking 
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Figure 54. Timing Diagram Showing When Receiver QEC can Run in TDD Mode 
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Observation Receiver QEC Tracking Calibration 

The observation receiver QEC tracking algorithm improves the observation receiver path QEC performance during operation. The 
observation receiver QEC tracking calibration utilizes normal traffic data to calculate updated corrected coefficients. The observation 
receiver QEC tracking calibration runs continuously in the background while the observation receiver is active.  

It is a system requirement that observation receiver channels must be enabled. For example, in TDD mode, observation receiver QEC 
tracking only runs during observation receiver periods. If only one channel is enabled, the observation receiver QEC only runs on this 
channel. 

Do not change the observation receiver gain index while the tracking calibration runs. If the observation receiver gain index changes, 
rerun the observation receiver QEC initial calibration. 
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Figure 55. Observation Receiver QEC Tracking 
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Figure 56. Timing Diagram Showing when Observation Receiver QEC can Run in TDD Mode (Observation Receiver Enable Refers to the Internal Enable Control of 

ORx1 to ORx4) 

Transmitter QEC Tracking Calibration 

The transmitter QEC tracking is an online calibration that is run to improve the QEC performance using transmit data. It utilizes the 
loopback (feedback) path for operation. Therefore, the transmit QEC tracking must be interleaved with normal other captures that utilize 
the observation receiver path. This tracking determines optimal coefficients for the current gain setting, updating the table stored during 
the transmitter QEC initialization to ensure this table has the best values for the current operating conditions. Figure 57 shows the 
transceiver configuration for transmitter QEC tracking calibration. 

It is a system requirement that the transmitter channel(s) must be enabled. To run, the observation receiver path must be available for the 
ARM to use (observation receiver enable low). That means the required observation receiver path cannot be required by the user for 
other (or voltage standing wave radio (VSWR)) captures. 

Note that in FDD modes, transmitter enable is high at all times. Transmitter enable refers to the enable of any Tx1 to Tx4. Observation 
receiver enable refers to the internal enable signal for the selected observation receiver channel. 

QEC tracking uses an offset LO on the feedback path during tracking. This ensures that the quadrature errors of the transmitter path are 
not aligned with those of the observation receiver path. This frequency is set to  

fOFFSET = (Primary Transmitter Bandwidth/4) + 5 MHz 

Continuous wave tones placed at ±fOFFSET, or 2× (±fOFFSET), show reduced QEC performance. However, modulated signals centered at these 
frequencies do not have reduced performance. 

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029


UG-1727 ADRV9026/ADRV9029 System Development User Guide 
 

Rev. 0 | Page 92 of 336 

QEC
BLOCK

JE
SD

20
4B

/C
 IN

TE
RF

AC
E

ADRV902x

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

SIGNAL
GEN

DAC

DACLPF

Tx LO

LPF

Tx
OUTPUT

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

ADC

ADCLPF

CAL
PLL

AUX LO

LPF

ORx
INPUT

FEEDBACK
PATH

ATTENUATOR

PA

PA POWERED OFF

COUPLER

22
77

0-
05

6

 
Figure 57. Transmitter QEC Tracking Calibration Configuration 
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Figure 58. Timing Diagram Showing When Transmitter QEC can Run in TDD Mode  

Transmitter LOL Tracking Calibration 

The transmitter LO leakage tracking calibration uses an external path between the transmitter output and observation receiver input to 
measure LO leakage and calculate correction factors. This calibration is run while user data is being transmitted (with the PA operational). 
For this calibration, the auxiliary LO is used in the observation receiver path to offset the transmitter LO leakage from the observation 
receiver LO. Figure 59 shows the transceiver configuration for the transmitter LO leakage tracking calibration with the transmitter output 
looped back to the observation receiver input (an observation receiver on the same side of the chip as the transmitter being calibrated). 

Note that if the observation receiver receives an input signal larger than the ADC full scale, the channel overloads and calibration results 
are poor. The ARM does not issue a warning or error condition in this case.  

It is a system requirement that the transmitter channel(s) must be enabled. The observation receiver path must be available for the ARM 
to use (that is, not required by the user for DPD (or VSWR) captures). The observation receiver path must be connected to the appropriate 
transmitter to be calibrated, and the ARM must be advised which transmitter output has a connection to which observation receiver.  
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A proper channel estimate is required for optimal LOL tracking performance. A new initial channel estimate must be acquired when the 
LO frequency changes or the observation receiver gain index changes. The following are two options to achieve a proper channel 
estimate, but it is highly recommended to follow the first option: 

1. Run external transmitter LO leakage initialization calibration. Ensure that mapping is set up properly, PA is enabled, and all tracking 
calibrations are disabled.  

2. If not running external transmitter LO leakage initialization calibration, follow this procedure: 
a. Run transmitter LOL tracking calibration. If external transmitter LOL initial calibration is skipped, change LO frequency or 

observation receiver attenuation and disable transmitter LOL tracking (if it is running). 
b. If transmitter traffic has content at dc, disable data transmission. If data is offset from dc it can be left on. 
c. Reset the desired channels using the ExtTxLolchannelReset() command. 
d. Call TrackingCalTxLolStatusGet() and note the value of iterCount. 
e. Enable transmitter LOL tracking. 
f. Call TrackingCalTxLolStatusGet() again and note the value of iterCount 
g. If the iterCount value has increased by at least 1, enable transmitter data transmission 

QEC
BLOCK

JE
SD

20
4B

/C
 IN

TE
RF

AC
E

ADRV902x

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

SIGNAL
GEN

DAC

DACLPF

Tx LO

LPF

Tx
OUTPUT

1/2 BANDS
AND FIR

1/2 BANDS
AND FIR

ADC

ADCLPF

CAL
PLL

AUX LO

LPF

ORx
INPUT

FEEDBACK
PATH

ATTENUATOR

PA

PA POWERED OFF

COUPLER

22
77

0-
05

8

 
Figure 59. Transmitter LOL Tracking Configuration 

CALIBRATION GUIDELINES AFTER PLL FREQUENCY CHANGES 
Some applications require changing the PLL frequency for transmitter, receiver, or observation receiver signal paths after the transceiver 
has started normal operation and tracking calibrations have improved performance. Some tracking calibrations require rerunning initial 
calibrations after the PLL frequency change to relearn the new channel conditions. It is important that certain procedures are followed to 
maintain proper operation of the tracking calibrations.  

The LO frequency changes fall into one of two types. Type 1 is the LO frequency change that is described by both of the following criteria:  

• The LO frequency change is less than 100 MHz. 
• The LO frequency change does not step over an LO divider boundary, as explained in the Synthesizer Configuration section.  

Type 2 is the LO Frequency change that is described by either of the following criteria:  

• The LO frequency change is greater than 100 MHz.  
• The LO frequency change steps over an LO divider boundary. 
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Type 1 Frequency Change Procedure 

If the LO frequency change falls into Type 1 described in the Calibration Guidelines after PLL Frequency Changes section, implement the 
following procedure:  

1. Disable all tracking calibrations 
2. Disable all RF channels. If TX_EN/RX_EN/ORX_CTRL pins cannot stop toggling, put the transceiver into command control mode 

via adi_adrv9025_RadioCtrlCfgSet(…), then call adi_adrv9025_RxTxEnaleSet(…) to disable all channels.  
3. Rerun the following initial calibrations. Ensure to follow system considerations as described in System Considerations for Initial 

Calibrations. Ensure that INTERNAL_PATH_DELAY is run prior to TX_QEC_INIT if calibrations are run one at a time. The ARM 
sequences the calibrations properly when the following is true: 
a. ADI_ADRV9025_INTERNAL_PATH_DELAY (if transmitter QEC tracking is used) 

ADI_ADRV9025_LO_LEAKAGE_EXTERNAL. This step is optional but highly recommended. The PA must be enabled in this 
step. Ensure that the external calibration is run for all transmitter to observation receiver mappings used in the application. If 
the previous step is not executed, it is mandatory to call the adi_adrv9025_ExtTxLolChannelReset(…) command for each 
transmitter channel. It must be called one transmitter channel at a time. Then a special procedure must be followed to relearn 
the channel estimate described in the Transmitter LOL Tracking Calibration section. 

b. Enable relevant tracking calibrations. 
c. Transition back to pin control mode, if necessary.  

Type 2 Frequency Change Procedure 

If the LO frequency change falls into Type 2 as described in the Calibration Guidelines after PLL Frequency Changes section, implement a 
similar procedure to the Type 1 frequency change procedure while adding the ADI_ADRV9025_LOOPBACK_RX_LO_DELAY and 
ADI_ADRV9025_TX_QEC_INIT calibrations.  

Initialization Calibrations Durations 

To achieve best performance, the transceiver features autonomous internal calibrations that are performed during device initialization. 
The calibrations are run in the post-MCS part of device initialization. The majority of the calibrations are run with a single API call after 
the calibration structure is set. These are the internal calibrations that utilize internal loopback paths. Those that utilize external paths 
(such as the external transmitter LOL calibration) are run separately afterward. 

All of the calibrations are overseen and scheduled by the ARM processor, therefore the user does not have to be concerned about what 
order the calibrations are run. The sequence is defined in a way so that those calibrations that depend on others are scheduled 
appropriately. The amount of time it takes for the calibrations to complete are related to the internal high speed clock and the resulting IQ 
rates of the receiver, transmitter, and observation receiver paths. The ARM clock is derived from the clock PLL.  

In the Figure 60, the slices show the relative timing of each common initialization calibration relative to the total time. Some of the 
calibrations are very short and mostly involve, for example, loading coefficients and initializing for operation, or measuring the delay of 
the calibration path. Some other calibrations require observation of either internally generated calibration tones or pseudorandom noise 
to calculate the required coefficients that are used to define the characteristics of the channel. However, other calibrations, for example the 
transmitter QEC calibration, use an algorithm to determine the correction factors that can be influenced by the actual load conditions to 
which the transmitter is connected. For these reasons, the amount of time each of the calibrations require to complete may vary slightly.  
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Figure 60. Relative Time Distribution of Initialization Calibrations 

Table 68 through Table 97 are measured calibration times of the transceiver for a number of different use cases using the standard 
calibration mask of 0xD73FF. These results can be used as guidelines as to what the typical expected times are for a particular 
configuration. Table 68 through Table 97 are listed in pairs. The first of each pair lists the relevant bandwidths and sample rates. The 
second table of each pair lists the calibration timing results in milliseconds for 1, 2, 3, and 4 enabled receiver or transmitter channels. In 
the case of observation receiver calibrations, because there are just two shared paths, the entries for ORX_DC_OFFSET are different for 1 
and 2 channels enabled, but remain the same for 3 and 4 channels enabled. Other observation receiver calibrations show differences from 
1 to 4 channels because the paths from each of the transmitters are calibrated individually. 

Table 68. ADRV9025Init_StdUseCase13_nonLinkSharing 

Use Case 
Transmitter 
Bandwidth 

Transmitter 
Input Rate 

Transmitter 
DAC Rate 

Observation 
Receiver 
Bandwidth 

Observation 
Receiver 
Output Rate 

Observation 
Receiver 
ADC Rate 

Receiver 
Bandwidth 

Receiver 
Output 
Rate 

Receiver 
ADC Rate 

UC13_NLS 225 MHz 245.76 MHz 1.966 GHz 225 MHz 245.76 MHz 4.915 GHz 100 MHz 122.88 MHz 1.966 GHz  

Table 69. ADRV9025Init_StdUseCase13_nonLinkSharing Calibration Durations 
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
TX_DAC  4 8 12 17 
TX_BB_FILTER  2 2 4 5 
ADC_TUNER  1 1 1 1 
FLASH_CAL  219 263 324 365 
RX_TIA  84 125 166 207 
ORX_TIA  64 86 108 128 
LBRX_TIA  64 86 107 129 
RX_DC_OFFSET  451 451 451 451 
ORX_DC_OFFSET  451 899 899 899 
LBRX_DC_OFFSET  8 14 14 14 
LOOPBACK_RX_LO_DELAY  175 345 510 679 
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Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
RX_QEC_INIT  756 1508 2262 3013 
ORX_QEC_INIT  787 1570 2354 3137 
INTERNAL_PATH_DELAY  1 1 3 3 
TX_LO_LEAKAGE_INTERNAL  892 1781 2671 3560 
TX_QEC_INIT  584 1162 1730 2323 

Total Calibration Time  4545 8302 11616 14932 

Table 70. ADRV9025Init_StdUseCase14_LinkSharing 

Use 
Case 

Transmitter 
Bandwidth 

Transmitter 
Input Rate 

Transmitter 
DAC Rate 

Observation 
Receiver 
Bandwidth 

Observation 
Receiver 
Output Rate 

Observation 
Receiver 
ADC Rate 

Receiver 
Bandwidth 

Receiver 
Output 
Rate 

Receiver 
ADC Rate 

UC14_LS 450 MHz 491.52 MHz 1.966 GHz 450 MHz 491.52 MHz 4.915 GHz 200 MHz 245.76 MHz 4.915 GHz  

Table 71. ADRV9025Init_StdUseCase14_LinkSharing Calibration Durations 
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
TX_DAC 4 9 12 17 
TX_BB_FILTER 1 2 4 4 
ADC_TUNER 1 1 1 1 
FLASH_CAL 219 263 324 365 
RX_TIA 64 85 106 126 
ORX_TIA 54 65 76 88 
LBRX_TIA 54 65 77 87 
RX_DC_OFFSET 451 451 451 450 
ORX_DC_OFFSET 467 899 898 899 
LBRX_DC_OFFSET 7 14 14 14 
LOOPBACK_RX_LO_DELAY 163 324 484 644 
RX_QEC_INIT 787 1570 2354 3138 
ORX_QEC_INIT 785 1566 2347 3127 
INTERNAL_PATH_DELAY 1 2 2 3 
TX_LO_LEAKAGE_INTERNAL 876 1748 2622 3494 
TX_QEC_INIT 293 595 908 1197 

Total Calibration Time 4226 7658 10680 13654 

Table 72. ADRV9025Init_StdUseCase14C_LinkSharing 

Use Case 
Transmitter 
Bandwidth 

Transmitter 
Input Rate 

Transmitter 
DAC Rate 

Observation 
Receiver 
Bandwidth 

Observation 
Receiver 
Output Rate 

Observation 
Receiver 
ADC Rate 

Receiver 
Bandwidth 

Receiver 
Output Rate 

Receiver 
ADC Rate 

UC14C_LS 450 MHz 491.52 MHz 1.966 GHz 450 MHz 491.52 MHz 4.915GHz 200 MHz 245.76 MHz 4.915 GHz  

Table 73. ADRV9025Init_StdUseCase14C_LinkSharing Calibration Durations 
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
TX_DAC  3 6 11 15 
TX_BB_FILTER  2 3 3 4 
ADC_TUNER  1 1 1 1 
FLASH_CAL  219 262 325 368 
RX_TIA  64 85 105 126 
ORX_TIA  54 65 76 87 
LBRX_TIA  55 65 76 87 
RX_DC_OFFSET  451 451 450 451 
ORX_DC_OFFSET  450 899 899 899 
LBRX_DC_OFFSET  7 15 14 14 
LOOPBACK_RX_LO_DELAY  166 325 484 645 

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029


ADRV9026/ADRV9029 System Development User Guide UG-1727 
 

Rev. 0 | Page 97 of 336 

Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
RX_QEC_INIT  786 1569 2354 3138 
ORX_QEC_INIT  784 1567 2350 3130 
INTERNAL_PATH_DELAY  1 2 2 2 
TX_LO_LEAKAGE_INTERNAL  876 1749 2622 3495 
TX_QEC_INIT  307 593 902 1188 

Total Calibration Time  4226 7657 10674 13649 

Table 74. ADRV9025Init_StdUseCase23C_LinkSharing 

Use Case 
Transmitter 
Bandwidth 

Transmitter 
Input Rate 

Transmitter 
DAC Rate 

Observation 
Receiver 
Bandwidth 

Observation 
Receiver 
Output Rate 

Observation 
Receiver 
ADC Rate 

Receiver 
Bandwidth 

Receiver 
Output 
Rate 

Receiver 
ADC Rate 

UC23C_LS 337.5 MHz 368.64 MHz 1.475 GHz 337.5 MHz 368.64 MHz 3.686 GHz 150 MHz 184.32 MHz 3.686 GHz  

Table 75. ADRV9025Init_StdUseCase23C_LinkSharing Calibration Durations 
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
TX_DAC  4 5 9 11 
TX_BB_FILTER  1 2 3 5 
ADC_TUNER  1 1 1 1 
FLASH_CAL  285 343 426 482 
RX_TIA  84 111 139 172 
ORX_TIA  72 86 100 114 
LBRX_TIA  72 85 100 115 
RX_DC_OFFSET  450 451 451 451 
ORX_DC_OFFSET  451 899 898 898 
LBRX_DC_OFFSET  7 14 14 15 
LOOPBACK_RX_LO_DELAY  210 419 628 835 
RX_QEC_INIT  863 1728 2583 3443 
ORX_QEC_INIT  861 1718 2574 3430 
INTERNAL_PATH_DELAY  1 2 3 4 
TX_LO_LEAKAGE_INTERNAL  883 1765 2645 3526 
TX_QEC_INIT  401 800 1192 1607 

Total Calibration Time  4645 8429 11767 15108 

Table 76. ADRV9025Init_StdUseCase26C_LinkSharing 

Use Case 
Transmitter 
Bandwidth 

Transmitter 
Input Rate 

Transmitter 
DAC Rate 

Observation 
Receiver 
Bandwidth 

Observation 
Receiver 
Output Rate 

Observation 
Receiver 
ADC Rate 

Receiver 
Bandwidth 

Receiver 
Output Rate 

Receiver 
ADC Rate 

UC26C_LS 450 MHz 491.52 MHz 1.966 GHz 450 MHz 491.52 MHz 4.915 GHz 200 MHz 245.76 MHz 4.915 GHz  

Table 77. ADRV9025Init_StdUseCase26C_LinkSharing Calibration Durations 
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
TX_DAC  4 7 10 15 
TX_BB_FILTER  1 2 3 4 
ADC_TUNER  1 1 1 1 
FLASH_CAL  220 263 324 367 
RX_TIA  64 84 106 125 
ORX_TIA  54 66 76 88 
LBRX_TIA  55 65 75 86 
RX_DC_OFFSET  451 450 451 450 
ORX_DC_OFFSET  451 900 899 899 
LBRX_DC_OFFSET  7 14 14 14 
LOOPBACK_RX_LO_DELAY  163 323 485 645 
RX_QEC_INIT  787 1571 2354 3137 
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Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
ORX_QEC_INIT  783 1564 2346 3125 
INTERNAL_PATH_DELAY  1 2 2 3 
TX_LO_LEAKAGE_INTERNAL  876 1748 2622 3494 
TX_QEC_INIT  291 597 892 1201 

Total Calibration Time  4210 7657 10660 13654 

Table 78. ADRV9025Init_StdUseCase26C_nonLinkSharing 

Use Case 
Transmitter 
Bandwidth 

Transmitter 
Input Rate 

Transmitter 
DAC Rate 

Observation 
Receiver 
Bandwidth 

Observation 
Receiver 
Output Rate 

Observation 
Receiver 
ADC Rate 

Receiver 
Bandwidth 

Receiver 
Output 
Rate 

Receiver 
ADC Rate 

UC26C_NLS 450 MHz 491.52 MHz 1.966 GHz 450 MHz 491.52 MHz 4.915 GHz 200 MHz 245.76 MHz 4.915 GHz  

Table 79. ADRV9025Init_StdUseCase26C_nonLinkSharing Calibration Durations 
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
TX_DAC  3 7 13 14 
TX_BB_FILTER  1 2 3 4 
ADC_TUNER  1 1 1 1 
FLASH_CAL  220 261 324 368 
RX_TIA  64 85 105 125 
ORX_TIA  54 65 77 87 
LBRX_TIA  54 65 76 87 
RX_DC_OFFSET  451 451 451 451 
ORX_DC_OFFSET  450 899 899 899 
LBRX_DC_OFFSET  7 14 14 15 
LOOPBACK_RX_LO_DELAY  164 325 485 645 
RX_QEC_INIT  786 1570 2355 3138 
ORX_QEC_INIT  785 1565 2346 3128 
INTERNAL_PATH_DELAY  1 1 2 2 
TX_LO_LEAKAGE_INTERNAL  876 1749 2621 3494 
TX_QEC_INIT  293 598 891 1192 

Total Calibration Time  4211 7658 10663 13649 

Table 80. ADRV9025Init_StdUseCase50_LinkSharing 

Use 
Case 

Transmitter 
Bandwidth 

Transmitter 
Input Rate 

Transmitter 
DAC Rate 

Observation 
Receiver 
Bandwidth 

Observation 
Receiver 
Output Rate 

Observation 
Receiver 
ADC Rate 

Receiver 
Bandwidth 

Receiver 
Output 
Rate 

Receiver 
ADC Rate 

UC50_LS 450 MHz 122.88 MHz 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 100 MHz 122.88 MHz 1.966 GHz  

Table 81. ADRV9025Init_StdUseCase50_LinkSharing Calibration Durations 
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
TX_DAC  5 7 12 13 
TX_BB_FILTER  1 2 3 4 
ADC_TUNER  1 1 1 1 
FLASH_CAL  218 261 324 369 
RX_TIA  85 126 166 207 
ORX_TIA  54 65 76 88 
LBRX_TIA  54 66 75 87 
RX_DC_OFFSET  451 452 451 452 
ORX_DC_OFFSET  450 899 899 899 
LBRX_DC_OFFSET  7 15 14 14 
LOOPBACK_RX_LO_DELAY  172 342 506 663 
RX_QEC_INIT  793 1583 2373 3161 
ORX_QEC_INIT  784 1564 2347 3126 
INTERNAL_PATH_DELAY  1 2 2 3 
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Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
TX_LO_LEAKAGE_INTERNAL  876 1749 2621 3494 
TX_QEC_INIT  299 588 899 1186 

Total Calibration Time  4251 7721 10771 13766 

Table 82. ADRV9025Init_StdUseCase50_nonLinkSharing 

Use Case 
Transmitter 
Bandwidth 

Transmitter 
Input Rate 

Transmitter 
DAC Rate 

Observation 
Receiver 
Bandwidth 

Observation 
Receiver 
Output Rate 

Observation 
Receiver 
ADC Rate 

Receiver 
Bandwidth 

Receiver 
Output 
Rate 

Receiver 
ADC Rate 

UC50_LS 450 MHz 122.88 MHz 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 100 MHz 122.88 MHz 1.966 GHz  

Table 83. ADRV9025Init_StdUseCase50_nonLinkSharing Calibration Durations 
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
TX_DAC  4 8 10 15 
TX_BB_FILTER  1 3 3 4 
ADC_TUNER  1 1 1 1 
FLASH_CAL  219 262 324 367 
RX_TIA  84 125 167 208 
ORX_TIA  54 65 77 87 
LBRX_TIA  54 66 76 87 
RX_DC_OFFSET  451 451 451 452 
ORX_DC_OFFSET  451 899 899 898 
LBRX_DC_OFFSET  7 14 15 14 
LOOPBACK_RX_LO_DELAY  174 343 507 663 
RX_QEC_INIT  757 1508 2261 3012 
ORX_QEC_INIT  785 1564 2347 3129 
INTERNAL_PATH_DELAY  1 1 2 2 
TX_LO_LEAKAGE_INTERNAL  875 1749 2622 3494 
TX_QEC_INIT  301 605 890 1200 

Total Calibration Time  4219 7663 10651 13634 

Table 84. ADRV9025Init_StdUseCase51_LinkSharing 

Use 
Case 

Transmitter 
Bandwidth 

Transmitter 
Input Rate 

Transmitter 
DAC Rate 

Observation 
Receiver 
Bandwidth 

Observation 
Receiver 
Output Rate 

Observation 
Receiver 
ADC Rate 

Receiver 
Bandwidth 

Receiver 
Output 
Rate 

Receiver 
ADC Rate 

UC51_LS 450 MHz 245.76 MHz 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 200 MHz 245.76 MHz 4.915 GHz  

Table 85. ADRV9025Init_StdUseCase51_LinkSharing Calibration Durations 
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
TX_DAC  3 9 11 13 
TX_BB_FILTER  1 3 3 4 
ADC_TUNER  1 1 1 1 
FLASH_CAL  219 262 324 367 
RX_TIA  63 84 105 126 
ORX_TIA  54 65 76 87 
LBRX_TIA  54 64 75 87 
RX_DC_OFFSET  450 451 451 451 
ORX_DC_OFFSET  451 898 899 899 
LBRX_DC_OFFSET  7 14 14 14 
LOOPBACK_RX_LO_DELAY  165 328 488 647 
RX_QEC_INIT  786 1571 2353 3139 
ORX_QEC_INIT  783 1564 2347 3126 
INTERNAL_PATH_DELAY  1 1 2 2 
TX_LO_LEAKAGE_INTERNAL  873 1742 2612 3482 
TX_QEC_INIT  291 598 921 1191 
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Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
Total Calibration Time  4203 7656 10682 13637 

Table 86. ADRV9025Init_StdUseCase51_nonLinkSharing 

Use Case 
Transmitter 
Bandwidth 

Transmitter 
Input Rate 

Transmitter 
DAC Rate 

Observation 
Receiver 
Bandwidth 

Observation 
Receiver 
Output Rate 

Observation 
Receiver 
ADC Rate 

Receiver 
Bandwidth 

Receiver 
Output 
Rate 

Receiver 
ADC Rate 

UC51_NLS 450 MHz 245.76 MHz 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 200 MHz 245.76 MHz 4.915 GHz  

Table 87. ADRV9025Init_StdUseCase51_nonLinkSharing Calibration Durations 
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
TX_DAC  4 9 10 16 
TX_BB_FILTER  2 2 3 5 
ADC_TUNER  1 1 1 1 
FLASH_CAL  219 263 325 367 
RX_TIA  64 85 106 127 
ORX_TIA  54 65 77 87 
LBRX_TIA  54 65 76 87 
RX_DC_OFFSET  451 450 451 450 
ORX_DC_OFFSET  451 899 898 898 
LBRX_DC_OFFSET  7 14 14 14 
LOOPBACK_RX_LO_DELAY  164 326 486 646 
RX_QEC_INIT  790 1573 2358 3142 
ORX_QEC_INIT  783 1564 2346 3128 
INTERNAL_PATH_DELAY  1 1 2 3 
TX_LO_LEAKAGE_INTERNAL  872 1743 2612 3482 
TX_QEC_INIT  293 600 921 1210 

Total Calibration Time  4210 7659 10686 13664 

Table 88. ADRV9025Init_StdUseCase54_nonLinkSharing 

Use Case 
Transmitter 
Bandwidth 

Transmitter 
Input Rate 

Transmitter 
DAC Rate 

Observation 
Receiver 
Bandwidth 

Observation 
Receiver 
Output Rate 

Observation 
Receiver 
ADC Rate 

Receiver 
Bandwidth 

Receiver 
Output 
Rate 

Receiver 
ADC Rate 

UC54_NLS 450 MHz 122.88 MHz 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 200 MHz 122.88 MHz 4.915 GHz  

Table 89. ADRV9025Init_StdUseCase54_nonLinkSharing Calibration Durations 
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
TX_DAC  86 89 92 97 
TX_BB_FILTER  83 84 85 86 
ADC_TUNER  82 81 82 81 
FLASH_CAL  301 344 560 603 
RX_TIA  146 167 228 250 
ORX_TIA  136 147 199 210 
LBRX_TIA  136 147 199 210 
RX_DC_OFFSET  532 532 980 980 
ORX_DC_OFFSET  532 980 1428 1877 
LBRX_DC_OFFSET  89 96 102 109 
LOOPBACK_RX_LO_DELAY  99 115 283 447 
RX_QEC_INIT  870 1655 2440 3223 
ORX_QEC_INIT  865 1647 2430 3211 
INTERNAL_PATH_DELAY  82 83 85 84 
TX_LO_LEAKAGE_INTERNAL  957 1850 2703 3576 
TX_QEC_INIT  447 724 1022 1326 

Total Calibration Time  5443 8742 12917 16370 
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Table 90. ADRV9025Init_StdUseCase55_nonLinkSharing 

Use Case 
Transmitter 
Bandwidth 

Transmitter 
Input Rate 

Transmitter 
DAC Rate 

Observation 
Receiver 
Bandwidth 

Observation 
Receiver 
Output Rate 

Observation 
Receiver 
ADC Rate 

Receiver 
Bandwidth 

Receiver 
Output 
Rate 

Receiver 
ADC Rate 

UC55_NLS 450 MHz 122.88 MHz 1.966 GHz 450 MHz 245.76 MHz 4.915 GHz 160 MHz 122.88 MHz 4.915 GHz  

Table 91. ADRV9025Init_StdUseCase55_nonLinkSharing Calibration Durations 
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
TX_DAC  86 89 93 119 
TX_BB_FILTER  83 84 85 86 
ADC_TUNER  81 82 81 81 
FLASH_CAL  300 344 561 604 
RX_TIA  146 166 227 248 
ORX_TIA  136 160 199 209 
LBRX_TIA  136 146 199 210 
RX_DC_OFFSET  533 532 981 982 
ORX_DC_OFFSET  532 980 1428 1877 
LBRX_DC_OFFSET  89 96 103 110 
LOOPBACK_RX_LO_DELAY  99 115 284 449 
RX_QEC_INIT  656 1229 1799 2370 
ORX_QEC_INIT  866 1658 2431 3211 
INTERNAL_PATH_DELAY  82 83 84 85 
TX_LO_LEAKAGE_INTERNAL  958 1831 2703 3576 
TX_QEC_INIT  404 720 1017 1336 

Total Calibration Time  5186 8315 12274 15552 

Table 92. ADRV9025Init_StdUseCase61_LinkSharing 

Use 
Case 

Transmitter 
Bandwidth 

Transmitter 
Input Rate 

Transmitter 
DAC Rate 

Observation 
Receiver 
Bandwidth 

Observation 
Receiver 
Output Rate 

Observation 
Receiver 
ADC Rate 

Receiver 
Bandwidth 

Receiver 
Output 
Rate 

Receiver 
ADC Rate 

UC61_LS 300 MHz 368.64 MHz 1.843 GHz 337.5 MHz 368.64 MHz 3.686 GHz 300 MHz 368.64 MHz 3.686 GHz  

Table 93. ADRV9025Init_StdUseCase61_LinkSharing Calibration Durations 
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
TX_DAC  7 11 15 20 
TX_BB_FILTER  4 5 6 8 
ADC_TUNER  2 3 3 3 
FLASH_CAL  292 342 435 491 
RX_TIA  73 88 102 117 
ORX_TIA  74 88 103 118 
LBRX_TIA  74 88 103 117 
RX_DC_OFFSET  453 453 452 453 
ORX_DC_OFFSET  453 901 901 902 
LBRX_DC_OFFSET  11 21 22 21 
LOOPBACK_RX_LO_DELAY  242 480 721 967 
RX_QEC_INIT  861 1718 2573 3430 
ORX_QEC_INIT  862 1717 2574 3431 
INTERNAL_PATH_DELAY  4 5 5 7 
TX_LO_LEAKAGE_INTERNAL  885 1763 2642 3521 
TX_QEC_INIT  403 807 1231 1631 

Total Calibration Time  4701 8489 11889 15236 

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029


UG-1727 ADRV9026/ADRV9029 System Development User Guide 
 

Rev. 0 | Page 102 of 336 

Table 94. ADRV9025Init_StdUseCase82C_LinkSharing 

Use Case 
Transmitter 
Bandwidth 

Transmitter 
Input Rate 

Transmitter 
DAC Rate 

Observation 
Receiver 
Bandwidth 

Observation 
Receiver 
Output Rate 

Observation 
Receiver 
ADC Rate 

Receiver 
Bandwidth 

Receiver 
Output 
Rate 

Receiver 
ADC Rate 

UC82C_LS 450 MHz 491.52 MHz 1.966 GHz 450 MHz 491.52 MHz 4.915 GHz 200 MHz 245.76 MHz 4.915 GHz  

Table 95. ADRV9025Init_StdUseCase82C_LinkSharing Calibration Durations 
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
TX_DAC  5 7 10 15 
TX_BB_FILTER  2 2 3 5 
ADC_TUNER  1 1 1 1 
FLASH_CAL  219 263 324 366 
RX_TIA  63 84 105 127 
ORX_TIA  54 65 76 87 
LBRX_TIA  54 65 76 87 
RX_DC_OFFSET  451 451 450 451 
ORX_DC_OFFSET  451 899 899 898 
LBRX_DC_OFFSET  7 14 14 14 
LOOPBACK_RX_LO_DELAY  166 330 485 650 
RX_QEC_INIT  787 1569 2354 3138 
ORX_QEC_INIT  785 1564 2346 3126 
INTERNAL_PATH_DELAY  1 2 2 3 
TX_LO_LEAKAGE_INTERNAL  876 1749 2622 3495 
TX_QEC_INIT  302 589 907 1188 

Total Calibration Time  4224 7654 10676 13652 

Table 96. ADRV9025Init_StdUseCase83C_LinkSharing 

Use Case 
Transmitter 
Bandwidth 

Transmitter 
Input Rate 

Transmitter 
DAC Rate 

Observation 
Receiver 
Bandwidth 

Observation 
Receiver 
Output Rate 

Observation 
Receiver 
ADC Rate 

Receiver 
Bandwidth 

Receiver 
Output 
Rate 

Receiver 
ADC Rate 

UC83C_LS 337.5 MHz 368.64 MHz 1.475 GHz 337.5 MHz 368.64 MHz 3.686 GHz 200 MHz 368.64 MHz 3.686G Hz  

Table 97. ADRV9025Init_StdUseCase83C_LinkSharing Calibration Durations 
Calibration 1 Channel (ms) 2 Channels (ms) 3 Channels (ms) 4 Channels (ms) 
TX_DAC  2 5 8 13 
TX_BB_FILTER  1 3 3 5 
ADC_TUNER  1 1 1 1 
FLASH_CAL  285 343 425 483 
RX_TIA  71 84 99 112 
ORX_TIA  71 85 99 115 
LBRX_TIA  71 85 100 114 
RX_DC_OFFSET  451 451 450 451 
ORX_DC_OFFSET  450 899 898 899 
LBRX_DC_OFFSET  7 14 14 14 
LOOPBACK_RX_LO_DELAY  208 416 625 830 
RX_QEC_INIT  547 1094 1638 2184 
ORX_QEC_INIT  860 1717 2572 3437 
INTERNAL_PATH_DELAY  1 2 3 4 
TX_LO_LEAKAGE_INTERNAL  883 1764 2645 3525 
TX_QEC_INIT  419 818 1202 1639 

Total Calibration Time  4328 7781 10782 13826 
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INITIALIZATION CALIBRATIONS TO BE RUN AFTER DEVICE INITIALIZATION 
The transceiver requires a few additional initialization calibrations to be run after the standard set because they require external signal 
routing. An external transmitter LOL initialization calibration is available where the observation point is moved from inside the device to 
the selected observation receiver input. In this case, the transmitter channel is typically connected to a directional coupler after the PA in 
the antenna path. This configuration results in the best possible performance because the correction observation point is moved to the PA 
output. The calibration is run on each transmitter individually after the correct observation input path has been set. Similarly, crest factor 
reduction (CFR) calibrations are also run separately and sequentially. Refer to Table 61 for the appropriate calibration mask. 

Table 98 addresses the typical times for these initialization calibrations. Note that the CFR initialization calibration is mostly coefficient 
setting and, therefore, completes quickly. 

Table 98. Post Initialization Transmitter Calibrations 
Initialization Calibration Time 
TX_LO_LEAKAGE_EXTERNAL 122.88 MHz IQ Rate 320 ms 
TX_LO_LEAKAGE_EXTERNAL 245.76 MHz IQ Rate and Higher 230 ms 
Crest Factor Reduction (ADRV9029 only) <1 ms 

TRACKING CALIBRATION TIMING 
Tracking calibrations are provided to maintain performance over the device operating conditions. The ARM processor periodically runs 
the enabled tracking calibrations according to the tracking calibration scheduler. 

On the receive side, there are receiver QEC, observation receiver QEC, and on some devices, receiver HD2 tracking calibrations. These 
calibrations, when enabled, constantly observe the receiver (or observation receiver) spectrum and update the correction parameters 
while the computations are completed. They are triggered on a 7 ms schedule, but are essentially running continuously in the background 
whenever the channel is enabled. 

The transmitter tracking calibrations include transmitter LOL, transmitter QEC, and some versions of the device also include closed-loop 
gain control (CLGC) tracking calibration. When the tracking calibrations are enabled on the transmitter, the spectrum is observed based 
upon the available observation path, and correction parameters are applied to each transmitter as the computations are completed.  

Transmitter LOL tracking calibration runs on a 6 second schedule. The samples are collected in batches of 20 µs durations for a total 
sample size of approximately 30 ms. The transmitter QEC runs on a 30 sec schedule and also collects batches in 20 μs durations. The 
transmitter QEC captures as many batches as necessary to obtain acceptable correlator results. The time to finish can vary and can be 
from 100 μs to 55 ms. However, because the calibration batches run in the background, the absolute time is not of concern to the user. 
Even though these calibrations run at fixed intervals (6 seconds and 30 seconds), any change in transmitter attenuation causes both 
calibrations to be restarted. This is done to quickly correct any channel impairments. 

The CLGC tracking calibration runs on a 1 second schedule with similar batch sizes. In the case of JESD204C, an additional tracking 
calibration is run to maintain the link parameters on a 60 second schedule. 

ARM MEMORY DUMP 
The contents of the ARM firmware memory and ARM data memory can be captured for debugging purposes by using the 
adi_adrv9025_ArmMemDump(…) API function. 

adi_adrv9025_ArmMemDump(…)  
adi_adrv9025_ArmMemDump(adi_adrv9025_Device_t *device, const char *binaryFilename) 

Description  

This utility function reads the ARM memory and writes the binary byte array directly to a binary file. The first 224 kB correspond to the 
program memory. The following 160 kB correspond to the data memory. The binaryFilename file is opened before reading the ARM 
memory to verify that the file has valid write access. A file IO exception is thrown if the file does not have valid write access.  

Precondition 

Device initialization is the only precondition.  
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Parameters  

Table 99. adi_adrv9025_ArmMemDump(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
*binaryFilename File opened by the API to store ARM memory contents. Total size must be 384 kB. 

Whenever it is necessary to debug an issue, an ARM memory dump can be captured, and the resulting binaryFilename file can be sent to 
Analog Devices for analysis. To correctly capture the ARM memory content, the adi_adrv9025_ArmMemDump(…) API function must 
set the ARM processor into an exception state. After calling the adi_adrv9025_ArmMemDump(…) API function, the device must be 
reinitialized to put the ARM back into its normal operating condition. 
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STREAM PROCESSOR AND SYSTEM CONTROL 
A stream processor is a processor within the transceiver tasked with performing a series of configuration tasks based on some event. After 
a request from the user, the stream processor performs a series of predefined actions that are loaded into the stream processor during 
device initialization. This processor takes full advantage of the speed of the internal register buses for efficient execution of commands. 
The stream processor can access and modify registers independently, avoiding the need for ARM interaction.  

The stream processor executes streams, or series of tasks, for the following: 

• Tx1/Tx2/Tx3/Tx4 enable/disable  
• Rx1/Rx2/Rx3/Rx4 enable/disable  
• ORx1/ORx2/ORx3/ORx4 enable/disable  

The transceiver flexibility is maintained by implementing the stream processors with similar flexibility. The stream processor image 
changes with configuration, similar to how the initialization structures change with the selected profiles. For example, the stream that 
enables the receivers differs depending on the JESD204B and JESD204C interface configuration. For this reason, it is necessary to save a 
stream image for each device configuration. When the user saves the configuration files (.c) using the GUI, a stream binary image is 
generated automatically. Use this stream file when initializing the transceiver with the profile in question.  

The following are examples of how the stream files can differ: 

• The framer choices for observation receiver and receiver 
• For link sharing purposes 
• If floating point formatting is being used on receiver and observation receiver paths, the stream image can change 

Eleven separate stream processors exist in the transceiver, which are each responsible for the execution of some dedicated functionality 
within the device. These stream processors can be divided into two broad categories, slice stream processors and the core stream processor. 

SLICE STREAM PROCESSORS 
There are ten slice stream processors, one each for the four transmitter and four receiver data paths, and two for the observation receiver 
data paths. Note that even though there are four distinct RF front ends for the observation receiver, the transceiver only supports two 
digital data paths, one shared between Observation Receiver 1 and Observation Receiver 2 and another shared between Observation 
Receiver 3 and Observation Receiver 4. These observation receiver data paths are also shared with the internal transmitter channel 
loopback paths to facilitate data collection during the various transmitter calibrations. The existence of individual slice stream processors 
for each data path enables true real-time parallel operation of all unique transmitter and receiver data paths. The observation receiver 
data paths still must be managed based on the various system operation use cases detailed in this section. 

Because each slice stream processor is limited to some dedicated part of the transceiver, a given slice stream processor may only access the 
digital register sub maps corresponding to its specific functionality. For example, the transmitter slice stream processors can only access 
the transmitter digital sub maps.  

Core Stream Processor 

There is also a core stream processor that has access to the entire transceiver. The core stream processor services GPIO pin-based streams 
and any custom streams that are cross domain.  

SYSTEM CONTROL 
The signal paths within the transceiver can be controlled by either the API or through pin control. In the case of API control, control 
relies on the SPI communication bus and its inherent unpredictable timing with respect to register access. For critical time alignment 
when powering on or off signal chains, pin control is recommended. The device defaults to API mode upon power up.  
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API Control 

adi_adrv9025_RxTxEnableSet(…) 
adi_adrv9025_RxTxEnableSet(adi_adrv9025_Device_t *device, uint32_t rxChannelMask, uint32_t 
txChannelMask) 

Description  

This API controls and configures the transmitter and receiver data paths.  

Parameters 

Table 100. adi_adrv9025_RxTxEnableSet(…) Parameters  
Parameter Description 
*device  Pointer to device structure. 
rxChannelMask The desired receiver/observation receiver signal chain to power up. See Table 101 for the list of enumerators. 
txChannelMask The desired transmitter signal chain to power up. See Table 102 for the list of enumerators. 

The enumerators are used (OR’ed) to create a value for the channel masks that determine the paths enabled when this API is called. The 
selected channels remain active until further instruction from this API command. It is important to note that if an observation receiver 
channel is enabled continuously and not returned to ADI_ADRV9025_RXOFF for any time, the transmitter tracking calibrations are able 
to function. 

Table 101. adi_adrv9025_RxChannels_e Enumerator Definition 
adi_adrv9025_RxChannels_e Enum Enabled Channels 
ADI_ADRV9025_RXOFF No receiver or observation receiver channels enabled 
ADI_ADRV9025_RX1 Rx1 enabled 
ADI_ADRV9025_RX2 Rx2 enabled 
ADI_ADRV9025_RX3 Rx3 enabled 
ADI_ADRV9025_RX4 Rx4 enabled 
ADI_ADRV9025_ORX1 ORx1 enabled 
ADI_ADRV9025_ORX2 ORx2 enabled 
ADI_ADRV9025_ORX3 ORx3 enabled 
ADI_ADRV9025_ORX4 ORx4 enabled 
ADI_ADRV9025_LB12 Tx1 or Tx2 internal loopback into ORx1/2 channel enabled 
ADI_ADRV9025_LB34 Tx3 or Tx4 internal loopback into ORx3/4 channel enabled 

Table 102. adi_adrv9025_TxChannels_e Enumerator Definition 
adi_adrv9025_TxChannels_e Enum Enabled Channels 
ADI_ADRV9025_TXOFF No transmitter channels enabled 
ADI_ADRV9025_TX1 Tx1 enabled 
ADI_ADRV9025_TX2 Tx2 enabled 
ADI_ADRV9025_TX3 Tx3 enabled 
ADI_ADRV9025_TX4 Tx4 enabled 
ADI_ADRV9025_TXALL All transmitters enabled 
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Pin Control 

The individual channels can also be controlled using a series of enable pins. In pin control mode, the receiver and transmitter signal 
chains are controlled using dedicated pins, one RX_ENABLE pin per receiver and one TX_ENABLE pin per transmitter. When these pins 
are toggled high, the relevant signal chain is enabled. When these pins are toggled low, the relevant signal chain is disabled. 

The observation receiver paths can be controlled in various modes, as indicated in Table 103. 

Table 103. Observation Receiver Select Mechanisms 
Observation 
Receiver Pin 
Mode 

Observation Receiver Select Mechanism 

Single Channel 
1-Pin Mode 

In this mode, a single channel is selected through the API (over SPI). ORX_CTRL_A is the enable/disable control pin. 
When high, the selected observation receiver is enabled, and when low, all observation receiver paths are disabled. 
Figure 61 shows single Channel 1 pin mode. Note that ORx1 has been shown in this example. However, any of ORx1 to 
ORx4 can be chosen. 

Single Channel 
2-Pin Mode 

In this mode, ORX_CTRL_A is the enable/disable control pin. When high, the selected observation receiver is enabled, 
and when low, all observation receiver paths are disabled. The ORX_CTRL_B pin is used to select the observation 
receiver path, allowing the user to choose between two different observation receiver paths. These paths are 
predetermined through the API (over SPI), with one path selected when ORX_CTRL_B is high and another when it is 
low. This mode is shown in Figure 62. Note where ORx2 on and ORx3 on are shown in Figure 62. Any of the other 
observation receivers can be configured to turn on at this time instead of ORx2 or ORx3.  

Single Channel 
3-Pin Mode 

ORX_CTRL_A is the enable/disable control. Observation receiver select is accomplished by ORX_CTRL_B and 
ORX_CTRL_C. The mapping of which path is selected is as follows. 

 ORX_CTRL_C ORX_CTRL_B Path Selected 
 0 0 ORx1 
 0 1 ORx2 
 1 0 ORx3 
 1 1 ORx4 
 This mode is shown in Figure 63. 
Dual Channel 

2-Pin Mode 
In this mode, ORX_CTRL_A and ORX_CTRL_C are the enable/disable control, allowing the user to choose between two 
different observation receiver paths. These paths are predetermined through the API (over SPI). This mode is shown in 
Figure 64.  

Dual Channel 
4-Pin Mode 

In this mode, ORX_CTRL_A and ORX_CTRL_C are the enable/disable controls while ORX_CTRL_B and ORX_CTRL_D 
select which channel is to be enabled, allowing the user to choose between four different observation receiver paths. 
This mode is shown in Figure 65.  
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Figure 61. Single-Channel 1-Pin Mode 
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Figure 62. Single-Channel 2-Pin Mode 
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Figure 63. Single-Channel 3-Pin Mode 
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Figure 64. Dual-Channel 2-Pin Mode 
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Figure 65. Dual-Channel 4-Pin Mode 

The user can set the channel control mode (API/pin) with the post multichip sequence API function. 

adi_adrv9025_PostMcsInit(…) 
adi_adrv9025_PostMcsInit(adi_adrv9025_Device_t *device, adi_adrv9025_PostMcsInit_t *utilityInit) 

Description  

This API sets the channel control mode (API or pin).  

Parameters 

Table 104. adi_adrv9025_PostMcsInit(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
*utilityInit Structure of type adi_adrv9025_PostMcsInit_t containing all relevant settings for the post MCS initialization routines. 

This command contains a structure of type adi_adrv9025_RadioctrlInit_t for setting up how the device is controlled. Inside this structure 
is the structure adi_adrv9025_RadioCtrlModeCfg_t that contains the radio control mode configuration for the transmitter, receiver, and 
observation receiver channels.  

This structure is defined in Table 105 and, depending on how the user configures this structure before the call to 
adi_adrv9025_PostMcsInit(), the device is configured in either pin or API mode. 

Table 105. adi_adrv9025_RadioCtrlModeCfg_t Definition 
Member Name  Description 
txRadioCtrlModeCfg Transmitter signal path enable mode configuration. See Table 106 for description. 
rxRadioCtrlModeCfg Receiver signal path enable mode configuration. See Table 107 for description. 
orxRadioCtrlModeCfg Observation receiver signal path enable mode configuration. See Table 108 for description. 

Table 106. adi_adrv9025_TxRadioCtrlModeCfg_t Definition 
Member Name  Value Description 
txEnableMode A value of type adi_adrv9025_TxEnableMode_e options are  
 ADI_ADRV9025_TX_EN_SPI_MODE Setting this mode selects API (or SPI) mode to control 

the transmitter signal path. 
 ADI_ADRV9025_TX_EN_PIN_MODE Setting this mode does not modify the currently set 

mode to control the transmitter signal path. 
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Member Name  Value Description 
 ADI_ADRV9025_TX_EN_INVALID_MODE Setting this mode selects no mode to control the 

transmitter signal path. 
txChannelMask Bit mask, one bit per channel ([D0] = Tx1, [D1] = Tx2, [D2] = 

Tx3, [D3] = Tx4). For example, to apply this to all four 
transmitters, txChannelMask is set to 15. 

Set this to the transmitter channels desired to configure 
with the selected txEnableMode. 

Table 107. adi_adrv9025_RxRadioCtrlModeCfg_t Definition 
Member Name Value Description 
rxEnableMode A value of type adi_adrv9025_RxEnableMode_e, options are  

ADI_ADRV9025_RX_EN_SPI_MODE Setting this mode selects API (or SPI) mode to control 
the receiver signal path 

ADI_ADRV9025_RX_EN_PIN_MODE Setting this mode selects the pin mode to control the 
receiver signal path 

ADI_ADRV9025_RX_EN_INVALID_MODE Setting this mode does not modify the currently set 
mode to control the receiver signal path 

rxChannelMask Bit mask, one bit per channel ([D0] = Rx1, [D1] = Rx2, [D2] = 
Rx3, [D3] = Rx4). For example, to apply this to all four 
receivers, rxChannelMask is set to 15. 

Set this to the receiver channels you want to configure 
with the selected rxEnableMode 
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Table 108. adi_adrv9025_ORxRadioCtrlModeCfg_t Definition 
Member Name  Value Description 
orxEnableMode A value of type adi_adrv9025_OrxEnableMode_e, options are  

ADI_ADRV9025_ORX_EN_SPI_MODE Setting this mode selects API 
(or SPI) mode to control the 
observation receiver signal path 

ADI_ADRV9025_ORX_EN_SINGLE_CH_3PIN_MODE Setting this mode puts the 
device in Single Channel 3 
pin mode, as described in  
Table 103 

ADI_ADRV9025_ORX_EN_SINGLE_CH_2PIN_MODE Setting this mode puts the 
device in Single Channel 2  
pin mode, as described in 
Table 103 

ADI_ADRV9025_ORX_EN_SINGLE_CH_1PIN_MODE Setting this mode puts the 
device in Single Channel 1  
pin mode, as described in 
Table 103 

ADI_ADRV9025_ORX_EN_DUAL_CH_4PIN_MODE Setting this mode puts the 
device in Dual Channel 4 
pin mode, as described in 
Table 103 

ADI_ADRV9025_ORX_EN_DUAL_CH_2PIN_MODE Setting this mode puts the 
device in Dual Channel 2  
pin mode, as described in  
Table 103 

ADI_ADRV9025_ORX_EN_INVALID_MODE Setting this mode does not 
modify the currently set mode 
to control the observation 
receiver signal path 

orxPinSelectSettlingDelay_armClkCycles Minimum value: 0, maximum value: 16 Amount of time for the 
firmware to wait before 
sampling pins used for 
observation receiver selection, 
minimum is 2 ARM clock 
cycles, maximum is 18 ARM 
clock cycles 

singleChannel1PinModeOrxSel A value of type adi_adrv9025_ 
SingleChannelPinModeOrxSel_e, options are 

 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX1_FE Selects ORx1 when in Single 
Channel 1 pin observation 
receiver enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX2_FE Selects ORx2 when in Single 
Channel 1 pin observation 
receiver enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX3_FE Selects ORx3 when in Single 
Channel 1 pin observation 
receiver enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX4_FE Selects ORx4 when in Single 
Channel 1 pin observation 
receiver enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_INVALID_ORX_SEL Does not modify the current 
mode of the observation 
receiver when in Single Channel 
1 pin observation receiver 
enable mode 

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029


UG-1727 ADRV9026/ADRV9029 System Development User Guide 
 

Rev. 0 | Page 112 of 336 

Member Name  Value Description 
singleChannel2PinModeLowOrxSel A value of type 

adi_adrv9025_SingleChannelPinModeOrxSel_e, options are 
 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX1_FE Selects ORx1 when the 
ORX_CTRL_B pin is low in Single 
Channel 2 pin observation 
receiver enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX2_FE Selects ORx2 when the 
ORX_CTRL_B pin is low in Single 
Channel 2 pin observation 
receiver enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX3_FE Selects ORx3 when the 
ORX_CTRL_B pin is low in Single 
Channel 2 pin observation 
receiver enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX4_FE Selects ORx4 when the 
ORX_CTRL_B pin is low in Single 
Channel 2 pin observation 
receiver enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_INVALID_ORX_SEL Does not modify the current 
mode of the observation 
receiver when the ORX_CTRL_B 
pin is low in Single Channel 2 
pin observation receiver 
enable mode 

singleChannel2PinModeHighOrxSel A value of type 
adi_adrv9025_SingleChannelPinModeOrxSel_e, options are 

 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX1_FE Selects ORx1 when the 
ORX_CTRL_B pin is high in 
Single Channel 2 pin observation 
receiver enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX2_FE Selects ORx2 when the 
ORX_CTRL_B pin is high in 
Single Channel 2 pin observation 
receiver enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX3_FE Selects ORx3 when the 
ORX_CTRL_B pin is high in 
Single Channel 2 pin observation 
receiver enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_ORX4_FE Selects ORx4 when the 
ORX_CTRL_B pin is high in 
Single Channel 2 pin observation 
receiver enable mode 

ADI_ADRV9025_SINGLE_CH_PIN_MODE_INVALID_ORX_SEL Does not modify the current 
mode of the observation 
receiver when the ORX_CTRL_B 
pin is high in Single Channel 2 
pin observation receiver 
enable mode 

dualChannel2PinModeOrxSel A value of type adi_adrv9025_DualChannelPinModeOrxSel_e, 
options are 

 

 ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX1_ORX3_SEL Selects ORx1 and ORx3 when 
the device is in Dual Channel 2 
pin mode 

 ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX1_ORX4_SEL Selects ORx1 and ORx4 when 
the device is in Dual Channel 2 
pin mode 
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Member Name  Value Description 
 ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX2_ORX3_SEL Selects ORx2 and ORx3 when 

the device is in Dual Channel 2 
pin mode 

 ADI_ADRV9025_DUAL_CH_PIN_MODE_ORX2_ORX4_SEL Selects ORx2 and ORx4 when 
the device is in Dual Channel 2 
pin mode 

 ADI_ADRV9025_DUAL_CH_PIN_MODE_INVALID_ORX_SEL Does not modify the current 
mode of the observation 
receiver when the device is in 
Dual Channel 2 pin mode 

ADC Crossbar Control 

There are two control modes for the ADC crossbar (Xbar) switches that feed the JESD204B and JESD204C interface serializers during 
link sharing mode. In the default mode, the receiver channel is connected to the serializer when the enable pin of the channel is active, 
and the observation receiver channel is connected to the serializer when the ORX_CTRL pins are driven to select the observation receiver 
channel. A second mode called ADC crossbar toggling exists that assigns the path control solely to the observation receiver channel 
control signals.  

When ADC crossbar toggling is enabled, the ADC sample crossbar connects the desired observation receiver channel to the serializer 
when that channel is enabled using the ORX_CTRL pins. When the ORX_CTRL pins disable the observation receiver channel, the 
receiver channel is automatically connected to the serializer. This allows the system to keep the receiver channel enabled during link 
sharing operation and limit toggling to the ORX_CTRL inputs. 

ADC crossbar control can be enabled in a stream file by selecting ADC Xbar control in the TES Stream Settings window before 
generating the stream. The appropriate selection is shown in Figure 66. 
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Figure 66. Stream Settings Window for Selecting ADC Xbar Control Mode 

USE CASES 
This section details example use cases for the transceiver that show how the device is typically operated to ensure that calibrations are run. 

4 Transmitter/4 Receiver/2 Observation Receiver Input Use Case 

In the 4 transmitter/4 receiver/2 observation receiver use case, the transceiver is configured in a way so that two transmitters feed back 
into one observation receiver for each side of the device. The ORX_CTRL signals are configured in Single Channel 2 pin mode, with 
ORX_CTRL_A and ORX_CTRL_B used to determine which observation receiver is enabled and selected for the observation purposes of 
the user. ORX_CTRL_A is high at all times, because an observation receiver path is always being used. When ORX_CTRL_A goes low, 
regardless of the state of ORX_CTRL_B, no observation receiver channel is enabled. ORX_CTRL_B determines which observation 
receiver channel the user is observing. For this example, ORx2 and ORx3 are being used. Note that ORx1 can be used in place of ORx2, or 
ORx4 can be used in place of ORx3. At least one observation receiver from each side of the device must be used. Therefore, either ORx1 
or ORx2 must be used for calibrations on Tx1 and Tx2. The observation receiver from one side of the device cannot be used to calibrate 
the transmitter on the other side of the device. That is, ORx1 or ORx2 cannot be used to calibrate Tx3 and Tx4. 
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The ORX_TX_SEL and ORX2_TX_EN signals are used to indicate the external routing of the feedback paths, allowing the ARM to know 
which transmitter is being looped back to which observation receiver at a given time, and whether a calibration may be run or not. 
Because a transmitter is always available at an observation receiver on its own side of the chip, ORX2_TX_EN and ORX3_TX_EN are 
defaulted high over SPI while they remain fixed. ORX2_TX_SEL and ORX3_TX_SEL indicate the external routing of a transmitter to a 
given observation receiver. When ORX2_TX_SEL is low, it indicates that the Tx1 path is routed back to ORx2. Likewise, when 
ORX2_TX_SEL is high, this indicates that the Tx2 path is routed back to the ORx2 input. This is similar for ORX3_TX_SEL, in a way that 
when this signal is low, it indicates that the Tx3 path is routed back to the ORx3 input. Likewise, when ORX3_TX_SEL is high, the Tx4 
path is routed back to the ORx3 input.  

For this use case, internal calibrations can be performed on the inactive observation receiver channel while an external calibration is 
running on the active channel. In the first time slot of the timing diagram in Figure 68, it is shown that ORx2 is enabled by the user. PA1 
and PA3 have been routed back to ORx2 and ORx3, respectively. The transceiver can perform an external LOL tracking calibration for 
Tx3 via ORx3, or a QEC tracking calibration on Tx3 or Tx4, while the system is performing calculations for PA1. The QEC tracking 
calibration is performed via an internal routing between each transmitter channel and its corresponding observation receiver channel. 
The external LOL tracking calibration, however, can only be performed when an external loopback path is available. In the second time 
slot in Figure 68, ORx2 is still enabled for the user with PA2 and PA4 made available to ORx2 and ORx3. The system can perform calculations 
for PA2 via ORx2 while performing a QEC tracking calibration on Tx3 or Tx4, or an external LOL tracking calibration on Tx4.  

Note that calibrations are not automatically run in a designated time slot. The ARM scheduler of the device schedules which calibrations 
run at any given time. For more information on the scheduler, refer to the ARM Processor and Device Calibrations section. Also, the 
same JESD204B and JESD204C link can be used for ORx2 and ORx3 in this scenario because only one observation receiver is used at any 
given time.  
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Figure 67. 4 Transmitter/4 Receiver/2 Observation Receiver Configuration 

 

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029


ADRV9026/ADRV9029 System Development User Guide UG-1727 
 

Rev. 0 | Page 115 of 336 

ORX_CTRL_B

ORX_CTRL_A

PA OUTPUT
TO ORx JESD

ORx3_Tx_SEL

ORx2_Tx_EN
ORx3_Tx_EN

ORx2

PA1 PA2

PA4PA3

PA1 PA2

PA4PA3

PA1 PA2 PA4PA3 PA1 PA2 PA4PA3 PA1 PA2 PA4PA3

ORx2 ORx3 ORx3 ORx2 ORx2 ORx3 ORx3 ORx2 ORx2 ORx3 ORx3

ORx2_Tx_SEL

ORx2 USAGE

ORx3 USAGE

PA1 PA2 CALIBRATIONS
Tx1/Tx2 PA1 PA2 CALIBRATIONS

Tx1/Tx2 PA1 PA2 CALIBRATIONS
Tx1/Tx2

PA3 PA4PA3 PA4CALIBRATIONS
Tx3/Tx4

CALIBRATIONS
Tx3/Tx4

CALIBRATIONS
Tx3/Tx4

DEFAULTED TO HIGH OVER SPI
1

PA3 PA4

22
77

0-
06

7

 
Figure 68. Observation Receiver Enable and Transmitter Select Signals: 4 Transmitter/4 Receiver/2 Observation Receiver Configuration 

4 Transmitter/4 Receiver/4 Observation Receiver Input Use Case 

In this use case, each transmitter is routed back to its own observation receiver input. The transceiver is configured in Single Channel 3 
pin mode for this use case. ORX_CTRL_A is principally high all the time, meaning an observation receiver path is always being used. 
ORX_CTRL_B and ORX_CTRL_C determine what observation receiver channel is enabled and selected for the observation purposes of 
the user. Refer to Table 109 for how each observation receiver is selected via the two observation receiver select signals.  

Table 109. Observation Receiver Select Logic 
Logic of ORX_CTRL_C (MSB) and ORX_CTRL_B (LSB) Observation Receiver Selected 
00 ORx1 
01 ORx2 
10 ORx3 
11 ORx4 

Because each transmitter is routed back to a separate observation receiver input, there is no need for external switching in this use case 
and each of the ORX_TX_SEL signals can be set to a default value via the SPI. ORX2_TX_SEL and ORX4_TX_SEL are both defaulted to 
a high state, and ORX1_TX_SEL and ORX3_TX_SEL are both defaulted to a low state. ORX1_TX_EN, ORX2_TX_EN, ORX3_TX_EN, 
and ORX4_TX_EN are all defaulted to a high state.  

The first time slot in the timing diagram in Figure 70 shows that the ORX_CTRL_B and ORX_CTRL_C signals are set to a 00 value, 
enabling ORx1 to the user. In this scenario, calculations can be performed on PA1. ORx2 is on this side of the chip. Therefore, the device 
cannot use it for any calibrations during this time slot. The other side of the chip can be utilized via ORx3/ORx4 for calibrations. Note 
that calibrations can be performed on either Tx3 or Tx4 and it is up to the scheduler to determine what calibration for which transmitter 
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is to run in a given time slot. Because each transmitter is permanently routed back to its own observation receiver, the external path always exists 
for external LOL tracking to run.  

Because only one observation receiver is used at any given time, the same JESD204B and JESD204C link for ORx1, ORx2, ORx3, and 
ORx4 can be used in this scenario.  
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Figure 69. 4 Transmitter/4 Receiver/4 Observation Receiver Configuration 
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Figure 70. Observation Receiver Enable and Transmitter Select Signals: 4 Transmitter/4 Receiver/4 Observation Receiver Configuration 

4 Transmitter/4 Receiver/2 Observation Receiver Input – Single Point of Feedback from 4 Transmitter to Observation 
Receiver Use Case 

This use case shows an example where all the observation receiver paths are shared through one common feedback point. Because there 
are two sides to the device from a calibration perspective, the user must route Tx1 and Tx2 to either ORx1 or ORx2, respectively. 
Similarly, Tx3 and Tx4 need a path back to ORx3 or ORx4 for the purpose of calibrations. To allow calibrations to run in parallel with PA 
observation captures, the opposite side of the device to that required for calibrations is used to capture observation data. Therefore, if Tx2 
is being fed back through this single feedback point, ORx2 is used for transceiver calibrations and ORx3 can be used to capture 
observation data. A resistive splitter is used to route the signal to both sides of the device. 

For this use case, use Single Channel 2 pin mode. ORX_CTRL_A is set high all the time because an observation receiver path is always 
being used. ORX_CTRL_B selects which observation receiver the user is observing in a given time slot. For this example, ORx2 and ORx3 are 
used. ORx3 is selected for observation when ORX_CTRL_B is high and ORx2 is selected for observation when ORX_CTRL_B is low.  

ORX2_TX_SEL and ORX2_TX_EN together tell the ARM which external path (either Tx1 or Tx2) is routed back to ORx2. When 
ORX2_TX_SEL and ORX2_TX_EN are both high, the PA2 path is routed back to both ORx2 and ORx3. When ORX2_TX_SEL is low 
and ORX2_TX_EN is high, the PA1 path is routed back to both ORx2 and ORx3. When ORX2_TX_EN is low, this tells the transceiver 
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that there is no external feedback path between this observation receiver input and a transmitter on the same side of the device. In this 
scenario, the external LOL calibration cannot be performed. Likewise, the ORX3_TX_SEL and ORX3_TX_EN perform the same 
function for the Tx paths on the other side of the chip. If ORX3_TX_SEL is low and ORX3_TX_EN is high, the PA3 path is routed back 
to both ORx2 and ORx3. If ORX3_TX_SEL and ORX3_TX_EN are both high, the PA4 path is routed back to both ORx2 and ORx3. 
Finally, if ORX3_TX_EN is low, this tells the transceiver that there is no external feedback path between this observation receiver input 
and a transmitter on the same side of the device. In this scenario, the external LOL calibration cannot be performed. 

Unlike the other use cases previously described, the transceiver can perform both calculations on a given PA and calibrations with the 
other observation receiver input for the same side of the chip. Though the transmitter calibrations must be performed with an 
observation receiver from the same side of the chip, the PA calculations do not have that constraint. The first time slot in Figure 72 shows 
that calculations are being performed on PA1 via ORx3 while calibrations are performed on Tx1/Tx2 via ORx2. Note at the first time slot 
in Figure 72 that the external LOL calibration can be performed for Tx1 as the path is routed back to ORx2. In time slot two, the external 
LOL calibration can be performed for Tx2, but not Tx1 because there is no external feedback path. QEC calibrations are performed 
though an internal feedback path and do not require an external feedback path to run. It is up to the ARM scheduler to determine what 
calibration is due to run in any given slot. The same JESD204B and JESD204C link can be used for ORx2 and ORx3 in this scenario 
because only one observation receiver is used at any given time. 
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Figure 71. Observation Receiver Channel Routing: 4 Transmitter to 2 Observation Receiver Channels 
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Figure 72. Observation Receiver Enable and Transmitter Select Signals: 4 Transmitter to 2 Observation Receiver Multiplexed Configuration  
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TRANSMITTER OVERVIEW AND PATH CONTROL 
The transceiver uses an accurate and efficient method of transmit power control (transmitter attenuation control) that involves a 
minimum of interaction with the baseband processor. The power control in the transmit chain is implemented with two variable 
attenuations, one in the digital domain and one in the analog domain. Furthermore, the maximum output level of the transmitter can be 
adjusted between two levels, allowing a tradeoff between linearity and LOL performance.  

There are three different modes available to control the attenuation setting of the transmitter. The attenuation can be set immediately via 
the API, incremented or decremented using GPIO pins to trigger the increment or decrement, or set through an SPI2 mode that enables 
real time operation using a GPIO pin. The choice of attenuation mode is set by the API attenMode. 

The attenuation is controlled via a lookup table, which is programmed into the product during initialization. The lookup table maps a 
desired value in dB to the appropriate analog and digital attenuation settings to be applied in the datapath. The default table provides a 
range of 0 dB to 41.95 dB of attenuation, with a step size of 0.05 dB, resulting in 840 available attenuation settings.  

The transmitter path allows the maximum output of the DAC to be increased by 3 dB adjusting the parameter dacFullScale. This results 
in the baseband signal (the desired signal) increasing by 3 dB while RF output components (such as LO leakage) remain unchanged, 
resulting in a net improvement of 3 dB in LOL performance. There is a reduction in linearity performance in this mode. Therefore, the 
setting is a trade-off based on the system requirements of the user.  

The transmitter datapath can be configured to automatically ramp the attenuation to the maximum level under certain conditions, such 
as the JESD204B and JESD204C link dropping (rampJesdDfrm) or the transmitter PLL unlocking (disTxDataIfPllUnlock), to prevent 
spurious transmission in the event of these types of system errors. 

Test tones may be generated digitally in the transmitter baseband path. This function is useful for testing/debugging before the JESD204B 
and JESD204C link has been established. The frequency can be set from –(Transmitter Input Rate)/2 to  +(Transmitter Input Rate)/2. The 
transmitter attenuation is manually overridden when this function is enabled. When test tones are selected as the transmitter input, the 
analog portion of the transmitter attenuation is set to 0 dB (maximum output power), and the digital portion is set by the API 
txToneGain.  

API COMMANDS 
Several API commands are available to adjust the transmitter paths after initialization and during normal operation. The API descriptions 
in this section detail these commands and how they are used. 

adi_adrv9025_TxAttenCfgSet 
adi_adrv9025_TxAttenCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025_TxAttenCfg_t 
txAttenCfg[], uint8_t attenCfgs); 

Description  

This command configures transmitter power control.  

Parameters 

Table 110. adi_adrv9025_TxAttenCfgSet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
txAttenCfg[] An array of structures of type adi_adrv9025_TxAttenCfg_t detailed in Table 111. 
attenCfgs The number of configurations passed in the array. 
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Table 111. adi_adrv9025_TxAttenCfg_t Parameters 
Parameter Comments 
txChannelMask This selects the channels upon which the API acts. It is a bit mask with each bit corresponding to a channel. The 

desired mask can be generated by OR’ing the desired channel enumerators as listed below. Data type: uint32_t 

Parameter Transmitter Channel 
ADI_ADRV9025_TXOFF No transmitter channels selected. 
ADI_ADRV9025_TX1 Tx1 channel selected. 
ADI_ADRV9025_TX2 Tx2 channel selected. 
ADI_ADRV9025_TX3 Tx3 channel selected. 
ADI_ADRV9025_TX4 Tx4 channel selected. 
ADI_ADRV9025_TXALL All transmitter channels selected. 

txAttenStepSize This parameter sets the attenuation step size, Data type: adi_adrv9025_TxAttenStepSize_e. 

Parameter Step Size (dB) 
ADI_ADRV9025_TXATTEN_0P05_DB 0.05 
ADI_ADRV9025_TXATTEN_0P1_DB 0.1 
ADI_ADRV9025_TXATTEN_0P2_DB 0.2 
ADI_ADRV9025_TXATTEN_0P4_DB 0.4 

disTxDataIfPllUnlock Option to ramp transmit attenuation to maximum if the RFPLL unlocks. Data type: adi_adrv9025_TxDataIfUnlock_e. 

Parameter Action 
ADI_ADRV9025_TXUNLOCK_TX_NOT_DISABLED Do not alter transmitter attenuation in an unlock 

event. 
ADI_ADRV9025_TXUNLOCK_TX_RAMP_DOWN_TO_MIN_ATTEN Ramp transmitter attenuation to maximum in an 

unlock event. 
rampJesdDfrm Ramp up attenuation when a deframer link unlocks. Note that this field is not being used actively. If the user enables 

at least one deframer event with adi_adrv9025_PaPllDfrmEventRampDownEnableSet, the gain ramp down on the 
deframer event is automatically enabled. Data type: adi_adrv9025_TxDataIfUnlock_e. 

attenMode Selects the transmitter attenuation mode. Data type: adi_adrv9025_TxAttenMode_e. 

Parameter Mode 
ADI_ADRV9025_TXATTEN_BYPASS_MODE Transmitter attenuation mode. Bypass: zero total 

attenuation. 
ADI_ADRV9025_TXATTEN_SPI_MODE Transmitter attenuation set by 10-bit index 

programmed over SPI. 
ADI_ADRV9025_TXATTEN_GPIO_MODE Transmitter attenuation is 

incremented/decremented using GPIO pins. 
ADI_ADRV9025_TXATTEN_SPI2_MODE Attenuation is controlled using the SPI2 mode. 

dacFullScale Sets the full scale of the transmitter DAC. Data type: adi_adrv9025_DacFullScale_e. 

Parameter Description 
ADI_ADRV9025_TX_DACFS_0DB No full scale boost. 
ADI_ADRV9025_TX_DACFS_3DB Full scale boost = 3 dB. 
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adi_adrv9025_TxAttenCfgGet 
adi_adrv9025_TxAttenCfgGet(adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e txChannel, 
adi_adrv9025_TxAttenCfg_t *txAttenCfg) 

Description  

This command reads transmitter power control configuration one channel at a time.  

Parameters 

Table 112. adi_adrv9025_TxAttenCfgGet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
txChannel The transmitter channel to be read back using an enumerator as described in Table 111. 
*txAttenCfgs The pointer to the readback structure of the queried transmitter channel as defined in Table 111.  

adi_adrv9025_TxAttenSet 
adi_adrv9025_TxAttenSet(adi_adrv9025_Device_t* device, adi_adrv9025_TxAtten_t txAttenuation[], 
uint8_t numTxAttenConfigs); 

Description 

This command sets transmitter attenuation when transmitter attenuation mode is set to ADI_ADRV9025_TXATTEN_SPI_MODE. 

Parameters 

Table 113. adi_adrv9025_TxAttenSet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
txAttenuation[] An array of structures of type adi_adrv9025_TxAtten_t detailed in Table 114. 
numTxAttenConfigs The number of configurations passed in the array. 

Table 114. adi_adrv9025_TxAtten_t Parameters 
Parameter Comments 
txChannelMask This selects the channels upon which the API acts. It is a bit mask with each bit corresponding to a channel. The 

desired mask can be generated by ORing the desired channel enumerators as listed below. Data type: uint32_t. 

Parameter Transmitter Channel 
ADI_ADRV9025_TXOFF No transmitter channels selected. 
ADI_ADRV9025_TX1 Tx1 channel selected. 
ADI_ADRV9025_TX2 Tx2 channel selected. 
ADI_ADRV9025_TX3 Tx3 channel selected. 
ADI_ADRV9025_TX4 Tx4 channel selected. 
ADI_ADRV9025_TXALL All Tx channels selected. 

txAttenuation_mdB This parameter specifies the attenuation in mdB. Data type: uint16_t. 
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adi_adrv9025_TxAttenGet 
adi_adrv9025_TxAttenGet(adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e txChannel, 
adi_adrv9025_TxAtten_t* txAttenuation) 

Description 

This command reads transmitter attenuation when the transmitter attenuation mode is set to ADI_ADRV9025_TXATTEN_SPI_MODE 
or ADI_ADRV9025_TXATTEN_GPIO_MODE. 

Parameters 

Table 115. adi_adrv9025_TxAttenGet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
txChannel The transmitter channel to be read back using an enumerator as described in Table 114. 
*txAttenuation Pointer to the readback structure of the queried transmitter channel as defined in Table 114.  

adi_adrv9025_TxAttenModeSet 
adi_adrv9025_TxAttenModeSet(adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e txChannel, 
adi_adrv9025_TxAttenMode_e *txAttenMode); 

Description  

This command sets the transmitter attenuation mode independent of the initialization structure.  

Parameters 

Table 116. adi_adrv9025_TxAttenModeSet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
txChannel Transmitter channel upon which the API acts as described in Table 117. 
*txAttenMode Pointer to the desired mode of attenuation using an enum as described in Table 117. 

Table 117. adi_adrv9025_TxAttenModeSet Parameters 
Parameter Comments 
txChannelMask This selects the channels upon which the API acts. It is a bit mask with each bit corresponding to a channel. The desired 

mask can be generated by ORing the desired channel enums as listed below. Data type: uint32_t. 

Parameter Transmitter Channel 
ADI_ADRV9025_TXOFF No transmitter channels selected. 
ADI_ADRV9025_TX1 Tx1 channel selected. 
ADI_ADRV9025_TX2 Tx2 channel selected. 
ADI_ADRV9025_TX3 Tx3 channel selected. 
ADI_ADRV9025_TX4 Tx4 channel selected. 
ADI_ADRV9025_TXALL All transmitter channels selected. 

txAttenMode Selects the transmitter attenuation mode. Data type: adi_adrv9025_TxAttenMode_e. 

Parameter Mode 
ADI_ADRV9025_TXATTEN_BYPASS_MODE Transmitter attenuation mode. Bypass: zero total 

attenuation. 
ADI_ADRV9025_TXATTEN_SPI_MODE Transmitter attenuation set by 10-bit index programmed 

over SPI. 
ADI_ADRV9025_TXATTEN_GPIO_MODE Transmitter attenuation is incremented/decremented using 

GPIO pins. 
ADI_ADRV9025_TXATTEN_SPI2_MODE Attenuation is controlled using the SPI2 mode. 
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adi_adrv9025_TxTestToneSet 
adi_adrv9025_TxTestToneSet(adi_adrv9025_Device_t* device, adi_adrv9025_TxTestToneCfg_t 
txNcoTestToneCfg[], uint8_t arraySize); 

Description  

This command generates test tones in the transmitter baseband path.  

Parameters 

Table 118. adi_adrv9025_TxTestToneSet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
txNcoTestToneCfg[] An array of structures of type adi_adrv9025_TxAttenCfg_t as detailed in Table 119. 
arraySize The number of configurations passed in the array. 

Table 119. adi_adrv9025_TxTestToneCfg_t Parameters 
Parameter Comments 
txChannelMask This selects the channels upon which the API acts. It is a bit mask with each bit corresponding to a channel. The desired 

mask can be generated by OR’ing the desired channel enums as listed below. Data type: uint_8. 

Parameter Transmitter Channel 
ADI_ADRV9025_TXOFF No transmitter channels selected. 
ADI_ADRV9025_TX1 Tx1 channel selected. 
ADI_ADRV9025_TX2 Tx2 channel selected. 
ADI_ADRV9025_TX3 Tx3 channel selected. 
ADI_ADRV9025_TX4 Tx4 channel selected. 
ADI_ADRV9025_TXALL All transmitter channels selected. 

enable Sets whether the test tones are enabled or disabled. Data type: uint_8. 

Parameter Mode 
0 Test tones disabled 
1 Test tones enabled 

txToneFreq_Hz Sets the frequency of the test tone in Hz. Range is ±245.76 MHz. Data type: uint_32. 
txToneGain Sets the amplitude of the test tone in dBFS. Data type: adi_adrv9025_TxNcoGain_e. 

Parameter Gain 
ADI_ADRV9025_TX_NCO_NEG18_DB −18 dBFS test tone 
ADI_ADRV9025_TX_NCO_NEG12_DB −12 dBFS test tone 
ADI_ADRV9025_TX_NCO_NEG6_DB −6 dBFS test tone 
ADI_ADRV9025_TX_NCO_0_DB 0 dBFS test tone 
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DAC FULL SCALE FUNCTION (DAC BOOST) 
The DAC full scale function is an analog 3 dB gain stage that can be used primarily to help systems that have marginal system 
performance to the transmitter LO leakage (transmitter LOL) specification. As shown in Figure 73, the gain is realized in the DAC output 
but before the transmitter predistortion (LPF) filters, which is where the majority of the flicker noise observed on the transmitter LOL is 
added to the signal chain. When enabled, it provides an additional 3 dB of signal gain. By increasing the signal level by 3 dB, this function 
provides an additional 3 dB of separation to the noise and transmitter LOL. The 3 dB gain factor is achieved by shifting the bias point of 
the DAC. 

Increasing the signal level through the chain can potentially result in reduced linearity and spurious. Therefore, the user is cautioned 
when transmitting signals with very low PAR. When the mode is enabled, signal PAR does not allow the DAC to be driven above 
−3 dBFS. Normally, however, for LTE signals or similar signals with PAR of about 12 dB, the signal chain has enough headroom for 
minimal performance impact, shown in the data in Table 120, Table 121, and Table 122. 

Because the transmitter signal level is increased when enabled, the configuration must be done prior to device initialization so that the 
internal calibrations see the appropriate gain through the signal chain. It is not possible to change internal calibrations after the device has 
been configured. 

The transmitter predistortion low pass filters (LPF) are the main contributors of flicker noise to the transmitter signal chain. Because the 
gain occurs before them, the amount of transmitter LOL emitted from the device is not changed by enabling the 3 dB mode. The 
transmitter attenuators follow the filters in the signal chain. For this reason, transmitter LOL reduces at the output with each attenuator 
step, dB for dB. The transmitter LOL measurement for both enabled and disabled modes along with the margin gained when the function 
is enabled is presented in Figure 73. 

–82.0

–86.0

–85.5

–85.0

–84.5

–84.0

–83.5

–83.0

–82.5

0 2 4 6 8 10

Tx
 L

O
L 

(d
Bm

/M
Hz

)

TX ATTENUATOR (dB) 22
77

0-
07

2

TxLOL dBFs 3dB
TxLOL dBFs 0dB

 
Figure 73. Transmitter LO Leakage with dacFullScale Enabled/Disabled 
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Figure 74. Transmitter Datapath with dacFullScale Function 
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The transmitter LOL specification is defined in terms of dBFS and is measured in a 1 MHz bandwidth. Transmitter LOL in dBFS is 
determined by applying a known signal level (−12 dBFS tone in this case) and then measuring the resulting output power to determine 
0 dBFS. Then the difference in power levels results in transmitter LOL (dBFS).  

The improvement shown in Table 120 is close to the 3 dB gain added. There is a small amount of variability due to the effects of flicker 
noise and the stability/accuracy of measuring the noise. 

To meet the performance levels requirements in the device data sheet, adjust the input signal to compensate for the 3 dB increase so that 
the resulting power levels are equivalent and, therefore, the OIP3 is equivalent as well. This is presented in Table 121. In general, the OIP3 
is only slightly affected by enabling the boost with the same input tone levels (both tones level= −15 dBFS). Typical performance is 
approximately 30 dBm, and measurements of the transceiver in both modes are consistent. Impact on linearity is shown in Table 121.  

EVM was measured with boost in 0 dB mode and with boost in 3 dB mode. There is no significant impact to EVM as a result of enabling 
the 3 dB mode. The impact on EVM is presented in Table 122. 

It is a system requirement that the desired DAC boost mode must be configured prior to device initialization. The transmitter signal level 
is increased, which impacts internal calibrations. Therefore, DAC boost mode settings cannot be modified during device operation. 

Table 120. dacFullScale Transmitter LOL and Transmitter Output Power Comparison 0 dB Mode and 3 dB Mode  

DAC Full Scale 
Setting 

Transmitter 
Attenuation 
(dB) 

Transmitter LOL 
(dBm/MHz) 

Tone 
Power 
(dBm) 0 dBFS in dBm 

Transmitter LOL 
(dBFS) 

Improvement (dB) 
Relative to 0 dB Setting 

dacFullScale 0 dB 
Mode 

0 −77.2 −6 6 −83.2 
 

5 −81.6 −10.8 1.2 −82.8 
 

10 −86.5 −16 −4 −82.5 
 

dacFullScale 3 dB 
Mode 

0 −76.6 −2.8 9.2 −85.8 2.6 
5 −81.5 −7.8 4.2 −85.7 2.9 
10 −85.9 −13 −1 −84.9 2.4 

Table 121. dacFullScale Transmitter Linearity 0 dB Mode and 3 dB Mode 

F1 Tone MHz 
F2 Tone MHz,  
(F1 + 5 MHz) 

OIP3 dBm, 0 dB Mode,  
Tones = −15 dBFS 

OIP3 dBm, 3 dB Mode, Tones = −18 dBFS 
(Data Sheet Equivalent Output Power) 

OIP3 dBm, 3 dB Mode, 
(Tones = −15 dBFS) 

10 15 32.6 36.0 33.1 
30 35 35.3 34.9 36.0 
50 55 38.0 37.7 40.0 
70 70 33.9 34.8 33.2 
90 95 35.7 31.1 30.0 

Table 122. dacFullScale EVM vs. Mode Selection 

Transmitter Attenuator (dB) 
0 dB Mode 3 dB Mode 

Signal Power (dBm) EVM (dB) Signal Power (dBm) EVM (dB) 
0 −17.9 −45.28 −15.0 −45.86 
5 −22.9 −45.09 −20.0 −45.72 
10 −27.9 −43.73 −25.0 −44.97 
15 −32.8 −43.38 −30.0 −43.06 
20 −37.8 −43.08 −34.9 −43.64 
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ADI_ADRV9025_TXCHANNELCFG API STRUCTURE 
The dacFullScale enum is stored in the adi_adrv9025_TxChannelCfg structure. This structure is stored within the 
adi_adrv9025_TxSettings_t structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). The parameters 
are described in Table 123 and Table 124. The dacFullScale parameter is also found in the json (profile) file. 

Table 123. adi_adrv9025_TxChannelCfg Structure Parameters 
Data Fields Description 
adi_adrv9025_TxProfile_t profile 
adi_adrv9025_DacFullScale_e dacFullScale 

Table 124. adi_adrv9025_DacFullScale_e Enumerator Parameters 
Data Fields Description Value 
ADI_ADRV9025_TX_DACFS_0DB DAC full scale = 0 dB (default mode) 0x0 
ADI_ADRV9025_TX_DACFS_3DB DAC full scale = 3 dB 0x1 
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TRANSMITTER POWER AMPLIFIER PROTECTION 
The transceiver features four transmitters with independent power amplifier (PA) protection circuitry. The PA protection circuitry 
operates in conjunction with other interrupt sources within the transceiver. This section describes both PA protection and the other 
interrupt sources that can trigger a transmitter attenuation ramp to set the transmitter attenuation to 40 dB to protect the PA device.  

Note that it is recommended to use these features in conjunction with the GP_INTERRUPT feature so that the baseband processor 
receives information over GP_INTERRUPT pins that an attenuation ramp down may have occurred. This is achieved by unmasked 
relevant GP_INTERRUPT sources described in Table 207.  

PA PROTECTION DESCRIPTION 
The PA protection circuitry is designed to alert the user that the digital signal power within the transmitter datapath exceeds a programmable 
threshold. The GPINT1 and GPINT2 pins can be configured to assert when the PA protection block detects an error. In this context, 
error means that a power threshold has been exceeded. If PA protection is used, it is recommended that the user unmask the PA protection 
interrupts for one of the GPINTx pins to give the baseband processor an indication that a PA protection error has occurred. Set up the 
power thresholds at a level appropriate for the system given the PA damage power level and transmitter RF attenuation.  

The following are the two types of thresholds in the PA protection circuit: 

• Peak power threshold: when the peak signals detected by PA protection exceed the peak power threshold (peakThreshold) a 
programmable number of times (peakCount) within a period (peakDuration), this leads to a peak power threshold error 
(peakPowerErr = 1).  

• Average Power Threshold: When the signal power calculated by PA protection exceeds the programmable average power threshold 
(powerThreshold) within a period (avgDuration), this leads to an average power threshold error (avgPowerErr = 1).  

When PA protection is enabled and a PA protection error occurs, a ramp down of the transmitter attenuation can be executed. The 
attenuation is set to 40 dB after the ramp down, if enabled. This feature can be used to protect PA devices in scenarios where the baseband 
processor executes algorithms that affect the power of the transmitted signal. The attenuation ramp down is configured with the 
adi_adrv9025_PaPllDfrmEventRamp DownEnableSet(…) command.  

PA Protection Configuration 

The PA protection feature is setup with the adi_adrv9025_TxPaProtectionCfgSet(…) API command.  

adi_adrv9025_TxPaProtectionCfgSet(…) 
adi_adrv9025_TxPaProtectionCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025_TxPaProtectCfg_t 
txPaProtectCfg[], uint8_t arraySize); 

Description  

This command sets up the PA protection feature.  

Parameters 

Table 125. adi_adrv9025_TxPaProtectionCfgSet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
txPaProtectCfg[] An array of PA protection configurations of data type adi_adrv9025_TxPaProtectCfg_t. This data structure is explained in 

further detail in Table 126. 
arraySize The array length of txPaProtectCfg[]. 

Table 126. adi_adrv9025_TxPaProtectCfg_t Data Structure Parameters 
Parameter Name Data Type Parameter Description 
txChannel adi_adrv9025_TxChannels_e Transmitter channel select based on adi_adrv9025_TxChannel_e. PA 

protection configuration is applied to channels selected by this 
parameter 
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Parameter Name Data Type Parameter Description 
avgDuration uint8_t Sets the duration for which average power is accumulated and compared 

with powerThreshold. Range = 0 to 15. Duration in time is given by 
(sample rate in Hz, duration in seconds): 

2 5avgDuration
avgDuration

Lt
txSampleRate

= × +  

peakDuration uint8_t  Sets the duration for which peaks are compared against peakThreshold. 
At the end of this duration, the number of counted peaks resets to zero. 
Range = 0 to 15. Duration in time is given by (sample rate in Hz, duration 
in seconds): 

1 2 5peakDuration
peakDurationt

txSampleRate
= × +  

powerThreshold uint16_t Sets the powerThreshold for average power measurements. If the 
average power exceeds this threshold, the avgPowerErr signal is asserted. 

10
8192dBFS

powerThresholdpowerThreshold log  =  
 

 

peakCount uint8_t Sets a limit for the number of peaks detected within a peakDuration. 
When this limit is exceeded, the PA protection peakPowerErr signal is 
asserted. 

peakThreshold uint16_t Sets the peak threshold power limit for counting a peak. If a peak 
exceeds this threshold, it is counted. When this counter value exceeds 
peakCount, peakPowerErr signal is asserted.  

10
8192dBFS

peakThresholdpeakThreshold log  =  
 

 

avgPowerEnable uint8_t When set = 1, the PA protection average power measurement block is 
enabled. Allows avgPowerErr signal assertion. 

  When set = 0, the PA protection average power measurement block is 
disabled. 

peakPowerEnable uint8_t When set = 1, the PA protection peak power measurement block is 
enabled. Allows peakPowerErr signal assertion. 

  When set = 0, the PA protection peak power measurement block is 
disabled. 

inputSel adi_adrv9025_PaProtectionInputSel_e Determines the data path location for peak and average power 
measurement. Options are given by the enumeration described in  
Table 127. 

avgPeakRatioEnable uint8_t When set = 1, this enables the average to peak power ratio block. 
avgPowerEnable and peakPowerEnable must be enabled. 

  When set = 0, average to peak power calculations are not performed. 

Table 127 describes the adi_adrv9025_PaProtectionInputSel_e enumeration. These measurement locations are shown in Figure 75.  

Table 127. adi_adrv9025_PaProtectionInputSel_e Enumeration Options 
Enumeration Enumeration Value Description 
ADI_ADRV9025_COMPLEX_MULT_OUTPUT 0 Input data to PA protection block comes from the complex multiplier 

output. 
ADI_ADRV9025_TXQEC_ACTUATOR_OUTPUT 1 Input data to PA protection block comes from the transmitter QEC 

actuator output. This selection is only valid when the clear required 
mode is not set. 
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Figure 75. Transmitter Datapath Showing PA Protection Measurement Locations 

PA Protection Run Time Commands 

This section describes commands that can be used to check the status of the PA protection blocks. The GP_INTERRUPT represents a real 
time interface to notify the baseband processor that a PA protection error has occurred. When the interrupt asserts, call the 
GP_INTERRUPT handler command. If it is indicated that a PA protection error has occurred, the commands in this section describe 
what the user can do to acquire more information or clear the error.  

adi_adrv9025_TxPaProtectionErrFlagsGet(…) 
adi_adrv9025_TxPaProtectionErrFlagsGet(adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e 
txChannel, adi_adrv9025_TxPaProtectionErr_t* errorFlags); 

Description 

This command gets information about which PA protection error flag has been asserted and the associated power level. Do not call this 
command before adi_adrv9025_TxPaProtectionCfgSet(…). 

Parameters 

Table 128. adi_adrv9025_TxPaProtectionErrFlagsGet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
txChannel The transmitter channel mask that selects which transmitter to retrieve error flag information from. 
errorFlags A data structure containing the error flag information for selected transmitter channel. 

Table 129. adi_adrv9025_TxPaProtectionErr_t Data Structure Parameters 

Data Type Parameter Name Parameter Description 
uint8_t peakPowerErr If value = 1, the peak power error bit is asserted. If value = 0, the peak power error is not asserted. This bit 

is sticky depending on the configuration applied in 
adi_adrv9025_TxAttenuationRampUpStickyModeEnable(…). 

uint8_t avgPowerErr If value = 1, the average power error bit is asserted. If value = 0, the average power error is not asserted. 
This bit is sticky depending on the configuration applied in 
adi_adrv9025_TxAttenuationRampUpStickyModeEnable(…). 

uint16_t powerErr When avgPowerErr asserts, this parameter contains the average power level that triggered the error condition. 

Clearing PA Protection Error Flags 

In the case when a PA protection error has occurred, it is useful to obtain specific information whether it is a peak power error or an average 
power error. To obtain information about which PA protection error flag has been asserted, use adi_adrv9025_TxPaProtectionStatusGet(…). 
After this information has been obtained and the cause of the error has been resolved, the user must clear the error flag manually when the errors 
are configured in sticky mode. This can be done with the adi_adrv9025_PaPllDfrmEventClear(…) command or the 
adi_adrv9025_TxPaProtectionErrFlagsReset(…) command. Note that adi_adrv9025_PaPllDfrmEventClear(…) can clear a PA protection error, 
a PLL unlock interrupt, or a deframer interrupt. The adi_adrv9025_TxPaProtectionErrFlagsReset(…) command is specific to only PA protection 
errors. 

adi_adrv9025_TxPaProtectionErrFlagsReset(…) 
adi_adrv9025_TxPaProtectionErrFlagsReset(adi_adrv9025_Device_t* device, 
adi_adrv9025_TxChannels_e txChannel, adi_adrv9025_TxPaProtectErrFlags_e errorFlags); 
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Description  

This command clears PA protection error flags for specified channels.  

Parameters 

Table 130. adi_adrv9025_TxPaProtectionErrFlagsReset(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
txChannel The transmitter channel mask that selects which transmitter to clear/reset PA protection errors. 
errorFlags An enumerated data type describing which error flags must be cleared. 

Table 131 describes the adi_adrv9025_TxPaProtectErrFlags_e enumeration. 

Table 131. adi_adrv9025_TxPaProtectErrFlags_e Enumeration Options 
Enumeration Enumeration Value Meaning 
ADI_ADRV9025_TXPA_PROTECT_FLAGS_AVG_POWER_ERR 1 Reset average power error flag 
ADI_ADRV9025_TXPA_PROTECT_FLAGS_PEAK_POWER_ERR 2 Reset peak power error flag 
ADI_ADRV9025_TXPA_PROTECT_FLAGS_ALL 3 Reset both average and peak power error flags 

adi_adrv9025_TxPaProtectionStatusGet(…) 

The PA protection status data structure provides information regarding the power in the datapath. After the PA protection configuration 
has been applied, the following command can be called: 
adi_adrv9025_TxPaProtectionStatusGet(adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e 
txChannel, adi_adrv9025_TxPaProtectStatus_t* status); 

Description 

This command reads back the transmitter average IQ sample power.  

Parameters 

Table 132. adi_adrv9025_TxPaProtectionStatusGet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
txChannel The transmitter channel mask that selects from which transmitter to retrieve PA protection status information. 
status A data structure containing the PA protection status information for selected transmitter channel.  

The data structure type adi_adrv9025_TxPaProtectStatus_t is described in Table 133.  

Table 133. adi_adrv9025_TxPaProtectStatus_t Data Structure Parameters 
Data 
Type 

Parameter 
Name Parameter Description 

uint16_t avgPower Result of the most recently completed average power measurement. Result in dBFS is provided by the formula: 

1610
2AVG

avgPowerP log  =  
 

 

uint16_t avgPeakRatio Measurement describing the average to peak ratio as measured by PA protection. Enable peak and average 
power measurement for meaningful results.  

1510
2

avgPeakRatioPAR log  =  
 

 

uint16_t avgErrorPower When avgPowerErr asserts, this parameter contains the average power level that triggered the error 
condition. This parameter only updates when an average power error occurs. 

1610
2avgErrPow

avgErrorPowerP log  =  
 

 

adi_adrv9025_PaPllDfrmEventRampDownEnableSet(…) 
adi_adrv9025_ PaPllDfrmEventRampDownEnableSet(adi_adrv9025_Device_t* device, uint32_t  
txChannelMask, uint32_t irqMask, uint8_t enable); 
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Description  

This command configures which interrupts can trigger a transmitter attenuation ramp down event.  

Parameters 

Table 134. adi_adrv9025_PaPllDfrmEventRampDownEnableSet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
txChannelMask The transmitter channel mask for selecting which transmitters to configure based on adi_adrv9025_TxChannels_e enumeration. 
irqMask The bit mask that selects which interrupts are enabled or disabled based on the enable parameter. If a bit within this 

mask is set, the value of enable is applied for each bit set. The value must not be zero. A description of the irqMask bit 
field is provided in Table 135. 

enable Bit that controls ramp down for the events selected by irqMask. If set to 0, the function is disabled for all selections. 

Table 135. Bit Descriptions of irqMask 
Bit Position Description Command to Clear Interrupt 
D7 PA protection error flag has been asserted. If slew 

rate limiter (SRL) interrupt (IRQ) has been 
enabled, this bit also allows attenuation ramp 
down based on the SRL IRQ.  

adi_adrv9025_adrv9025_PaPllDfrmEventClear(…) or 
adi_adrv9025_adrv9025_TxPaProtectionErrFlagsReset(…) 

D6 SERDES PLL Unlock. adi_adrv9025_adrv9025_PaPllDfrmEventClear(…) 
D5 RF PLL 2 Unlock. 
D4 RF PLL 1 Unlock. 
D3 Auxiliary PLL Unlock. 
D2 CLK PLL Unlock. 
D1 Deframer 1 Interrupt/IRQ. 
D0 Deframer 0 Interrupt/IRQ. 

Although the irqMask is a uint32_t data type value, the enumeration adi_adrv9025_PaPllDfrmRampDownEnSel_e can be used to form 
the irqMask.  

Sticky Control for Transmitter Attenuation Ramp Down 

If a transmitter attenuation ramp down interrupt is asserted, there are two modes of interrupt behavior pertaining to when attenuation is 
restored. The following behavior modes control how the attenuation level ramp up is performed.  

• Sticky interrupt (default operation): the attenuation ramp down remains in effect until the API command 
adi_adrv9025_PaPllDfrmEventClear(…) is called and the interrupt is no longer asserted. These two conditions must be true for 
attenuation to return to its former level before the interrupt. This mode requires user intervention. 

• Auto clear interrupt: the attenuation ramp down remains in effect until the interrupt is no longer asserted. This mode only depends 
on the status of the interrupt. 

The user can select between these modes using the adi_adrv9025_TxAttenuationRampUpStickyModeEnable API command. 

adi_adrv9025_TxAttenuationRampUpStickyModeEnable(…) 
adi_adrv9025_ TxAttenuationRampUpStickyModeEnable(adi_adrv9025_Device_t* device, uint32_t 
channelMask, uint8_t txPllJesdProtClrReqd, uint8_t txPaProtectionAvgpowerErrorClearRequired,  
uint8_t txPaProtectionPeakpowerErrorClearRequired) 

Description  

This command configures transmitter attenuation ramp up sticky mode for the selected transmitter channel.  

Parameters 

Table 136. adi_adrv9025_TxAttenuationRampUpStickyModeEnable(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
channelMask The transmitter channel mask for selecting which transmitters to configure based 

on adi_adrv9025_TxChannels_e enumeration. 
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Parameter Description 
txPllJesdProtClrReqd Determines if the user is required to manually clear PLL/deframer attenuation 

ramp down events after assertion. Setting 1 requires the user to clear. Setting 0 
does not require the user to clear.  

txPaProtectionAvgpowerErrorClearRequired Determines if the user is required to manually clear PA protection average power 
error flag after assertion. Setting 1 requires the user to clear. Setting 0 does not 
require the user to clear.  

txPaProtectionPeakpowerErrorClearRequired Determines if the user is required to manually clear PA protection peak power 
error flag after assertion. Setting 1 requires the user to clear. Setting 0 does not 
require the user to clear. 

The command adi_adrv9025_adrv9025_PaPllDfrmEventClear(…) can be used to clear the error. 

Determining the Interrupt Source of an Attenuation Ramp Down 

The GPINT1 and GPINT2 pins can be configured to alert the baseband processor that a PA protection error, PLL unlock event, or deframer 
interrupt has occurred. When the interrupt has occurred, the user is expected to call adi_adrv9025_GpInt1Handler or 
adi_adrv9025_GpInt0Handler depending on which GPINTx pin has asserted. GpInt1Handler is linked to the GPINT2 pin and GPInt0Handler 
is linked to the GPINT1 pin. The handler returns information relevant to which interrupts have been asserted. This is one method to determine 
which interrupts have asserted. However, note that the GP_INTERRUPT bitmask description does not specify whether a peak or average power 
PA protection error has occurred. To obtain more specificity regarding the error source, call adi_adrv9025_PaPllDfrmEventGet(…). 

adi_adrv9025_PaPllDfrmEventGet(…) 
adi_adrv9025_PaPllDfrmEventGet (adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e 
txChannelSelect, uint8_t eventBits); 

Description 

This command reads the status of events causing transmitter attenuation ramp down rather than any signal that has asserted GP_INTERRUPT. 

Parameters 

Table 137. adi_adrv9025_PaPllDfrmEventGet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
txChannelSelect The transmitter channel mask for selecting which transmitters to configure based on adi_adrv9025_TxChannels_e enumeration. 
eventBits Selects which interrupt source to clear based on the bit description in Table 138. If a bit position in this value is set high, 

the associated interrupt has asserted to cause a transmitter attenuation ramp down. 

The command adi_adrv9025_adrv9025_PaPllDfrmEventClear(…) can be used to clear the error. 

Table 138. Bit Descriptions of eventBits Parameter 
Bit Position Description 
D3 to D7 Unused 
D2 Any PLL unlock or deframer error 
D1 PA protection peak power error 
D0 PA protection average power error 

Clearing Transmitter Attenuation Ramp Down Events 

There are two commands available to clear attenuation ramp down events. In the case that the interrupts are configured as sticky 
interrupts, the user must call the appropriate function to clear the error. Note that these commands do not execute corrective measures to 
remove the error source. For example, calling adi_adrv9025_TxPaProtectionErrFlagsReset(…) after a PA protection average power error 
does not mean that the cause of the error is gone. If the datapath power is still greater than the PA protection average power threshold 
after this command is called, then the interrupt persists. In some cases, the baseband processor must take an action to resolve the 
interrupt/error. The adi_adrv9025_PaPllDfrmEventClear command can be used to clear such interrupts. 

adi_adrv9025_PaPllDfrmEventClear(…) 
adi_adrv9025_PaPllDfrmEventClear(adi_adrv9025_Device_t* device, adi_adrv9025_TxChannels_e 
txChannelSelect, uint8_t eventBits); 
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Description 

This command clears the transmitter attenuation ramp down interrupts caused by the deframer or PLL unlock events. 

Parameters 

Table 139. adi_adrv9025_PaPllDfrmEventClear(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
txChannelSelect The transmitter channel mask for selecting which transmitters to configure based on adi_adrv9025_TxChannels_e 

enumeration. 
eventBits Selects which interrupt source to clear based on the bit description in Table 138. If a bit position in this value is set high, 

the command attempts to clear the interrupt. 
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RECEIVER GAIN CONTROL AND GAIN COMPENSATION 
OVERVIEW 
The transceiver has four receivers (Rx1/Rx2/Rx3/Rx4) that feature automatic and manual gain control modes, allowing for flexible gain 
control in a wide array of applications. Automatic gain control (AGC) allows for receivers to autonomously adjust the receiver gain 
depending on variations of the input signal, such as the onset of a strong interferer that can overload the receiver datapath. AGC controls 
the gain of the device based on the information from a number of signal detectors (peak and power detectors). The AGC can control the 
gain with very fine resolution if required. The receivers are also capable of operating in manual gain control (MGC) mode where changes 
in gain are initiated by the baseband processor. The gain control blocks are configured by means of the API data structures, and several 
API functions exist to allow for user interaction with the gain control mechanisms. 

The AGC is highly flexible and can be configured in a number of ways. For base station receivers, the received signal is a multicarrier 
signal in most cases. Perform a gain change only under large overrange or underrange conditions. Gain changes typically do not occur 
very often for typical 3G/4G operation. Therefore, the peak detect mode operation is sufficient. Nevertheless, if an asynchronous blocker 
does appear, a fast attack mode exists that is able to reduce the gain at a fast rate.  

Alternatively, to manage GSM blockers and radar pulses that have fast rise and rapid fall times, a mode with fast attack, fast recovery, and 
peak detect only is provided. This mode can recover receiver gain quickly in addition to the fast attack capability mentioned previously.  

This section contains a full description of the gain control functionality available in the transceiver. Some features may not be available 
depending on the software revision.  

RECEIVER DATAPATH 
Figure 76 shows the receiver datapath and gain control blocks. The receivers have front-end attenuators prior to the mixer stage that are 
used to attenuate the signal in the RF domain to ensure that the signal does not overload the receiver chain. In the digital domain, there is 
the option of digital attenuation or digital gain. This digital gain block is also utilized for gain compensation. 

The receiver chain also has multiple observation elements that can monitor the incoming signal. These can be used in either MGC mode 
or AGC mode. First, an analog peak detector (APD) exists prior to the ADC. This peak detector is located after the transimpedance 
amplifier (TIA) filter, so it receives signals first in the analog domain and also has blocker signal visibility, which can overload the ADC. 
The second peak detector is called the Half-Band 2 (HB2) overload detector because it monitors the data at the HB2 filter in the digital 
processing section of the receiver chain.  

A power measurement detection block is also provided in the receiver chain, which takes the rms power of the received signal over a 
configurable period. The power measurement location in the datapath is user configurable.  

This transceiver can also control an external gain element through use of the receiver gain table and the GPIO_ANA pins.  
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Figure 76. Receiver Data Path and Gain Control Blocks 

The gain control block is shown in Figure 77 with multiple inputs providing information. Overload (peak) detectors are shown in red and 
the power measurement block is shown in blue. The gain control block controls the gain of the signal chain using a gain table.  
A gain table is user programmable, and each row of the table provides a combination of front-end attenuator, external gain element (if 
used), and digital gain settings. Based on the row of this table selected, either by the user in MGC mode or automatically by the device in 
AGC mode, the gain control block updates the variable gain elements depicted by the green arrows. Finally, the user can control the gain 
control block using the SPI bus (configuration of AGC and MGC) and GPIOs.  
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Table 140 shows a sample gain table. 

Table 140. Sample Rows from the Default Receiver Gain Table 

Gain Table Index 
Front-End Attenuator, 
7 Bits 

External Gain Control, 
3 Bits  TIA/ADC Gain 

Signed Digital 
Gain/Attenuation[10:0] Phase Offset 

255 0 0 0 0 0 
254 14 0 0 0 0 
253 28 0 0 0 0 

The gain table index is the reference for each unique combination of gain settings in the programmable gain table. It is possible to have 
different gain tables for each receiver, but typically the same one is used. The possible range of the gain table is 255 to 0, but typically only 
a subset of this range is used. The gain table must be assigned in order of decreasing gain, starting with the highest gain in the maximum 
gain index, such as 255, and the lowest gain in the minimum gain index. 

The front-end attenuator has an 8-bit control word. The amount of attenuation applied depends on the value set in the front-end 
attenuator column of the selected gain table index. The following equation provides an approximate relationship between the internal 
attenuator and the front-end attenuation value programmed in the gain table, N: 

10
256

( ) 20 log
256

N
Attenuation dB

− 
=  

 
  

The external gain control column controls two analog GPIOs for each receiver. Table 141 shows which analog GPIOs are used for which 
receiver. 

Table 141. Analog GPIOs for External Gain Element Control 
Receiver GPIO Pins to Control External Gain Element 
Rx1 GPIO_ANA[1:0] 
Rx2 GPIO_ANA[3:2] 
Rx3 GPIO_ANA[5:4] 
Rx4 GPIO_ANA[7:6] 

These analog GPIOs must be enabled as outputs and set for external gain functionality. The 2-bit value programmed is directly related to 
the status of these GPIO pins. For example, if the external gain word of the Rx1 gain table is programmed to 3 in the selected gain index, 
analog GPIO_0 and GPIO_1 are high. 
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Figure 77. GPIO Control of an External Gain Element to Rx1 

The signed digital gain/attenuation is used to apply gain or attenuation digitally. The range of the digital gain is 0 to 50 dB. The range of 
the digital attenuation is 0 to 18 dB. The resolution of the steps is 0.05 dB. As an example, a value of 14 results in a 0.7 dB gain, and a value 
of −14 results in 0.7 dB of attenuation. The combination of TIA and ADC gain must be zero in all rows because this functionality is not used. 

Gain Control Modes 

The gain control mode is selected with the adi_adrv9025_RxGainCtrlModeSet API function. 

adi_adrv9025_RxGainCtrlModeSet(…) 
adi_adrv9025_RxGainCtrlModeSet(adi_adrv9025_Device_t* device, adi_adrv9025_RxAgcMode_t 
gainMode[], uint8_t arraySize) 

Description  

This command selects the gain control mode.  
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Parameters 

Table 142. adi_adrv9025_RxGainCtrlModeSet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
gainMode An array of type adi_adrv9025_RxAgcMode_t indicating which gain mode is to be used for which receiver channel 
arraySize The size of the array 

Each adi_adrv9025_RxAgcMode_t instance contains agcMode, an enumerator selecting the chosen gain mode. The possible options are 
shown in Table 143. 

Table 143. Definition of adi_adrv9025_RxAgcMode_t  
Enumerator Gain Mode 
ADI_ADRV9025_MGC Manual gain mode 
ADI_ADRV9025_AGCSLOW Automatic gain control Mode 
ADI_ADRV9025_HYBRID Not currently supported 

rxChannelMask 

rxChannelMask selects the channels upon which to enable this gain control mode. rxChannelMask is a bit mask with each bit 
corresponding to a channel, D0 = Rx1, D1 = Rx2, D2 = Rx3, and D3 = Rx4. Setting the rxChannelMask = 15 means that all receivers are 
configured with the same agcMode.   

MANUAL GAIN CONTROL (MGC) 
The gain control block applies the settings from the selected gain index in the gain table. In MGC mode, the baseband processor is in 
control of selecting the gain index. There are two options, API commands and pin control. By default, if MGC is chosen, the device is 
configured for API commands. The commands described in this section can be used when in API command mode. 

adi_adrv9025_RxGainSet(…) 
adi_adrv9025_RxGainSet(adi_adrv9025_Device_t* device, adi_adrv9025_RxGain_t rxGain[], uint8_t 
arraySize) 

Description  

This command selects the gain index in the gain table when in API command mode.  

Parameters 

Table 144. adi_adrv9025_RxGainSet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
rxGain An array of type adi_adrv9025_RxGain_t that determines the gain setting and the channels using the chosen setting. 
arraySize The size of the array. 

Each adi_adrv9025_RxGain_t instance contains the following: 
• gainIndex—the selected gain index from the gain table. 
• rxChannelMask—this selects the channels upon which to apply the gainIndex setting. It is a bit mask with each bit corresponding to 

a channel, D0 = Rx1, D1 = Rx2, D2 = Rx3, and D3 = Rx4. Setting the rxChannelMask = 15 applies this gain index to all four receivers. 
adi_adrv9025_RxGainGet(…) 
adi_adrv9025_RxGainGet(adi_adrv9025_Device_t* device, adi_adrv9025_RxChannels_e rxChannel, 
adi_adrv9025_RxGain_t *rxGain) 

Description  

This command reads back the gain index in the gain table for the selected channel when in API command mode. 

Parameters 
Table 145. adi_adrv9025_RxGainGet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
rxChannel An enumerator as shown in Table 146. 
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Parameter Description 
*rxGain Of type adi_adrv9025_RxGain_t, pointer to the current gain of the channel and a mask indicating which gain of the channel is 

contained within the structure. 

Table 146. Definition of adi_adrv9025_RxChannels_e 
Receiver Enumerator 
Rx1 ADI_ADRV9025_RX1 
Rx2 ADI_ADRV9025_RX2 
Rx3 ADI_ADRV9025_RX3 
Rx4 ADI_ADRV9025_RX4 

The pin control MGC mode is useful when real-time control of gain is required. In this mode, 2 GPIO pins per receiver are used, two for 
each receiver, one increasing and the other decreasing the gain table index. The user specifies both the increment and decrement step size 
in terms of number of gain indices. A pulse is applied to the relevant GPIO pin to trigger an increment or decrement in gain, as shown in 
Figure 78. This pulse must be held high for at least 2 AGC clock cycles for a gain change to occur (see the AGC Clock and Gain Block 
Timing section for details). 
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Figure 78. MGC Pin Mode: GPIO1.8V (a through h) Represent Any of GPIO_0 to GPIO_15  

adi_adrv9025_RxGainPinCtrlCfgSet(…) 
adi_adrv9025_RxGainPinCtrlCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025_RxGainPinCfg_t 
*rxGainPinCtrlCfg, adi_adrv9025_RxChannels_e rxChannel) 

Description  

This command configures pin control MGC mode.  

Parameters 

Table 147. adi_adrv9025_RxGainPinCtrlCfgSet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
rxChannel An enumerator indicating which receiver channel to configure, as shown in Table 146. 
*rxGainPinCtrlCfg A configuration structure pointer for the pin control MGC mode containing the members shown in Table 148. 

Table 148. Definition of ADRV9025_RxGainCtrlPin_t 
Member Description 
uint8_t incStep Increment in gain index applied when the increment gain is pulsed. Acceptable values for this 

parameter are 0 to 7. However, 1 is added to what is programmed into this parameter, resulting in step 
sizes of 1 to 8. 

uint8_t decStep Decrement in gain index applied when the decrement gain is pulsed. Acceptable values for this 
parameter are 0 to 7. However, 1 is added to what is programmed into this parameter, resulting in step 
sizes of 1 to 8. 

adi_adrv9025_GpioPinSel_e 
rxGainIncPin 

GPIO used to increment gain. Any of GPIO_0 to GPIO_15 can be used. Acceptable values are 
ADI_ADRV_9025_GPIO_00 to ADI_ADRV9025_GPIO_15. 

adi_adrv9025_GpioPinSel_e 
rxGainDecPin 

GPIO used to decrement gain. Any of GPIO_0 to GPIO_15 can be used. Acceptable values are 
ADI_ADRV_9025_GPIO_00 to ADI_ADRV9025_GPIO_15. 
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The peak detector outputs can be monitored using GPIO pins by configuring them as outputs that are activated when an upper or lower 
threshold has been exceeded by the APD or HB2 detectors. More details on what causes an overrange condition are provided in the Peak 
Detect Mode section. 

AUTOMATIC GAIN CONTROL 
In AGC mode, a built-in state machine automatically controls the gain based on a user defined configuration. The AGC can be 
configured in one of the following two modes: 

• Peak detect mode, where only the peak detectors are used to make gain changes. 
• Peak/power detect mode, where information from the power detector and the peak detectors are used to make gain changes. 

The agcPeakThreshGainControlMode parameter of the adi_adrv9025_AgcCfg_t AGC configuration structure is used to select the 
individual modes of the AGC operation, as shown in Table 149. 

Table 149. agcPeakThreshGainControlMode Settings 
agcPeakThreshGainControlMode  Description 
0 AGC in peak/power mode 
1 AGC in peak detect mode 

Peak Detect Mode 

In this mode, the peak detectors alone are used to inform the AGC to make gain changes. The APD and HB2 detectors both have a high 
threshold and a low threshold. These are set with the apdHighThresh, apdLowThresh, hb2HighTresh, and hb2UnderRangeHighThresh 
parameters. These levels are user programmable, as is the limit for the number of times a threshold must be crossed for an overrange or 
underrange condition to be flagged. The high thresholds are used as limits on the incoming signal level and typically are set based on the 
maximum input of the ADC. When an overrange condition occurs, the AGC reduces the gain (gain attack). 

The low thresholds are used as lower limits on signal level. When the signal peaks are not exceeding the lower threshold, this is indicative 
of a low power signal, and the AGC increases gain (gain recovery). This is termed an underrange. The AGC stable state (where it does not 
adjust gain) occurs when neither an underrange nor overrange condition is occurring (the signal peaks are less than the high threshold 
and greater than the lower level). Each overrange/underrange condition has its own attack and recovery gain step, as shown in Table 150. 

Table 150. Peak Detector Gain Steps 
Overload/Underrange Gain Step 
apdHighThresh overrange Reduce gain by apdGainStepAttack 
apdLowThresh underrange Increase gain by apdGainStepRecovery 
hb2HighThresh overrange Reduce gain by hb2GainStepAttack 
hb2UnderRangeHighThresh underrange Increase gain by hb2GainStepHighRecovery 

An overrange condition occurs when the high thresholds have been exceeded a configurable number of times within a configurable 
period. An underrange condition occurs when the low thresholds have not been exceeded a configurable number of times within the 
same configurable period. These counters make the AGC more or less sensitive to peaks in the input signal, ensuring that a single peak 
exceeding a threshold does not necessarily cause the AGC to react, allowing the user to trade off bit error rate with signal to noise ratio. 
Table 151 outlines the counter parameters for the individual overload/underrange conditions. 

Table 151. Peak Detector Counter Values 
Overload/Under Range Counter 
apdHighTresh over range apdUpperThreshPeakExceededCnt 
apdLowThresh under range apdLowerThreshPeakExceededCnt 
hb2HighThresh over range hb2UpperThreshPeakExceededCnt 
hb2UnderRangeHighThresh under range hb2UnderRangeHighThreshExceededCnt 

The AGC uses a gain update counter to time gain changes, with gain changes made when the counter expires. The counter value, and 
therefore, the time spacing between possible gain changes, is user programmable through the agcGainUpdateCounter parameter. The 
user specifies the period, in AGC clock cycles, that gain changes can be made. Typically, this might be set to frame or sub-frame boundary 
periods. The total time between gain updates is the combination of the agcSlowLoopSettlingDelay and the agcGainUpdateCounter. 
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When the gain update counter expires, all the peak threshold counters are reset. The gain update period is, therefore, a decision period. 
The overload thresholds and counters are, therefore, set based on the number of overloads considered acceptable for the application 
within the gain update period. 

Figure 79 shows an example of the AGC response to a signal vs. the APD threshold levels. For ease of explanation, the APD is considered 
in isolation. The green line is representative of the peaks of the signal. Initially, the peaks of the signal are within the apdHighThresh and 
apdLowThresh. No gain changes are made. An interferer suddenly appears whose peaks now exceed apdHighThresh. On the next expiry 
of the gain update counter (assuming a sufficient number of peaks occurred to exceed the counter), the AGC decrements the gain index 
(reduces the gain) by apdGainStepAttack. This is not sufficient to obtain the signal peaks within the threshold levels, and thus the gain is 
decremented again, with the peaks now between the two thresholds. The gain is stable in this current gain level until the interfering signal 
is removed, and the peaks of the signal are below the apdLowThresh, resulting in an underrange condition. The AGC increases gain by 
the apdGainStepRecovery at the next expiry of the gain update counter, continuing to do so until the peaks of the signal are within the 
two thresholds again. 
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Figure 79. APD Thresholds and Gain Changes Associated with Underrange and Overrange Conditions  
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Figure 80 shows the same scenario but from the viewpoint of the HB2 detector considered in isolation.  
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Figure 80. HB2 Thresholds and Gain Changes Associated with Underrange and Overrange Conditions 

It is possible to enable a fast attack mode whereby the AGC is instructed to reduce gain immediately when an overrange condition occurs, 
instead of waiting until the next expiry of the gain update counter using agcGainChangeIfThreshHigh. This parameter has independent 
controls for the APD and HB2 detectors. Values from 0 to 3 are valid, as shown in Table 152. 

Table 152. agcGainChangeIfThreshHigh Settings 
agcChangeGainIfThreshHigh[1:0] Gain Change Following APD Overrange Gain Change Following HB2 Overrange 
00 After expiry of agcGainUpdateCounter After expiry of agcGainUpdateCounter 
01 Immediately After expiry of agcGainUpdateCounter 
10 After expiry of agcGainUpdateCounter Immediately 
11 Immediately Immediately 

Figure 81 shows how the AGC reacts when the agcChangeGainIfThreshHigh is set for APD. In this case, when the interferer appears, the 
gain is updated as soon as the number of peaks exceed the peak counter. It does not wait for the next expiry of the gain update counter. A 
number of gain changes can be made in quick succession providing a much faster attack than the default operation. The assumption here 
is that if the ADC is overloaded, it is best to decrease the gain quickly rather than wait for a suitable moment in the received signal to 
change the gain.  
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Figure 81. APD Gain Changes with Fast Attack Enabled 

Figure 82 shows the same scenario but from the viewpoint of agcChangeGainIfThreshHigh being set for HB2. 
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Figure 82. HB2 Gain Changes with Fast Attack Enabled 

It is also possible to enable a fast recovery mode whereby a gain recovery event occurs at the expiry of the gain update period, as shown in 
Figure 83. This functionality is enabled with the ableFastRecoveryLoop parameter. This fast recovery mode enables the HB2 overload 
detector. The operation is shown in Figure 84. When the signal level falls below hb2UnderRangeLowThresh, the gain is incremented by 
hb2GainStepLowRecovery following the expiry of the gain update period. Note that in the fast recovery mode the agcUnderRangeLowInterval 
is used instead of the gain update counter to set the gain update period. After sufficient gain increases are implemented to bring the signal 
level above hb2UnderRangeLowThresh, the gain is incremented by hb2GainStepMidRecovery after the expiry of a number of gain update 
periods, as set by hb2GainStepMidRecovery. Finally, when the signal level is increased above hb2UnderRangeMidThresh, the gain is 
incremented by hb2GainStepHighRecovery following the expiry of a number of gain update periods, as set by agcUnderRangeHighInterval. 
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The multiple threshold and interval parameters allow for a gain recovery whereas the wanted signal level is approached, the magnitude of 
the gain adjustments is reduced and the time interval between gain changes is increased. However, recovery events remain periodic, as 
shown in Figure 83 because all gain updates occur at the expiry of the gain update period. 
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Figure 83. AGC Sequence with HB2 Detector in Fast Recovery Mode 
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Figure 84. AGC Operation with HB2 Detector in Fast Recovery Mode 
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Priorities and Overall Operation 

It is highly recommended that the apdHighThresh and hb2HighThresh are set to an equivalent dBFS value. Likewise, it is highly 
recommended that the apdLowThresh and the hb2UnderRangeHighThresh are set to equivalent values. This equivalence is approximate 
because these thresholds have unique threshold settings that are not exactly equal. This section discusses the relevant priorities between 
the detectors and how the AGC reacts when multiple threshold detectors have been exceeded. Table 153 shows the priorities between the 
detectors when multiple overranges occur.  

Table 153. Priorities of Attack Gain Steps 
apdHighThresh Over Range hb2HighThresh Over Range Gain Change 
No No No gain change 
No Yes Gain change by hb2GainStepAttack 
Yes No Gain change by apdGainStepAttack 
Yes Yes Gain change by apdGainStepAttack 

For recovery, the number of thresholds is dependent on whether fast recovery is enabled or not. Considering the fast recovery scenario, 
the priority of the thresholds is the following:  

• hb2UnderRangeLowThresh underrange condition 
• hb2UnderRangeMidThresh underrange condition 
• hb2UnderRangeHighThresh underrange condition 
• apdLowThresh underrange condition 

Upon one underrange condition, the AGC changes the gain by the corresponding gain step size of this condition. However, if multiple 
conditions occur simultaneously, the AGC prioritizes based on the priorities indicated. That is, if hb2UnderRangeLowThresh is reporting 
an underrange condition, the AGC adjusts the gain by hb2GainStepLowRecovery with two exceptions. 

The apdLowThresh has priority in terms of preventing recovery. If apdLowThresh reports an overrange condition (sufficient signal peaks 
have exceeded its threshold in a gain update counter period), no further recovery is allowed. Configure apdLowThresh and 
hb2UnderRangeHighThresh to be as close to the same value of dBFS. However, assuming some small difference between the thresholds, 
then as soon as apdLowThresh is exceeded, recovery no longer occurs. The reverse is not true, hb2UnderRangeHighThresh does not 
prevent the gain recovery towards the apdLowThresh. Given the strong recommendation that apdLowThresh and hb2UnderRangeHighThresh 
be set equally, a condition where apdLowThresh is at a lower dBFS level to hb2UnderRangeLowThresh or hb2UnderRangeMidThresh 
does not occur. 

Another exception is if the recovery step size for a detector is set to zero. If so, the AGC makes the gain change of the highest priority 
detector with a nonzero recovery step. Figure 85 provides a flow diagram of the decisions of the AGC when recovering the gain in peak 
detect mode. 
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Figure 85. Flow Diagram for AGC Recovery in Peak Detect AGC Mode 

Power Detect Mode 

In this mode, the power detector measurement is also used to control the gain of the receiver chain. In the event of an overrange 
condition, both the peak detectors and the power detector can instantiate a gain decrement. In the event of an underrange, only the power 
detector can increment the gain. The power detector changes gain solely at the expiry of the gain update counter. The peak detectors can 
be set in one of two modes (depending on the setting of agcGainChangeIfThreshHigh) where the AGC waits for the gain update counter 
to expire before initiating a gain change, or immediately updates the gain as soon as the overrange condition occurs (see Figure 79 to 
Figure 84). 

The power measurement block provides the rms power of the receiver data at the measurement location. The power measurement block 
can be configured to monitor the signal in one of three locations, as shown in Figure 76. In power detect mode, the AGC compares the 
measured signal level to programmable thresholds, which provide a second order control loop, where gain can be changed by larger 
amounts when the signal level is further from the target level, and make smaller gain changes when the signal is closer to the target level. 
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Figure 86 shows the operation of the AGC when using the power measurement detector. Considering the power measurement detector in 
isolation from the peak detectors, the AGC does not modify the gain when the signal level is between overRangeLowPowerThresh and 
underRangeHighPowerThresh. This range is the target range for the power measurement.  

When the signal level goes below underRangeLowPowerThresh, the AGC waits for the next gain update counter expiry and then 
increments the gain by underRangeLowPowerGainStepRecovery. When the signal level is greater than underRangeLowPowerThresh but 
below underRangeHighPowerThresh, the AGC increments the gain by underRangeHighPowerGainStepRecovery. Likewise, when the 
signal level goes above overRangeHighPowerThresh, the AGC decreases the gain by overRangeHighPowerGainStepAttack, and when the 
signal level is between overRangeHighPowerThresh and overRangeLowPowerThresh, the AGC decreases the gain by 
overRangeLowPowerGainStepAttack. 
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Figure 86. PMD Thresholds and Gain Changes for Underrange and Overrange Conditions 

It is possible for the AGC to get contrasting requests from the power and peak detectors. An example is a blocker that is visible to the 
analog peak detector but is quite significantly attenuated by the power measurement block. In this case, the APD can be requesting a gain 
decrement while the power measurement block can be requesting a gain increment. The AGC has the following priority scheme in power 
detect mode:  

1. APD overrange (upper level) 
2. HB2 overrange (upper level) 
3. APD lower level peak exceeded 
4. HB2 lower level peak exceeded 
5. Power measurement 

In this example, the gain is decremented because the APD overrange has a higher priority than the power measurement. It is important to 
note the APD and HB2 lower level overloads. In peak detect mode, the lower level thresholds for these detectors are used to indicate an 
underrange condition, which caused the AGC to increase the gain. In power detect mode, these detectors are not used for gain recovery, 
but can be used to control gain recovery by setting the agcLowThreshPreventGain API parameter. If this parameter is set, and if the signal 
level is exceeding a lower level threshold, the AGC is prevented from increasing the gain regardless of the power measurement.  

This prevents an oscillation condition that may otherwise occur to a blocker visible to a peak detector but filtered before the power 
measurement block. In such a case, the peak detector can cause the AGC to decrease gain. The peak detector does this until the blocker is 
no longer exceeding the defined threshold. At this point, the power measurement block can request an increase in gain and does so until 
the peak threshold of the detector is exceeded, which decreases gain. By using these lower level thresholds, the AGC is prevented from 
increasing gain as the signal level approaches an overload condition, providing a stable gain level for the receiver chain under such a 
condition. 
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AGC CLOCK AND GAIN BLOCK TIMING 
The AGC clock is the clock that drives the AGC state machine. A number of the programmable counters used by the AGC are clocked at 
this rate. The AGC clock maximum frequency is 500 MHz. The clock is the greatest 2N multiple of the IQ rate less than 500 MHz. For 
example, for a receiver profile with an IQ output rate of 245.76 MSPS, the AGC clock is 491.52 MHz. 

The AGC state machine contains 3 states, the gain update counter, followed by the slow loop settling (SLS) delay, and a constant 5 AGC 
clock cycles delay. The total time between gain updates (gain update period) is a combination of agcSlowLoopSettlingDelay and 5 AGC 
clock cycles.  
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Figure 87. Gain Update Period 

Figure 87 outlines the operation of the AGC state machine. The diagram outlines possible gain change scenarios rather than a practical 
example of AGC operation. The possible gain change scenarios are described as follows: 

• AGC gain attack within gain update counter, but more than an SLS delay before the gain update counter expiry. Because SLS is 
typically several orders of magnitude smaller than the gain update counter, this is the most common gain decrement scenario.  

• AGC gain attack within the gain update counter, but within an SLS delay before the gain update counter expiry. This is a special case, 
but rarely occurs in applications per the reasoning described in the previous scenario.  

• AGC gain recovery at the end of the gain update counter. Note that when fast recovery is enabled, the gain update counter is 
substituted with the low underrange interval, per Figure 83.  

A gain attack may occur within the gain update counter period when fast attack is enabled. A gain recovery event may only occur at the 
end of the gain update counter period. After a gain attack, a gain change counter with a value equal to the SLS delay is started. No further 
gain attacks are possible while this counter is running. This allows the minimum time to be set between gain changes. However, the gain 
change counter also prevents the AGC from moving from the gain update counter state to the SLS delay state. Therefore, if a gain attack 
occurred very close to the end of the gain update counter state, the gain change counter delays the start of the SLS state and shifts the gain 
recovery event. To prevent this happening and maintain a periodic gain recovery event, gain attacks are prevented from happening 
towards the end of the gain update counter state, as shown in Figure 87. If a gain attack happens in this period, it is delayed until the start 
of the next gain update counter state. This can cause gain attacks to be held off for up to 2 × SLS delay, therefore it is recommended to 
keep SLS delay as short as possible to minimize the gain attack delay. Note that it is possible to disable this blocking feature, allowing gain 
attacks to occur anywhere within the gain update counter state. However, the periodicity of the gain recovery event is no longer 
guaranteed as gain attacks towards the end of the gain update counter state cause the gain recovery event to be delayed.  
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At the expiry of the gain update counter, all measurement blocks are reset and any peak detector counts are reset back to zero. When the 
receiver is enabled, the counter begins. This may mean that its expiry is at an arbitrary phase to the slot boundaries of the signal. The 
expiry of the counter can be aligned to the slot boundaries by setting the agcEnableSyncPulseForGainCounter parameter. While this bit is 
set, the AGC monitors a GPIOx pin to find a synchronization pulse. This pulse causes the reset of the counter at this point in time. 
Therefore, if the user supplies a GPIO pulse time aligned to these slot boundaries, the expiry of the counter is aligned to slot boundaries. 
Any of GPIO_0 to GPIO_15 can be used for this purpose. 

For example, considering a 100 µs gain update period and a 491.52 MHz AGC clock, a total of 49,152 AGC clocks exist in the gain update 
period. 

Gain Update Period (AGC Clocks) = 491.52 MHz × 100 µs = 49,152 

As noted, the full gain update period is the sum of the agcGainUpdateCounter, the agcSlowLoopSettlingDelay, and 5 clock cycles. If the 
agcSlowLoopSettlingDelay is set to 4, the gain update counter must be set to 49,139. 

Gain Update Period (AGC Clocks) = agcGainUpdateCounter × 2(agcSlowLoopSettingDelay) + 5 

Gain Update Period (AGC Clocks) = 49,139 + 2(4) + 5 = 49,152 

When receiver is enabled, the AGC can be kept inactive for a number of AGC clock cycles by using agcRxAttackDelay. This means the 
user can specify one delay for AGC reaction when entering receiver mode, and another for after a gain change occurs 
(agcSlowLoopSettlingDelay).  

ANALOG PEAK DETECTOR (APD) 
The analog peak detector is located in the analog domain following the TIA filter and prior to the ADC input (see Figure 76). The APD 
functions by comparing the signal level to programmable thresholds. When a threshold has been exceeded a programmable number of 
times in a gain update period, the detector flags that the threshold has been overloaded. 
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Figure 88. Analog Peak Detector Thresholds 

There are two APD thresholds, as shown in Figure 88. These thresholds are contained in the agcPeak API structure, apdHighThresh and 
apdLowThresh, respectively.  
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To determine the setting of the APD thresholds in terms of the closest possible setting in terms of dBFS of the ADC (ADCdBFS), the 
following equations can be used: 

850 10 16
20round

16

ADCdBFS

apdHighThresh

 × − 
=  

  
 

  

850 10 16
20round

16

ADCdBFS

apdLowThresh

 × − 
=  

  
 

 

Note that the APD is an analog circuit located after the TIA filter. The previous equations assume that the TIA does not attenuate the 
signal, but the receiver path is typically configured to have some analog roll-off within the pass band, compensated by the programmable 
FIR filter. The TIA provides filtering that attenuates the signal seen at the APD, which means that a larger signal is required to assert the 
APD. There is a known issue with the APD where it is more sensitive to signals near dc (<5 MHz, generally). This increased sensitivity 
(typically on the order of 1 dB to 2 dB) is accounted for with the introduction of a secondary digital threshold that prevents the APD from 
making a gain change when the input signal is detected in-band. This prevents the sensitivity from causing unnecessary changes to the 
gain index. The APD acts mostly as an out-of-band blocker detector.  

The APD threshold must be exceeded a programmable number of times within a gain update counter period before an overrange 
condition occurs. Both the upper and lower thresholds have a programmable counter in the agcPeak API structure, as indicated in Table 154. 

Table 154. APD Programmable Threshold Counters 
Threshold Counter 
Upper threshold (apdHighThresh) apdUpperThreshPeakExceededCnt 
Lower threshold (apdLowThresh) apdLowerThresPeakExceededCnt 

As described in the Automatic Gain Control section, the APD is used for both gain attack and gain recovery in peak detect mode. In 
power detect mode, the APD is used for gain attack and is used to prevent overloading during gain recovery.  

In AGC mode, the APD has programmable gain attack and gain recovery step sizes.  

Table 155. APD Attack and Recovery Step Sizes 
Gain Change Step Size 
Gain Attack apdGainStepAttack 
Gain Recovery apdGainStepRecovery 

Step size refers to the number of indices of the gain table used for each gain adjustment. The gain table is programmed with the largest 
gain in the maximum gain index (typically Index 255), with ever decreasing gain for decreasing gain index. Therefore, if the APD gain 
attack step size is programmed to 6, this means that the gain index is reduced by 6 when the apdHighThresh has been exceeded more 
than apdUpperThreshPeakExceededCnt times. For example, if the gain index had been 255 before this overrange condition, the gain 
index is reduced to 249. The amount of gain reduction this equates to is dependent on the gain table in use. The default table has 0.5 dB 
steps, which, in this example, equates to a 3 dB gain reduction upon an APD overrange condition. 

The APD is held in reset for a configurable amount of time following a gain change to ensure that the receiver path is settled at the new 
gain setting before monitoring the paths for overranges. This is configured using the agcPeakWaitTime API parameter. 

HALF-BAND 2 PEAK DETECTOR 
The HB2 peak detector is located in the digital domain at the output of the Half-Band 2 filter. The HB2 peak detector can, therefore, also 
be referred to as the decimated data overload detector because it works on decimated data. Like the APD detector, the HB2 peak detector 
functions by comparing the signal level to programmable thresholds. The HB2 peak detector monitors the signal level by observing 
individual I2 + Q2 samples (or peak I and peak Q if hb2OverloadPowerMode = 0) over a period of time and compares these samples to the 
threshold. If a sufficient number of samples exceed the threshold in the period of time, the threshold is noted as exceeded by the detector. 
The duration of the HB2 measurement is controlled by hb2OverloadDurationCnt, whereas the number of samples that exceeds the 
threshold in that period is controlled by hb2OverloadThreshCnt.  
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After the required number of samples exceeds the threshold in the duration required, the detector records that the threshold was 
exceeded. Like the APD detector, the HB2 detector requires a programmable number of times for the threshold to be exceeded in a gain 
update period before it flags an overrange condition.  

Figure 89 shows the two level approach. Figure 89 shows the gain update counter period, with the time being broken into subsets of time 
based on the setting of hb2OverloadDurationCnt. Each of these periods of time are considered separately, and hb2OverladThreshCnt 
individual samples must exceed the threshold within hb2OverloadDurationCnt for an overload to be declared. These individual samples 
greater than the threshold are shown in red, while those less than the threshold are shown in green. Two examples are shown, one where 
the number of samples exceeding the threshold is sufficient for the HB2 peak detector to declare an overload (this time period is shown as 
red in the gain update counter timeline), and a second example where the number of samples exceeding the threshold is not sufficient to 
declare an overload (this time period is shown as green in the gain update counter timeline). The number of overloads are counted, and if 
the number of overloads of the hb2HighThresh exceed hb2UpperThreshPeakExceededCnt in a gain update counter period, an overrange 
condition is called. Likewise, if the number of overloads of the hb2UnderRangeHighThresh does not exceed 
hb2LowerThreshPeakExceededCnt, an underrange condition is called. 
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Figure 89. HB2 Detector Two-Level Approach for an Overload Condition 

The HB2 detector has a number of programmable thresholds. Some of these thresholds are only used in the fast recovery mode of the 
peak detect AGC configuration, as summarized in Table 156. 

Table 156. HB2 Overload Thresholds 
HB2 Threshold Usage 
hb2HighThresh Used for gain attack in both peak and power detect AGC modes. 
hb2UnderRangeHighThresh Used for gain recovery in peak detect AGC mode. In power detect AGC mode, it is used to prevent overloads 

during gain recovery. 
hb2UnderRangeMidThresh Used only when the fast recovery option of the peak detect AGC mode is being utilized. 
hb2UnderRangeLowThresh Used only when the fast recovery option of the peak detect AGC mode is being utilized. 

For more details of how these thresholds are used by the AGC, refer to the Peak Detect Mode section, Figure 80, Figure 82, and Figure 84. 

The thresholds are related to an ADC dBFS value using the following equations: 
2
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Each threshold has an associated counter so that an overrange condition is not flagged until the threshold has been exceeded the amount 
of times determined by the corresponding equation in a gain update period. Note that these equations only apply if 
hb2OverladPowerMode = 0. If this parameter is set to 1, the denominator in the exponent of each equation changes from 20 to 10.  
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Table 157. Gain Steps for HB2 Overrange and Underrange Conditions 
HB2 Threshold Counter 
hb2HighThresh hb2UpperThreshPeakExceededCnt 
hb2UnderRangeHighThresh hb2UnderRangeHighThreshExceededCnt 
hb2UnderRangeMidThresh Hb2UnderRangeMidThreshExceededCnt 
hb2UnderRangeLowThresh Hb2UnderRangeLowThreshExceededCnt 

In AGC mode, the HB2 has programmable gain attack and gain recovery step sizes.  

Table 158. HB2 Attack and Recovery Step Sizes 
Gain Change Step Size 
Gain Attack hb2GainStepAttack 
Gain Recovery (hb2UnderRangeHighThresh) hb2GainStepHighRecovery 
Gain Recovery (hb2UnderRangeMidThresh) hb2GainStepMidRecovery 
Gain Recovery (hb2UnderRangeLowThresh) hb2GainStepLowRecovery 

The HB2 peak detector is held in reset for a configurable amount of time following a gain change to ensure that the receiver path is settled 
at the new gain setting before monitoring the paths for over-range conditions. This duration is configured using the agcPeakWaitTime 
API parameter. 

POWER DETECTOR 
The power measurement block measures the rms power of the incoming signal. The power measurement block can monitor the signal 
level at different locations, namely the HB2 output, the RFIR output, and the output of the dc correction block. To choose a location, the 
powerInputSelect API parameter is utilized, as described in Table 159. 

Table 159. Location of the Decimated Power Measurement 
powerInputSelect Value 
RFIR Output 0 
HB1 1 
HB2 2 

The number of samples that are used in the power measurement calculation is configurable using the powerMeasurementDuration API 
parameter. 

PowerMeasDuration (Rx Sample Clocks) = 8 × 2powerMeasurementDuration 

where Rx Sample Clocks is the number of clocks at the power measurement location. It is important that this duration not exceed the gain 
update counter. The gain update counter resets the power measurement block and, therefore, a valid power measurement must be 
available before this event. In the case of multiple power measurements occurring in a gain update period, the AGC uses the last fully 
completed power measurement, and any partial measurements are discarded. 

The power measurement block has a dynamic range of 60 dB by default. Power measured in the receiver datapath can be read back with 
the adi_adrv9025_RxDecPowerGet command.  

adi_adrv9025_RxDecPowerGet(…) 
adi_adrv9025_RxDecPowerGet(adi_adrv9025_Device_t* device, adi_adrv9025_RxChannels_e rxChannel, 
uint16_t *rxDecPower_mdBFS) 

Description  

This command readback for receiver power measurement.  

Parameters 

Table 160. adi_adrv9025_RxDecPowerGet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
rxChannel An enumerator indicating which receiver channel to configure, as shown in Table 146. 
*rxDecPower_mdBFS Pointer to the variable through which the power measurement reading is returned. 
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API PROGRAMMING 
The API programming sequence for the gain control blocks is detailed in Figure 90. The configuration of these blocks is one of the last 
steps before making the device operational. The structures are defined before initialization of the device begins. When device 
initialization has proceeded up to the configuration of the JESD204B and JESD204C, the gain control configuration begins.  

The following API is used to configure the gain control blocks within the device, such as the peak detectors, the power detector, and the 
AGC if used. It is required to call this command in applications that require AGC. 

adi_adrv9025_AgcCfgSet(…) 
adi_adrv9025_AgcCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025_AgcCfg_t agcConfig[], uint8_t 
arraySize) 

Description  

This command configures the gain control blocks within the device, such as peak detectors, power detector, and AGC settings. 

Parameters 

Table 161. adi_adrv9025_AgcCfgSet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
agcConfig An array of gain control configuration structures of type adi_adrv9025_AgcCfg_t. 
arraySize The number of configuration structures in agcConfig[]. 

The composition of the gain control configuration structure is detailed in the AGC Holdover Function section. After agcConfig[] has 
been configured, the desired gain control mode can be enabled by using the adi_adrv9025_RxGainCtrlModeSet( ) API function. 

The final step is to configure any GPIOs as necessary, whether monitor outputs, which allow real-time monitoring of the peak detector 
outputs, or GPIO inputs, which allow the AGC gain update counter to be synchronized to a slot boundary, or GPIOs to directly control 
the gain index.  
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Figure 90. Gain Control Programming Flowchart 
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AGC HOLDOVER FUNCTION 
The transceiver AGC uses counters to keep track of any overrange or underrange events. These events are used to increment a counter 
that accumulates and triggers the AGC state machine if it exceeds the desired count value. For a TDD case, the counters get reset every 
time the receiver enable goes low. This reset of the overrange and underrange counters can potentially cause the AGC state machine to 
never trigger if the gainUpdateCounter is larger than the receiver TDD slot duration. The AGC holdover function has been implemented 
to avoid this situation by preventing the counters from getting reset when the receiver enable is toggled. 

To enable this function, the user must create a stream file using the transceiver evaluation software with the AGC state persist box 
checked in the stream settings window, as shown in Figure 91. After this box is checked, a stream file can be created with the AGC 
holdover function enabled to prevent AGC counter resets during TDD operation. 

22
77

0-
09

0

 
Figure 91. TES Stream Settings Control Window to Enable AGC Holdover 

RECEIVER GAIN MODE SWITCHING USING GPIO 
This feature allows the use of a GPIOx pin to force receiver gain index changes and move to MGC mode. This feature is beneficial if the 
user wants to run a quick RF calibration for the entire receiver signal chain. Such a calibration requires a fixed receiver gain index, which 
is not possible to guarantee if the device is in AGC mode. The user can change the mode to MGC and then change the receiver gain 
index, but the duration of this switch is a few ms, which is not feasible in a 5G NR TDD platform. 

When this feature is employed, the user can enable a GPIOx pin to change the receiver gain index to a fixed predetermined value and 
move the receiver to MGC mode. This action sets the gain index and avoids the issue of the AGC state machine modifying the index. The 
user can then run the desired function (for example, RF calibration) and then toggle the GPIO low to restore the original receiver state. 
When the GPIO is low, the gain control mode is restored back to AGC to resume normal receiver operation. 

To enable receiver GPIO gain mode switching, the user must create a stream file using the TES with the Rx Gain Gpio Pin set to the 
desired GPIO pin, as shown in Figure 92.  
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Figure 92. TES Stream Settings Control Window to Enable Receiver Gain Mode Switching using GPIO 
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The user also must use the StreamGpioConfigSet API function to unmask the stream GPIO source to allow the stream to be triggered on 
the desired GPIO. The steps to set up this feature are the following: 

1. Generate the stream with the correct GPIO set to the receiver gain GPIO tag, as shown in Figure 92. 
2. Use StreamGpioConfigSet function (called during postMcsInit) with the correct GPIO pin selected, as shown in the 

StreamGpioConfigSet Function section. 
3. Set the receiver manual gain to the desired value to be used during the calibration. 

By following these steps, the user can move the receiver to MGC mode when the GPIO goes high and move the receiver back to AGC 
mode when the GPIO goes low. Note that this function affects all four channels of the receivers if utilized. 

StreamGpioConfigSet Function 
streamGpioCfg = Types.adi_adrv9025_StreamGpioPinCfg_t() 

 

streamGpioCfg.streamGpInput0  = Types.adi_adrv9025_GpioPinSel_e. ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput1  = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput2  = Types.adi_adrv9025_GpioPinSel_e. ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput3  = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput4  = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput5  = Types.adi_adrv9025_GpioPinSel_e. ADI_ADRV9025_GPIO_05 

streamGpioCfg.streamGpInput6  = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput7  = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput8  = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput9  = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput10 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput11 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput12 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput13 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput14 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

streamGpioCfg.streamGpInput15 = Types.adi_adrv9025_GpioPinSel_e.ADI_ADRV9025_GPIO_INVALID 

 

link.platform.board.Adrv9025Device.RadioCtrl.StreamGpioConfigSet(streamGpioCfg) 
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GAIN CONTROL DATA STRUCTURES 
Figure 93 shows the member structure of adi_adrv9025_AgcCfg_t, and of its substructures, adi_adrv9025_AgcPeak_t and 
adi_adrv9025_AgcPower_t. Each of the parameters are briefly explained in Table 162, Table 163, and Table 164.  

22
77

0-
09

2

adi_adrv9025_AgcCfg_t
+ rxChannelMask
+ agcPeakWaitTime
+ agcRxMaxGainIndex
+ agcRxMinGainIndex
+ agcGainUpdateCounter
+ agcRxAttackDelay
+ agcSlowLoopSettlingDelay
+ agcLowThreshPreventGainInc
+ agcGainChangelfThreshHigh
+ agcPeakThreshGainControlMode
+ agcResetOnRxOn
+ agcEnableSyncPulseForGainCounter
+ agcEnableFastRecoveryLoop

adi_adrv9025_AgcPeak_t

+ agcPeak + agcPower

+ agcUnderRangeLowInterval
+ agcUnderRangeMidInterval
+ agcUnderRangeHighInterval
+ apdHighThresh
+ apdLowGainModeHighThresh
+ apdLowThresh
+ apdLowGainModeLowThresh
+ apdUpperThreshPeakExceededCnt
+ apdLowerThreshPeakExceededCnt
+ apdGainStepAttack
+ apdGainStepRecovery
+ enableHb2Overload
+ hb2OverloadDurationCnt
+ hb2OverloadThreshCnt
+ hb2HighThresh
+ hb2UnderRangeLowThresh
+ hb2UnderRangeMidThresh
+ hb2UnderRangeHighThresh
+ hb2UpperThreshPeakExceededCnt
+ hb2UnderRangeHighThreshPeakExceededCnt
+ hb2GainStepHighRecovery
+ hb2GainStepLowRecovery
+ hb2GainStepMidRecovery
+ hb2GainStepAttack
+ hb2OverloadPowerMode
+ hb2ThreshConfig
+ hb2UnderRangeMidThreshPeakExceededCnt
+ hb2UnderRangeLowThreshPeakExceededCnt

adi_adrv9025_AgcPower_t
+ powerEnableMeasurement
+ powerInputSelect
+ underRangeHighPowerThresh
+ underRangeLowPowerThresh
+ underRangeHighPowerGainStepRecovery
+ underRangeLowPowerGainStepRecovery
+ powerMeasurementDuration
+ rxTddPowerMeasDuration
+ rxTddPowerMeasDelay
+ overRangeHighPowerThresh
+ overRangeLowPowerThresh
+ powerLogShift
+ overRangeHighPowerGainStepAttack
+ overRangeLowPowerGainStepAttack

 
Figure 93. Member Listing of adi_adrv9025_AgcCfg_t Data Structure 

Table 162. adrv9025_AgcCfg_t Structure Definition 
Parameter Description Min Value Max Value 
rxChannelMask This selects the channels upon which to enable this gain control 

mode. It is a bit mask with each bit corresponding to a channel, 
[D0] = Rx1, [D1] = Rx2, [D2] = Rx3, [D3] = Rx4. Therefore, setting the 
rxChannelMask = 15 means that all receiver channels are 
configured with the same AGC configuration. 

0 15 

agcPeakWaitTime Number of AGC clock cycles to wait before enable peak/overload 
detectors after a gain change. 

0 31 

agcRxMaxGainIndex Maximum gain index allowed in AGC mode. Must be greater than 
agcMinGainIndex and be a valid gain index. 

0 255 

agcRxMinGainIndex Minimum gain index allowed in AGC mode. Must be less than 
agcRxMaxGainIndex and be a valid gain index. 

0 255 

agcGainUpdateCounter Used as a decision period, with the peak detectors reset on this 
period. Gain changes in AGC mode can also be synchronized to 
this period (the expiry of this counter). The full period is a 
combination of the agcGainUpdateCounter and 
agcSlowLoopSettlingDelay. 

Depends on 
overload 
detector 
settings 

4194303 
AGC_CLK 
cycles 

agcRxAttackDelay Hold the duration the AGC must be held in reset when the receiver 
path is enabled.  

0 63 
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Parameter Description Min Value Max Value 
agcSlowLoopSettlingDelay Number of AGC clock cycles to wait after a gain change before the 

AGC changes gain again. 
0 127 

agcLowThreshPreventGain Only relevant in peak and power detect AGC operation. 0 1 
 1: If AGC is in peak power detect mode, gain increments requested 

by the power detector are prevented if there are sufficient peaks 
(APD/HB2 low threshold exceeded count) above the 
apdLowThresh or hb2UnderRangeHighThresh.  

  

 0: apdLowThresh and hb2UnderRangeHighThresh are don’t cares 
for gain recovery. 

  

agcChangeGainIfThreshHigh Applicable in both peak and peak mode and power detect mode.  0 3 
 0: gain changes wait for the expiry of the gain update counter if a high 

threshold count has been exceeded on either the APD or HB2 
detector. 

  

 1: gain changes occur immediately when initiated by HB2. Gain 
changes initiated by the APD wait for the gain update to expire. 

  

 2: gain changes occur immediately when initiated by APD. Gain 
changes initiated by HB2 wait for the gain update to expire. 

  

 3: gain changes occur immediately when initiated by APD or HB2 
detectors. 

  

agcPeakThreshGainControlMode 1: AGC in peak AGC mode, power-based gain changes are disabled.  0 1 
 0: AGC in peak and power AGC mode where both peak detectors 

and power detectors are utilized. 
  

agcResetOnRxon 1: AGC state machine is reset when the receiver is disabled. The 
AGC gain setting is returned to the maximum gain.  

0 1 

 0: AGC state machine maintains its state when the receiver is disabled.   
agcEnableSyncPulseForGainCounter 1: Allows synchronization of the AGC gain update counter to the 

time slot boundary. GPIO setup required.  
0 1 

 0: AGC gain update counter free runs.   
agcEnableFastRecoveryLoop 1: Enables the fast recovery AGC functionality using the HB2 

overload detector. Only applicable in peak detect mode. 
0 1 

 0: AGC fast recovery is not enabled.   
agcPower Structure containing all the power detector settings.  Not 

applicable 
Not 
applicable 

agcPeak Structure containing all the peak detector settings.  Not 
applicable 

Not 
applicable 

Table 163. adrv9025_AgcPeak_t Structure Definition 
Parameter Description Min Value Max Value 
agcUnderRangeLowInterval This sets the time constant (in AGC clock cycles) that the AGC recovers 

when the signal peaks are less than hb2UnderRangeLowThresh. 
Only applicable when the fast recovery option is enabled in peak 
detect AGC mode.  

Depends on 
HB2 detector 
settings 

65535 

agcUnderRangeMidInterval This sets the time constant (in AGC clock cycles) that the AGC recovers 
when the signal peaks are less than hb2UnderRangeMidThresh. 
Calculated as (agcUnderRangeMidInterval + 1) × 
agcUnderRangeLowInterval. 

0 63 

 Only applicable when the fast recovery option is enabled in peak 
detect AGC mode. 

  

agcUnderRangeHighInterval This sets the time constant (in AGC clock cycles) that the AGC recovers 
when the signal peaks are less than hb2UnderRangeHighThresh. 
Calculated as (agcUnderRangeHighInterval + 1) × 
agcUnderRangeMidInterval 

0 63 

 Only applicable when the fast recovery option is enabled in peak 
detect AGC mode. 
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Parameter Description Min Value Max Value 
apdHighThresh This sets the upper threshold of the analog peak detector. When 

the input signal exceeds this threshold a programmable number 
of times (set by its corresponding overload counter) within a gain 
update period, the overload detector flags. In AGC modes, the gain 
is reduced when this overload occurs. The value is calculated using 
the equation: adpdHighThresh (mV) = (apdHighThresh + 1) × 16 mV. 

apdLowThresh 63 

apdLowGainModeHighThresh This parameter is not utilized.   
apdLowThresh This sets the lower threshold of the analog peak detector. When the 

input signal exceeds this threshold a programmable number of times 
(set by its corresponding overload counter) within a gain update 
period, the overload detector flags. In peak AGC mode, the gain is 
increased when this overload is not occurring. In power AGC mode, 
this threshold can be used to prevent further gain increases if the 
agcLowThreshPreventGain bit is set. The value is calculated using the 
equation: adpdLowThresh (mV) = (apdLowThresh + 1) × 16 mV. 

7 apdHighThresh 

apdLowGainModeLowThresh This parameter is not utilized.   
apdUpperThreshPeakExceededCnt Sets number of peaks to detect greater than apdHighThresh to 

cause an APD high overrange event. In AGC modes, this results in a 
gain decrement set by apdGainStepAttack. 

0 255 

apdLowerThreshPeakExceededCnt Sets number of peaks to detect greater than apdLowThresh to 
cause an APD low overload event. In peak detect AGC mode, if an 
APD low overload event is not occurring, this results in a gain 
increment set by apdGainStepRecovery. 

0 255 

apdGainStepAttack The number of indices that the gain index pointer must be 
decreased in the event of an APD high overrange in AGC modes. 
The step size in dB depends on the gain step resolution of the gain 
table (default 0.5 dB per index step). 

0 31 

apdGainStepRecovery The number of indices that the gain index pointer must be 
increased in the event of an APD underrange event occurring in 
peak detect AGC mode. The step size in dB depends on the gain 
step resolution of the gain table (default 0.5 dB per index step). 

0 31 

enableHb2Overload 1: HB2 overload detector enabled. 0: HB2 overload detector disabled. 0 1 
hb2OverloadDurationCnt The number of clock cycles (at the HB2 output rate) within which 

hb2OverloadThreshCnt must be exceeded for an overload to 
occur. An HB2 overload flag is only raised when the number of 
these overloads exceeds hb2UpperThreshPeakExceededCnt or 
hb2LowerThreshPeakExceededCnt within a gain update period. 
The number of clocks is 2(hb2OverloadDurationCnt + 1). 

0 6 

hb2OverloadThreshCnt Sets the number of individual samples exceeding hb2HighThresh 
or hb2LowThresh necessary within hb2OverloadDurationCnt for 
an overload to occur. The HB2 overload flag is only raised when 
the number of these overloads exceeds 
hb2UpperThreshPeakExceededCnt or 
hb2LowerThreshPeakExceededCnt within a gain update period. 

1 15 

hb2HighThresh This sets the upper threshold of the HB2 detector.  0 16383 
  

 
 = ×

2
202  16,384 10

hb HighdBFS

hb HighThresh   
  

hb2UnderRangeLowThresh This sets the lower threshold of the HB2 underrange threshold 
detectors. Used only when the fast recovery option of the peak 
detect AGC mode is being utilized. 

0 16383 

  
 
 = ×

2
202  16,384 10

hb UnderRangeLowdBFS

hb UnderRangeLowThresh  
  

hb2UnderRangeMidThresh This sets the middle threshold of the HB2 underrange threshold 
detectors. Used only when the fast recovery option of the peak 
detect AGC mode is being utilized. 

0 16383 

  
 
 = ×

2
202  16,384 10

hb UnderRangeMiddBFS

hb UnderRangeMidThresh  
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Parameter Description Min Value Max Value 
hb2UnderRangeHighThresh; Peak detect mode: threshold used for gain recovery. 0 16383 
 Peak detect with fast recovery mode: this sets the highest 

threshold of the HB2 underrange threshold detectors. 
  

 Power detect mode: threshold used to prevent further gain 
increases if agcLowThreshPreventGain is set. 

  

  
 
 = ×

2
202  16,384 10

hb UnderRangeHIghdBFS

hb UnderRangeHighThresh  
  

hb2UpperThreshPeakExceededCnt Sets number of individual overloads greater than hb2HighThresh 
(number of times hb2OverloadThreshCnt was exceeded in 
hb2OverloadDurationCnt) to cause an HB2 high overrrange event. 
In AGC modes, this results in a gain decrement set by 
hb2GainStepAttack.  

0 255 

hb2UnderRangeHighThreshExceededCnt Sets number of individual overloads greater than 
hb2UnderRangeHighThresh (number of times hb2OverloadThreshCnt 
was exceeded in hb2OverloadDurationCnt) to cause an HB2 
underrange high threshold overload event. In peak detect AGC 
mode, not having sufficient peaks to cause the overload is flagged 
as an underrange event and the gain is recovered by 
hb2GainStepHighRecovery. 

0 255 

hb2GainStepHighRecovery The number of indices that the gain index pointer must be 
increased in the event of an HB2 underrange high threshold 
underrange event. 

0 31 

hb2GainStepLowRecovery Only applicable in fast recovery mode of peak detect AGC. This 
sets the number of indices that the gain index pointer must be 
increased in the event of an HB2 underrange low threshold 
underrange event. 

0 31 

hb2GainStepMidRecovery Only applicable in fast recovery mode of peak detect AGC. This sets the 
number of indices that the gain index pointer must be increased in the 
event of an HB2 underrange mid threshold underrange event. 

0 31 

hb2GainStepAttack The number of indices that the gain index pointer must be 
decreased in the event of an HB2 high threshold overrange event 
in AGC modes. The step size in dB depends on the gain step 
resolution of the gain table (default 0.5 dB per index step). 

0 31 

hb2OverloadPowerMode Sets the measurement mode of the HB2 detector. If it is set to 0, 
the hb2 threshold sample type is signal amplitude. If it is set to 1, 
the hb2 threshold sample type is signal power. 

0 1 

hb2ThreshConfig Set to 3. 3 3 
hb2UnderRangeMidThreshExceededCnt Only applicable in fast recovery mode of peak detect AGC. Sets 

number of individual overloads above hb2UnderRangeMidThresh 
(number of times hb2OverloadThreshCnt was exceeded in 
hb2OverloadDurationCnt) to cause an HB2 underrange mid 
threshold overload event. In peak detect AGC mode, not having 
sufficient peaks to cause the overload is flagged as an underrange 
event and the gain is recovered by hb2GainStepMidRecovery. 

0 255 

hb2UnderRangeLowThreshExceededCnt Only applicable in fast recovery mode of peak detect AGC. Sets the 
number of individual overloads greater than 
hb2UnderRangeLowThresh (number of times hb2OverloadThreshCnt 
was exceeded in hb2OverloadDurationCnt) to cause an HB2 
underrange low threshold overload event. In peak detect AGC 
mode, not having sufficient peaks to cause the overload is flagged 
as an underrange event and the gain is recovered by 
hb2GainStepLowRecovery. 

0 255 

Table 164. adrv9025_AgcPower_t Structure Definition 
Parameter Description Min Value Max Value 
powerEnableMeasurement 1: power measurement block enabled. 0: power measurement 

block disabled. 
0 1 

powerInputSelect This parameter sets the location of the power measurement. 0 = 
RFIR output, 1 = HB1 output, 2 = HB2 output. 

0 3 
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Parameter Description Min Value Max Value 
underRangeHighPowerThresh Threshold in dBFS (negative sign assumed), which defines the lower 

boundary on the stable region of the power detect gain control mode.  
0 127 

underRangeLowPowerThresh Offset (negative sign assumed) from underRangeHighPowerThresh, 
which defines the outer boundary of the power based AGC 
convergence. Typically, recovery is set to be larger steps than when 
the power measurement is less than this threshold. 

0 31 

underRangeHighPowerGainStepRecovery The number of indices that the gain index pointer must be 
increased (gain increase) in the event of the power measurement 
being less than underRangeHighPowerThresh but greater than 
underRangeLowPowerThresh. 

0 31 

underRangeLowPowerGainStepRecovery The number of indices that the gain index pointer must be 
increased (gain increase) in the event of the power measurement 
being less than underRangeLowPowerThresh. 

0 31 

powerMeasurementDuration Number of IQ samples on which to perform the power 
measurement. The number of samples corresponding to the 4-bit 
word is 8 × 2(pmdMeasDuration[3:0]). This value must be less than the AGC 
gain update counter.  

0 31 

rxTddPowerMeasDuration Following a receiver enable, the power measurement block can be 
requested to perform a power measurement for a specific period of 
a frame. This is applicable in TDD modes. This parameter sets the 
duration of this power measurement. A value of 0 causes the power 
measurement to run until the next gain update counter expiry. 

0 65535 AGC 
clock 
cycles 

rxTddPowerMeasDelay Following a receiver enable, the power measurement block can be 
requested to perform a power measurement for a specific period of a 
frame. This is applicable in TDD modes. This parameter sets the delay 
between the receiver enable and the power measurement starting on Rx1. 

0 65535 AGC 
clock 
cycles 

overRangeHighPowerThresh Threshold in dBFS (negative sign assumed), which defines the 
upper boundary on the stable region (no gain change based on 
power measurement) of the power detect gain control mode. 

0 127 

overRangeLowPowerThresh Offset (positive sign assumed) from upper0PowerThresh, which 
defines the outer boundary of the power based AGC convergence. 
Typically, attack is set to be larger steps than when the power 
measurement is greater than this threshold. 

0 15 

powerLogShift Enable increase in dynamic range of the power measurement from 
40 dB to ~60 dB. 

0 1 

overRangeHighPowerGainStepAttack The number of indices that the gain index pointer must be 
decreased (gain reduction) in the event of the power measurement 
being greater than overRangeHighPowerThresh. 

0 31 

overRangeLowPowerGainStepAttack The number of indices that the gain index pointer must be 
decreased (gain decrease) in the event of the power measurement 
being less than OverRangeHighPowerThresh but greater than 
OverRangeLowPowerThresh. 

0 31 

SAMPLE PYTHON SCRIPT—PEAK DETECT MODE WITH FAST ATTACK 
The following is a sample python script to enable the AGC in peak detect mode. The user can use this sample script as a starting point to 
enable AGC on the evaluation platform.  
#Import Reference to the DLL 
import System 
import clr 
from System import Array 
clr.AddReferenceToFileAndPath("C:\\Program Files (x86)\\Analog Devices\\ADRV9025 Transceiver 
Evaluation Software\\adrv9025_dll.dll") 
from adrv9025_dll import AdiEvaluationSystem 
from adrv9025_dll import Types 
 
#Create an Instance of the Class 
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Link = AdiEvaluationSystem.Instance  

connect = False 

 

if (Link.IsConnected() == False): 

    connect = True 

    Link.Ads8.board.Client.Connect("192.168.1.10", 55556) 

    print "Connecting" 

 

if (Link.IsConnected()): 

    adrv9025 = Link.Adrv9025Get(1) 

 

    # Create an instance of the rxGainMode , agcConfig classes 

    rxGainMode = Types.adi_adrv9025_RxAgcMode_t() 

    agcConfig = Types.adi_adrv9025_AgcCfg_t() 

 

    # General Rx Gain Mode Configuration 

    rxGainMode.rxChannelMask = 0xF 

    rxGainMode.agcMode = Types.adi_adrv9025_RxAgcMode_e.ADI_ADRV9025_AGCSLOW  

 

    # General AGC Configuration 

    agcConfig.rxChannelMask = 0xF 

    agcConfig.agcPeakWaitTime = 4 

    agcConfig.agcRxMaxGainIndex = 255 

    agcConfig.agcRxMinGainIndex = 195 

    agcConfig.agcGainUpdateCounter = 921600 

    agcConfig.agcRxAttackDelay = 10 

    agcConfig.agcSlowLoopSettlingDelay = 16 

    agcConfig.agcLowThreshPreventGainInc = 1 

    agcConfig.agcChangeGainIfThreshHigh = 1 

    agcConfig.agcPeakThreshGainControlMode= 1 

    agcConfig.agcResetOnRxon = 0 

    agcConfig.agcEnableSyncPulseForGainCounter = 0 

    agcConfig.agcEnableFastRecoveryLoop = 0 

 

    #adi_adrv9025_AgcPeak_t agcPeak; 

    agcConfig.agcPeak.agcUnderRangeLowInterval = 205000 / 245;         

    agcConfig.agcPeak.agcUnderRangeMidInterval = 2; 

    agcConfig.agcPeak.agcUnderRangeHighInterval = 4; 

    agcConfig.agcPeak.apdHighThresh = 38; 

    agcConfig.agcPeak.apdLowThresh = 25; 

    agcConfig.agcPeak.apdUpperThreshPeakExceededCnt = 10; 

    agcConfig.agcPeak.apdLowerThreshPeakExceededCnt = 3; 

    agcConfig.agcPeak.enableHb2Overload = 1; 

    agcConfig.agcPeak.hb2OverloadDurationCnt = 1; 

    agcConfig.agcPeak.hb2OverloadThreshCnt = 1; 

    agcConfig.agcPeak.hb2HighThresh = 11598; #-3dBFS 

    agcConfig.agcPeak.hb2UnderRangeLowThresh = 8211;  
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    agcConfig.agcPeak.hb2UnderRangeMidThresh = 5813;    

    agcConfig.agcPeak.hb2UnderRangeHighThresh = 2913; 

    agcConfig.agcPeak.hb2UpperThreshPeakExceededCnt = 10; 

    agcConfig.agcPeak.hb2UnderRangeHighThreshExceededCnt = 3; 

    agcConfig.agcPeak.hb2UnderRangeMidThreshExceededCnt = 3; 

    agcConfig.agcPeak.hb2UnderRangeLowThreshExceededCnt = 3; 

    agcConfig.agcPeak.hb2OverloadPowerMode = 0; 

    agcConfig.agcPeak.hb2ThreshConfig = 3;     

 

    agcConfig.agcPeak.apdGainStepAttack = 4; 

    agcConfig.agcPeak.apdGainStepRecovery = 2; 

    agcConfig.agcPeak.hb2GainStepAttack = 4; 

    agcConfig.agcPeak.hb2GainStepHighRecovery =2; 

    agcConfig.agcPeak.hb2GainStepMidRecovery = 4; 

    agcConfig.agcPeak.hb2GainStepLowRecovery = 8; 

 

    #adi_adrv9025_AgcPower_t agcPower; 

    agcConfig.agcPower.powerEnableMeasurement = 0; 

    agcConfig.agcPower.powerInputSelect = 0; 

    agcConfig.agcPower.underRangeHighPowerThresh = 9; 

    agcConfig.agcPower.underRangeLowPowerThresh = 2; 

    agcConfig.agcPower.underRangeHighPowerGainStepRecovery = 0; 

    agcConfig.agcPower.underRangeLowPowerGainStepRecovery = 0; 

    agcConfig.agcPower.powerMeasurementDuration = 5; 

    agcConfig.agcPower.rxTddPowerMeasDuration = 5; 

    agcConfig.agcPower.rxTddPowerMeasDelay = 1; 

    agcConfig.agcPower.overRangeHighPowerThresh = 2; 

    agcConfig.agcPower.overRangeLowPowerThresh = 0; 

    agcConfig.agcPower.powerLogShift = 1;  # Force to 1 

    agcConfig.agcPower.overRangeHighPowerGainStepAttack = 0; 

    agcConfig.agcPower.overRangeLowPowerGainStepAttack = 0; 

     

    # Make agcConfig and rxGainMode into array types (necessary for syntax reasons) 

    agcConfigArr = Array[Types.adi_adrv9025_AgcCfg_t]([agcConfig]) 

    rxGainModeArr = Array[Types.adi_adrv9025_RxAgcMode_t]([rxGainMode]) 

 

    # Write settings to device 

    adrv9025.Agc.AgcCfgSet(agcConfigArr, 1) 

 

    # Enable AGC Mode 

    adrv9025.Rx.RxGainCtrlModeSet(rxGainModeArr, 1) 

 

    print "Finished Programming Device"   

else: 

    print "Not Connected" 

 

if (connect == True): 
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    Link.Ads8.board.Client.Disconnect() 

    print "Disconnecting" 

GAIN COMPENSATION, FLOATING POINT FORMATTER AND SLICER 
The user has the option of enabling gain compensation in the transceiver. In gain compensation mode, the digital gain block is utilized to 
compensate for the analog front-end attenuation. The cumulative gain across the device is therefore 0 dB. For example, if 5 dB analog 
attenuation is applied at the front end of the device then 5 dB of digital gain is applied. This ensures that the digital data is representative 
of the rms power of the signal at the receiver input port. Any internal front-end attenuation changes made to prevent ADC overloading 
are transparent to the baseband processor. In this way, the AGC can be used to react quickly to incoming blockers without the need for 
the baseband processor to track the current gain index the level of the received signal at the input to the device for received signal 
strength measurements.  

The digital gain block is controlled by the gain table, and a compensated gain table is required to operate in this mode. Analog Devices 
provides an example compensated gain table in the software package. Such a gain table has a unique front-end attenuator setting with a 
corresponding amount of digital gain programmed at each index of the table.  

Gain compensation can be used in either AGC mode or MGC mode. The maximum amount of gain compensation is 50 dB. This allows 
for compensation of both the internal analog attenuator and an external gain component (such as a DSA or LNA).  

Large amounts of digital gain increase the bit width of the path. There are a number of ways in which this expanded bit width data can be 
sent to the baseband processor, which are described in the following mode option descriptions. Figure 94 is a block diagram of the gain 
compensation portion of the receiver chain, showing the locations of the various blocks. 
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Figure 94. Gain Compensation, Floating Point Formatter, and Slicer Section of the Receiver Datapath 

Mode 1: No Digital Gain Compensation 

This is the mode that the chip is configured to by default. In this mode the digital gain block is not used for gain compensation. Instead, 
the digital gain block may be utilized to apply small amounts of digital gain or attenuation to provide consistent gain steps in a gain table. 
The premise is that because the analog attenuator does not have consistent stops in dB across its range, the digital gain block can be 
utilized to even out the steps for consistency (the default table utilizes the digital gain block to provide consistent 0.5 dB steps). 

Neither the slicer nor floating point formatter block is utilized. As no gain compensation is applied, there is no bit width expansion of the 
digital signal. The signal is provided to the JESD204B and JESD204C port, which sends it to the baseband processor in either 12-bit, 16-
bit, or 24-bit format depending on the use case. 

Mode 2: Digital Gain Compensation with Slicer GPIO Outputs 

In this mode, gain compensation is used. Load the transceiver with a gain table that compensates for the analog front-end attenuation 
applied. As the analog front-end attenuation is increased, an equal amount of digital gain is applied. Considering 16-bit data at the input 
to the digital compensation block, as more digital gain is applied, the bit width of the signal is increased. With every 6 dB of gain, the bit 
width increases by 1. Figure 95 outlines this effect, with yellow boxes indicating the valid (used) bits in each case. 
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Figure 95. Bit Width of Received Signal for Increasing Gain Compensation  

The slicer is used to attenuate the data after the digital gain block in a way that it can fit into the resolution of the JESD204B and 
JESD204C datapath. The slicer then advises the user how much attenuation is being applied in real time, so that the user can compensate 
on the baseband processor side. In this mode, the current slicer setting (amount of attenuation) is provided in real time over GPIO pins.  

Note that this slicer setting information is not necessarily time aligned to the data at the baseband processor side. As soon as the slicer 
value changes, this information is provided on the GPIO pins. However, there is some latency between this and when the corresponding 
data arrives across the JESD204B and JESD204C link. It is up to the user to determine an appropriate way of accounting for this latency. 

This slicer can be configured for a number of attenuation resolutions, namely 1 dB, 2 dB, 3 dB, 4 dB, 6 dB, or 8 dB steps. Higher resolution 
(smaller steps) allows the user to follow the actual signal amplitude with finer resolution, while lower resolution (larger steps) allows for 
more compensation range. 

The slicer can use up to 4 GPIOs per receiver. The GPIOs used to output the slicer position are shown in Table 165. These GPIOs  require 
their pins to be enabled as outputs and configured for slicer output mode (see the GPIO Configuration section). 

Table 165. GPIOs Used for Slicer Output Mode 
Receiver GPIOs Utilized (MSB to LSB) 
Rx1 GPIO11, GPIO10, GPIO9, GPIO8 
Rx2 GPIO_15, GPIO14, GPIO13, GPIO12 
Rx3 GPIO7, GPIO6, GPIO5, GPIO4 
Rx4 GPIO3, GPIO2, GPIO1, GPIO_0 

The following example illustrated in Figure 96 explains the operation of the slicer in detail. In this use case, the JESD204B and JESD204C 
is configured for 16-bit data resolution. The slicer is configured to 6 dB resolution. 

Figure 96 explains the operation. Initially, the analog attenuator is applying no attenuation (0 dB) and, therefore, there is 0 dB digital gain 
applied to the signal. The slicer is in its default (0000) position. As the attenuation increases (0 dB to 6 dB), a corresponding amount of 
digital gain is applied to the signal. With any digital gain applied to the signal, the bit width of the signal has increased (the ADC can 
output 16-bits, and further gain allows a maximum input to go beyond 16-bits). In this case, the signal now has a bit width of 17. The 
slicer therefore applies 6 dB of attenuation, and the slicer position information across the GPIOs is updated to advise the user of this 
change (in this case 0001). This 6 dB attenuation ensures that the bit width of the signal is 16 again. That is, the 16 MSBs have been 
selected (sliced) with the LSB dropped. When the compensation increases beyond 6 dB, it is now possible that the signal resolution in the 
digital path can be 18-bit. The slicer then attenuates by 12 dB (or slices the 16 MSBs dropping the 2 LSBs). 

22
77

0-
09

5

0dB GAIN
COMPENSATION D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0dB < GAIN
COMPENSATION < 6dB

6dB ≤ GAIN
COMPENSATION < 12dB

D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

MSB

SLICER
OUTPUTS
TO BBP

LSB

0 0 0 0

0 0 0 0

0 0 0 0

 
Figure 96. Slicer Bit Selection with Digital Gain 

The baseband processor receives these 16-bits and uses the slicer output to scale the power of the received signal to determine the power 
at the input to the device (or at the input to an external gain element if considered part of the digital gain compensation).  
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The slicer position vs. digital gain for this 6 dB example is described in Table 166. Equivalent tables can be inferred for the other 
attenuation options. 

Table 166. Slicer GPIO Output vs. Digital Gain Compensation 
Digital Gain Compensation (dB) Slicer Position (Value Output on GPIOs) 
0 0 
0 < Dig_Gain < 6 1 
6 ≤ Dig_Gain < 12 2 
12 ≤ Dig_Gain < 18 3 
18 ≤ Dig_Gain < 24 4 
24 ≤ Dig_Gain < 30 5 
30 ≤ Dig_Gain < 36 6 
36 ≤ Dig_Gain < 42 7 
42 ≤ Dig_Gain < 48 8 
48 ≤ Dig_Gain ≤ 50 9 

Mode 3: Digital Gain Compensation with Embedded Slicer Position 

This mode is similar to Mode 2. The slicer is used to select the 16 MSBs based on the amount of digital gain used by the currently selected 
gain index in the gain table. However, in this mode the GPIO slicer outputs are not used. Instead, the slicer position (or attenuation 
applied) is embedded into the data.  

There are a number of permissible ways in which this can be configured, controlled by the intEmbeddedBits API parameter. The options 
are to place the slicer setting as 1 bit on both I and Q, or 2 bits on both I and Q. These can be placed at the MSBs or LSBs. For the case 
where 2 bits are embedded onto both I and Q data, there are further options of using 3 or 4 slicer bits. If 3 are used, there is another 
option of inserting a 0 to fill the 4th bit, or to insert a parity bit (by adjusting the intParity API parameter). Table 167 shows the various 
modes selectable by intEmbeddedBits. 

Table 167. adi_adrv9025_RxSlicerEmbeddedBits_e Description 
intEmbeddedBits Description 
ADI_ADRV9025_EMBED_1_SLICERBIT_AT_MSB Embeds 1 slicer bit on both I and Q at the MSB position. See Figure 97. 
ADI_ADRV9025_EMBED_1_SLICERBIT_AT_LSB Embeds 1 slicer bit on both I and Q at the LSB position. See Figure 98. 
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_3_BIT_SLICER Embeds 2 slicer bits on both I and Q at the MSB positions. See Figure 99. 

Because this is a 3-bit mode, an extra bit is inserted denoted as P in Figure 
99. This can either be a parity bit or a zero can always be inserted alternatively. 

ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_3_BIT_SLICER Embeds 2 slicer bits on both I and Q at the LSB position. See Figure 100. 
Given this is a 3-bit mode, an extra bit is inserted denoted as P in Figure 100. 
This can either be a parity bit or a zero can always be inserted alternatively. 

ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_4_BIT_SLICER Embeds 2 slicer bits on both I and Q at the MSB positions. See Figure 101. 
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_4_BIT_SLICER Embeds 2 slicer bits on both I and Q at the LSB positions. See Figure 102. 
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Figure 97. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_1_SLICERBIT_AT_MSB) 
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Figure 102. Encoding of Slicer Information as Control Bits (intEmbeddedBits = ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_4_BIT_SLICER) 

Mode 4: Digital Gain Compensation and Slicer Input 

In this mode, the slicer position is controlled by the user. In Mode 2 and Mode 3, the slicer can be viewed as an attenuator, which reduces 
the signal level a certain dB with each slicer position step in a way that it can be sent across the JESD204B and JESD204C link. This mode 
is similar, except the position (amount of attenuation) is controlled externally. The valid step sizes are between 1 dB and 6 dB and 
controlled by the extPinStepSize API parameter, as outlined in Table 168. 

Table 168. adi_adrv9025_ExtSlicerStepSizes_e Description 
extPinStepSize Slicer Gain Step (dB) 
ADI_ADRV9025_EXTSLICER_STEPSIZE_1DB 1  
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_2DB 2  
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_3DB 3  
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_4DB 4  
ADI_ADRV9025_TAL_EXTSLICER_STEPSIZE_6DB 6  

The slicer has 3 input pins. The valid options are shown in Table 169. Each channel can be set to any one of the options using the 
rx1ExtSlicerGpioSelect, rx2ExtSlicerGpioSelect, rx3ExtSlicerGpioSelect, and rx4ExtSlicerGpioSelect API parameters. The value of these 
pins and the step size chosen set the level of slicer attenuation applied to the data before transmission across the JESD204BC link.  

Slicer Attenuation = Slicer Input Pin Values × extPinStepSize  

For example, if the value on the slicer input pins is 0’b111, and the step size is 2 dB, the slicer applies 14 dB (7 × 2 dB) of attenuation to the data. 

Table 169. adi_adrv9025_RxExtSlicerGpioSel_e Description 
Value of RxExtSlicerGpioSelect GPIOs Utilized (MSB to LSB) 
ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 GPIO2, GPIO1, GPIO_0 
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 GPIO5, GPIO4, GPIO3 
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Value of RxExtSlicerGpioSelect GPIOs Utilized (MSB to LSB) 
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 GPIO8, GPIO7, GPIO6 
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 GPIO11, GPIO10, GPIO9 
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 GPIO14, GPIO13, GPIO12 
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 GPIO17, GPIO16, GPIO_15 

Mode 5: Digital Gain Compensation and Floating Point Formatting 

The floating point formatter offers an alternative way of encoding the digitally compensated data onto the JESD204B link. In this mode, 
the data is converted to IEEE754 half precision floating point format (binary 16). There is a slight loss in resolution when using the 
floating-point formatter, though resolution is distributed in a way so that smaller numbers have higher resolution.  

In binary 16 floating point format the number is composed on a sign bit (S), an exponent (E), and a significand (T). There are a number 
of options in terms of the number of bits that can be assigned to the exponent. More bits in the exponent result in a higher range, and 
therefore can allow for more digital compensation to the represented, whereas more bits in the significand provides higher resolution. 
The available options for the floating point formatter of the device include the following: 

• 5-bit exponent, 10-bit significand 
• 4-bit exponent, 11-bit significand 
• 3-bit exponent, 12-bit significand 
• 2-bit exponent, 13-bit significand 

It is also possible to pack the data in the following different formats (as shown in Figure 103): 

• Sign, exponent, significand 
• Sign, significand, exponent 
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Figure 103. Floating Point Number Representation 

In Figure 103, S is the sign bit, E is the value of the exponent, T is the value of the significand, w is the bit width of the exponent, and t is 
the bit width of the significand. 

Upon receipt of an encoded floating point formatter, the user breaks up the binary 16 number into its constituent parts. For the purposes 
of this explanation, consider a 3-bit exponent. In IEEE754, the maximum exponent (0’b111 in this case) is reserved for NaN. The 
minimum exponent (0’b000) is used for a signed zero (E = 0, T = 0) and subnormal numbers (E = 0, T ≠ 0). To decode a received floating 
point sample, the following equations are used: 

If E = 0 and T = 0,  

Value = 0 

If E = 0 and T ≠ 0: 

Value = (−1)S × 2E – bias+1 × (0 + 21 – p × T) 

If E ≠ 0: 

Value = (−1)S × 2E − bias × (1 + 21 – p × T) 

where: 
bias is used to convert the positive binary values to exponents which allow for values both less than and greater than the full-scale of the ADC. 
p is the precision of the mode (p = t + 1, because the t significand bits are coupled with a sign bit).  
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Table 170 provides the values to use in these equations for the various IEEE754 supported modes. 

Table 170. Floating-Point Formatter—Supported IEEE754 Modes 
Exponent Bit Width (w) Significand Bit Width (t) Precision (p) Bias 
5 10 11 15 
4 11 12 7 
3 12 13 3 
2 13 14 1 

Figure 104 provides a visual representation of how the values of a waveform are encoded in floating point format. In this case, the 
maximum exponent (E bias) is 3, meaning that data up to 24 dBFS of the ADC can be represented. As the signal reduces, the exponent 
required to represent each value differs. This is a different concept to the slicer that instead bit shifted the data solely based on the applied 
digital attenuation and had a constant value for a constant digital gain. Instead, the floating-point formatter interprets each data value 
after the digital gain compensation separately. Because of the fixed precision of the significand and the sign bit, it can also be interpreted 
from this plot that there is higher resolution at lower signal levels than there is at higher signal levels, preserving SNR when the received 
signal strength is low. 
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Figure 104. Visualization of the Floating-Point Formatter Values 

The floating-point formatter also supports non-IEEE754 modes, referred to as Analog Devices modes, where the largest exponent is not 
used to express NaN in accordance with IEEE754. It is unnecessary for the device to encode NaN because none of the data values can be 
NaN and, therefore, using this extra exponent value increases the largest value representable for a given exponent bit width. 

Table 171. Exponent Bit Widths of IEEE754 and Analog Devices Modes 
Exponent Bit Width  IEEE754 Mode Exponent Range (After Unbiasing) Analog Devices Mode Exponent Range (After Unbiasing) 
5 +15 to −14 +16 to −14 
4 +7 to −6 +8 to −6 
3 +3 to −2 +4 to −2 
2 +1 to −1 +2 to −1 
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In the default floating point format, the leading one is inferred and not encoded (for normal numbers). It is possible to enable a mode 
where the leading one is encoded and stored in the MSB of the significand. However, this reduces the precision of the values. 
If the user knows that the range of attenuation required for the worst case blocker (and therefore the digital gain required to compensate for it) 
exceeds the correction range allowed by the exponent width chosen, it is also possible to enable a fixed digital attenuation (from 6 dB to 42 dB) prior 
to the floating-point formatter to ensure that the signal never exceeds the maximum range encodable over the JESD204B and JESD204C link. 

RECEIVER DATA FORMAT DATA STRUCTURE 
The configuration parameters for the floating-point formatter and slicer are set up in a data structure of adi_adrv9025_RxDataFormat_t type. 
Table 172. adi_adrv9025_RxDataFormat Definition 
Parameter Comments 
rxChannelMask This selects the channels upon which to enable this gain control mode. It is a bit mask with each bit 

corresponding to a channel, [D0] = Rx1, [D1] = Rx2, [D2] = Rx3, [D3] = Rx4. Therefore, setting the 
rxChannelMask = 15 means that all receivers are configured with the same agcMode. Data type: uint32. 

formatSelect This selects the format of the data received from the receive path. Data type: adirx9025_RxDataFormatModes_e. 
formatSelect Format 
ADI_ADRV9025_GAIN_COMPENSATION_DISABLED No gain compensation (Mode 1) 
ADI_ADRV9025_GAIN_WITH_FLOATING_POINT Gain compensation and floating-point formatter 

enabled (Mode 5) 
ADI_ADRV9025_GAIN_WITH_INTERNAL_SLICER_NOGPIO Gain compensation and slicer bits embedded on 

JESD204B and JESD204C signal (Mode 3) 
ADI_ADRV9025_GAIN_WITH_INTERNAL_SLICER Gain compensation and slicer bits output on 

GPIOs (Mode 2) 
ADI_ADRV9025_GAIN_WITH_EXTERNAL_SLICER Gain compensation and slicer position input from 

GPIOs (Mode 4) 
floatingPointConfig A configuration structure for floating point format (see Table 173). To be used when floating point formatter is 

utilized. Data type: adi_adrv9025_FloatingPointConfigSettings_t. 
integerConfigSettings A configuration structure for the data resolution across the JESD204B and JESD204C link (see Table 174). Data 

type: adi_adrv9025_IntegerConfigSettings_t. 
slicerConfigSettings A configuration structure for the slicer functionality (see Table 175). Data type: adi_adrv9025_SlicerConfigSettings_t. 
externalLnaGain For use in dual band modes. Not currently supported. 
tempCompensationEnable Not currently supported. 

Table 173. adi_adrv9025_FloatingPointConfigSettings_t 
Parameter Comments 
fpDataFormat This parameter sets the format of the 16-bit output on the JESD204B interface. Data type: 

adi_adrv9025_FpFloatDataFormat_e. 

fpDataFormat Floating Point Data Format 
ADI_ADRV9025_FP_FORMAT_SIGN_EXP_SIGNIFICAND Sign, Exponent, Significand 
ADI_ADRV9025_FP_FORMAT_SIGN_SIGNIFICAND_EXP Sign, Significand, Exponent 

fpRoundMode This parameter sets the round mode for the significand. The following settings are defined in the IEEE754 
specification. For more information, consult Section 4.3 in IEEE 754-2008. Data type: adi_adrv9025_FpRoundModes_e. 

fpRoundMode Floating Point Rounding Mode 
ADI_ADRV9025_ROUND_TO_EVEN Floating point ties to an even value. 
ADI_ADRV9025_ROUNDTOWARDS_POSITIVE Round floating point toward the positive direction. 
ADI_ADRV9025_ROUNDTOWARDS_NEGATIVE Round floating point toward the negative direction. 
ADI_ADRV9025_ROUNDTOWARDS_ZERO Round floating point toward the zero direction. 
ADI_ADRV9025_ROUND_FROM_EVEN Round floating point away from the even value. 

fpNumExpBits This parameter indicates the number of exponent bits in the floating-point number. Data type: 
adi_adrv9025_FpExponentModes_e. 

fpNumExpBits No. of Exponent Bits 
ADI_ADRV9025_2_EXPONENTBITS 2 
ADI_ADRV9025_3_EXPONENTBITS 3 
ADI_ADRV9025_4_EXPONENTBITS 4 
ADI_ADRV9025_5_EXPONENTBITS 5 
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Parameter Comments 
fpAttenSteps Attenuates integer data before floating point conversion when floating point mode enabled. Data type: 

adi_adrv9025_FpAttenSteps_e. 
fpRx1Atten Attenuation (dB) 
ADI_ADRV9025_FPATTEN_0DB 0 
ADI_ADRV9025_FPATTEN_MINUS6DB −6 
ADI_ADRV9025_FPATTEN_MINUS12DB −12 
ADI_ADRV9025_FPATTEN_MINUS18DB −18 
ADI_ADRV9025_FPATTEN_24DB 24 
ADI_ADRV9025_FPATTEN_18DB 18 
ADI_ADRV9025_FPATTEN_12DB 12 
ADI_ADRV9025_FPATTEN_6DB 6 

fpHideLeadingOne It is possible to hide the leading one in the significand to be compatible to the IEEE754 specification (IEEE mode). 
Alternatively, a leading one can be inserted at the MSB of the significand. Data type: adi_adrv9025_FpHideLeadingOne_e. 

fpHideLeadingOne Setting 
ADI_ADRV9025_FP_FORMAT_HIDE_LEADING_ONE_DISABLE Leading one at start of significand. 
ADI_ADRV9025_FP_FORMAT_HIDE_LEADING_ONE_ENABLE No leading one at start of the significand. 

fpEncodeNan This parameter is used to configure whether the floating-point formatter reserves the highest value of exponent for 
not a number (NaN) to be compatible with the IEEE754 specification or whether to use the highest value of the 
exponent to extend the representable signal range. Data type: adi_adrv9025_FpNanEncode_e. 
fpHideLeadingOne Setting 
ADI_ADRV9025_FP_FORMAT_NAN_ENCODE_DISABLE Do not reserve the highest exponent for NaN. 
ADI_ADRV9025_FP_FORMAT_NAN_ENCODE_ENABLE Reserve highest exponent for NaN. 

Table 174. adi_adrv9025_IntegerConfigSettings_t Definition 
Parameter Comments 
intEmbdeddedBits For use in slicer modes. This parameter sets the integer number of embedded slicer bits to embed in receiver data 

sample and bit position to embed them (see Mode 3). Data type: adi_adrv9025_RxSlicerEmbeddedBits_e. 
intEmbeddedBits Slicer Bit Embedded position in Data Frame 
ADI_ADRV9025_NO_EMBEDDED_SLICER_BITS Disabled all embedded slicer bits. 
ADI_ADRV9025_EMBED_1_SLICERBIT_AT_MSB Embeds 1 slicer bit on I and 1 slicer bit on Q and 

the MSB position. 
ADI_ADRV9025_EMBED_1_SLICERBIT_AT_LSB Embeds 1 slicer bit on I and 1 slicer bit on Q and 

the LSB position. 
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_3_BIT_SLICER Embeds 2 slicer bits on I and 2 slicer bits on Q 

and the MSB position in 3-bit slicer mode. 
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_3_BIT_SLICER Embeds 2 slicer bits on I and 2 slicer bits on Q 

and the LSB position in 3-bit slicer mode. 
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_MSB_4_BIT_SLICER Embeds 2 slicer bits on I and 2 slicer bits on Q 

and the MSB position in 4-bit slicer mode. 
ADI_ADRV9025_EMBED_2_SLICERBITS_AT_LSB_4_BIT_SLICER Embeds 2 slicer bits on I and 2 slicer bits on Q 

and the LSB position in 4-bit slicer mode. 
intSampleResolution This parameter sets the integer sample resolution selecting either 12 bits, 16 bits, or 24 bits data with either twos 

complement or signed magnitude. Data type: adi_adrv9025_RxIntSampleResolution_e. 
intSampleResolution Resolution of Integer Sample 
ADI_ADRV9025_INTEGER_12BIT_2SCOMP 12-bit resolution with twos complement. 
ADI_ADRV9025_INTEGER_12BIT_SIGNED 12-bit resolution with signed magnitude. 
ADI_ADRV9025_INTEGER_16BIT_2SCOMP 16-bit resolution with twos complement. 
ADI_ADRV9025_INTEGER_16BIT_SIGNED 16-bit resolution with signed magnitude. 
ADI_ADRV9025_INTEGER_24BIT_2SCOMP 24-bit resolution with twos complement. 
ADI_ADRV9025_INTEGER_24BIT_SIGNED 24-bit resolution with signed magnitude. 
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Parameter Comments 
intParity In the embedded 3-bit slicer mode (Mode 3), it is possible to enable a parity mode. The device can support even 

parity (whereby the number of 1s in the bit sequence is always even) or odd parity (whereby the number of 1s in the 
bit sequence is always odd). Data type: adi_adrv9025_RxIntParity_e. 

 intParity Setting 
 ADI_ADRV9025_3BIT_SLICER_EVEN_PARITY Even parity enabled. 
 ADI_ADRV9025_3BIT_SLICER_ODD_PARITY Odd parity enabled. 
 ADI_ADRV9025_NO_PARITY Parity disabled. 

 

Table 175. adi_adrv9025_SlicerConfigSettings_t Definition 
Parameter Comments 
extSlicerStepSize This parameter is used in gain compensation with external slicer control (Mode 4). This parameter sets the slicer 

step value that is used with this external control mechanism. Data type: adi_adrv9025_ExtSlicerStepSizes_e. 
extSlicerStepSize Slicer Step Size 
ADI_ADRV9025_EXTSLICER_STEPSIZE_1DB 1 dB 
ADI_ADRV9025_EXTSLICER_STEPSIZE_2DB 2 dB 
ADI_ADRV9025_EXTSLICER_STEPSIZE_3DB 3 dB 
ADI_ADRV9025_EXTSLICER_STEPSIZE_4DB 4 dB 
ADI_ADRV9025_EXTSLICER_STEPSIZE_6DB 6 dB 

intSlicerStepSize This parameter is used in gain compensation with internal (automatic) slicer control (Mode 2). This parameter sets 
the slicer step value. Data type: adi_adrv9025_IntSlicerStepSizes_e. 

intSlicerStepSize Slicer Step Size 
ADI_ADRV9025_INTSLICER_STEPSIZE_1DB 1 dB 
ADI_ADRV9025_INTSLICER_STEPSIZE_2DB 2 dB 
ADI_ADRV9025_INTSLICER_STEPSIZE_3DB 3 dB 
ADI_ADRV9025_INTSLICER_STEPSIZE_4DB 4 dB 
ADI_ADRV9025_INTSLICER_STEPSIZE_6DB 6 dB 
ADI_ADRV9025_INTSLICER_STEPSIZE_8DB 8 dB 

rx1ExtSlicerGpioSelect This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx1. The choice must be unique to 
Rx1. Data type: adi_adrv9025_RxExtSlicerGpioSel_e. 

rx1ExtSlicerGpioSelect GPIOs Utilized 
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE  
ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 2, 1, 0 
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 5, 4, 3 
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 8, 7, 6 
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11, 10, 9 
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14, 13, 12 
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17, 16, 15 
ADI_ADRV9025_EXTSLICER_RX_GPIO_INVALID  

rx2ExtSlicerGpioSelect This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx2. The choice must be unique to 
Rx2. Data type: adi_adrv9025_RxExtSlicerGpioSel_e. 

rx2ExtSlicerGpioSelect GPIOs Utilized 
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE  
ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 2, 1, 0 
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 5, 4, 3 
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 8, 7, 6 
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11, 10, 9 
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14, 13, 12 
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17, 16, 15 
ADI_ADRV9025_EXTSLICER_RX_GPIO_INVALID  
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Parameter Comments 
rx3ExtSlicerGpioSelect This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx3. The choice must be unique to 

Rx3. Data type: adi_adrv9025_RxExtSlicerGpioSel_e. 
 rx3ExtSlicerGpioSelect GPIOs Utilized 
 ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE  
 ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 2, 1, 0 
 ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 5, 4, 3 
 ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 8, 7, 6 
 ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11, 10, 9 
 ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14, 13, 12 
 ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17, 16, 15 
 ADI_ADRV9025_EXTSLICER_RX_GPIO_INVALID  
rx4ExtSlicerGpioSelect This parameter selects the GPIOs used for external slicer control (Mode 4) on Rx4. The choice must be unique to 

Rx4. Data type: adi_adrv9025_RxExtSlicerGpioSel_e. 

rx4ExtSlicerGpioSelect GPIOs Utilized 
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE  
ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 2, 1, 0 
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 5, 4, 3 
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 8, 7, 6 
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 11, 10, 9 
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 14, 13, 12 
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 17, 16, 15 

adi_adrv9025_RxDataFormatSet(…) 
adi_adrv9025_RxDataFormatSet(adi_adrv9025_Device_t* device, adi_adrv9025_RxDataFormat_t 
rxDataFormat[],uint8_t arraySize); 

Description  

This command configures the receiver data format.  

Parameters 

Table 176. adi_adrv9025_RxDataFormatSet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
rxDataFormat[] An array of receiver data format structures. 
arraySize The number of receiver data format structures in rxDataFormatarray length of txPaProtectCfg[]. 
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DIGITAL FILTER CONFIGURATION 
OVERVIEW 
This section describes the digital filters within the transceiver and provides a description of each filter in terms of their filter coefficients 
and position within the signal chain. The API structures are described and an example profile specific configuration is provided for each 
signal chain. The API functions that are used to configure the filters are also described in this section.  

RECEIVER SIGNAL PATH 
Each receive input has an independent signal path including separate I/Q mixers that feed into programmable analog transimpedance 
amplifiers (TIAs) that serve as LPFs in the analog data path. The signals are then converted by the ΣΔ ADCs and filtered in half-band 
decimation stages and the PFIR. The fixed coefficient half-band filters (FIR1, FIR2, RHB1(HR), RHB1(LP), RHB2, RHB3, and DEC5) 
and the PFIR is designed to prevent data wrapping and overrange conditions.  

Each receive channel can convert signals down to zero IF real data using either the standard I/Q configuration or a low IF complex data 
configuration. The digital filtering stage allows the configuration flexibility and decimation options to operate in either mode. 

Figure 105 shows the in-phase (I) and quadrature (Q) signal paths for the Rx1, Rx2, Rx3, and Rx4 signal chain.  
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Figure 105. Receive Signal Path 

TIA 

The receive transimpedance amplifier is an LPF with a single real pole frequency response. The transceiver supports bandwidths up to 
200 MHz and each TIA supports a pass-band of 100 MHz on the I and Q paths. The TIA is calibrated during device initialization to 
ensure a consistent frequency corner across all devices. The TIA 3 dB bandwidth is set within the device data structure and is profile 
dependent. Roll-off within the receive pass band is compensated by the PFIR to ensure a maximally flat pass band frequency response. 

Decimation Stages 

The signal path can be configured such that either the decimate by 5 filter (DEC5) or the combination of FIR2, FIR1, and RHB3 is used in 
the receive digital path. The DEC5 decimates by a factor of 5 while the other filter combination can be configured to decimate by factors 
of 2, 4, or 8.  

DEC5 

DEC5 filter coefficients include the following: +0.000976563, +0.001220703, +0.001953125, +0.001953125, −0.00390625, −0.0078125, 
−0.014648438, −0.018798828, −0.019042969, −0.007568359, +0.010742188, +0.041748047, +0.079101563, +0.1171875, +0.146972656, 
+0.165527344, +0.165527344, +0.146972656, +0.1171875, +0.079101563, +0.041748047, +0.010742188, −0.007568359, −0.019042969, 
−0.018798828, −0.014648438, −0.0078125, −0.00390625, +0.001220703, +0.001953125, +0.001953125, +0.001220703, and +0.000976563 

Finite Impulse Response 2 Filter (FIR2) 

The FIR2 filter is a fixed coefficient decimating filter. The FIR2 filter can decimates by a factor of 2 or the filter can be bypassed.  

The FIR2 filter coefficients include the following: 0.0625, 0.25, 0.375, 0.25, and 0.0625. 

Finite Impulse Response 1 Filter (FIR1) 

The FIR1 filter is a fixed coefficient decimating filter. The FIR1 filter can decimate by a factor of 2 or the filter can be bypassed.  

The FIR1 filter coefficients include the following: 0.0625, 0.25, 0.375, 0.25, and 0.0625. 

Receive Half-Band 3 Filter (RHB3) 
The RHB3 filter is a fixed coefficient decimating filter. The RHB3 filter decimates by a factor of 2. 

The RHB3 filter coefficients include the following: −0.033203125, 0, +0.28125, +0.49609375, +0.28125, 0, and −0.033203125.  
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Receive Half-Band 2 Filter (RHB2) 

The RHB2 filter is a fixed coefficient decimating filter. The RHB2 filter can decimate by a factor of 2 or the filter can be bypassed. 

The RHB2 filter coefficients include the following: −0.000244141, 0, +0.001708984, 0, −0.0078125, 0, +0.026855469, 0, −0.078369141, 0, 
+0.30859375, +0.501220703, +0.30859375, 0, −0.078369141, +0, 0.026855469, 0, −0.0078125, 0, +0.001708984, 0, −0.000244141. 

Receive Half-Band High Rejection 1 Filter (RHB1 (HR)) 

The RHB1 (HR) filter is a fixed coefficient decimating filter. The RHB1 (HR) filter can decimate by a factor of 2 or the filter can be bypassed. 

RHB1 (HR) filter coefficients include the following: +0.000106812, 0, −0.000289917, 0, +0.00062561, 0, −0.001205444, 0, +0.002120972, 
0, −0.003494263, 0, +0.005493164, 0, −0.008300781, 0, +0.012207031, 0, −0.01763916, 0, +0.025421143, 0, −0.03717041, 0, +0.057250977, 
0, −0.101608276, 0, +0.314498901, +0.495956421, +0.314498901, 0, −0.101608276, 0, +0.057250977, 0, −0.03717041, 0, +0.025421143, 0, 
−0.01763916, 0, +0.012207031, 0, −0.008300781, 0, +0.005493164, 0, −0.003494263, 0, +0.002120972, 0, −0.001205444, 0, +0.00062561, 0, 
−0.000289917, 0, +0.000106812. 

Receive Half-Band Low Power 1 Filter (RHB1 (LP)) 

The RHB1 (LP) filter is a fixed coefficient decimating filter. The RHB1 (LP) filter can decimate by a factor of 2 or the filter can be bypassed. 

RHB1 (LP) filter coefficients: −0.002685547, 0, +0.017333984, 0, −0.068359375, 0, +0.304443359, +0.501708984, +0.304443359, 0, 
−0.068359375, 0, +0.017333984, 0, −0.002685547. 

Receive PFIR Filter 

The receive PFIR filter acts as a decimating filter. The PFIR can decimate by a factor of 1, 2, or 4, or the filter can be bypassed. The RFIR 
filter compensates for the roll-off of the TIA LPF. The PFIR filter can use 24, 48, or 72 filter taps. The PFIR filter also has programmable 
gain settings of +6 dB, 0 dB, −6 dB, or −12 dB. 

The maximum number of taps is limited by the FIR clock rate (data processing clock − DPCLK). The maximum DPCLK is 1 GHz. The 
DPCLK is the ADC clock rate divided by either 4 or 5. The divider is 4 when using the FIR2, FIR1, and HB3 filters, and the divider is 5 when 
using the DEC5 filter. The DPCLK affects the maximum number of PFIR filter taps that can be used according to the following equation: 

Rx PFIR Filter Tapsmax = (DPCLK)/(Rx_IQ_DATARATE) × 24  

where: 
Rx PFIR Filter Tapsmax is the maximum number of filter taps that can be used for the given clock rate. 
DPCLK is the digital filter clock rate. 
Rx_IQ_DATARATE is the output data rate of the filter. 

IF Conversion 

The IF conversion stage provides the ability to change how the received data is presented to the JESD port. Figure 106 shows a block 
diagram of the IF conversion stage. There are two parallel paths where data can be processed (Band A and Band B). There are two mixer 
stages in the circuitry of each band that allow upshifting or downshifting, interpolation and decimation stages, and a half-band filter with 
a pass band of 0.4 × the sample rate. 

The half-band filter coefficients in this IF conversion stage include the following: −9.1553 × 10−5, 0, +2.4414 × 10−4, 0, −5.7983 × 10−4, 0, +0.0012, 
0, −0.0023, +0, 0.0040, 0, −0.0065, 0, +0.0103, 0, −0.0157, 0, +0.0236, 0, −0.0357, 0, +0.0563, 0, −0.1015, 0, +0.3168, +0.5000, +0.3168, 0, 
−0.1015, 0, +0.0563, 0, −0.0357, 0, +0.0236, 0, −0.0157, 0, +0.0103, 0, −0.0065, 0, +0.0040, 0, −0.0023, 0, +0.0012, 0, −5.7983 × 10−4, 0, 
+2.4414 × 10−4, 0, −9.1553  × 10−5. 

The following use cases provide examples of the types of functionality supported by this block. Note that currently, only the low IF to zero 
IF conversion mode is supported in a released profile. 

COMPLEX LOW IF TO ZERO IF 
In this use case, the received signal is offset from the LO such that the entire signal of interest is on one side of the LO. The Band A NCO1 
downshifts the signal such that the signal is centered at 0 Hz. There is a half-band filter and decimate by 2 stage that decreases the bandwidth and 
subsequently the IQ rate if used. This stage reduces the number of JESD lanes required, or the rate that at which the lanes must be run. 

Figure 107 shows a conceptual case of a 200 MHz receive bandwidth (IQ rate 245.76 MSPS) profile used to receive a 75 MHz MC-GSM 
offset from the LO. The center frequency is 52.5 MHz offset from the LO, such that the band occupies from ±15 MHz to ±90 MHz. The 
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channel then uses the IF conversion stage to shift the signal to be centered at about 0 Hz, filter with the half-band filter, and decimate the 
output by two such that the IQ rate sent over the JESD is 122.88 MSPS. 

COMPLEX LOW IF TO REAL IF 
In this use case the signal is shifted using NCO1 or NCO2 (or both/none) such that the downconverted signal exists solely on one side of 
the LO. The signal no longer needs to be in complex form; only I data is sent across the link and Q data is dropped. The interpolate by 2 
stage can also be utilized for this scenario. 
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Figure 106. IF Conversion Stage Block Diagram (All Circuitry is Implemented in Quadrature, as Indicated) 

ZERO IF TO REAL IF 
In this use case, the received signal is centered around the LO. The signal is interpolated by 2 and half-band filtered. The Band A NCO2 
upshifts or downshifts the data to generate a signal that is symmetrical to about 0 Hz. The result of this signal is that the spectrum no 
longer requires a complex representation, only I data is sent across the link, and the Q data is dropped. 

DUAL BAND MODE 
In this use case, multiple signals are received (Signal 1 and Signal 2). Band A circuitry can be used to process Signal 1, and Band B 
circuitry can be used to process Signal 2. Band A NCO1 shifts Signal 1 such that the signal is placed within the pass band of the half-band 
filter and filters out Signal 2. The decimate by 2 stage can also be used if the final composite bandwidth allows a lower data rate across the 
JESD link. The Band A NCO2 stage is then used to offset the signal to the required position in the spectrum. Likewise, the same 
procedure is performed on Signal 2. The result of this procedure is that the two signals, originally located far apart in the spectrum and 
requiring a high data rate, can be moved closer together with this IF conversion circuitry and represented by a lower IQ rate. 

DUAL BAND MODE (REAL IF) 
In this use case, the signals are processed separately using Band A and Band B. The NCO2 stages are used to shift both signals so that the 
signals exist on the same side of the LO. At this point, the spectrum no longer needs a complex representation, only I data can be sent 
across the link, and Q data is dropped. The interpolate by 2 stage can also be utilized for this scenario. 

HB FILTER ONLY MODE 
If there is a blocker to one side of the signal, the IF conversion stage can be used to obtain further rejection of the blocker. Band A NCO1 
offsets the signal to position the signal close to the edge of the half-band filter pass band, and to position the blocker in the filter transition or 
stopband. The Band A NCO2 can be used to position the desired signal to its previous position within the spectrum, if required.  
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Figure 107. IF Conversion Stage in Zero-IF MC-GSM Configuration Block Diagram 

RECEIVER SIGNAL PATH EXAMPLE 
The TES provides an example that shows how the baseband filtering stages are used in profile configurations for a signal pathway. In this 
example, the ADRV9025Init_StdUseCase26_nonLinkSharing profile is selected for the receive channels. This example is a 200 MHz 
profile with an IQ rate of 245.76 MSPS. 

Figure 108 shows the filter configuration for this example profile. The signal rate after the PFIR block is equal to the profile IQ rate. 
22

77
0-

10
9

 
Figure 108. Filter Configuration for Receive 200 MHz, IQ Rate 245.76 MSPS 
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The TES also provides a graph of the complete signal chain transfer function for this profile in the Rx tab under the ChipConfig 
dropdown (see Figure 109). 
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Figure 109. Receive Signal Transfer Function 

RECEIVER FILTER API STRUCTURE 
The filter configuration is stored in the adi_adrv9025_RxProfile_t structure. This structure is stored within the adi_adrv9025_RxSettings 
structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). The adi_adrv9025_RxProfile_t structure 
parameters are listed in Table 177. 

Table 177. adi_adrv9025_RxProfile_t Structure Parameters 
Name Value Description 
channelType A value of type adi_adrv9025_RxChannels_e Chooses which channel is used to configure the filters 

described in Table 178 
rxFirDecimation 1, 2, 4 Receive FIR decimation setting 
rxDec5Decimation 4 = use a combination of FIR1, FIR2, and/or RHB3 Set to use either the Dec5 or HB3 and HB2 in the 

Observation receive path 
 5 = use DEC5  
rhb1Decimation 1 = bypass, 2 = in use Receive HB1 decimation setting 
rhb1WideBandMode 0 – HB1 is narrow, 1 – HB1 is wider Observation receive and loopback profiles ignore this field 
rhb2Decimation 1, 2 Receive HB2 decimation factor 
rhb3Decimation 1, 2 Receive HB3 decimation factor 
rxFir1Decimation 1, 2 Receive FIR1 decimation factor 
rxFir2Decimation 1, 2 Receive FIR2 decimation factor, observation receive and 

loopback profiles ignore this field 
rxOutputRate_kHz 30720 to 368640 (based on currently defined use cases) IQ data rate specified in kHz (to the input of the JESD block) 
rfBandwidth_kHz 20000 to 200000 (based on currently defined use cases) The RF bandwidth specified in kHz 
rxBbf3dBCorner_kHz 20000 to 200000 (based on currently defined use cases) The BBF 3 dB corner frequency specified in kHz 
rxAdcBandWidth_kHz 10000 to 100000 (based on currently defined use cases) Receive ADC bandwidth tunes the bandwidth of the pass 

band and noise transfer functions of the ADC 
rxFir A value of type adi_adrv9025_RxFir_t The receive FIR filter structure is described in Table 179 
rxDdcMode A value of type adi_adrv9025_RxDdc_e The receive DDC mode settings are described in Table 180 
rxNcoShifterCfg A value of type adi_adrv9025_RxNcoShifterCfg_t The receive NCO shifter configuration structure is 

described in Table 181 
tiaPowerMode 0, 1, 2, 3 Four options for TIA power reduction modes (Range 0 to 3) 

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029


ADRV9026/ADRV9029 System Development User Guide UG-1727 
 

Rev. 0 | Page 177 of 336 

Table 178. adi_adrv9025_RxChannels_e Enumeration Definition 
adi_adrv9025_RxChannels_e Enumeration Enabled Channels 
ADI_ADRV9025_RXOFF No receive or observation receive channels enabled 
ADI_ADRV9025_RX1 Rx1 enabled 
ADI_ADRV9025_RX2 Rx2 enabled 
ADI_ADRV9025_RX3 Rx3 enabled 
ADI_ADRV9025_RX4 Rx4 enabled 
ADI_ADRV9025_ORX1 ORx1 enabled 
ADI_ADRV9025_ORX2 ORx2 enabled 
ADI_ADRV9025_ORX3 ORx3 enabled 
ADI_ADRV9025_ORX4 ORx4 enabled 
ADI_ADRV9025_LB12 Tx1 or Tx2 internal loopback into ORx1or ORx2channel enabled 
ADI_ADRV9025_LB34 Tx3 or Tx4 internal loopback into ORx3 or ORx4 channel enabled 

Receive PFIR Settings 

The receive PFIR filter is specified in signed coefficients from +32767 to −32768. The gain block allows more flexibility when designing a 
digital filter. For example, a FIR can be designed with 6 dB gain in the pass band, and then that block can be set to −6 dB gain to give an 
overall 0 dB gain in the pass band. To calculate the gain of the filter coefficients, use the following equation: 

∑
=

−152 1
FIR Coefficients

DC Gain   

Table 179. adi_adrv9025_RxFir_t Structure Parameters 
Name Value Description 
gain_dB −12, −6, 0, +6 The setting (in dB) for the gain block within the receive FIR 
numFirCoefs 24, 48, 72 Number of taps to be used in the receive FIR 
coefs[ADI_ADRV9025_MAX_RXPFIR_COEFS] A pointer to an array of filter coefficients of size ADI_ADRV9025_MAX_RXPFIR_COEFS 

Receive DDC Mode 

Receive DDC mode is defined within the adi_adrv9025_RxProfile_t structure as an enumerated type from the adi_adrv9025_RxDdc_e 
type definition. Permissible values are listed in Table 180. 

Table 180. adi_adrv9025_RxDdc_e Enumeration Definition 
adi_adrv9025_RxDdc_e Enumeration Description 
ADI_ADRV9025_RXDDC_BYPASS In this mode, the half-band filter and interpolation/decimation stages are bypassed. 
ADI_ADRV9025_RXDDC_FILTERONLY In this mode, the half-band filter stage is used, but the interpolation and decimation stages 

are bypassed. 
ADI_ADRV9025_RXDDC_INT2 In this mode, the interpolate by 2 stage and half-band filter stage are utilized. 
ADI_ADRV9025_RXDDC_DEC2 In this mode, the half-band filter stage and decimate by 2 stage are utilized. 
ADI_ADRV9025_RXDDC_BYPASS_REALIF In this mode, the half-band filter stage and interpolation/decimation stage are bypassed. Q 

data is dropped at the input to the JESD core. 
ADI_ADRV9025_RXDDC_FILTERONLY_REALIF In this mode, the half-band filter stage is used, but the interpolation stage and decimation 

stage are bypassed. Q data is dropped at the input to the JESD core. 
ADI_ADRV9025_RXDDC_INT2_REALIF In this mode, the interpolate by 2 stage and half-band filter stage are utilized. Q data is 

dropped at the input to the JESD core. 
ADI_ADRV9025_RXDDC_DEC2_REALIF In this mode, the half-band filter stage and decimate by 2 stage are utilized. Q data is 

dropped at the input to the JESD code. 

Receive NCO Shifter Configuration 

The adi_adrv9025_RxNcoShifterCfg_t structure is contained within the adi_adrv9025_RxProfile_t structure. The adi_adrv9025_ 
RxNcoShifterCfg_t structure contains the settings of the Band A and Band B NCO stages, as well as the bandwidth and baseband center 
frequency of the desired signal(s). These settings allows the API to ensure that the IF conversion stage is properly setup, and that the signal(s) 
post NCO shifting falls within the bandwidth provided by the IQ rate utilized and the pass-band bandwidth of the half-band filter, if utilized. 

The NCOs can be configured according to the following rules:  

• bandwidthDiv2 = (bandAInputBandwidth_kHz/2) × 1000 
• inputCenterFreq = (bandAInputCenterFreq_kHz) × 1000 
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• nco1OutputCenterFreq = (bandAInputCenterFreq_kHz + bandANco1Freq_kHz) × 1000 
• nco2OutputCenterFreq = nco1OutputCenterFreq + (bandANco2Freq_kHz) × 1000 
• outputRateHz = IQ Data rate of the Rx UseCase 
• primaryBwHz = Primary Rx signal bandwidth of the Rx UseCase 
• ddcHbCorner depends on which of the following modes is used:  

• If RXDDC_FILTERONLY, RXDDC_FILTERONLY_REALIF, RXDDC_INT2, RXDDC_INT2_REALIF at the ddcHbCorner = 
outputRateHz × 0.2 

• If RXDDC_DEC2, RXDDC_DEC2_REALIF at the ddcHbCorner = outputRateHz × 0.4  

Range Checks  

Rule 1: Input Center Frequency Setup 

Use the following relationships to ensure the center frequency is setup properly. 

• inputCenterFreq + bandWidthDiv2 > primaryBwHz/2 
• inputCenterFreq − bandWidthDiv2 < −primaryBwHz/2 

Rule 2: Output Center Frequency Setup NCO1 (If DDC HB is Enabled) 

Use the following relationships to ensure the NCO1 center frequency is setup properly. 
• nco1OutputCenterFreq + bandWidthDiv2 > ddcHbCorner 
• nco1OutputCenterFreq − bandWidthDiv2 < −ddcHbCorner 

Rule 3: Output Center Frequency Setup NCO2 

Use the following relationships to ensure the NCO2 center frequency is setup properly. 
• nco2OutputCenterFreq + bandWidthDiv2 > outputRateHz/2 
• nco2OutputCenterFreq − bandWidthDiv2 < −outputRateHz/2 

Table 181. adi_adrv9025_RxNcoShifterCfg_t Structure Parameters 
adi_adrv9025_RxNcoShifterCfg_t Description 
bandAInputBandWidth_kHz The bandwidth of the received signal being processed in Band A specified in kHz 
bandAInputCenterFreq_kHz The center frequency, in terms of baseband frequencies, of the received signal being process in 

Band A, specified in kHz 
bandANco1Freq_kHz The frequency shift to be provided by NCO1 of Band A specified in kHz, positive values shift the 

spectrum up in frequency, negative values shift the spectrum down in frequency 
bandANco2Freq_kHz The frequency shift to be provided by NCO2 of Band B specified in kHz, positive values shift the 

spectrum up in frequency, negative values shift the spectrum down in frequency 
bandBInputBandWidth_kHz The bandwidth of the received signal being processed in Band B specified in kHz 
bandBInputCenterFreq_kHz The center frequency, in terms of baseband frequencies, of the received signal being process in 

Band B, specified in kHz 
bandBNco1Freq_kHz The frequency shift to be provided by NCO1 of Band B specified in kHz, positive values shift the 

spectrum up in frequency, negative values shift the spectrum down in frequency 
bandBNco2Freq_kHz The frequency shift to be provided by NCO2 of Band B specified in kHz, positive values shift the 

spectrum up in frequency, negative values shift the spectrum down in frequency 
bandAbCombinedEnable The frequency shift to be provided by the combination of Band A and Band B at output, 1 = combine 

dual-band AB, 0 = disable combine dual-band on AB 

Note that dual-band mode is selected when the input bandwidths of Band A and Band B are both specified (nonzero). In nondual band 
modes, specify Band A settings only with Band B left with zero settings. Likewise, if the NCO stages of both Band A and Band B are not 
to be used, provide zero settings for all variables in the adi_adrv9025_RxNcoShifterCfg_t structure. 

TRANSMITTER SIGNAL PATH 
Each transmitter has an independent signal path including separate digital filters, DACs, analog low-pass filters, and I/Q mixers that drive 
the signal outputs. Data is input to the transmit signal path via the JESD high-speed serial data interface at the IQ data rate of the 
transmitter profile. The serial data is converted to parallel format through the JESD deframer into I and Q components. The data is 
processed through digital filtering and signal correction stages and input to I/Q DACs. 
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The DAC output is low pass filtered by the transmit LPFs and input to the upconversion mixer. The I and Q paths are identical to one 
another. Over-ranging is detected in the transmit digital signal path at each stage and limited to the maximum code value to prevent data 
wrapping. A block diagram of a transmit signal path is shown in Figure 110. Blocks that are not discussed in this section are faded. 
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Figure 110. Transmit Signal Path Diagram 

Analog LPF 

The LPF is a second-order, analog Butterworth LPF with an adjustable 3 dB corner. The transmit chains of the device can support pass-band 
bandwidths up to 225 MHz (on I and Q). The LPF is calibrated during device initialization, which results in a consistent frequency corner 
across all devices. The LPF bandwidth is set within the device data structure and is profile dependent. Roll-off within the analog LPF pass 
band is compensated by the transmitter finite impulse response (TFIR) to ensure a maximally flat pass-band frequency response. 

Interpolation By 5 Filter (INT5) 

Either the INT5 filter or any combination of THB3 and THB2 are used in the transmit digital path. The INT5 filter interpolates by a 
factor of 5. 

The INT5 filter coefficients include the following: +0.002929688, +0.029052734, −0.029296875, +0.03125, −0.012207031, −0.005859375, 
−0.056640625, +0.051513672, −0.055664063, +0.025390625, +0.020996094, 0.081298828, −0.057617188, +0.072509766, −0.045166016, 
−0.047607422, −0.095947266, +0.030517578, −0.071289063, +0.068603516, +0.093994141, +0.113769531, +0.030761719, +0.055419922, 
−0.103759766, −0.185791016, −0.185302734, −0.136962891, −0.037353516, +0.227050781, +0.518554688, +0.717285156, +0.928466797, 
+1.019287109, +0.928466797, +0.717285156, +0.518554688, +0.227050781, −0.037353516, −0.136962891, −0.185302734, −0.185791016, 
−0.103759766, +0.055419922, +0.030761719, +0.113769531, +0.093994141, +0.068603516, −0.071289063, +0.030517578, −0.095947266, 
−0.047607422, −0.045166016, +0.072509766, −0.057617188, +0.081298828, +0.020996094, +0.025390625, −0.055664063, +0.051513672, 
−0.056640625, −0.005859375, −0.012207031, +0.03125, −0.029296875, +0.029052734, and +0.002929688. 

Transmit Half-Band 3 Filter (THB3) 

The THB3 filter is a fixed coefficient, half-band, interpolating filter. The THB3 filter can interpolate by a factor of 2 or the filter can be 
bypassed. The THB3 filter coefficients include the following: 0.125, 0.5, 0.75, 0.5, and 0.125. 

Transmit Half-Band 2 Filter (THB2) 

The THB2 filter is a fixed coefficient, half-band, interpolating filter. The THB2 filter can interpolate by a factor of 2 or the filter can be 
bypassed. The THB2 filter coefficients include the following: −0.08203125, 0, +0.58203125, +1, +0.58203125, 0, −0.08203125. 

Transmit Half Band 1 Filter (THB1) 

The THB1 filter is a fixed coefficient, half-band, interpolating filter. The THB1 interpolates by a factor of 2 or the filter can be bypassed. 
The THB1 filter coefficients include the following: −0.002319336, 0, +0.003601074, 0, −0.004058838, 0, +0.004119873, 0, −0.006439209, 
0, +0.009613037, 0, −0.012023926, 0, +0.014404297, 0, −0.018737793, +0, 0.024291992, 0, −0.030059814, 0, +0.037353516, 0, −0.048156738, 0, 
+0.062927246, 0, −0.084350586, +0, 0.122283936, 0, −0.209564209, 0, +0.635925293, +1, +0.635925293, 0, −0.209564209, 0, +0.122283936, 0, 
−0.084350586, 0, +0.062927246, 0, −0.048156738, 0, +0.037353516, 0, −0.030059814, 0, +0.024291992, 0, −0.018737793, 0, +0.014404297, 
0, −0.012023926, 0, +0.009613037, 0, −0.006439209, 0, +0.004119873, 0, −0.004058838, 0, +0.003601074, 0, −0.002319336 

Programmable TFIR 

The TFIR filter acts as an interpolating filter in the transmit path. The TFIR can interpolate by a factor of 1, 2, or 4, or the TFIR can be 
bypassed. The TFIR is used to compensate for roll-off caused by the post DAC analog LPF. The TFIR has a configurable number of taps 
that can be used including 20, 40, 60, or 80 taps. The TFIR also has a programmable gain setting of +6 dB, 0 dB, −6 dB, or −12 dB. 
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The maximum number of taps is limited by the TFIR clock rate (data processing clock − DPCLK). The maximum DPCLK is 1 GHz. The 
DPCLK is the high speed digital clock (HSDIG_CLK) divided by either 4 or 5 depending on the HSDIG_CLK divider setting. The 
DPCLK affects the maximum number of TFIR filter taps that can be used according to the following relationship: 

Tx PFIR Filter TapsMAX = (DPCLK/Tx_IQ_DATARATE) × 20 

where: 
Tx PFIR Filter Tapsmax is the maximum number of filter taps that can be used for the given clock rate 
Tx_IQ_DATARATE is the input datarate of the filter 

TRANSMIT SIGNAL PATH EXAMPLE 
The TES provides an example that shows how the baseband filtering stages are used in profile configurations for a signal data path. In this 
example, the ADRV9025Init_StdUseCase26_nonLinkSharing profile is selected for the transmit channels. This example is a 200 MHz/450 
MHz profile with an IQ rate of 491.52 MSPS.  

To explain the terminology of the 200 MHz/450 MHz profile, the 200 MHz refers to the transmit primary signal bandwidth, and the 
450 MHz refers to the transmit RF bandwidth. 

Figure 111 shows the filter configuration for this example profile. The signal rate after the TFIR block is equal to the profile IQ rate.  
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Figure 111. Filter Configuration for the Transmit 200 MHz/450 MHz, 491.52 MSPS Profile 

The combined transmit signal transfer function can be found in the Tx tab under the ChipConfig dropdown menu, as shown in Figure 112.  
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Figure 112. Transmit Signal Transfer Function 
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TRANSMITTER FILTER API STRUCTURE 
The filter configuration is stored in the adi_adrv9025_TxProfile_t structure. This structure is stored within the adi_adrv9025_TxSettings_t 
structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). The adi_adrv9025_TxProfile_t structure 
parameters are described in Table 182. 

Table 182. adi_adrv9025_TxProfile_t Structure Parameters 
Name Value Description 
txInputRate_kHz 30720 to 491520 (based on currently defined use cases) IQ data rate at the input to the TFIR specified in kHz 
primarySigBandwidth_kHz 20000 to 200000 (based on currently defined use cases) Primary signal bandwidth specified in kHz 
rfBandwidth_kHz 100000 to 450000 (based on currently defined use cases) RF bandwidth specified in kHz 
txDac3dBCorner_kHz 100000 to 450000 (based on currently defined use cases) DAC3 dB corner specified in kHz 
txBbf3dBCorner_kHz 50000 to 225000 (based on currently defined use cases) BBF3 dB corner frequency specified in kHz 
txFirInterpolation 1, 2, 4 Transmit FIR interpolation setting 
thb1Interpolation 1 = bypass, 2 = in use Transmit HB1 interpolation setting 
thb2Interpolation 1 = bypass, 2 = in use Transmit HB2 interpolation setting 
thb3Interpolation 1 = bypass, 2 = in use Transmit HB3 interpolation setting 
txInt5Interpolation 1 = bypass, 5 = in use Transmit INT5 interpolation setting 
txFir A value of type adi_adrv9025_TxFir_t The txFir structure is explained in detail in the 

Transmit FIR Settings section  
txBbfPowerMode 0 to 8  The transmit BBF power scaling mode selection 

between 0 and 8, where a value of 8 allows the arm to 
set the power mode based on the look up tables (LUT) 
of power saving 

Transmit FIR Settings 

The adi_adrv9025_TxFir_t structure is contained within the adi_adrv9025_TxProfile_t structure. The adi_adrv9025_TxFir_t structure 
parameters are described in Table 183. 

Table 183. adi_adrv9025_TxFir_t Structure Parameters 
Name Value Description 
gain_dB −12, −6, 0, +6 The setting (in dB) for the gain block within the transmit FIR 
numFirCoefs 20, 40, 60, 80 Number of taps to be used in the transmit FIR 
coefs[ADI_ADRV9025_MAX_TXPFIR_COEFS] A pointer to an array of filter coefficients of size ADI_ADRV9025_MAX_TXPRIF_COEFS 

The transmit FIR is specified in signed coefficients from +32,767 to −32,768. The gain block allows for more flexibility when designing a 
digital filter. For example, a FIR can be designed with 6 dB gain in the pass band, and then this block can be set to −6 dB gain to give an 
overall 0 dB gain in the pass band. The gain of the filter coefficients can be calculated as follows: 

152 1
FIR Coefficients

DC Gain
∑

=
−

 

OBSERVATION RECEIVERS SIGNAL PATH 
The transceiver has four observation receiver inputs (ORx1, ORx2, ORx3, and ORx4) that can be used to capture data for DPD 
algorithms and other measurements or calibrations that require monitoring the transmitter outputs. The observation receiver can serve as 
an external loopback path to loop back the output of a power amplifier, provided the input level to the observation receiver is below the 
full-scale level of the ADC.  

The observation channels have separate I and Q mixers. These mixers are identical to the receiver mixers except that the observation 
mixers include an LO multiplexer. The LO multiplexer allows either the RF PLL or the AUX PLL to provide the local oscillator signal 
source for the observation channel mixers.  

The mixer feeds into a programmable TIA that serves as an LPF in the analog data path. The signal is converted by the ΣΔ ADC and 
filtered in half-band decimation stages and the PFIR. The fixed coefficient half-band filters (FIR1, RHB1(HR), RHB1(LP), RHB2, RHB3, 
and DEC5) and the PFIR are designed to prevent data wrapping and overrange conditions. 

The IF conversion stage provides the ability to frequency shift or upsample/downsample digital data. Configurations supported for the 
observation receivers include real IF (real valued baseband data) configuration and low IF (complex data) configuration.  
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The diagram in Figure 113 shows the signal path for an observation receive signal chain.  

22
77

0-
10

9

LPF

Tx1 SIGNAL PATH, I AND Q CHANNEL

THB3

INT5

IDAC THB1 TFIR QEC DIGITAL
GAIN

JE
SD

20
4B

/C
 IN

TE
RF

AC
E

THB2

LPF THB3

INT5

QDAC THB1 TFIR QEC DIGITAL
GAINTHB2

 
Figure 113. Observation Receive Signal Path 

TIA 
The observation receive TIA is an LPF with a single real pole frequency response. The TIA can support pass-band bandwidths up to 225 MHz 
(for both I and Q). The TIA is calibrated during device initialization to ensure a consistent frequency corner across all devices. The TIA 3 dB 
bandwidth is set within the device data structure and is profile dependent. Roll-off within the observation receive pass band is compensated by 
the PFIR to ensure a maximally flat pass-band frequency response. 
DEC5 Filter 
Either the DEC5 filter or a combination of RHB3 and FIR1 is used in the receive digital path. The DEC5 filter decimates by a factor of 5 
or the filter can be bypassed.  
The DEC5 filter coefficients include the following: +0.000732422, +0.001464844, +0.002441406, +0.003417969, +0.003173828, 
−0.000732422, −0.005615234, −0.013183594, −0.020507813, −0.022949219, −0.014648438, +0.003417969, +0.035400391, +0.077392578, 
+0.119873047, +0.154541016, +0.176269531, +0.176269531, +0.154541016, +0.119873047, +0.077392578, +0.035400391, +0.003417969, 
−0.014648438, −0.022949219, −0.020507813, −0.013183594, −0.005615234, −0.000732422, +0.003173828, +0.003417969, +0.002441406, 
+0.001464844, and +0.000732422. 

Finite Impulse Response 1 Filter (FIR1) 

The FIR1 filter is a fixed coefficient, decimating filter. The FIR1 filter decimates by a factor of 2 or the filter can be bypassed.  

The FIR1 filter coefficients include the following: 0.25, 0.75, 0.75, and 0.25. 

Receive Half-Band 3 Filter (RHB3) 

The RHB3 filter is a fixed coefficient, decimating filter. The RHB3 filter decimates by a factor of 2 or the filter can be bypassed. 

The RHB3 filter coefficients include the following: −0.0625, 0.0078125, +0.5625, +0.984375, +0.5625, +0.0078125, and −0.0625. 

Receive Half-Band 2 Filter (RHB2) 
The RHB2 filter is a fixed coefficient, decimating filter. The RHB2 decimates by a factor of 2 or the filter can be bypassed.  
The RHB2 filter coefficients include the following: −0.002929688, +0, 0.018554688, 0, −0.0703125, +0, 0.3046875, +0.500976563, 
+0.3046875, 0, −0.0703125, +0, 0.018554688, 0, and −0.002929688. 

Receive Half-Band 1 High Rejection Filter (RHB1 (HR)) 
The RHB1 (HR) filter is a fixed coefficient, decimating filter. The RHB1 filter can decimate by a factor of 2 or the filter can be bypassed.  
The RHB1 filter coefficients include the following: −0.000732422, 0, +0.000732422, 0, −0.001098633, +0, 0.001586914, 0, −0.00213623, 0, 
+0.002929688, 0, −0.00378418, 0, +0.004882813, 0, −0.006225586, 0, +0.007873535, 0, −0.009887695, 0, +0.012329102, 0, −0.015380859, 
0, +0.019226074, 0, −0.024353027, 0, +0.031555176, 0, −0.042419434, 0, +0.061462402, 0, −0.104797363, 0, +0.317871094, +0.5, 
+0.317871094, 0, −0.104797363, 0, +0.061462402, 0, −0.042419434, 0, +0.031555176, 0, −0.024353027, 0, +0.019226074, 0, −0.015380859, 
0, +0.012329102, 0, −0.009887695, 0, +0.007873535, 0, −0.006225586, 0, +0.004882813, 0, −0.00378418, 0, +0.002929688, 0, −0.00213623, 
0, +0.001586914, 0, −0.001098633, 0, +0.000732422, 0, and −0.000732422. 

Receive Half-Band 1 Low Power Filter (RHB1 (LP)) 
The RHB1 (LP) filter is a fixed coefficient, decimating filter. The RHB1 filter can decimate by a factor of 2 or the filter can be bypassed.  
The RHB1 filter coefficients include the following: −0.002685547, 0, +0.017333984, 0, −0.068359375, 0, +0.304443359, +0.501708984, 
+0.304443359, 0, −0.068359375, 0, +0.017333984, 0, and −0.002685547. 
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PFIR Filter 

The PFIR filter acts as a decimating filter. The PFIR can decimate by a factor of 1, 2, or 4, or the filter can be bypassed. The PFIR filter 
compensates for the roll-off of the analog TIA LPF. The PFIR can use 24, 48, or 72 filter taps. The PFIR also has programmable gain 
settings of +6 dB, 0 dB, −6 dB, or −12 dB. 

The maximum number of taps is limited by the FIR clock rate (data processing clock − DPCLK). The maximum DPCLK is 1 GHz. The DPCLK 
is the ADC clock rate divided by either 4 or 5. The divisor is 4 when using the HB2 and HB3 filters, and the divisor is 5 when using the DEC5 
filter. The DPCLK affects the maximum number of RFIR filter taps that can be used according to the following relationship: 

ORx PFIR Filter TapsMAX = (DPCLK/ORx_IQ_DATARATE) × 24 

where: 
ORx PFIR Filter TapsMAX is the maximum number of filter taps that can be used for the given clock rate 
ORx_IQ_DATARATE is the output datarate of the filter 

IF Conversion 

Refer to the equivalent Receiver Signal Path section for information on the IF conversion stage.  

OBSERVATION RECEIVER SIGNAL PATH EXAMPLE  
The TES provides an example that shows how the baseband filtering stages are used in profile configurations for a signal pathway. In this 
example, the Observation receive 450 MHz, IQ Rate = 491.52 MSPS profile is selected for the Observation receive channels. This profile is 
compatible with the other examples provided in this user guide.  

Figure 114 shows the filter configuration for this example profile. The clocking frequencies are noted in blue. The signal rate after the 
RFIR block is equal to the IQ Rate of the profile. 
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Figure 114. Filter Configuration for Observation Receive 450 MHz, IQ Rate = 491.52 MSPS 

The Observation receive signal transfer function of the signal chain is in the ORx tab within the ChipConfig dropdown menu, as shown 
in Figure 115.  

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029


UG-1727 ADRV9026/ADRV9029 System Development User Guide 
 

Rev. 0 | Page 184 of 336 

22
77

0-
11

6

 
Figure 115. Observation Receive Signal Transfer Function 

OBSERVATION RECEIVER FILTER API STRUCTURE 
The filter configuration is stored in the adi_adrv9025_RxProfile_t structure. This structure is stored within the adi_adrv9025_RxSettings 
structure, which is stored in the overall device initialization structure (adi_adrv9025_Init_t). The adi_adrv9025_RxProfile_t structure contains 
the parameters listed in Table 184. For further details, refer to the Receiver Filter API Structure section.  

Table 184. adi_adrv9025_RxProfile_t Structure Parameters 
Name Value Description 
channelType A value of type adi_adrv9025_RxChannels_e Choose which channel is used to configure the filters 

described in Table 178 
rxFirDecimation 1, 2, 4 ORx FIR decimation setting 
rxDec5Decimation 4 = use combination of FIR1, FIR2, and/or RHB3, 5 = 

Use Dec5 
Setting to use either the DEC5 or the HB3 and HB2 in the 
ORx path 

rhb1Decimation 1 = bypass, 2 = in use ORx HB1 decimation setting 
rhb1WideBandMode 0 = HB1 is narrow, 1 = HB1 is wider ORx and loopback profiles ignore this field 
rhb2Decimation 1, 2 ORx HB2 decimation factor 
rhb3Decimation 1, 2 ORx HB3 decimation factor 
rxFir1Decimation 1, 2 ORx FIR decimation factor 
rxFir2Decimation 1, 2 Receive FIR decimation factor, the ORx and loopback 

profiles ignore this field 
rxOutputRate_kHz 122880 to 491520 (based on currently defined use cases) The IQ data rate is specified in kHz (to the input of the 

JESD block) 
rfBandwidth_kHz 112500 to 450000 (based on currently defined use cases) The RF bandwidth is specified in kHz 
rxBbf3dBCorner_kHz 112500 to 450000 (based on currently defined use cases) The BBF 3 dB corner frequency is specified in kHz 
rxAdcBandWidth_kHz 56250 to 225000 (based on currently defined use cases) The receive ADC bandwidth tunes the bandwidth of the 

pass band and noise transfer functions of the ADC 
rxFir A value of type adi_adrv9025_RxFir_t The receive FIR filter structure is described in Table 179 
rxDdcMode A value of type adi_adrv9025_RxDdc_e The receive DDC mode settings are described in Table 180 
rxNcoShifterCfg A value of type adi_adrv9025_RxNcoShifterCfg_t The receive NCO shifter configuration structure is 

described in Table 181 
tiaPowerMode 0, 1, 2, 3 Four options for TIA power reduction modes (range 0 to 3) 
rxDataFormat A value of type adi_adrv9025_RxDataFormat_t This structure is explained in the Gain Compensation, 

Floating Point Formatter and Slicer section and Table 172 
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DUAL BAND OVERVIEW: DUAL-BAND 2T2R SOLUTION 
The normal transceiver configuration uses four transmitters, four receivers, and four observation receivers with either a common LO in 
TDD mode or dual LOs in FDD mode configured for a single radio band. Figure 116 shows how the transceiver is configured as a dual-
band 2T2R solution by configuring half of the channels to operate in one band (Band A) and the other half of the device to operate in 
another band (Band B). 
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Figure 116. 2 Transmitter, 2 Receiver Dual-Band Mode  

Each half of the transceiver can operate as TDD, FDD, or a mix of both. The transceiver contains two independent Los, LO1 and LO2, 
where LO1 is asigned to either Band A or Band B and LO2 is assigned to the other band. Reducing the number of LOs by sharing an LO 
minimizes the risks of LO to LO coupling issues, which is a major contributor to spurious issues in highly integrated RF ICs. Figure 117 
shows one LO shared between the receive and transmit FDD bands.  
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Figure 117. Dual Band LO Configuration  

The frequency planning for the LO frequency selection is flexible. The receiver bandwidth remains at 200 MHz, as specified in the device data 
sheet. The transmitter bandwidth has been extended beyond 200 MHz to accomodate 3GPP bands that require larger receiver and 
transmitter bandwidths and duplex spacing. The transmitter channels have internal interpolation and NCOs to shift the input carriers beyond 
the 200 MHz primary bandwidth. The device data sheet has transmitter QEC performance specifications for operation beyond the 200 MHz 
primary bandwidth. Choose the LO frequency necessary to place the transmitter image out of the receiver band so that there is no impact to the 
receiver sensitivity. Duplexer rejection of the transmitter image is required to meet transmit emissions specifications. The receiver and 
transmitter channels both have NCOs, so the low IF configuration is transparent to the baseband.  

The transceiver has three dual-band profiles to choose from that optimize power consumption versus required bandwidths based on user 
application. These profiles include the following: 

• UC51nonLinkSharing, TDD bands with transmit and receive bandwidths greater than 100 MHz and an I/Q data rate of 245.76 MSPS. 
• UC54nonLinkSharing, FDD or TDD bands with transmit and receive bandwidths less than 100 MHz and I/Q data rates of 122.88 

MSPS. Reduced transmit and receive IQ rates are included to save power consumption and lower cost FPGA solution. 
• UC55nonLinkSharing, similar to UC54 except the receive bandwidth is reduced to 160 MHz if additional receive channel filtering 

is desired. 

LO Assignment 
The firmware determines if the device is in dual-band mode when the TX1 and TX2 selected LO is the same as the RX1 and RX2 LO and 
different than the LO selected for the TX3, TX4 and RX3, and RX4 channels. The following code is an example how this is setup. Receiver 
channels 1 and 2 and transmitter channels 1 and 2 share LO1, and receiver channels 3 and 4 and transmitter channels 3 and 4 share LO2. 
It is also acceptable to use the opposite LO in this assignment.  
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The following init structures are used to make LO assignments: 

initStruct = link.platform.board.Adrv9025Device.InitStructGet() 

initStruct.clocks.rx12LoSelect = Types.adi_adrv9025_LoSel_e.ADI_ADRV9010_LOSEL_LO1 

initStruct.clocks.rx34LoSelect = Types.adi_adrv9025_LoSel_e.ADI_ADRV9010_LOSEL_LO2 

initStruct.clocks.tx12LoSelect = Types.adi_adrv9025_LoSel_e.ADI_ADRV9010_LOSEL_LO1 

initStruct.clocks.tx34LoSelect = Types.adi_adrv9025_LoSel_e.ADI_ADRV9010_LOSEL_LO2 

initStruct.clocks.orx12LoSelect = Types.adi_adrv9025_OrxLoSel_e.ADI_ADRV9025_ORXLOSEL_TXLO 

initStruct.clocks.orx34LoSelect = Types.adi_adrv9025_OrxLoSel_e.ADI_ADRV9025_ORXLOSEL_TXLO 

postMcsInit = Types.adi_adrv9025_PostMcsInit_t() 

postMcsInit.radioCtrlInit.lo1PllFreq_Hz = 1810000000 

postMcsInit.radioCtrlInit.lo2PllFreq_Hz = 2593000000 

The AUX LO must remain cleared. For observation receivers, only the transmitter LO can be used. The AUX LO provides the source 
needed to run tracking calibrations that are controlled by the ARM processor. 

For dual-band applications, it is possible for Band A (Channel 1 and Channel 2) to be in real traffic and for Band B (Channel 3 and 
Channel 4) to require an LO frequency change. For more information on the procedure to change the LO frequency, see the Calibration 
Guidelines after PLL Frequency Changes section. The dual-band considerations include the following: 

• Change the LO frequency using the following process: 
• Disable all tracking on all four channels. 
• Change the LO frequency. 
• Run the internal path delay initial calibration on the desired channels. 
• Run the external LO leakage initial calibration on the desired channels. 
• Enable the tracking on all four channels. 

• For devices that incorporate crest factor reduction (CFR), change the CFR correction pulses using the following process: 
• Disable all tracking on all four channels. 
• Load the CFR correction pulses. 
• Run the CFR initial calibration. 
• Enable the tracking. 

• TX_EN, RX_EN, and ORX_CTRL_X can continue toggling when these initial calibrations are called. 

DUAL-BAND CONFIGURATION AND EXAMPLE USE CASES 
For most bands, the LO can be selected to fall within the transmit band. The widest 3GPP bands are Band 1 and the AWS-1 bands (4, 10, 
or 66). 

An example frequency plan for Band 1 is shown in Figure 118. An LO frequency of 2015 MHz places the transmit image at the edge of the 
receive band so as not to impact receive sensitivity. A transmit NCO frequency of 125 MHz places a 0 Hz centered baseband input at the 
proper output RF frequency, which requires 310 MHz of transmit bandwidth. Using a receiver NCO frequency of 65 MHz shifts the 
receive band to 0 IF, if desired. A DPD correction of 3× requires 430 MHz bandwidth, which is within the 450 MHz available. 

An example frequency plan for Band 3 is shown in Figure 119. With these two frequency plans, the transceiver can provide a dual-band 
2-transmitter, 2-receiver, 2-observation receiver solution. 
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Figure 118. Band1 Frequency Plan Example (UL = uplink, DL = downlink) 

LO = 1757.5MHz

Rx BW 95M

Tx PRIMARY BW 245

Tx DPD BW 450

DL IMAGE
1635-1710

UL
1710-1785

DL
1805-1880

3×:   1730-1955

5×:  1655-2030

Rx
47.5MHz

Tx BW
122.5MHz

22
77

0-
11

8

 
Figure 119. Band 3 Frequency Plan Example  

Band 4, Band 10, and Band 66 have the largest bandwidth from the bottom of the receive bands and the top of the transmit bands. Band 66 
is the largest, and Band 4 and Band 10 are subsets of Bands 66. The span from the top of the transmit band to the bottom of receive band is 
490 MHz. This range is too wide a bandwidth to share a single LO. Operators in the United States that have an AWS-1 band also have 
Band 25. In this case, Band 25 can be paired with these AWS-1 bands (B66 or B4 or B10). Band 2 is also a subset of Band 25. These 
frequency plans require less bandwidth than Band 1. Because transmitters and receivers do not share an LO, transmit images do not impact 
the receive channel. Band 1 is the most stringent 2T2R use case. A combination of Band 66 and Band 25 can be accomodated using 
LO1 (1812.5 MHz) for the Band 66 and Band 25 uplink and LO2 (2042.5 MHz) for the Band 66 and Band 25 downlink.  
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GPIO CONFIGURATION  
The transceiver features 19 digital general purpose input/output (GPIO) pins that can be used for a variety of functions. The transceiver 
also features eight analog GPIO (GPIO_ANA_x) pins. The GPIO pins and GPIO_ANA pins provide a real-time interface either for the 
baseband processor to control the transceiver or for the transceiver to send information to the baseband processor. An example of baseband 
processor control uses rising edges sent by the baseband processor over user assigned GPIO pins to increase or decrease the transmitter 
attenuation. An example of the transceiver sending information to the baseband processor is the ability to send overload detection 
information from peak detectors in the receiver datapath to advise that the input signal level is too high. 

The GPIO_ANA pins serve as the output pins for eight auxiliary digital to analog converter (AUXDAC_x) signals. The AUXDAC can be 
used to provide a control voltage to peripheral devices. The AUXDAC is not a precision converter device and is recommended to be used 
in applications where high accuracy is not needed. It is recommended to use the AUXDAC in feedback systems rather than in open-loop 
control systems.  

The digital GPIO supply is the VIF supply voltage. The GPIO_ANA supply is the 1.8V analog supply connected through the VANAx_1p8 
pins. IBIS models have been created to assist in the simulation of these interfaces.  

DIGITAL GPIO OPERATION 
Each digital GPIO pin can be set to either input or output mode. In this section, input and output mode are oriented with respect to the 
transceiver device. Input mode allows the baseband processor to drive pins on the transceiver to execute specific tasks. Output mode 
allows the device to output various signals.  

The digital GPIO pin I/O direction can be set with the following API commands.  

adi_adrv9025_GpioInputDirSet(…) 
adi_adrv9025_GpioInputDirSet(adi_adrv9025_Device_t* device, uint32_t gpioInputMask) 

Description  

This command configures pins for input direction. 

Parameters 

Table 185. adi_adrv9025_GpioInputDirSet(…) Parameters 
Parameter Description 
*device Pointer to the device structure. 
gpioInputMask Selects the device GPIO pins required to be set as an input in the 0x00000 to 0x7FFFF range. If a bit is set high, the GPIO pin 

associated with that bit is set as an input (GPIO_0 corresponds to Bit D0, GPIO_1 corresponds to Bit D1, and so on). 

adi_adrv9025_GpioOutputDirSet(…)  
adi_adrv9025_GpioOutputDirSet(adi_adrv9025_Device_t* device, uint32_t gpioOutputMask) 

Description  

This command configures pins for output direction. 

Parameters 

Table 186. adi_adrv9025_GpioOutputDirSet(…) Parameters 
Parameter Description 
*device  Pointer to the device structure. 
gpioInputMask Selects the device GPIO pins that are required to be set as an output in the 0x00000 to 0x7FFFF range. If a bit is set high, the 

GPIO pin associated with that bit is set as an output (GPIO_0 corresponds to Bit D0, GPIO_1 corresponds to Bit D1, and so 
on). 

Note that conflicts regarding GPIO usage can occur when using combinations of certain features. Ensure that multiple functions are not 
assigned to the same GPIO pin.  
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Input GPIO Features 

The following table provides a list of GPIO input features available that interact with datapath control elements on the device. For the 
GPIO features within Table 187, the API automatically sets the I/O direction of the GPIO pins assigned for the feature. More details on 
these features are provided in the following subsections.  

Table 187. Summary of Input GPIO Features 
Feature Description GPIO Pins Available for Feature 
SPI2 Secondary SPI channel for control and readback of receiver gain index and 

transmitter attenuation 
GPIO_0: SPI_DIO (input or output) 

 API configuration commands are adi_adrv9025_Spi2CfgSet(…) and GPIO_1: SPI_DO (output only) 
 adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(…)  GPIO_2: SPI_CLK (input) 
  GPIO_3: SPI_CS (input) 
  GPIO_4 through GPIO_18: transmit 

attenuation state select 
Pin Controlled 

Receive/ORx Gain 
Index Increment 
and Decrement  

Configure specific GPIO pins to increment or decrement the gain index on 
any receive or ORx channel after a rising edge on the assigned pin.  

GPIO_0 through GPIO_15: 
receive/ORx gain index increment 
pin select 

API configuration command is adi_adrv9025_RxGainPinCtrlCfgSet(…) GPIO_0 through GPIO_15: 
receive/ORx gain index decrement 
pin select 

Pin Controlled 
Transmit 
Attenuation 
Increment and 
Decrement 

Configures specific GPIO pins to increment or decrement attenuation on any 
transmit channel after a rising edge on the assigned pin 

GPIO_0 through GPIO_15: transmit 
attenuation increment pin select 

API configuration command is adi_adrv9025_TxAttenPinCtrlCfgSet(…) GPIO_0 through GPIO_15: transmit 
attenuation decrement pin select. 

External Slicer Mode A technique used in some gain compensation applications, the baseband 
processor instructs the slicer to attenuate the digital data to fit within a 
desired bit width based on the value expressed on the slicer pins (up to 
three are available in input mode) 

GPIO_[2:0] = assign to any receive 

 API configuration command is adi_adrv9025_RxDataFormatSet(…) GPIO_[5:3] = assign to any receive 
  GPIO_[8:6] = assign to any receive 
  GPIO_[11:9] = assign to any receive 
  GPIO_[14:12] = assign to any 

receive 
  GPIO_[17:15] = assign to any 

receive 
Transmit 

Observation 
Receiver Select 

When using fewer than four ORx channels, the ORx channel requires 
information on which transmit channel data is presented to the ORx, if a pin 
interface is required to indicate the transmit to ORx mapping, the following 
command sets up the pins, provided that the stream file is generated with 
appropriate input settings 

GPIO_0 through GPIO_15. 

 API configuration command is adi_adrv9025_StreamGpioConfigSet(…)  

SPI2 

A complete description, including descriptions of custom data types, for the SPI2 interface can be found in the SPI2 Description section.  

The SPI2 interface acts as a secondary SPI channel that operates on the digital GPIO_[3:0] pins. An optional pin can be configured for 
toggling the transmit attenuation between the S1 attenuation state and the S2 attenuation state on the GPIO_4 through GPIO_18 pins. 
The SPI2 interface uses the same SPI configuration used on the primary SPI interface. SPI2 can be used to set the gain index on the 
receiver and observation receiver channels, read back the gain index on those channels, and set up two distinct transmit attenuation states 
that the user can alternate between by switching a GPIO pin. The SPI2 interface cannot access registers available to the primary SPI 
interface. 

When the SPI2 feature is enabled, the GPIO_[3:0] pin and the pin assigned for transmit attenuation selection (can be GPIO_4 through 
GPIO_18 or left unassigned) cannot be used for other purposes. When SPI2 is enabled, it overrides the functionality previously assigned 
to the digital GPIO_[3:0] pins. Refer to Table 187 for specific pin mapping details.  
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adi_adrv9025_Spi2CfgSet(…) 
adi_adrv9025_Spi2CfgSet(adi_adrv9025_Device_t* device, uint8_t spi2Enable) 

Description  

This command enables the SPI2 feature. 

Parameters 
Table 188. adi_adrv9025_SpiCfgSet(…) Parameters 
Parameter Description 
*device Pointer to the device structure. 
Spi2Enable Sets the state of the SPI2 bus, 1 = enable and 0 = disable. 

adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(…) 
adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(adi_adrv9025_Device_t* device, 
adi_adrv9025_TxAttenSpi2PinCfg_t txAttenSpi2PinCfg[], uint8_t numTxAttenSpi2PinConfigs) 

Description  

This command assigns the transmit attenuation select pin. 

Parameters 
Table 189. adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(…) Parameters 
Parameter Description 
*device Pointer to the device structure. 
txAttenSpi2PinCfg[] Pointer to an array of the adi_adrv9025_TxAttenSpi2PinCfg_t structure that configures the transmit 

attenuation SPI2 pin control. Note that multiple transmitters can share an attenuation select pin, if desired. 
numTxAttenSpi2PinConfigs This parameter determines the number of channelized transmit attenuation SPI2 pin configurations passed in 

the txAttenSpi2PinCfg array. 

Pin-Based Receive Gain Control 

A complete description of the pin-based receive gain control feature is provided in the Receiver Gain Control and Gain Compensation section.  

Pin-based receive gain control is relevant for applications that require MGC and precise timing for gain change events. The pin-based control 
scheme offers a lower latency than SPI-based gain change operations. In pin-based gain control, specific GPIO pins are assigned increment gain 
index or decrement gain index functionality for a particular receiver channel. By applying a logic high pulse on the GPIO pin, the gain index for 
the corresponding channel is either incremented or decremented, depending on the assigned functionality. The pulse width requirement is 
two AGC clock cycles in the logic high state. The gain change because of gain index increment or decrement is programmable (ranges from 1 to 
8 gain index steps). Increment and decrement functionality can be assigned to any digital GPIO from GPIO_15 to GPIO_0. 

Note that if the user has programmed a gain table that operates in a subset of the full gain table range (that is, using Index 195 to Index 255), the 
pin-based receive gain control does not have knowledge of this status. If the gain decrement pulse is applied when the gain index is 195, the gain 
index decrements off table. The off-table gain indices (that is, gain indices below 195) can correspond to the maximum gain condition. 
Take care when applying pulses when the gain index is at the edge of the useful section gain table, or design the gain table with this in mind.  

adi_adrv9025_RxGainPinCtrlCfgSet(…) 
adi_adrv9025_RxGainPinCtrlCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025_RxChannels_e 
rxChannel, adi_adrv9025_RxGainPinCfg_t *rxGainPinCtrlCfg) 

Description  

This command configures the pin-based receive gain control feature. Note that the device must be in MGC for proper operation. 

Parameters 
Table 190. adi_adrv9025_RxGainPinCtrlCfgSet(…) Parameters 
Parameter Description 
*device Pointer to the device structure. 
rxChannel This parameter selects which receive channel is used for configuring the pin-based receive gain control. 
*rxGainPinCtrlCfg Pointer to the adi_adrv9025_RxGainPinCfg_t structure containing the configuration values for the pin-based receive 

gain control. 
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Table 191 describes the adi_adrv9025_RxGainPinCfg_t data structure used in this command.  

Table 191. Description of adi_adrv9025_RxGainPinCfg_t Data Structure 
Parameter Data Type Comments 
incStep uint8_t An increment in the gain index is applied when the increment gain pin is pulsed. A value 

from 0 to 7 applies a step size of 1 to 8. 
decStep uint8_t A decrement in the gain index is applied when the increment gain pin is pulsed. A value 

from 0 to 7 applies a step size of 1 to 8. 
rxGainIncPin adi_adrv9025_GpioPinSel_e Choose the GPIO used for the increment gain input. ADI_ADRV9025_GPIO_00 to 

ADI_ADRV9025_GPIO_15 can be used. 
rxGainDecPin adi_adrv9025_GpioPinSel_e Choose the GPIO assigned for the decrement gain input. ADI_ADRV9025_GPIO_00 to 

ADI_ADRV9025_GPIO_15 can be used. 
enable uint8_t Enable or disable the gain pin control. Enable = 1 and disable = 0. 

Pin-Based Transmit Attenuation Control 

A complete description of transmit attenuation control is provided in the Transmitter Overview and Path Control section.   

Pin-based transmit attenuation control, similar to the transmit attenuation select feature of SPI2, provides an interface to make attenuation 
adjustments with precise timing control. The pin-based control scheme offers a lower latency than SPI-based attenuation change operations. In 
pin-based attenuation control, certain GPIO pins are assigned increment attenuation or decrement attenuation functionality. By applying a 
high pulse on the assigned GPIO pin, the attenuation for a specific channel is either incremented or decremented, depending on the 
assigned functionality. Increment and decrement functionality can be assigned to any digital GPIO from GPIO_15 to GPIO_0.  

A notable difference between SPI2 and pin-based transmit attenuation control is that SPI2 allows switching between the programmed 
attenuation states (S1 and S2) and pin-based transmit attenuation control allows multiple increments or decrements of transmit attenuation.  

adi_adrv9025_TxAttenPinCtrlCfgSet(…) 
adi_adrv9025_TxAttenPinCtrlCfgSet(adi_adrv9025_Device_t* device, adi_adrv9025_TxAttenPinCfg_t 
txAttenPinCfg[],uint8_t numTxAttenPinConfigs) 

Description  

This command configures the pin-based transmit gain control feature.  

Parameters 

Table 192. adi_adrv9025_TxAttenPinCtrlCfgSet(…) Parameters 
Parameter Description 
*device  Pointer to the device structure. 
txAttenPinCfg[] Pointer to an array of the adi_adrv9025_TxAttenPinCfg_t structure that configures the transmit attenuation pin control.  
numTxAttenPinConfigs This parameter determines the number of channelized transmit attenuation pin configuration passed in the 

txAttenPinCfg array. 

Table 193 describes the adi_adrv9025_TxAttenPinCfg_t data structure used in this command. 

Table 193. Description of adi_adrv9025_TxAttenPinCfg_t Data Structure 
Parameter Data Type Comments 
txChannelMask uint32_t Choose the bitwise channel mask that the transmit attenuation pin configuration settings 

are applied to. [D0] = Tx1, [D1] = Tx2, [D2] = Tx3, [D3] = Tx4.  
stepSize uint8_t This parameter sets the change in transmit attenuation for each increment or decrement 

signal received in increment and decrement mode with a step size of 0.5dB/LSB. The valid 
range is from 0 to 31. 

txAttenIncPin adi_adrv9025_GpioPinSel_e Choose the GPIO assigned for the increment attenuation input. ADI_ADRV9025_GPIO_00 
to ADI_ADRV9025_GPIO_15 can be used 

txAttenDecPin adi_adrv9025_GpioPinSel_e Choose the GPIO assigned for the decrement attenuation input. ADI_ADRV9025_GPIO_00 
to ADI_ADRV9025_GPIO_15 can be used 

enable uint8_t Enable or disable the gain pin control. Enable = 1 and disable = 0. 

External Slicer Mode 

A complete description of the external slicer use case is provided in the Receiver Gain Control and Gain Compensation section.  
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The receive datapath features a GPIO-based slicer used in conjunction with the digital gain compensation to digitally attenuate data sent 
over the JESD204B/JESD204C interface. The digital gain compensation can expand the required number of bits to express data path 
samples beyond the interface bit width. The slicer attenuates the data to fit within the interface bit width.  

The slicer can be used in a mode where the amount of digital gain compensation at a particular gain index determines the slicer position 
(internal slicer). Alternatively, the slicer can be used with GPIOs in an externally driven mode where the baseband processor determines the 
slicer position, which controls the amount of digital attenuation applied by the slicer. When using the slicer in the external mode, specific groups 
of GPIO pins are assigned to set the slicer position. Three GPIO pins per receiver are utilized. See Table 197 for the valid external slicer pins.  

adi_adrv9025_RxDataFormatSet(…) 
adi_adrv9025_RxDataFormatSet(adi_adrv9025_Device_t* device, adi_adrv9025_RxDataFormat_t 
rxDataFormat[], uint8_t arraySize) 

Description  

This command configures the external slicer mode.  

Parameters 

Table 194. adi_adrv9025_RxDataFormatSet(…) Parameters 
Parameter Description 
*device  Pointer to the device structure. 
rxDataFormat[] Pointer to the receive data format configuration structure. 
arraySize This parameter determines the size of the rxDataFormat array that represents the number of configurations. 

Table 195 describes the adi_adrv9025_RxDataFormat_t data structure.  

Table 195. Description of adi_adrv9025_RxDataFormat_t Data Structure 
Parameter Data Type Comments 
rxChannelMask uint32_t Receive channel mask settings 
formatSelect adi_adrv9025_RxDataFormatModes_e Receive channel format mode select  
floatingPointConfig adi_adrv9025_FloatingPointConfigSettings_t Receive channel floating point format configuration  
integerConfigSettings adi_adrv9025_IntegerConfigSettings_t Receive channel integer format configuration 
slicerConfigSettings adi_adrv9025_SlicerConfigSettings_t Receive channel integer slicer configuration  
externalLnaGain uint8_t Selects the slicer to compensate for external dual-band 

LNA (0 = disable, 1 = enable) 
tempCompensationEnable uint8_t Selects the slicer to compensate for temperature 

variations (0 = disable, 1 = enable) 

For external slicer mode, the formatSelect parameter must be set as ADI_ADRV9025_GAIN_WITH_EXTERNAL_SLICER.  

Other settings relevant to the external slicer configuration include the adi_adrv9025_SlicerConfigSettings_t data structure described 
in Table 196.  

Table 196. Description of adi_adrv9025_SlicerConfigSettings_t Data Structure 
Parameter Data Type Comments 
extSlicerStepSize adi_adrv9025_ExtSlicerStepSizes_e Enumeration selects the external pin gain step size 
intSlicerStepSize adi_adrv9025_IntSlicerStepSizes_e Enumeration selects the internal pin gain step size 
rx1ExtSlicerGpioSelect adi_adrv9025_RxExtSlicerGpioSel_e Enumeration selects the Rx1 Ext Ctrl GPIO 

configuration 
rx2ExtSlicerGpioSelect adi_adrv9025_RxExtSlicerGpioSel_e Enumeration selects the Rx2 Ext Ctrl GPIO 

configuration 
rx3ExtSlicerGpioSelect adi_adrv9025_RxExtSlicerGpioSel_e Enumeration selects the Rx3 Ext Ctrl GPIO 

configuration 
rx4ExtSlicerGpioSelect adi_adrv9025_RxExtSlicerGpioSel_e Enumeration selects the Rx4 Ext Ctrl GPIO 

configuration 
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The enum adi_adrv9025_RxExtSlicerGpioSel_e structure provides the list of GPIO groupings available when using external slicer mode, 
as shown in Table 197. 

Table 197. Description of adi_adrv9025_RxExtSlicerGpioSel_e Enumeration 
Enumeration Name Enumeration Value Comments 
ADI_ADRV9025_EXTSLICER_RX_GPIO_DISABLE 0 No GPIO assigned to external slicer 
ADI_ADRV9025_EXTSLICER_RX_GPIO_2_DOWNTO_0 1 Select receive gain slicer external, GPIO2, GPIO1, and 

GPIO_0 
ADI_ADRV9025_EXTSLICER_RX_GPIO_5_DOWNTO_3 2 Select receive gain slicer external, GPIO5, GPIO4, and 

GPIO3 
ADI_ADRV9025_EXTSLICER_RX_GPIO_8_DOWNTO_6 3 Select receive gain slicer external, GPIO8, GPIO7, and 

GPIO6 
ADI_ADRV9025_EXTSLICER_RX_GPIO_11_DOWNTO_9 4 Select receive gain slicer external, GPIO11, GPIO10, and 

GPIO9 
ADI_ADRV9025_EXTSLICER_RX_GPIO_14_DOWNTO_12 5 Select receive gain slicer external, GPIO14, GPIO13, and 

GPIO12 
ADI_ADRV9025_EXTSLICER_RX_GPIO_17_DOWNTO_15 6 Select receive gain slicer external, GPIO17, GPIO16, and 

GPIO_15 

Other members of the adi_adrv9025_RxDataFormatter_t structure are discussed in the Receiver Gain Control and Gain Compensation section.  

Transmitter to Observation Receiver Mapping 

A full description of transmitter to observation receiver mapping is provided in the Use Cases section.  

For initial calibrations and tracking calibrations that require an external transmit to observation receive loopback channel for the 
algorithm, the ARM processor must understand the specific mapping of transmit to observation receive at that time. In the use case with 
four observation receivers, the mapping is typically static, and it is recommended to use the adi_adrv9025_TxToOrxMappingSet(…) API 
command to configure the mapping. In the use case with two observation receivers, each observation receive channel must know which 
transmit channel is provided as the input. An alternative to the API command interface is to use a GPIO-based interface to inform the 
ARM about the currently mapped transmit channels into the observation receive. To clarify, the baseband processor informs the 
transceiver about the channel mapping state by signaling on the GPIO, which executes a stream processor command. This stream 
processor command provides the mapping information to the ARM processor, which executes the calibration routines.  

The GPIO pins available for this feature range from the GPIO_0 pin to the GPIO_15 pin. Up to four GPIO are required to fully 
implement pin-based mapping controls. A partial implementation can be achieved with two GPIO. The partial implementation only 
indicates which transmit was mapped to the observation receive (TX_SEL signal) and does not permit the baseband processor to inform 
the device that the device must not perform tracking calibrations (TX_EN signal). This additional information is useful if antenna 
calibrations are performed while the tracking calibrations that depend on a constant external channel are still enabled.  

To set up this feature, the GUI must generate a stream file with the desired GPIO to use for the TX_SEL and TX_EN signals.  

adi_adrv9025_StreamGpioConfigSet(…) 
adi_adrv9025_ StreamGpioConfigSet(adi_adrv9025_Device_t* device,  

 adi_adrv9025_StreamGpioPinCfg_t* streamGpioPinCfg); 

Description 

With the proper stream file, the user can configure the stream processor to listen to the input GPIO with the following command. 

Note that this command is called as a part of the adrv9025_RadioctrlInit command, which is called during the 
adi_adrv9025_PostMcsInit(…) command. 

This function associates a GPIO pin with the stream processor general-purpose inputs and enables the stream trigger functionality if a 
valid GPIO (GPIO_0 to GPIO_15) is assigned to the internal streamGpInput path.  

There are 16 GPIO inputs available to trigger streams. These GPIO inputs can be mapped to one of the pins GPIO_0 to GPIO_15. 

To unmap a GPIO association with a stream general-purpose input, set the GPIO input to ADI_ADRV9025_GPIO_INVALID. 
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Parameters 
Table 198. adi_adrv9025_StreamGpioConfigSet(…) Parameters 
Parameter Description 
*device  Pointer to the device structure. 
streamGpioPinCfg Data structure containing the GPIO assignments for the stream processor inputs. 

Table 199. Description of the adi_adrv9025_StreamGpioPinCfg_t Data Structure 
Member Data Type Description 
streamGpInput0 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 0 

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput1 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose P Input 1 

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput2 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 2 

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput3 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 3 

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput4 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 4 

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput5 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 5 

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput6 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 6 

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput7 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 7 

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput8 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 8 

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput9 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 9 

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput10 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 10 

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput11 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 11 

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput12 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 12 

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput13 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 13 

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput14 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 14 

(valid GPIO_0 to GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID. 
streamGpInput15 adi_adrv9025_GpioPinSel_e Select the desired GPIO pin input to stream the processor general-purpose Input 15 

(valid GPIO_0 GPIO_15). To disable select ADI_ADRV9025_GPIO_INVALID. 

Description 

This command sets the source control. 

Parameters 
Table 200. adi_adrv9025_GpioOutSourceCtrlSet(…) Parameters 
Parameter Description 
*device  Pointer to device structure. 
gpioSrcCtrl Selects nibble-based source control. This is a 32-bit value containing 5 nibbles that set the output source control for each set 

of four GPIO pins. This parameter is set in 4-bit nibble groupings, as shown in Table 201. 

Table 201. Description of the Nibble Groups Configured Via gpioSrcCtrl 
gpioSrcCtrl[bits] Description 
gpioSrcCtrl[d3:d0] GPIO output source for GPIO_3  to GPIO_0 pins 
gpioSrcCtrl[d7:d4] GPIO output source for GPIO_7 to GPIO_4 pins 
gpioSrcCtrl[d11:d8] GPIO output source for GPIO_11 to GPIO_8 pins 
gpioSrcCtrl[d15:d12] GPIO output source for GPIO_15 to GPIO_12 pins 
gpioSrcCtrl[d19:d16] GPIO output source for GPIO_18 to GPIO_16 pins 
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The values for these nibble groupings can be formed with the adi_adrv9025_GpioOutputModes_e enumeration. This enumeration is 
described in Table 202.  

Table 202. Description of adi_adrv9025_GpioOutputModes_e Enumeration 
Enumeration Name Enumeration Value Comments 
ADI_ADRV9025_GPIO_BITBANG_MODE 3 Manual mode, API function sets output pin levels and reads input pin 

levels 
ADI_ADRV9025_GPIO_SLICER_OUT_MODE 10 Allows slicer position to be output on GPIO pins 

Note that if a GPIO is not designated as an output pin, the GPIO can be set as an input pin. For example, consider a use case where three 
pins in a 4-pin nibble group are dedicated for slicer output mode. The fourth pin in the group can be set as an input pin for gain control. 
As a constraint on customer applications, multiple source control selections cannot be used within a single 4-pin nibble group.  

Manual Pin Toggle (Bitbang) Mode  

This mode allows control of the logic level of individual GPIO pins.  

adi_adrv9025_GpioOutPinLevelSet(…) 
adi_adrv9025_GpioOutPinLevelSet(adi_adrv9025_Device_t* device, uint32_t gpioOutPinLevel) 

Description 

This command sets the output logic level of the GPIO pins after configuring the I/O direction and source control. 

Parameters 

Table 203. adi_adrv9025_GpioOutPinLevelSet(…) Parameters 
Parameter Description 
*device  Pointer to the device structure. 
gpioOutPinLevel Determines the level to output on each GPIO pin. 0 = low output, 1 = high output. 

Slicer Output Mode 

A general description of this feature is provided in the Mode 2: Digital Gain Compensation with Slicer GPIO Outputs section. 

GPIO_ANA OPERATION 
The main purpose of the GPIO_ANA_x pins is to serve as control pins for an external control element, such as a DSA or LNA. Other 
features can be exposed in future software releases. A high level overview of the GPIO_ANA_x features are provided in Table 204.  

Table 204. Summary of GPIO_ANA Features 
Feature Description GPIO Pins Available for Feature 
Receive Gain 
Table External 
Control Word 
Output 

The receive gain table includes a column for 2-bit control 
of an external gain element. Each receive channel is 
associated with two fixed GPIO_ANA_x pins. The 2-bit 
value expressed on the pins depends on the gain index 
and gain table column. The API function for configuration 
is adi_adrv9025_RxGainTableExtCtrlPinsSet(…). 

GPIO_ANA_1 and GPIO_ANA_0: Rx1 external control word  

  GPIO_ANA_3 and GPIO_ANA_2: Rx2 external control word 
  GPIO_ANA_5 and GPIO_ANA_4: Rx3 external control word 
  GPIO_ANA_7 and GPIO_ANA_6:: Rx4 external control word 

Gain Table External Control Word 

For proper use of this feature, a custom gain table must be created that uses the external control column. When a gain index with a non-
zero value in the external control column of the gain table is selected, the value of the external control column is output on a pair of 
GPIO_ANA_x pins. The configuration of the GPIO pins for the gain table external control word is performed with the following API 
command.  

adi_adrv9025_RxGainTableExtCtrlPinsSet(…) 
adi_adrv9025_RxGainTableExtCtrlPinsSet(adi_adrv9025_Device_t* device, 
adi_adrv9025_RxExtCtrlPinOuputEnable_e extCtrlGpioChannelEn) 
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Description 

This command configures the GPIO pins for the gain table external control word. 

Parameters 

Table 205. adi_adrv9025_RxGainTableExtCtrlPinsSet(…) Parameter 
Parameter Description 
*device Pointer to the device structure. 
extCtrlGpioChannelEnable Determines the adi_adrv9025_RxChannels_e enumeration type to select which set of gain table external 

control words to output on analog GPIOs. 

Table 206 describes the adi_adrv9025_RxExtCtrlPinOutputEnable_e enumeration.  

Table 206. Description of adi_adrv9025_RxExtCtrlPinOuputEnable_e Enumeration 
Enumeration Name Comments 
ADI_ADRV9025_DISABLE_RX1_RX2_EXT_CTRL_GPIOS Disable Rx1 and Rx2 external control words output on the analog GPIOs 
ADI_ADRV9025_ENABLE_RX1_RX2_EXT_CTRL_GPIOS Enable Rx1 and Rx2 external control words output on the analog GPIOs 
ADI_ADRV9025_DISABLE_RX3_RX4_EXT_CTRL_GPIOS Disable Rx3 and Rx4 external control words output on the analog GPIOs 
ADI_ADRV9025_ENABLE_RX3_RX4_EXT_CTRL_GPIOS Enable Rx3 and Rx4 external control words output on the analog GPIOs 
ADI_ADRV9025_DISABLE_RX1_RX2_RX3_RX4_EXT_CTRL_GPIOS Disable Rx1, Rx2, Rx3 and Rx4 external control words output on the analog 

GPIOs 
ADI_ADRV9025_ENABLE_RX1_RX2_RX3_RX4_EXT_CTRL_GPIOS Enable Rx1, Rx2, Rx3 and Rx4 external control words output on the analog 

GPIOs 
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GENERAL-PURPOSE INTERRUPT (GPINT)  
The transceiver features two general purpose interrupt (GPINT) pins, GPINT1 and GPINT2. Note that the device data sheet pinout 
conventions of GPINT1 and GPINT2 are referenced within the API as GPINT0 and GPINT1, respectively. In this section, references are 
made to the GPINT1 and GPINT2 conventions on the device data sheet pinout except when listed in an API code example. A summary of 
API commands relevant to the GPINT functionality is provided in the API Commands for GPINT section.  

The GPINTx pins provide an interface that allows the device to inform the baseband processor of an error in normal operation. Examples 
of the interrupt sources include PLL unlock events, SERDES link status, a stream processor error, or ARM exception. A full list of 
interrupt sources is provided in Table 207. The GPINT2 pin acts as the high priority interrupt pin, and the GPINT1 pin acts as the low 
priority interrupt pin. These pins can be configured with independent bitmasks that control which signals can assert GPINT1 or 
GPINT2. A high level block diagram of the GPINT operation is shown in Figure 120.  

GP_INT2

ON-CHIP

GP_INT1

gpInt1Mask[d49:d0]

gpInt0Mask[d49:d0]

x50

x50

x50

x50

D49:D0

D49:D0GP_INT STATUS REGISTER:
gpIntStatus[d49:d0]

50

OFF-CHIP

INTERRUPT SOURCES

22
77

0-
11

9

 
Figure 120. Block Diagram of GPINT Outputs 

The GPINT1 and GPINT2 pins are a bitwise OR of all unmasked GPINT sources. The status register represents all possible interrupt sources that 
can assert on the device. Any time the GPINTx pin asserts, the GPINT status indicates what interrupt source(s) asserted the GPINTx pin. 

Note that the GPINT status and the GPINTx pins have different behaviors. The GPINTx pins are real-time indicators of error status. For 
example, if a power amplifier protection error occurs when power amplifier protection is configured in the autoclear mode, the GPINTx pin 
deasserts when the power returns to normal. The GPINT status bit fields are sticky and remain asserted until the user clears the register. If 
the power amplifier protection error occurs and disappears in autoclear mode, the GPINT status still indicates that a power amplifier 
protection error occurred until the user manually clears the GPINT status. 

A description of the interrupt sources and their bit positions within the 50-bit general purpose interrupt mask is provided in Table 207. 

Table 207. GP_INTERRUPT Bitmask Description 
Bit Position Description Subsystem API Recovery Action 
D49 Deframer IRQ 11: Deframer1 JESD204C CRC error 

Deframer 
ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR 

D48 Deframer IRQ 10: Deframer1 JESD204C loss of sync 
D47 LO1 PLL unlock 

PLL 

ADI_COMMON_ACT_ERR_RESET_MODULE 
D46 LO2 PLL unlock ADI_COMMON_ACT_ERR_RESET_MODULE 
D45 Auxiliary PLL unlock ADI_COMMON_ACT_ERR_RESET_MODULE 
D44 Clock PLL unlock ADI_COMMON_ACT_ERROR_RESET_FULL 
D43 LO1 PLL charge pump overrange 

ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR 
D42 LO2 PLL charge pump overrange 
D41 Auxiliary PLL charge pump overrange 
D40 Clock PLL charge pump overrange 
D39 SERDES PLL unlock ADI_COMMON_ACT_ERROR_RESET_FULL 
D38 Deframer IRQ 9: Deframer1 JESD204B quad byte deframer 

(QBD) IRQ 

Deframer ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR 
D37 Deframer IRQ 8: Deframer1 SYSREF out of phase 
D36 Deframer IRQ 7: Deframer1 elastic buffer error  
D35 Deframer IRQ 6: Deframer1 lane FIFO pointer error 
D34 Deframer IRQ 5: Deframer0 JESD204C CRC error 
D33 Deframer IRQ 4: Deframer0 JESD204C loss of sync 
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Bit Position Description Subsystem API Recovery Action 
D32 Deframer IRQ 3: Deframer0 JESD204B QBD IRQ 
D31 Deframer IRQ 2: Deframer0 SYSREF out of phase 
D30 Deframer IRQ 1: Deframer0 elastic buffer error 
D29 Deframer IRQ 0: Deframer0 lane FIFO pointer error 
D28 Framer IRQ 8: Framer2 transport not sending data 

Framer 

D27 Framer IRQ 7: Framer2 SYSREF out of phase 
D26 Framer IRQ 6: Framer2 lane FIFO pointer error 
D25 Framer IRQ 5: Framer1 transport layer not sending data 
D24 Framer IRQ 4: Framer1 SYSREF out of phase 
D23 Framer IRQ 3: Framer1 lane FIFO pointer error 
D22 Framer IRQ 2: Framer0 Transport layer not sending data 
D21 Framer IRQ 1: Framer0 SYSREF out of phase 
D20 Framer IRQ 0: Framer0 lane FIFO pointer error 
D19 Power Amplifier Protection Error Tx4 (threshold exceeded) 

Transmitter ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR 
D18 Power Amplifier Protection Error Tx3 (threshold exceeded) 
D17 Power Amplifier Protection Error Tx2 (threshold exceeded) 
D16 Power Amplifier Protection Error Tx1 (threshold exceeded) 
D15 ARM has forced interrupt 

ARM 

ADI_COMMON_ACT_ERROR_RESET_FULL 
D14 ARM watchdog timer timeout ADI_COMMON_ACT_ERROR_RESET_FULL 
D13 Slew rate limiter IRQ ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR 
D12 ARM system error  ADI_ADRV9025_ACT_ERR_BBIC_LOG_ERROR 
D11 ORx3 or ORx4 stream processor error 

Stream 
processor ADI_COMMON_ACT_ERROR_RESET_FULL 

D10 ORx1 or ORx2 stream processor error 
D9 Tx4 stream processor error 
D8 Tx3 stream processor error 
D7 Tx2 stream processor error 
D6 Tx1 stream processor error 
D5 Rx4 stream processor error 
D4 Rx3 stream processor error 
D3 Rx2 stream processor error 
D2 Rx1 stream processor error 
D1 Core stream processor error r 
D0 Memory ECC error ARM ADI_COMMON_ACT_ERROR_RESET_FULL 

Table 207 can be used to form bitmasks for the GPINT2 and GPINT1 pins. Note that in the API, GPINT1 is linked to the GPINT2 pin 
and GPINT0 is linked to the GPINT1 pin. Further descriptions of these event sources is provided in the following sections.  

PLL GPINT SOURCES 
The PLL GPINT sources include two types of interrupt for the PLLs, PLL unlock events and PLL charge pump overrange events. Note 
that if initial calibrations are run, it is expected that some PLLs are used during this time and a PLL unlock event can appear in the 
GPINT status register. PLL unlocks during successful runs of initialization calibrations are expected and are not a concern.  

PLL Unlock Event Bits 

The PLL unlock event bits, if asserted, indicate that a PLL has unlocked and is not operating properly. The PLLs are designed to maintain 
lock over the full temperature range and operation of the device. In extremely rare cases, the PLL can unlock because of external or internal 
factors. There are two recovery procedures for PLL unlocks depending on the PLL that unlocks. These procedures include the following: 

• If the clock PLL unlocks, reset the device. The device is not expected to recover from the loss of the primary clock within the transceiver. 
• If the LO2, LO1, or auxiliary PLL unlocks, call adi_adrv9025_PllFrequencySet(…) to see if the PLL relocks.  

• If the unlocked PLL relocks, follow the procedures to rerun certain initialization calibrations as this is effectively a PLL 
frequency change procedure. If the user has configured attenuation ramp down/up events to occur based on the PLL lock status, 
the attenuation ramp down/up event must be cleared prior to running initial calibrations.  

• If the unlocked PLL fails to achieve lock, reset the device.  

The real time lock status of the PLL can be verified with the command adi_adrv9025_PllStatusGet(…).  
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Charge Pump Overrange Event Bits 

The charge pump overrange event bits must not be unmasked for the GPINTx pins. These bits can assert intermittently but do not 
indicate a significant device issue.  

JESD204B AND JESD204C GPINT SOURCES 
The deframer and framer in both JESD204B and JESD204C modes of operation can send information to the user regarding error events 
over the GPINTx pin.  

Because of a hardware issue, the JESD204C CRC error can assert when the link is configured for JESD204B mode. Ignore the JESD204C 
CRC error when detected in JESD204B use cases. Additionally, do not allow JESD204C errors assert the GPINTx pins when configured in 
JESD204B mode because there is no value provided in this configuration.  

Table 208 provides additional details regarding the deframer and framer interrupts that can assert the GPINTx pin. In general, referring 
to JESD204B/JESD204C documentation explains these events in more detail as well as possible recovery mechanisms. 

Table 208. Framer and Deframer Interrupt List 
GP_INT Bits Brief Description Technical Description Further Actions, If Necessary 
D34, D49 Deframer JESD204 

CRC error 
A CRC error has been detected on one of the active 
deframer lanes, the transmit data is possibly corrupted. 

Log the event. The user must decide how to 
react to the event.  

D33, D48 Deframer JESD204C 
loss of sync 

The JESD204C link layer has lost sync. This can be 
because of a loss of sync header alignment or 
multiblock alignment. Typically, the link has 
dropped and must be reestablished. 

Log the event. If the link is down, reestablish 
the link.  

D32, D38 Deframer JESD204B 
QBD IRQ 

The QBD interrupt request (IRQ) indicates that a 
deframer IRQ source has asserted. Deframer IRQ 
sources include bad disparity (BD), not in table 
(NIT), and unexpected K (UEK). Most errors are 
considered minor.  

Log the event. Call 
adi_adrv9025_DfrmIrqSourceGet(…) to 
retrieve the specific interrupt that asserted. 
Typically, this is an informational interrupt, 
but some cases can require the link reset.  

D31, D37 Deframer SYSREF 
out of phase 

SYSREF registered at the wrong phase in the link.  Log the event. Something is likely incorrect in 
the overall system timing and must be adjusted. 

D30, D36 Deframer elastic 
buffer error 

The phase of lane data in the link with respect to 
global LMFC has shifted such that the buffer is in 
protect mode to avoid corrupt data transfer. 
Deterministic latency is lost.  

Log the event. Reassess the lmfcOffset value 
selection if deterministic latency is required.  

D29, D35 Deframer lane FIFO 
pointer error 

Lane FIFO pointers have moved in the link. This error 
may or may not be associated with SYNC going low.  

Log the event. Reset the link. 

D22, D25, 
and D28 

Framer transport 
layer not sending 
data 

The framer is not sending user data. This error 
occurs if the LMFC from the link layer is out of phase 
with the transport layer LMFC, and forces a relink by 
taking SYNC low.  

Log the event. 

D21, D24, 
and D27 

Framer SYSREF out 
of phase 

SYSREF is registered at the wrong phase in the 
framer link. If JESD is configured to attempt relink 
with the new phase, no action is required.  

Log the event. Something is likely incorrect in 
the overall system timing and must be adjusted. 

D20, D23, 
and D26 

Framer lane FIFO 
pointer error 

The lane FIFO pointer has changed. Log the event.  

These deframer interrupts can be used to assert the rampdown of transmit attenuation as described in the Transmitter Power Amplifier 
Protection section. 

POWER AMPLIFIER PROTECTION GPINT SOURCES 
The power amplifier protection feature must be enabled for these interrupts to assert. The power amplifier protection block refers 
specifically to the peak and average power measurement capabilities within the transmit data path and must not be misconstrued for the 
general transmit attenuation ramp features. 

Power amplifier protection GPINT sources indicate to the user that a peak or average power measurement within the transmit data path 
has exceeded the thresholds as configured on the device. When the power measurement exceeds the threshold, this is also referred to as a 
power amplifier protection error. Log this event and take appropriate action within the system to resolve the reason for the power 
increase in the transmit data path. 
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The user can configure the power amplifier protection block to enforce a ramp (or increase) of transmit attenuation with the 
adi_adrv9025_PaPllDfrmEventRampDownEnableSet(…) command. Control over whether the attenuation ramp is sticky or autoclears is 
determined by the adi_adrv9025_TxAttenuationRampUpStickyModeEnable(…) command. Refer to the Transmitter Power Amplifier 
Protection section for more information. 

ARM GPINT SOURCES 
There are four ARM interrupt sources available.  

ARM Has Forced Interrupt 

The ARM asserts this interrupt when a fatal error occurs within the firmware. If possible, acquire an ARM memory dump to assist in a 
debug. Reset the device.  

ARM Watchdog Timer Timeout 

The ARM asserts this interrupt when the watchdog timer within the ARM reaches its timeout value. If the ARM is unable to reset this 
timer, a fatal error occurs within the ARM. If possible, acquire an ARM memory dump to assist in a debug. Reset the device. 

Slew Rate Limiter IRQ  

As of SW 2.0.5 versions, this bit represents the SRL error interrupt for the transmit datapaths. If this interrupt asserts, it indicates an SRL 
error event has occurred. Check the SRL statistics for each channel to check which channel generated the interrupt. 

ARM System Error 

The ARM asserts this interrupt when the ARM detects an issue with any calibration or system related issue managed by the ARM. Some 
events can be fatal. To acquire more information about the error, call the API command adi_adrv9025_ArmSystemErrorGet(…). This bit 
also represents any issues with tracking calibrations. 

STREAM PROCESSOR SOURCES 
Assertion of any stream processor interrupt bits indicates that a significant problem has occurred within the stream processor. The stream 
processor does not have a way to recover from these events. Reset the device if stream processor errors are detected.  

MEMORY ECC ERROR 
A memory ECC error indicates that a bit error has occurred in a memory circuit within the chip. This is an extremely rare event. Reset 
the device if this error is detected.  

SOFTWARE PROCEDURES FOR GPINT 
Referring to the transceiver programming sequence in adi_adrv9025_daughter_board.c, the GPINT feature setup is one of the last steps 
in device initialization and occurs after both the adi_board_adrv9025_JesdBringup(…) and adi_adrv9025_TxRampDownInit(…) 
commands are issued. The GPINT masks for the GPINT2 and GPINT1 pins are stored in the adi_adrv9025_GpInterruptSettings_t 
structure and applied to the device during adi_adrv9025_GpIntInit(…). This command configures both GPINTx pins and no further 
action is needed for setup.  

If it is necessary to reconfigure the GPINT masks after initialization, use the adi_adrv9025_GpIntMaskSet(…) command. The primary 
difference between the two GPINT setup commands is that the adi_adrv9025_GpIntMaskSet(…) command allows selection regarding 
which pin bitmask to program. 

The baseband processor monitors the status of the GPINT2 and GPINT1 pins after configuring the mask bits. If either pin asserts, this indicates 
that the transceiver has run into a problem that can require user intervention to resolve. The GPINT handler functions attempts to resolve the 
error by reading back the status and then clearing the status bit fields. The bits in the status register are sticky, but the pin is not. The pin 
represents whether the interrupt source is active or not. The register indicates which interrupts occurred since the status was last cleared.  

The general setup and usage for the GPINT command is as follows: 

1. Initialize the device using either the call adi_adrv9025_GpIntInit(…) or adi_adrv9025_GpIntMaskSet(…) command to set up the 
GPINT feature.  

2. Operate the device. The baseband processor monitors the GPINT2 pin and/or GPINT1 pin for rising edges that indicate an interrupt 
occurred. 
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3. If the GPINT2 pin and/or GPINT1 pin asserts, call their associated interrupt handler API command, either the 
adi_adrv9025_GpInt1Handler(…) or adi_adrv9025_GpInt0Handler(…) command, respectively. The interrupt handler returns 
information related to the interrupt source to the user. Calling this command can be sufficient to clearing the error. Either handler 
function returns a recovery action which suggests further action if necessary.  

4. Alternatively, the user can call the adi_adrv9025_GpIntStatusGet(…) command, which only returns the interrupt status bits. The 
status word is not maskable and indicates all errors since the previous clearing of the status word. 

5. If the device does not need to be reset and the error state has been eliminated, it is necessary to call the 
adi_adrv9025_GPIntClearStatusRegister(…) command to clear all error bits asserted in the GPINT status register. 

6. Perform recovery action(s).  

API COMMANDS FOR GPINT 
The following section outlines API commands for configuring and using the GPINT feature.  

adi_adrv9025_GpIntMaskSet(…) 
adi_adrv9025_GpIntMaskSet(adi_adrv9025_Device_t* device, adi_adrv9025_gpMaskSelect_e maskSelect, 
adi_adrv9025_gp_MaskArray_t *maskArray) 

Description 

This command applies the desired bitmasks to the device. 

Parameters 

Table 209. adi_adrv9025_GpIntMaskSet(…) Parameters 
Parameter Description 
*device  Pointer to the device structure. 
maskSelect Sets enumeration indicating which GP_INTERRUPT bitmask (GPINT1 or GPINT0) to write. 
*maskArray Pointer to the data structure holding the GP_INTERRUPT bitmasks to write.  

Table 210 describes the adi_adrv9025_gpMaskSelect_e enumeration. This parameter describes which pin to write the mask to.  

Table 210. Description of adi_adrv9025_gpMaskSelect_e Enumeration 
Enumeration Comments 
ADI_ADRV9025_GPINT0 GPINT1 select (GPINT0 bitmask), only adi_adrv9025_gp_MaskArray_t -> gpInt0Mask is programmed to the device.  
ADI_ADRV9025_GPINT1 GPINT2 select (GPINT1 bitmask), only adi_adrv9025_gp_MaskArray_t -> gpInt1Mask is programmed to the device. 
ADI_ADRV9025_GPINTALL GPINT1 and GPINT2 select, both members of adi_adrv9025_gp_MaskArray_t are programmed to the device.  

Table 211 describes the adi_adrv9025_gp_MaskArray_t data structure. Refer to Table 207 for a description of the bitmasks.  

Table 211. Description of adi_adrv9025_gp_MaskArray_t Data Structure 
Data Type Parameter Comments 
uint64_t gpInt0Mask Bitmask for the GPINT1 pin. If a bit within the mask is set to 1, the associated interrupt source cannot assert the 

GPINT1 pin. 
uint64_t gpInt1Mask Bitmask for the GPINT2 pin. If a bit within the mask is set to 1, the associated interrupt source cannot assert the 

GPINT2 pin.  

When either GPINTx pin asserts, there are interrupt handler API commands to assist with determining the error. The following 
commands are the GPINT2 and GPINT1 interrupt handlers.  

adi_adrv9025_GpInt1Handler(…) 
adi_adrv9025_GpInt1Handler(adi_adrv9025_Device_t* device, adi_adrv9025_gpIntStatus_t 
*gpInt1Status) 

Description 

This command sets up the GPINT2 interrupt handler. 
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Parameters 

Table 212. adi_adrv9025_GpInt1Handler(…) 
Parameter Description 
*device  Pointer to the device structure. 
*gpInt1Status Pointer to the status readback word that contains the GPINT2 source registers. 

adi_adrv9025_GpInt0Handler(…) 
adi_adrv9025_GpInt0Handler(adi_adrv9025_Device_t* device, adi_adrv9025_gpIntStatus_t 
*gpInt0Status) 

Description 

This command sets up the GPINT1 interrupt handler. 

Parameters 

Table 213. adi_adrv9025_GpInt0Handler(…) Parameters 
Parameter Description 
*device  Pointer to the device structure. 
*gpInt0Status Pointer to the status readback word that contains the GPINT1 source registers. 

When either handler command is called, the first step in the procedure is to temporarily modify the interrupt bitmask such that no other 
interrupts can assert the GPINT2 pin or GPINT1 pin while the handler is invoked. This masking is followed by retrieval of the GPINT 
status. The final step in the handler is to restore the initial bitmask for the GPINT2 pin and GPINT1 pin. In some cases, reading the error 
is sufficient to clearing the error, which is the case for short-term, intermittent errors. If the error persists, the status continues to indicate 
the interrupt and further intervention is necessary.  

adi_adrv9025_GpIntStatusGet(…) 
adi_adrv9025_GpIntStatusGet(adi_adrv9025_Device_t* device, uint64_t *gpIntStatus) 

Description 

This command provides a direct readback of the GPINT status word. 

Parameters 

Table 214. adi_adrv9025_GpIntStatus(…) Parameters 
Parameter Description 
*device  Pointer to the device structure. 
*gpIntStatus Pointer to the status readback word. Refer to Table 207 for bitmask descriptions. 

adi_adrv9025_GPIntClearStatusRegister(…) 
adi_adrv9025_GPIntClearStatusRegister(adi_adrv9025_Device_t *device, uint64_t *gpIntStatus) 

Description 

This command clears the GPINT status register. 

Parameters 

Table 215. adi_adrv9025_GPIntClearStatusRegister(…) Parameters 
Parameter Description 
*device  Pointer to the device structure. 
*gpIntStatus Pointer to the status readback word. Refer to Table 207 for bitmask descriptions. 
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AUXILIARY CONVERTERS AND TEMPERATURE SENSOR  
The transceiver features auxiliary data converters including eight 12-bit auxiliary digital-to-analog converters (AUXDACs) and two 12-bit 
auxiliary analog-to-digital converters (AUXADCs). An integrated diode-based temperature sensor is available to readback the 
approximate die temperature of the device. These features are included to simplify control tasks and reduce pin count requirements on 
the baseband processor by offloading these tasks to the transceiver. Example usage of the auxiliary converters include static voltage 
measurements performed by the AUXADC and flexible voltage control performed by the AUXDAC. This section outlines the operation 
of these features along with the API command for configuration and control.  

The AUXDAC and AUXADC are not precision data converters. DC offset and gain/slope errors are present and can vary on different 
channels. Refer to the specifications in ADRV9029 data sheet. The AUXDAC and AUXADC are best used in feedback systems rather 
than in open-loop systems for precision voltage readback or control.  

AUXILIARY DAC (AUXDAC) 
There are eight independent 12-bit AUXDACs integrated on the transceiver. The voltage range of the AUXDAC is from ground (0 V) to 
1.8 V. The AUXDACs use the enumeration adi_adrv9025_AuxDacs_e when referenced in the API. The pins used for the AUXDAC 
features are listed in Table 216. 

Table 216. AUXDAC Pin Mapping and adi_adrv9025_AuxDacs_e Enumeration Description 
Auxiliary DAC Number Pin Name Pin Number Enumeration Name Enumeration Value 
AUXDAC[0] GPIO_ANA_0 C13 ADI_ADRV9025_AUXDAC0 0x01 
AUXDAC[1] GPIO_ANA_1 C12 ADI_ADRV9025_AUXDAC1 0x02 
AUXDAC[2] GPIO_ANA_2 L16 ADI_ADRV9025_AUXDAC2 0x04 
AUXDAC[3] GPIO_ANA_3 L17 ADI_ADRV9025_AUXDAC3 0x08 
AUXDAC[4] GPIO_ANA_4 L2 ADI_ADRV9025_AUXDAC4 0x10 
AUXDAC[5] GPIO_ANA_5 L1 ADI_ADRV9025_AUXDAC5 0x20 
AUXDAC[6] GPIO_ANA_6 C5 ADI_ADRV9025_AUXDAC6 0x40 
AUXDAC[7] GPIO_ANA_7 C4 ADI_ADRV9025_AUXDAC7 0x80 

The capacitive load of the AUXDAC pins must not exceed more than 100 pF. Otherwise, stability issues can occur.  

The AUXDAC uses the GPIO_ANA pins on the device. Conflicts between GPIO_ANA and AUXDAC functionality can occur. In case of 
these conflicts, the AUXDAC takes precedence over all other GPIO_ANA functionality when the AUXDAC is enabled for a specific pin. 
When the AUXDAC is disabled, the configured GPIO_ANA functionality is applied. The AUXDAC can be enabled one pin at a time to 
allow flexibility between AUXDAC and GPIO_ANA functionality.  

The AUXDAC is typically used in applications that require analog control signals. The data interface used to set the output level of the 
AUXDAC is SPI based. There is no CMOS/LVDS data interface to provide input data to the AUXDAC.  

The (ideal) output voltage expressed on the AUXDAC is based on the following equation: 

1.8 V
4096AuxDAC

AuxDACValueV = ×  

where  
VAUXDAC is the output voltage. 
AuxDacValue is the 12-bit digital code applied to the AUXDAC.  

The AUXDAC is not a precision converter and is best used in feedback systems. Figure 121 shows the AUXDAC output voltage vs. the 
input codes for a full range code sweep of the AUXDAC. Channel to channel variability in slope and dc offset are expected.  
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Figure 121. AUXDAC Channel Comparison over Full Range Code Sweep  

AUXDAC Configuration 

The AUXDAC is configured and controlled using the commands listed in this section.  

adi_adrv9025_AuxDacCfgSet(…) 
adi_adrv9025_AuxDacCfgSet(adi_adrv9025_Device_t *device, adi_adrv9025_AuxDacCfg_t 
auxDacConfig[],uint8_t numberOfCfg) 

Description 

This command configures the AUXDAC settings. This command must be called when device initialization is complete to use the AUXDACs.  

Clears the GPINT status register. 

Parameters 

Table 217. adi_adrv9025_AuxDacCfgSet(…) Parameters 
Parameter Description 
*device The pointer to the device settings structure 
auxDacConfig[ ]  The pointer to an array of AUXDAC configuration structure 
numberOfCfg The number of configurations at the auxDacConfig array 

A data structure used in this command is the adi_adrv9025_AuxDacCfg_t data structure. The elements within this structure are 
described in Table 218.  

Table 218. Description of adi_adrv9025_AuxDacCfg_t Data Structure 
Data Type Parameter Name Comments 
uint32_t auxDacMask AUXDAC selection. Bit 0 = AUXDAC0, Bit1 = AUXDAC1, …, Bit7 = AUXDAC7 
uint8_t enable 1 = Enable selected AUXDAC per auxDacMask. 0 = Disable selected AUXDAC.  

adi_adrv9025_AuxDacValueSet(…)  
adi_adrv9025_AuxDacValueSet(adi_adrv9025_Device_t* device,adi_adrv9025_AuxDacValue_t 
auxDacValues[], uint8_t numberOfCfg) 

Description 

This command sets the output value of one or more AUXDAC outputs. 

Parameters 

Table 219. adi_adrv9025_AuxDacValueSet(…) Parameters 
Parameter Description 
*device  The pointer to the device settings structure 
auxDacValues[ ] The array of DAC value data structures to set 
numberOfCfg The number of configurations at the auxDacValues array 
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A data structure used in this command is the adi_adrv9025_AuxDacValue_t data structure. The elements within this structure are 
described in Table 220.  

Table 220. Description of adi_adrv9025_AuxDacValue_t Data Structure 
Data Type Parameter Name Comments 
uint32_t auxDacMask AUXDAC selection, Bit 0 = AUXDAC0, Bit1 = AUXDAC1, …, Bit7 = AUXDAC7 
uint16_t value 12-bit AUXDAC word to apply to the AUXDACs selected by auxDacMask 

AUXILIARY ADC (AUXADC) 
There are two physical AUXADCs integrated on the device. Each AUXADC has two inputs: AUXADC_0 and AUXADC_1 for the first 
converter, AUXADC_2 and AUXADC_3 for the second converter. The different AUXADCs are designated as 
ADI_ADRV9025_AUXADC_A and ADI_ADRV9025_AUXADC_B, per the adi_adrv9025_AuxAdcSelect_e enumeration.  

The AUXADC is a 12-bit Δ-Σ converter and is most useful for relative voltage measurements rather than precision measurements 
because of slope and dc offset variability. The decimator state at the AUXADC output is linear to 10 bits. The input voltage range of the 
AUXADC is 50 mV to 950 mV. Readback of the AUXADC data word is performed using API commands. Accuracy of the AUXADC is 
dependent upon the supply voltages provided to the VCONV1_1P0 pin for AUXADC_A and to the VCONV2_1P0 pin for AUXADC_B.  

There are no on-chip calibrations executed or available for the AUXADC.  

Each physical converter has two inputs providing four possible measurement channels (see Figure 122).  

 

AUXADC_A

AUXADC_0 (Pin F17)
[Input 0]

AUXADC_1 (Pin E17)
[Input 1]

AUXADC_B

AUXADC_2 (Pin F1)
[Input 0]
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[Input 1]

auxAdcInputSelect FOR AUXADC_A

auxAdcInputSelect FOR AUXADC_B
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22

77
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Figure 122. AUXADC On-Chip Block Diagram  

The following (ideal) equation describes the output code in relation to an input voltage, VIN. In practice, the AUXADC has slope and dc 
offset variability. 

DOUT = 4096(VIN – 0.5 V) + 2048 

Where DOUT is the output of the AUXADC for the given input voltage VIN. 

AUXADC Configuration 

The following commands are used to configure and read the AUXADCs. 

adi_adrv9025_AuxAdcCfgSet(…) 
adi_adrv9025_AuxAdcCfgSet(adi_adrv9025_Device_t *device, adi_adrv9025_AuxAdcCfg_t *auxAdcConfig, 
uint8_t arraySize) 

Description 

This command configures the AUXADC setup. 
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Parameters 
Table 221. adi_adrv9025_AuxAdcCfgSet(…) Parameters 
Parameter Description 
*device  Pointer to the device settings structure 
*auxAdcConfig  Pointer to the supplied ADC configuration structure(s) 
arraySize Number of supplied configuration structures 

An important data structure used in this command is adi_adrv9025_AuxAdcCfg_t. Table 222 describes the parameters used in this structure.  

Table 222. Description of adi_adrv9025_AuxDacValueAuxDacAdcValueCfg_t Data Structure 
Data Type Parameter Name Comments 
AdiAadi_adrv9025_AuxAdcEnable_e auxAdcEnable Enable = 1, disable = 0 
AdiAadi_adrv9025_AuxAdcSelect_e auxAdcSelect Select which ADC to configure (AUXADC_A or AUXADC_B) 
AdiAadi_adrv9025_AuxAdcInputSelect_e auxAdcInputSelect Select which input of the selected AUXADC to use (INPUT_0 or INPUT_1) 
AdiAadi_adrv9025_AuxAdcClkDivide_e auxAdcClkDivide ADC CLK divider setting 

The enumerations used in this structure are described further in Table 223 through Table 226. 
Table 223. Description of adi_adrv9025_AuxAdcEnable_e Enumeration 
Enumeration Name Enumeration Value Comments 
ADI_ADRV9025_AUXADC_DISABLE 0 Aux ADC disabled 
ADI_ADRV9025_AUXADC_ENABLE 1 Aux ADC enabled 

Table 224 provides the enumerations that describe the two physical converters on the device.  

Table 224. Description of adi_adrv9025_AuxAdcSelect_e Enumeration 
Enumeration Name Enumeration Value Comments 
ADI_ADRV9025_AUXADC_A 0 Aux ADC A selection 
ADI_ADRV9025_AUXADC_B 1 Aux ADC B selection 

Table 225 provides the enumerations that describe the two input selections that can be applied to each converter.  
Table 225. Description of adi_adrv9025_AuxAdcInputSelect_e Enumeration 
Enumeration Name Enumeration Value Comments 
ADI_ADRV9025_AUXADC_INPUT_0 3 Aux ADC Input 0 selection 
ADI_ADRV9025_AUXADC_INPUT_1 2 Aux ADC Input 1 selection 

The AUXADC clock can be set based on a divider. The AUXADC input clock is supplied by the device clock input to the device 
(DEVCLK±). The valid options are provided in Table 226. Select the AUXADC divider setting such that the sampling clock frequency is 
set as low as possible without resulting in aliasing. 
Table 226. Description of adi_adrv9025_AuxAdcClkDivide_e Enumeration 
Enumeration Name Enumeration Value Comments 
ADI_ADRV9025_AUXADC_CLKDIVIDE_32 0 Input clock divide by 32 
ADI_ADRV9025_AUXADC_CLKDIVIDE_1 1 No clock divide 
ADI_ADRV9025_AUXADC_CLKDIVIDE_2 2 Input clock divide by 2 
ADI_ADRV9025_AUXADC_CLKDIVIDE_3 3 Input clock divide by 3 
ADI_ADRV9025_AUXADC_CLKDIVIDE_4 4 Input clock divide by 4 
ADI_ADRV9025_AUXADC_CLKDIVIDE_5 5 Input clock divide by 5 
ADI_ADRV9025_AUXADC_CLKDIVIDE_6 6 Input clock divide by 6 
ADI_ADRV9025_AUXADC_CLKDIVIDE_7 7 Input clock divide by 7 
ADI_ADRV9025_AUXADC_CLKDIVIDE_8 8 Input clock divide by 8 
ADI_ADRV9025_AUXADC_CLKDIVIDE_9 9 Input clock divide by 9 
ADI_ADRV9025_AUXADC_CLKDIVIDE_10 10 Input clock divide by 10 
ADI_ADRV9025_AUXADC_CLKDIVIDE_11 11 Input clock divide by 11 
ADI_ADRV9025_AUXADC_CLKDIVIDE_12 12 Input clock divide by 12 
ADI_ADRV9025_AUXADC_CLKDIVIDE_13 13 Input clock divide by 13 
ADI_ADRV9025_AUXADC_CLKDIVIDE_14 14 Input clock divide by 14 
ADI_ADRV9025_AUXADC_CLKDIVIDE_15 15 Input clock divide by 15 
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adi_adrv9025_AuxAdcValueGet(…) 
adi_adrv9025_AuxAdcValueGet(adi_adrv9025_Device_t *device, adi_adrv9025_AuxAdcSelect_e 
auxAdcSelect, adi_adrv9025_AuxAdcValue_t *auxAdcValue) 

Description 

This command retrieves the AUXADC readback value when the AUXADC is configured. 

Parameters 

Table 227. adi_adrv9025_AuxAdcValueGet(…) Parameters 
Parameter Description 
*device  Pointer to the device settings structure 
auxAdcSelect Selects the desired AUXADC to read a sample from 
*auxAdcValue Pointer to the supplied AUXADC value structure to populate 

A data structure used in the previous command is the adi_adrv9025_AuxAdcValue_t. Table 228 describes the members within this data 
structure.  

Table 228. Description of adi_adrv9025_AuxAdcValue_t Data Structure 
Data Type Parameter Name Comments 
adi_adrv9025_AuxAdcSelect_e auxAdcSelect Selects which AUXADC to read from 
uint16_t auxAdcValue 12-bit ADC sample from the selected AUXADC  

TEMPERATURE SENSOR 
The device features a temperature sensor that measures the temperature on the die. The temperature sensor uses an ADC similar to the 
AUXADC, however, the temperature sensor converter is a separate instantiation and has no connections to a device pin.  

The initiation of a temperature measurement is performed without user intervention by the ARM processor. The user can retrieve this 
measurement result in °C through an API command. The API command to readback the temperature sensor measurement is listed in 
this section. 

adi_adrv9025_TemperatureGet(…) 
adi_adrv9025_TemperatureGet(adi_adrv9025_Device_t *device, int16_t *temperatureDegC) 

Description 

This command returns the temperature sensor ADC output value. 

Parameters 

Table 229. adi_adrv9025_TemperatureGet(…) Parameters 
Parameter Description 
*device The pointer to the device settings structure 
*temperatureDegC The pointer to a single int16_t element that returns the current 12-bit temperature sensor in °C 
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SPI2 DESCRIPTION 
The transceiver uses the primary SPI port for nearly all SPI transactions needed during operation. The device also features a secondary 
SPI port, SPI2, that can be used to control transmit, receive, and observation receive attenuation settings.  

SPI2 CONFIGURATION 
The SPI2 port can be enabled by calling the following API and setting spi2Enable to 1: 
adi_adrv9025_Spi2CfgSet(adi_adrv9025_Device_t *device, uint8_t spi2Enable) 

When this feature is enabled, the GPIO pins listed in Table 230 are configured automatically to the correct input/output port direction to 
support the SPI Interface.  

Table 230. SPI2 GPIO Pin Assignments 
Pin Number SPI2 Functionality Pin Direction 
GPIO_3 CS Input 

GPIO_2 SCLK Input 
GPIO_1 SDO Input/output (depending on 3-wire or 4-wire wire mode) 
GPIO_0 SDIO Input/output (depending on 3-wire or 4-wire wire mode) 

The primary SPI and SPI2 share the same configuration: LSB first/MSB first, 3-wire/4-wire, and single-instruction mode. Whichever 
configuration is selected for SPI is automatically assigned to SPI2. 

TRANSMITTER CONTROL WITH SPI2 
SPI2 provides the option to switch between two distinct attenuation states for the transmitters by toggling a single GPIO pin, which 
bypasses the need to access the main SPI bus. The user can program four 10-bit attenuation words into registers designated as State 1 (S1) 
and State 2 (S2). When the GPIO is low, the S1 registers set the attenuation values for the four transmitters. When the GPIO is high, the 
S2 registers set the attenuation values for the four transmitters. The user must select which GPIO is to be used to control the attenuation 
state. The valid selection values range from GPIO_4 to GPIO_18. The GPIO selection is performed by calling the following API.  

adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(…) 
adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(adi_adrv9025_Device_t *device, 
adi_adrv9025_TxAttenSpi2PinCfg_t txAttenSpi2PinCfg[], uint8_t numTxAttenSpi2PinConfigs) 

Description 

This command selects the GPIO pins used to implement the SPI2 interface. 

Parameters 

Table 231. adi_adrv9025_TxAttenSpi2PinCtrlCfgSet(…) Parameters 
Parameter Description 
*device Pointer to the device settings structure 
txAttenSpi2PinCfg[] An array of structures of type adi_adrv9025_TxAttenSpi2PinCfg_t detailed in Table 232 
numTxAttenSpi2PinConfigs The number of configurations passed in the array 

Table 232. SPI2 Configuration Parameters 
Parameter Comments 
txChannelMask This parameter selects the channels upon which the API acts, and is a bit mask with each bit corresponding to a channel. 

The desired mask can be generated by OR’ing the desired channel enumerations as follows (data type: uint32_t): 

adi_adrv9025_TxChannels_e Transmit Channel 
ADI_ADRV9025_TXOFF No transmit channels selected. 
ADI_ADRV9025_TX1 Tx1 channel selected. 
ADI_ADRV9025_TX2 Tx2 channel selected. 
ADI_ADRV9025_TX3 Tx3 channel selected. 
ADI_ADRV9025_TX4 Tx4 channel selected. 
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Parameter Comments 
txAttenSpi2Pin This parameter selects which GPIO pin is used to select between transmit attenuation State 1 and State 2. 

Data type: adi_adrv9025_Spi2TxAttenGpioSel_e. 

txAttenSpi2Pin GPIO Selected 
ADI_ADRV9025_SPI2_TXATTEN_DISABLE Remove GPIO selection. This choice is only used if SPI2 is being disabled, 

and removes the previously selected GPIO from the list of used resources. 
ADI_ADRV9025_SPI2_TXATTEN_GPIO4 Select GPIO 4 for transmit state selection. 
ADI_ADRV9025_SPI2_TXATTEN_GPIO5 Select GPIO 5 for transmit state selection. 
ADI_ADRV9025_SPI2_TXATTEN_GPIO6 Select GPIO 6 for transmit state selection. 
ADI_ADRV9025_SPI2_TXATTEN_GPIO7 Select GPIO 7 for transmit state selection. 
ADI_ADRV9025_SPI2_TXATTEN_GPIO8 Select GPIO 8 for transmit state selection. 
ADI_ADRV9025_SPI2_TXATTEN_GPIO9 Select GPIO 9 for transmit state selection. 
ADI_ADRV9025_SPI2_TXATTEN_GPIO10 Select GPIO 10 for transmit state selection. 
ADI_ADRV9025_SPI2_TXATTEN_GPIO11 Select GPIO 11 for transmit state selection. 
ADI_ADRV9025_SPI2_TXATTEN_GPIO12 Select GPIO 12 for transmit state selection. 
ADI_ADRV9025_SPI2_TXATTEN_GPIO13 Select GPIO 13 for transmit state selection. 
ADI_ADRV9025_SPI2_TXATTEN_GPIO14 Select GPIO 14 for transmit state selection. 
ADI_ADRV9025_SPI2_TXATTEN_GPIO_15 Select GPIO 15 for transmit state selection. 
ADI_ADRV9025_SPI2_TXATTEN_GPIO16 Select GPIO 16 for transmit state selection. 
ADI_ADRV9025_SPI2_TXATTEN_GPIO17 Select GPIO 17 for transmit state selection. 
ADI_ADRV9025_SPI2_TXATTEN_GPIO18 Select GPIO 18 for transmit state selection. 
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Figure 123. SPI2 Transmitter Attenuation Update Options 

There are two update modes selectable for updating the attenuation applied to the transmitters, selected by Bit D0 in the SPI2 Register 0x2A. 
When this bit is 0, it updates to the attenuation state registers or the multiplexer select GPIO take immediate effect. When this bit is 1, a 
retiming block is used to block updates to the transmit attenuation until a latch bit (one per transmitter channel) is set. The latch bits are 
in the SPI2 Register 0x2A, Bits[D4:D1]. Note that these bits are not self-clearing and must be written to zero before being used to latch 
new attenuation values.  

Table 233. SPI2 Register 0x2A Details 
Register 0x2A Comments 
D4 Latch this bit for Tx3 attenuation words (not self-clearing). 
D3 Latch this bit for Tx2 attenuation words (not self-clearing). 
D2 Latch this bit for Tx1 attenuation words (not self-clearing). 
D1 Latch this bit for Tx0 attenuation words (not self-clearing). 
D0 Attenuation update mode selection bit.  
 0 = update the attenuation when the LSB is written. 
 1 = update the attenuation when the latch bit is set and transitioned from low to high. 

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029


UG-1727 ADRV9026/ADRV9029 System Development User Guide 
 

Rev. 0 | Page 210 of 336 

It is generally preferred to synchronize the attenuation change of all the transmit channels in one device, or across an antenna array 
comprising many devices. An example of how to perform this synchronization is given in the following steps: 

1. Set Register 0x2A, Bit D0 low to allow immediate attenuation updates. 
2. Update the attenuation values of the attenuation state that is not in use. 
3. Toggle the selected attenuation state by toggling the appropriate GPIO pin, which selects between states. The new attenuation values 

are now simultaneously applied to all transmitters in the product/antenna array. 

As this sequence repeats, the transmit attenuation values of an entire antenna array can be adjusted simultaneously with real-time 
attenuation changes triggered by the GPIO transition.  

The two different attenuation states for each transmitter can be stored in the SPI2 register map shown in Table 234. Values are written to 
these registers using the SPI protocol that is defined in the Serial Peripheral Interface (SPI) section.  

RECEIVER AND OBSERVATION RECEIVER CONTROL WITH SPI2 
SPI2 can also be used to control both receiver and observation receiver attenuation settings. Dual states like those used by the transmitters 
are not implemented for the receiver and observation receiver attenuation settings. When a new attenuation setting is written to one of 
the gain index registers shown in Table 234, an immediate update occurs. The value of each register can be written or read back using the 
SPI protocol that is defined in the Serial Peripheral Interface (SPI) section.  

Table 234. SPI2 Register Map 
Address Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
0x0002 orx0_agc_manual_gain_index agc_orx0_manual_gain_index 
0x0003 orx1_agc_manual_gain_index agc_orx1_manual_gain_index 
0x0004 orx2_agc_manual_gain_index agc_orx2_manual_gain_index 
0x0005 orx3_agc_manual_gain_index agc_orx3_manual_gain_index 
0x0006 orx0_agc_gain_index_readback agc_orx0_gain_index_readback 
0x0007 orx1_agc_gain_index_readback agc_orx1_gain_index_readback 
0x0008 orx2_agc_gain_index_readback agc_orx2_gain_index_readback 
0x0009 orx3_agc_gain_index_readback agc_orx3_gain_index_readback 
0x000a rx0_agc_manual_gain_index agc_rx0_manual_gain_index 
0x000b rx1_agc_manual_gain_index agc_rx1_manual_gain_index 
0x000c rx2_agc_manual_gain_index agc_rx2_manual_gain_index 
0x000d rx3_agc_manual_gain_index agc_rx3_manual_gain_index 
0x000e rx0_agc_gain_index_readback agc_rx0_gain_index_readback 
0x000f rx1_agc_gain_index_readback agc_rx1_gain_index_readback 
0x0010 rx2_agc_gain_index_readback agc_rx2_gain_index_readback 
0x0011 rx3_agc_gain_index_readback agc_rx3_gain_index_readback 
0x0012 tx0_attenuation_readback_lsb tx0_attenuation_readback[7:0] 
0x0013 tx0_attenuation_readback_msb Reserved tx0_attenuation_readback[9:8] 
0x0014 tx0_attenuation_s1_lsb tx0_attenuation_s1[7:0] 
0x0015 tx0_attenuation_s1_msb Reserved tx0_attenuation_s1[9:8] 
0x0016 tx0_attenuation_s2_lsb tx0_attenuation_s2[7:0] 
0x0017 tx0_attenuation_s2_msb Reserved tx0_attenuation_s2[9:8] 
0x0018 tx1_attenuation_readback_lsb tx1_attenuation_readback[7:0] 
0x0019 tx1_attenuation_readback_msb Reserved tx1_attenuation_readback[9:8] 
0x001a tx1_attenuation_s1_lsb tx1_attenuation_s1[7:0] 
0x001b tx1_attenuation_s1_msb Reserved tx1_attenuation_s1[9:8] 
0x001c tx1_attenuation_s2_lsb tx1_attenuation_s2[7:0] 
0x001d tx1_attenuation_s2_msb Reserved tx1_attenuation_s2[9:8] 
0x001e tx2_attenuation_readback_lsb tx2_attenuation_readback[7:0] 
0x001f tx2_attenuation_readback_msb Reserved tx2_attenuation_readback[9:8] 
0x0020 tx2_attenuation_s1_lsb tx2_attenuation_s1[7:0] 
0x0021 tx2_attenuation_s1_msb Reserved tx2_attenuation_s1[9:8] 
0x0022 tx2_attenuation_s2_lsb tx2_attenuation_s2[7:0] 
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Address Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
0x0023 tx2_attenuation_s2_msb Reserved tx2_attenuation_s2[9:8] 
0x0024 tx3_attenuation_readback_lsb tx3_attenuation_readback[7:0] 
0x0025 tx3_attenuation_readback_msb Reserved tx3_attenuation_readback[9:8] 
0x0026 tx3_attenuation_s1_lsb tx3_attenuation_s1[7:0] 
0x0027 tx3_attenuation_s1_msb Reserved tx3_attenuation_s1[9:8] 
0x0028 tx3_attenuation_s2_lsb tx3_attenuation_s2[7:0] 
0x0029 tx3_attenuation_s2_msb Reserved tx3_attenuation_s2[9:8] 
0x002a tx_atten_upd_spi2 Reserved tx_atten_upd_core_spi2 tx_atten_upd_core_spi2_en 
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RF PORT INTERFACE OVERVIEW 
This section describes the recommended RF transmitter and receiver interfaces to obtain optimal transceiver performance. This section 
includes data regarding the expected RF port impedance values and examples of impedance matching networks used in the evaluation 
platform. Some information is also provided regarding board layout techniques and balun selection guidelines. 

External impedance matching networks are required on the transmitter and receiver ports to achieve the performance levels indicated in 
the device data sheet. Analog Devices recommends the utilization of simulation tools in the design and optimization of impedance 
matching networks. To achieve optimal correlation from simulation to the PCB, accurate models of the board environment, surface 
mounted device (SMD) components (for example, baluns and filters), and transceiver port impedances are required.  

RF PORT IMPEDANCE DATA 
Figure 124 through Figure 129 provide the port impedance data for all transmitters and receivers in the device obtained using ADS 
simulation tool modeling. Note the following: 

• SEDZ stands for series equivalent differential impedance. 
• PEDZ stands for parallel equivalent differential impedance. 
• Zo is defined as 50 Ω for transmit and as 100 Ω for receive/observation receive. 
• The reference plane for this data is the device ball pads.  
• Single-ended mode port impedance data is not available. However, a rough assessment is possible by taking the differential mode 

port impedance data and dividing both the real and imaginary components by 2. 
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Figure 124. Tx1 and Tx4 SEDZ and PEDZ Data 
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Figure 125. Tx2 and Tx3 SEDZ Data 
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Figure 126. Rx1 and Rx4 SEDZ Data 
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Figure 127. Rx2 and Rx3 SEDZ Data 
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Figure 128. ORx1 and ORx4 SEDZ Data 
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Figure 129. ORx2 and ORx3 SEDZ Data 

ADS SETUP USING DATA ACCESS COMPONENT AND SEDZ FILE  
The port impedances are supplied as a SEDZ file (file with a *.s1p extension. This format allows simple interface to ADS by using the data 
access component. In Figure 130, TERM1 is the single-ended input or output and TERM2 represents the differential input or output RF 
port. The Pi network on the single-ended side and the differential Pi configuration on the differential side allow maximum flexibility in 
designing matching circuits and is suggested for all design layouts as the network can step the impedance up or down as needed with 
appropriate component selection. 
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Figure 130. Simulation Setup in ADS with SEDZ s1p Files and DAC Component 

This evaluation operation is as follows: 

1. The data access component block reads the RF port *.s1p file, which is the device RF port reflection coefficient. 
2. The two equations convert the RF port reflection coefficient to a complex impedance. The end result is the RF port calculated 

complex impedance (RX_SEDZ) variable. 
3. The RX_SEDZ is utilized to define the TERM2 impedance. 

Term2 is used in a differential mode and TERM1 is used in a single-ended mode. Setting up the simulation this way allows measurement 
of S11, S22, and S21 of the 3-port system without complex math operations within the display page. 

For the highest accuracy, use electromagnetic (EM) modeling results of the PCB artwork and s-parameters of the matching components 
and balun in the simulations. 
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TRANSMITTER BIAS AND PORT INTERFACE 
This section explains the dc biasing of the transmitter outputs and how to interface to each transmit port. The transmitters operate over a 
range of frequencies. At full output power, each differential output side draws approximately 100 mA of dc bias current. The transmit 
outputs are dc biased to a 1.8 V supply voltage using either RF chokes (wire wound inductors) or a transformer center tap connection.  

Careful design of the dc bias network is required to ensure optimal RF performance levels. When designing the dc bias network, select 
components with low dc resistance (RDCR) to minimize the voltage drop across the series parasitic resistance element with either of the 
suggested dc bias schemes suggested in Figure 131. The red resistors (R_DCR) indicate the parasitic elements. As the impedance of the 
parasitics increase, the voltage drop (ΔV) across the parasitic element increases, causing the transmitter RF performance (for example, 
PO,1dB and PO,MAX) to degrade. Select the choke inductance (LC) high enough relative to the load impedance such that it does not degrade 
the output power.  

The recommended dc bias network is shown in Figure 132. This network has fewer parasitics and fewer total components. Note that CB 

signifies the bias supply decoupling capacitor, IBIAS is the bias current to each transmitter output stage port, and VBIAS is the bias voltage 
seen by each transmitter output stage port. 
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Figure 131. RF DC Bias Configurations Depicting Parasitic Losses Because of Wire Wound Chokes 
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Figure 132. RF DC Bias Configurations Depicting Parasitic Losses Because of Center Tapped Transformers 

Figure 133 through Figure 136 identify four basic differential transmitter output configurations. Impedance matching networks (balun 
single-ended port) are most likely required to achieve optimum device performance. The transmitter outputs must also be ac-coupled in 
most applications because of the dc bias voltage applied to the differential output lines of the transmitter.  

The recommended RF transmitter interface featuring a center tapped balun is shown in Figure 133. This configuration offers the lowest 
component count of the options presented.  

Descriptions of the transmit port interface schemes are as follows:  

• The center tapped transformer passes the bias voltage directly to the transmitter outputs. 
• The RF chokes are used to bias the differential transmitter output lines. Additional coupling capacitors (CC) are added in the creation 

of a transmission line balun. 
• The RF chokes are used to bias the differential transmitter output lines and connect into a transformer. 
• The RF chokes are used to bias the differential output lines that are ac-coupled into the input of a driver amplifier. 
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Figure 133. RF Transmitter Interface Configuration A 
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Figure 134. RF Transmitter Interface Configuration B 
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Figure 135. RF Transmitter Interface Configuration C 
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Figure 136. RF Transmitter Interface Configuration D 

If a chosen transmit balun requires a set of external dc bias choke inductors, careful planning is required. It is necessary to find the 
optimum compromise between the choke physical size, choke dc resistance (RDCR) and the balun low frequency insertion loss. In 
commercially available dc bias chokes, the resistance decreases as the size increases. However, as the choke inductance increases, the 
resistance increases. Therefore, it is not recommended to use physically small chokes with high inductance as these chokes exhibit the 
greatest resistance. Table 235 lists some sample choke inductor resistances for different package sizes to help determine how much dc loss 
to expect. For example, the voltage drop of a 500 nH, 0603 choke inductor at 100 mA is roughly 45 mV. 

Table 235. Sample Wire Wound DC Bias Choke Resistance vs. Size 
Inductance (nH) 0603 Package Size Resistance  (Ω) 01206 Package Size Resistance  (Ω) 
100 0.10 0.08 
200 0.15 0.10 
300 0.16 0.12 
400 0.28 0.14 
500 0.45 0.15 
600 0.52 0.20 

GENERAL RECEIVER PATH INTERFACE 
The device has two types of receivers. These receivers include four main receive pathways (Rx1, Rx2, Rx3, and Rx4) and four observation 
receivers (ORx1, ORx2, ORx3, and ORx4). The receive and observation receive channels are designed for differential use only. 

The receivers support a wide range of operation frequencies. In the case of the receive and observation receive channels, the differential 
signals interface to an integrated mixer. The mixer input pins have a dc bias of approximately 0.7 V present on them and may need to be 
ac-coupled depending on the common-mode voltage level of the external circuit. 
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Important considerations for the receiver port interface include the following:  

• What device will be interfaced to the transceiver? Examples are filter, balun, transmit/receive switch, external LNA, and external 
power amplifier. Determine if this device represents a short to ground at dc.  

• Receive and observation receive maximum safe input power is 18 dBm (peak). 
• Receive and observation receive optimum dc bias voltage is 0.7 V bias to ground. 
• Board Design characteristics, including reference planes, transmission lines, and impedance matching must be carefully planned. 

Figure 137 shows the possible differential receiver port interface circuits. The options in Figure 137 and Figure 138 are valid for all 
receiver inputs operating in differential mode, but only the Rx1 signal names are indicated. Impedance matching can be necessary to 
obtain the performance levels in the ADRV9029 data sheet.  

RECEIVER
INPUT STAGE

(MIXER OR LNA)

Rx–

Rx+

22
77

0-
13

6

 
Figure 137. Differential Receiver Input Interface Circuits 

RECEIVER
INPUT STAGE

(MIXER OR LNA)

Rx–

Rx+

22
77

0-
13

7

CC

CC

 
Figure 138. Differential Receiver Input Interface Circuits 

Given wide RF bandwidth applications, SMD balun devices function well. Decent loss and differential balance are available in a relatively 
small (0603 or 0805) package.  

IMPEDANCE MATCHING NETWORK EXAMPLES  
Impedance matching networks are required to achieve performance levels noted in the ADRV9029 data sheet. This section provides 
example topologies and components used on the CE board.  

Models of the devices, board, balun, and SMD components are required to build an accurate system level simulation. The board layout 
model can be obtained from an EM simulator (for example, Momentum). The balun and SMD component models can typically be 
obtained from the device vendors. Figure 139 shows a typical matching circuit topology used to connect single-ended signal sources to 
the transceiver’s differential inputs. 
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NC_6 GND GND_DC_FEED_RFGND
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5 2
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BAL_OUT1

BAL_OUT2

RX+

RX–

 
Figure 139. Impedance Matching Topology  

The impedance matching networks provided in this section have not been evaluated in terms of mean time to failure (MTTF) in high 
volume production. Consult with component vendors for long-term reliability concerns. Additionally, consult with balun vendors to 
determine appropriate conditions for dc biasing. 

The schematics in Figure 140, Figure 141, and Figure 142 show two or three circuit elements in parallel marked do not include (DNI), 
which was done on the evaluation board schematic to accommodate different component configurations for different frequency ranges. 
Only one set of SMD component pads are placed on the board to provide a physical location that can be used for the selected parallel circuit 
element. For example, the R302, L302, and C302 components only have one set of SMD pads for one SMD component. The schematic shows that 
in a generic port impedance matching network the series elements can be a resistor, inductor, or capacitor, and the shunt elements can be either 
an inductor or a capacitor. Only one component of each parallel combination is placed in a practical application. Note that in some matching 
circuits, some shunt elements may not be required. All components for a given physical location remain DNI in those particular 
applications. 

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029


ADRV9026/ADRV9029 System Development User Guide UG-1727 
 

Rev. 0 | Page 219 of 336 

BALUN

Tx+

Tx–

OPTIONAL
RF CHOKE FEED

OPTIONAL
RF CHOKE FEED

Tx OUTPUT

1.8V

1.8V

22
77

0-
13

9

 
Figure 140. Transmitter Generic Matching Network Topology from CE Board 
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Figure 141. Receiver Generic Matching Network Topology from CE Board 
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Figure 142. Observation Receiver Generic Matching Network Topology from CE Board 

MATCHING COMPONENT RECOMMENDATIONS 
Table 236 through Table 241 show the balun and matching components used on the CE boards. Leave the DNI components open. Note 
that all tolerances are ±3% unless otherwise noted. Tolerance notations are either shown as a percentage of the nominal value (%) or as a 
range in the units of the component. Component reference designators can be cross referenced with the schematic drawings for the 
different variant CE boards. 

Table 236. Receiver Matching Components, Rx1 and Rx4 

Frequency 
Band (MHz) 

Component Location on PCB (All Tolerances Are ±3% Unless Otherwise Noted) 

C301/ 
L301, 
C331/ 
L331 

C302/L302/ 
R302, C332/ 
L332/R332 

C303/ 
L303, 
C333/ 
L333 

C304/L304/ 
R304, C334/ 
L334/R334 

C305/ 
R305, 
C335/ 
R335 

C306/ 
L306, 
C336/ 
L336 

C307/L307/ 
R307, C337/ 
L337/R337 

C308/L308/ 
R308, C338/ 
L338/R338 

C309/ 
L309, 
C339/ 
L339 T301, T307 

75 to 1000 DNI 0 Ω DNI 0Ω 0.01 µF DNI 0 Ω 0 Ω DNI TDK ATB2012-
50011 

650 to 2800 DNI 0 Ω DNI 0 Ω 0 Ω 91 nH 3.9 pF ± 
0.1 pF 

3.9 pF ± 
0.1 pF 

47 nH Johanson 
1720BL15A0100 

2800 to 6000 DNI 1.2 nH ± 
0.1 nH 

DNI 0 Ω 1.8 pF ± 
0.1 pF 

9.1 nH 0.7 nH  ± 
0.1 nH 

0.7 nH  ± 
0.1 nH 

30 nH Johanson 
4400BL15A0100E 
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Table 237. Receiver Matching Components, Rx2 and Rx3 

Frequency 
Band (MHz) 

Component Location on PCB (All Tolerances Are ±3% Unless Otherwise Noted) 
C311/ 
L311, 
C321/ 
L321 

C312/L312/ 
R312, C322/ 
L322/R322 

C313/ 
L313, 
C323/ 
L323 

C314/L314/ 
R314, C324/ 
L324/R324 

C315/ 
R315, 
C325/ 
R325 

C316/ 
L316, 
C326/ 
L326 

C317/L317/
R317, C327/ 
L327/R327 

C318/L318/ 
R318, C328/ 
L328/R328 

C319/ 
L319, 
C329/ 
L329 T303, T305 

75 to 1000 DNI 0 Ω DNI 0Ω 0.01 µF DNI 0 Ω 0 Ω DNI TDK ATB2012-
50011 

650 to 2800 DNI 0 Ω DNI 0 Ω 0 Ω 100 nH 3.9 pF ± 
0.1 pF 

3.9 pF  ± 0.1 pF 43 nH Johanson 
1720BL15A0100 

2800 to 6000 DNI 1.2 nH ± 
0.1 nH 

0.2 pF ± 
0.05 pF 

0 Ω 4.8 pF ± 
0.1 pF 

9.1 nH 0.7 nH  ± 
0.1 nH 

0.7 nH ± 0.1 nH 30 nH Johanson 
4400BL15A0100E 

 

Table 238. Observation Receiver Matching Components, ORx2 and ORx4 

Frequency 
Band (MHz) 

Component Location on PCB (All Tolerances Are ±3% Unless Otherwise Noted) 

C401/ 
L401, 
C431/ 
L431 

C402/L402/ 
R402, C432/ 
L432/R432 

C403/ 
L403, 
C433/ 
L433 

C404/L404/ 
R404, C434/ 
L434/R434 

C405/ 
R405, 
C435/ 
R435 

C406/ 
L406, 
C436/ 
L436 

C407/L407/ 
R407, C437/ 
L437/R437 

C408/L408/ 
R408, C438/ 
L438/R438 

C409/ 
L409, 
C439/ 
L439 T401, T407 

75 to 1000 DNI 0 Ω DNI 0Ω 0.01 µF DNI 0 Ω 0 Ω DNI TDK ATB2012-
50011 

650 to 2800 DNI 0 Ω DNI 0 Ω 0 Ω 82 nH 4.7 pF ± 
0.1 pF 

4.7 pF ± 
0.1 pF 

75 nH ± 
5% 

Johanson 
1720BL15A0100 

2800 to 6000 DNI 1.3 nH ± 
0.1 nH 

0.2 pF ± 
0.05 pF 

0 Ω 5.6 pF ± 
0.1 pF 

7.5 nH 0.6 nH ± 
0.1 nH 

0.6 nH ± 
0.1 nH 

0.1pF ± 
0.05 pF 

Johanson 
4400BL15A0100E 

 

Table 239. Observation Receiver Matching Components, ORx1 and ORx3 

Frequency 
Band (MHz) 

Component Location on PCB (All Tolerances Are ±3% Unless Otherwise Noted) 

C411/ 
L411, 
C421/ 
L421 

C432/L412/ 
R412, C422/ 
L422/R422 

C413/ 
L413, 
C423/ 
L423 

C414/L414/ 
R414, C424/ 
L424/R424 

C415/ 
R415, 
C425/ 
R425 

C416/ 
L416, 
C426/ 
L426 

C417/L417/ 
R417, C427/ 
L427/R427 

C418/L418/ 
R418, C428/ 
L428/R428 

C419/ 
L419, 
C429/ 
L429 T403, T405 

75 to 1000 DNI 0 Ω DNI 0Ω 0.01 µF DNI 0 Ω 0 Ω DNI TDK ATB2012-
50011 

650 to 2800 DNI 0 Ω DNI 0 Ω 0 Ω 200 nH 10 pF ± 5% 10 pF ± 5% 200 nH Johanson 
1720BL15A0100 

2800 to 6000 13 nH 0.5 nH ± 
0.1 nH 

DNI 0.3 nH ± 
0.1 nH 

1.6 pF ± 
0.1 pF 

11 nH 0.5 nH ± 
0.1 nH 

0.5 nH ± 
0.1 nH 

39 nH Johanson 
4400BL15A0100E 

 

Table 240. Transmitter Matching Components, Tx1 and Tx4 

Frequency 
Band (MHz) 

Component Location on PCB (All Tolerances Are ±3% Unless Otherwise Noted) 
C512/ 
L512, 
C572/ 
L572 

C511/L511/ 
R511, C571/ 
L571/R571 

C510/ 
L510, 
C570/ 
L570 

C509/L509/ 
R509, C569/ 
L569/R569 

C508/ 
L508, 
C568/ 
L568 

C506/L506/ 
R506, C566/ 
L566/R566 

C507/L507/ 
R507, C567/ 
L567/R567 

C503/ 
L503, 
C563/ 
L563 

C516, 
C576 T501, T507 

75 to 1000 DNI 0.01 µF DNI 0 Ω DNI 0 Ω 0 Ω DNI 0.01 µF TDK ATB2012-
50011 

650 to 2800 DNI 0.8 nH ± 
0.1 nH 

33 nH 5.1 pF ± 
0.1 pF 

DNI 0 Ω 0 Ω DNI 82 pF Johanson 
1720BL15A0100 

2800 to 
6000 

3.2 nH ± 
0.1 nH 

8.2 pF ± 
0.1 pF 

DNI 2 pF ± 0.1 pF 16 nH 1.1 nH ± 
0.1 nH 

1.1 nH  ± 
0.1 nH 

12 nH 6.2 pF ± 
0.1 pF 

Johanson 
4400BL15A0100E 
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Table 241. Transmitter Matching Components, Tx2 and Tx3 

Frequency 
Band (MHz) 

Component Location on PCB (All Tolerances Are ±3% Unless Otherwise Noted) 
C532/ 
L532, 
C552/ 
L552 

C531/L531/ 
R531, C551/ 
L551/R551 

C530/ 
L530, 
C550/ 
L550 

C529/L529/ 
R529, C549/ 
L549/R549 

C528/ 
L528, 
C548/ 
L548 

C526/L526/ 
R526, C546/ 
L546/R546 

C527/L527/ 
R527, C547/ 
L547/R547 

C523/ 
L523, 
C543/ 
L543 

C536, 
C556 T503, T505 

75 to 1000 DNI 0.01 µF DNI 0 Ω DNI 0 Ω 0 Ω DNI 0.01 µF TDK ATB2012-
50011 

650 to 2800 DNI 0.9 nH ± 
0.1 nH 

200 nH 6.8 pF ± 
0.1 pF 

DNI 0 Ω 0 Ω DNI 82 pF Johanson 
1720BL15A0100 

2800 to 6000 62 nH  1.8 nH ± 
0.1 nH 

0.2 pF ± 
0.05 pF 

0.5 nH ± 
0.1 nH 

12 nH 1 nH ± 0.1 
nH 

1 nH ± 0.1 nH 20 nH 4.9 pF ± 
0.1 pF 

Johanson 
4400BL15A0100E 
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POWER MANAGEMENT CONSIDERATIONS  
The transceiver requires the following five different power supply domains: 

• 1.0 V digital: this supply is connected to the device through the three VDIG_1P0 pins. This supply feeds all digital processing and 
clock generation. Take care to properly isolate this supply from all analog signals on the PCB to avoid noise corruption. This supply 
input can have a tolerance of ±5%, however, note that the total tolerance must include the tolerance of the supply device added to the 
voltage drop of the PCB. This supply is a high current input, and it is critical that the input traces for these three inputs be balanced 
(same impedance for the inputs) and as thick as possible to minimize the I × R drop.  

• 1.0 V analog: these supplies are collectively referred to in the data sheet as the VANA_1P0 supply. This covers the VDES_1P0, 
VSER_1P0, VTT_DES, and VJSY_1P0 supplies. All of these inputs provide power for various functions in the JESD interface blocks. 
They can be connected directly to the same supply as VDIG_1P0 if the source has the current capability to supply the extra current 
needed for the JESD interface and if proper isolation is included to prevent digital noise from corrupting these inputs. Alternatively, 
these supply inputs can be connected to a separate 1.0 V regulator to keep the inputs isolated from digital domains inside the 
transceiver. The tolerance on these supply inputs is ±5%.  

• 1.3 V analog: these supplies connect to all functional blocks in the transceiver through 14 different input pins, and are collectively 
referred to in the data sheet as the VANA_1P3 supply. Treat each input as a noise susceptible input, meaning proper decoupling and 
isolation techniques must be followed to avoid crosstalk between channels. The tolerance on these supply inputs is ±2.5%.  

• 1.8 V analog: these supplies are primarily used to supply the transmitter outputs, but they also supply current for multiple 
transmitter, receiver, converter, and auxiliary converter blocks. They are collectively referred to in the data sheet as the VANA_1P8 
supply. The tolerance on these supply inputs is ±5%.  

• Interface supply: the VIF supply is a separate power domain shared with the baseband processor interface. The nominal input voltage 
on this supply is 1.8 V with a tolerance of ±5%. This input serves as the voltage reference for the digital SPI interface, GPIO, and 
digital control inputs.  

SUPPLY CAPACITY 
During operation, supply currents can vary significantly, especially if operating in TDD mode. The supply must have adequate capacity to 
provide the necessary current (as indicated in the device data sheet) so that performance criteria over all process and temperature 
variations are maintained. Analog Devices recommends adding 900 mA to the digital supply maximum and 30% margin to all analog 
supply maximums to ensure proper operation under all conditions.  

POWER SUPPLY SEQUENCE 
The transceiver requires a specific power-up sequence to avoid undesirable power-up currents. In the optimal sequence, the VDIG_1P0 
supply must come up first. If the VANA_1P0 supplies are connected to the same source as the VDIG_1P0 supply, these inputs can power 
up at the same time as the VDIG_1P0 supply. When the VDIG_1P0 source is enabled, the other supplies can be enabled in any order or 
all together. Note that the VIF supply can be enabled at any time without affecting the other circuits in the transceiver. In addition to this 
sequence, it is also recommended to toggle the RESET signal after power has stabilized prior to initializing the device.  

The power-down sequence recommendation is similar to power-up. Disable all analog supplies in any order (or all together) before 
VDIG_1P0 is disabled. If such a sequence is not possible, disable the sources of all supplies simultaneously to ensure that there is no back 
feeding circuits that have been powered down. 

POWER SUPPLY DOMAIN CONNECTIONS 
Table 242 lists the pin name, the pin number, the recommended routing technique for that pin from the main supply rail (if applicable), 
and a brief description of the block the pin powers in the chip.  

The information listed in Table 242 shows which power supply pins must be powered by designated traces and which pins are tied 
together and share a common trace. In some cases, a separate trace from a common power plane is used to power up two to three 1.3 V 
power supply pins, wheras in other cases, there are power supply pins that are powered from a separate trace. 

The recommendation for VDDA1P3_DES is to keep it separate from the VDDA1P3_SER supplies using a separate trace. This input can 
be powered from the other 1.3 V analog supply. Noise from this supply can affect the JESD link performance directly. 

 

 

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029


ADRV9026/ADRV9029 System Development User Guide UG-1727 
 

Rev. 0 | Page 223 of 336 

Table 242. Power Supply Pins and Functions 
Pin Name Pin No.  Type Voltage (V) Recommended Routing/Notes Description 
VDIG_1P0 G9, J9, 

L9 
Digital 1.0 Ensure that all connections are matched 

to avoid variations in voltage among the 
pins. Minimize total impedance to 
ensure as little voltage drop as possible. 

Digital clocks and processing blocks 

VIF N9 Analog 1.8 CMOS/LVDS interface supply (routing 
is typically not critical). 

Supply for SPI interface, GPIO, control signals 

TX1± (RF Choke 
Feed) 

N17, 
P17 

Analog 1.8 Star  connect from the 1.8 V plane, 
isolate by ground from the other 
transmitter supplies, connect to the 
pins using RF chokes (part depends 
on the frequency range). 

Alternative transmit supply if power is not 
supplied via a center tapped balun 

TX2± (RF Choke 
Feed) 

A13, 
A14 

Analog 1.8 Star  connect from the 1.8 V plane, 
isolate by ground from the other 
transmitter supplies, connect to the 
pins using RF chokes (part depends 
on the frequency range). 

Alternative transmit supply if power is not 
supplied via a center tapped balun 

TX3± (RF Choke 
Feed) 

A4, A5 Analog 1.8 Star  connect from the 1.8 V plane, 
isolate by ground from the other 
transmitter supplies, connect to the 
pins using RF chokes (part depends 
on the frequency range). 

Alternative transmit output supply if power 
is not supplied via a centertapped balun 

TX4± (RF Choke 
Feed) 

P1, N1 Analog 1.8 Star  connect from the 1.8 V plane, 
isolate by ground from the other 
transmitter supplies, connect to the 
pins using RF chokes (part depends 
on the frequency range). 

Alternative transmit output supply if power 
is not supplied via a center tapped balun 

VANA1_1P8 N16 Analog 1.8 Star connect from the 1.8 V plane. 
Isolate from the other 1.8 V inputs 
with a ferrite bead if necessary. 

1.8 V supply for the following circuit blocks: 
Tx1 analog output, Rx1 LO buffer, RF 
synthesizer 1, AUXADC_0, AUXADC_1, Rx1 
TIA, ORx1 mixer, and Converter1 LDO  

VANA2_1P8 B14 Analog 1.8 Star connect from the 1.8 V plane. 
Isolate from the other 1.8 V inputs 
with a ferrite bead if necessary.  

1.8 V supply for the following circuit blocks: Tx2 
analog output, Tx1_2 LO buffers and LO delay, 
analog SPI, DEVCLK, AUX PLL and AUX LO 
generation, receive LO multiplexer and master 
bias, Rx2 LO buffer, RFPLL1 and LO generator 1, 
ORx1_2 LO buffers and TxLB1_2 LO buffer, Rx2 
TIA, ORx2 mixer, ORx1 and ORx2 TIA 

VANA3_1P8 B4 Analog 1.8 Star connect from the 1.8 V plane. 
Isolate from the other 1.8 V inputs 
with a ferrite bead if necessary. 

1.8 V supply for the following circuit blocks: 
Tx3 analog output, auxilliary synthesizer, 
Tx3_4 LO, analog SPI, Rx3 LO buffer, RF PLL2 
and LO generator 2, ORx3_4 LO buffers and 
TxLB3_4 LO buffers, Rx3 TIA, ORx3 mixer, and 
ORx3_4 TIA 

VANA4_1P8 N2 Analog 1.8 Star connect from the 1.8 V plane. 
Isolate from the other 1.8 V inputs 
with a ferrite bead if necessary. 

1.8 V supply for the following circuit blocks:Tx4 
analog output, RF synthesizer 2, Rx4 LO buffer, 
clock PLL and CLKGEN, clock synth, AUXADC_2, 
AUXADC_3, Rx4 TIA, ORx4 mixer, and 
Converter2 LDO 

VCONV1_1P8 H15 Analog 1.8 Star connect from the 1.8 V plane. 
Isolate from the other 1.8 V inputs 
with a ferrite bead if necessary. 

1.8 V supply for Tx1 and Tx2 DACs, Rx1 and 
Rx2 ADCs, and ORx1 and ORx2 ADCs 

VCONV2_1P8 H3 Analog 1.8 Star connect from the 1.8 V plane. 
Isolate from the other 1.8 V inputs 
with a ferrite bead if necessary. 

1.8 V supply for Tx3 and4 DACs, Rx3 and 4 
ADCs, and ORx3 and 4 ADCs 
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Pin Name Pin No.  Type Voltage (V) Recommended Routing/Notes Description 
VJVCO_1P8 P11 Analog 1.8 Star connect from the 1.8 V plane. 

Isolate from the other 1.8 V inputs 
with a ferrite bead if necessary. 

1.8 V supply for JESD VCO/PLL 

VANA1_1P3 D15 Analog 1.3 Star connect from the 1.3 V plane. Use 
wide traces/shapes to minimize the 
trace resistance as much as possible. 
Isolate from the other 1.3 V inputs 
with a ferrite bead if necessary. 

1.3 V supply for Tx1 phase detector, BBF, Tx2 
phase detector, Rx1, Rx2 TIA, ORx1_2 TIA, 
and analog SPI 

VANA2_1P3 D3 Analog 1.3 Star connect from the 1.3 V plane. Use 
wide traces/shapes to minimize the 
trace resistance as much as possible. 
Isolate from hte other 1.3 V inputs 
with a ferrite bead if necessary. 

1.3 V supply for Tx3 phase detector, BBF, Tx4 
phase detector, Rx3,4 TIA, ORx3_4 TIA, and 
analog SPI 

VCONV1_1P3 J15 Analog 1.3 Star connect from the 1.3 V plane. Use 
wide traces/shapes to minimize the 
trace resistance as much as possible. 
Isolate from the other 1.3 V inputs 
with a ferrite bead if necessary. 

1.3 V supply for Tx1,2 DACs, Rx1,2 ADCs, and 
ORx1_2 ADCs 

VCONV2_1P3 J3 Analog 1.3 Star connect from the 1.3 V plane. Use 
wide traces/shapes to minimize the 
trace resistance as much as possible. 
Isolate from the other 1.3 V inputs 
with a ferrite bead if necessary. 

1.3 V supply for Tx3,4 DACs, Rx3, Rx4 ADCs, 
and ORx3_4 ADCs  

VRFVCO1_1P3 G15 Analog 1.3 Star connect from the 1.3 V plane. Use 
wide traces/shapes to minimize the 
trace resistance as much as possible. 
Isolate from the other 1.3 V inputs 
with a ferrite bead if necessary. This 
pin is very sensitive to aggressors. 

1.3 V supply for RF VCO1 and LO generator 1 

VRFVCO2_1P3 G3 Analog 1.3 Star connect from the 1.3 V plane. Use 
wide traces/shapes to minimize the 
trace resistance as much as possible. 
Isolate from the other 1.3 V inputs 
with a ferrite bead if necessary. This 
pin is very sensitive to aggressors. 

1.3 V supply for RF VCO2 and LO generator 2 

VRFSYN1_1P3 J13 Analog 1.3 Star connect from the 1.3 V plane. Use 
wide traces/shapes to minimize the 
trace resistance as much as possible. 
Isolate from the other 1.3 V inputs 
with a ferrite bead if necessary. This 
pin is very sensitive to aggressors. 

1.3 V supply for RF1 synthesizer 

VRFSYN2_1P3 J5 Analog 1.3 Star connect from the 1.3 V plane. Use 
wide traces/shapes to minimize the 
trace resistance as much as possible. 
Isolate from the other 1.3 V inputs 
with a ferrite bead if necessary. This 
pin is very sensitive to aggressors. 

1.3 V supply for RF1 synthesizer 

VAUXVCO_1P3 C12 Analog 1.3 Star connect from the 1.3 V plane. Use 
wide traces/shapes to minimize the 
trace resistance as much as possible. 
Isolate from the other 1.3 V inputs 
with a ferrite bead if necessary. This 
pin is very sensitive to aggressors. 

1.3 V supply for auxilliary VCO, auxilliary LO 
generator 1 and 2, and auxilliary LO 
generator 3 and 4 

VAUXSYN_1P3 C6 Analog 1.3 Star connect from the 1.3 V plane. Use 
wide traces/shapes to minimize the 
trace resistance as much as possible. 
Isolate from the other 1.3 V inputs 
with a ferrite bead if necessary. This 

1.3 V supply for auxilliary synthesizer 
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Pin Name Pin No.  Type Voltage (V) Recommended Routing/Notes Description 
pin is very sensitive to aggressors. 

VCLKSYN_1P3 R7 Analog 1.3 Star connect from the 1.3 V plane. Use 
wide traces/shapes to minimize the 
trace resistance as much as possible. 
Isolate from the other 1.3 V inputs 
with a ferrite bead if necessary. This 
pin is very sensitive to aggressors. 

1.3 V supply for DEVCLK and clock 
synthesizer 

VCLKVCO_1P3 N5 Analog 1.3 Star connect from the 1.3 V plane. Use 
wide traces/shapes to minimize the 
trace resistance as much as possible. 
Isolate from the other 1.3 V inputs 
with a ferrite bead if necessary. This 
pin is very sensitive to aggressors. 

1.3 V supply for clock VCO, clock generation, 
and clock distribution 

VRXLO_1P3 A9 Analog 1.3 Star connect from the 1.3 V plane. Use 
wide traces/shapes to minimize the 
trace resistance as much as possible. 
Isolate from the other 1.3 V inputs 
with a ferrite bead if necessary. This 
pin is very sensitive to aggressors. 

1.3 V supply for Rx1 and Rx2 LO multiplexer, 
Rx3 and Rx4 LO multiplexer 

VTXLO_1P3 A7 Analog 1.3 Star connect from the 1.3 V plane. Use 
wide traces/shapes to minimize the 
trace resistance as much as possible. 
Isolate from the other 1.3 V inputs 
with a ferrite bead if necessary. This 
pin is very sensitive to aggressors. 

1.3 V supply for Tx1and Tx2 LO multiplexer, 
Tx3 and Tx4 LO multiplexer 

VSER_1P0 R3, R4 Analog 1.0 Connect these pins directly to 
VDIG_1P0 or to a 1.0 V regulator using 
a separate wide trace to minimize the 
resistance as much as possible. 
Connect to these pins using a ferrite 
bead if digital noise is a concern. 

1.0 V supply for JESD serializer 

VDES_1P0 P12, 
P13 

Analog 1.0 Connect these pins directly to 
VDIG_1P0 or to a 1.0 V regulator using a 
separate wide trace to minimize the 
resistance as much as possible. Connect 
to these pins using a ferrite bead if 
digital noise is a concern. 

1.0 V supply for JESD deserializer 

VTT_DES P14 Analog 1.0 Connect directly to VDIG_1P0 or to a 
1.0 V regulator. Connect to this pin 
using a ferrite bead if digital noise is a 
concern. 

1.0 V supply for JESD deserializer VTT 

VJSYN_1P0 R9 Analog 1.0 Connect directly to VDIG_1P0 or to a 
1.0 V regulator. Connect to this pin 
using a ferrite bead if digital noise is a 
concern. 

1.0 V supply for the JESD synth 

VCONV1_1P0 K12 Analog 1.0 Connect a 4.7 µF bypass capacitor 
from this pin to ground. 

Bypass connection point for internal 
converter regulator 

VCONV2_1P0 K3 Analog 1.0 Connect a 4.7 µF bypass capacitor to 
from this pin ground. 

Bypass connection point for internal 
converter regulator 

VAUXVCO_1P0 B11 Analog 1.0 Connect a 4.7 µF bypass capacitor to 
from this pin ground. 

Bypass connection point for internal 
AUXVCO regulator 

VCLKVCO_1P0 P5 Analog 1.0 Connect a 4.7 µF bypass capacitor to 
from this pin ground. 

Bypass connection point for internal 
CLKVCO regulator 

VRFVCO1_1P0 G13 Analog 1.0 Connect a 4.7 µF bypass capacitor to 
from this pin ground. 

Bypass connection point for internal 
RFVCO1 regulator 

VRFVCO2_1P0 G5 Analog 1.0 Connect a 4.7 µF bypass capacitor to 
from this pin ground. 

Bypass connection point for internal 
RFVCO2 regulator 
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POWER SUPPLY ARCHITECTURE 
The diagram in Figure 143 outlines the power supply configuration used on the CE board. This configuration follows the 
recommendations outlined in Table 242. This diagram includes the use of ferrite beads for additional RF isolation and 0 Ω resistors. 
These devices accomplish the following functions: 

• The ferrite beads provide RF noise filtering. They may be necessary when users encounter RF spurs or noise coupling in their 
application and additional isolation is required. If they are found to be unnecessary, they can be replaced by 0 Ω resistors. 

• The resistors and ferrite beads ensure that the layout follows power routing guidelines, which recommends the traces to be star 
connected to a central supply. 

• The resistors and ferrite beads provide a place in the circuit where the current can be monitored and measured for debugging 
purposes. For this function, the components can be replaced by low impedance shunt resistors and the voltage measured to 
determine the total current to the specified input ball. 

• The 0 Ω resistors provide connection options for the JESD204B and JESD204C power supply inputs so that these power inputs can 
be isolated from the digital supply if digital noise corrupts the JESD204B and JESD204C performance. 

For more details on recommended power supply implementation, refer to the CE board schematic included in the design support package.  
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NOTES
1. BEAD 1 IS HIGH CURRENT.
2. BEAD 2 IS LOW CURRENT, HIGH REJECTION.
3. 0Ω CAN BE REPLACED WITH BEAD 1 IF NOISE PROBLEMS OCCUR.
4. DECOUPLING CAPACITOR RECOMMENDATIONS ARE SHOWN FOR EACH INPUT PIN.  

Figure 143. Power Supply Connection Diagram 

CURRENT CONSUMPTION 
The current consumption in each block can vary depending on the device configuration for the profile in use. Clock frequencies, data 
rates, calibrations, and the number of channels in operation all influence the amount of current required for transceiver operation. The 
following section gives a sample of a typical use case profile and the resulting current consumption in different modes. This example is a 
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typical example, but do not consider the values maximums for design purposes. Follow the design margins noted previously in Supply 
Capacity the section when sizing power supplies.  

Current Measurements: Use Case 26 Non Link Sharing Profile 

The setup parameters for this use case are as follows: 

• Transmit channels: 4 
• Receive channels: 4 
• Observation receive channels: 1 
• Device clock: 491.52 MHz 
• Transmit/Receive primary signal bandwidth: 200 MHz 
• Transmit/Observation receive synthesis bandwidth: 450 MHz 
• Receive data sample rate: 245.76 MSPS 
• Transmit/Observation Receive data sample rate: 491.52 MSPS 
• JESD lane rate: 24.33024 Gbps 

Table 243. Typical Current Consumption, Use Case 26-NLS 

Pin Name Pins Type Voltage (V) 
Measured Current (mA) 

Rx Enabled Tx + ORx Enabled Rx + Tx + ORx Enabled 
VDIG_1P0 G9, J9, L9 Digital 1.0 959 1068 1600 
VSER_1P0 R3, R4 Analog 1.0 190 191 193 
VDES_1P0 P12, P13 Analog 1.0 361 362 364 
VTT_DES P14 Analog 1.0 4 4 4 
VJSYN_1P0 R9 Analog 1.0 6 7 7 
VIF N9 Analog 1.8 8 8 8 
VANA1_1P8 N16 Analog 1.8 6 132 131 
VANA2_1P8 B14 Analog 1.8 16 134 134 
VANA3_1P8 B4 Analog 1.8 8 141 142 
VANA4_1P8 N2 Analog 1.8 9 134 134 
VCONV1_1P8 H15 Analog 1.8 99 26 100 
VCONV2_1P8 H3 Analog 1.8 102 65 142 
VJVCO_1P8 P11 Analog 1.8 2 2 2 
VANA1_1P3 D15 Analog 1.3 329 325 438 
VANA2_1P3 D3 Analog 1.3 331 381 496 
VCONV1_1P3 J15 Analog 1.3 382 125 494 
VCONV2_1P3 J3 Analog 1.3 382 306 679 
VRFVCO1_1P3 G15 Analog 1.3 188 188 189 
VRFVCO2_1P3 G3 Analog 1.3 187 188 190 
VRFSYN1_1P3 J13 Analog 1.3 11 11 11 
VRFSYN2_1P3 J5 Analog 1.3 10 10 10 
VAUXVCO_1P3 C12 Analog 1.3 187 216 217 
VAUXSYN_1P3 C6 Analog 1.3 8 8 8 
VCLKSYN_1P3 R7 Analog 1.3 23 23 24 
VCLKVCO_1P3 N5 Analog 1.3 110 110 141 
VRXLO_1P3 A9 Analog 1.3 176 19 179 
VTXLO_1P3 A7 Analog 1.3 9 186 189 

Table 244. Total Current Consumption per Supply Rail 
Mode of Operation 1.8 V Source Current (mA) 1.3 V Source Current (mA) 1.0 V Source Current (mA) 
Rx Enabled 242 2333 1520 
Tx + ORx Enabled 634 2096 1632 
Rx + Tx + ORx Enabled 785 3265 2168 
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PCB LAYOUT CONSIDERATIONS 
OVERVIEW 
Because of the complexity of this transceiver device and the high pin count, careful PCB layout is important to obtain optimal performance. 
This user guide provides a checklist of issues to look for and general guidelines on how to optimize the PCB to mitigate performance issues. 
Use this user guide to help achieve the best performance from the transceiver while reducing board layout effort. This section assumes 
that the user is an experienced analog/RF engineer who understands RF PCB layout as well as RF and high speed transmission lines.  

The evaluation board represents one of the most complex implementations of the transceiver. All RF inputs and outputs, JESD serial data 
lanes, and digital control and monitoring signals are implemented in this design and are expected to operate over the full frequency range 
of the device. Advanced PCB technology is used to achieve maximum device performance in the face of constraints presented by the 
routing density. Depending on the intended application, users may not require all signals to be routed and can, therefore, use alternate 
PCB layout techniques to meet the design goals. These techniques include but are not limited to a traditional BGA fanout, fewer layers, 
through-hole vias only, and lower grade PCB materials.  

The PCB Layout Considerations section discusses the following issues and provides guidelines for system designers to get the optimal 
performance out of the transceiver: 

• PCB material and stack up selection 
• Fanout and trace space layout guidelines 
• Component placement and routing priorities 
• RF and JESD transmission line layout 
• Isolation techniques used on the CE board 
• Power management routing considerations 
• Analog signal routing recommendations 
• Digital signal routing recommendations 
• Unused pin instructions 

PCB MATERIAL AND STACK UP SELECTION 
The evaluation board utilizes Isola I-Speed dielectric material, and was selected for its low loss tangent and low dielectric constant 
characteristics. On previous evaluation systems, Analog Devices chose a combination of low loss, RF capable dielectric material for the 
outer edge layers and standard FR4-370 HR dielectric material for interior layers. RF signal routing on these boards was confined to the 
top and bottom layers. The material mix was a good compromise to obtain optimum RF performance and low overall board cost. Given 
the need to route RF and high speed digital data lanes on multiple layers because of the increased number of RF channels and JESD lanes, 
I-Speed material was chosen for all layers on this board. There are several other material options on the market from other PCB material 
vendors that are also valid options for this transceiver. The key comparison metrics for these materials are the dielectric constant and the 
loss tangent. Designers must also be careful to ensure that the thermal characteristics of the material are adequate to handle high reflow 
temperatures for short durations and expected operating temperatures for extended durations. 

Figure 144 shows the PCB stack up used for the evaluation board. Layer 1 and Layer 16 are primarily used for RF input/output signal 
routing and I-Speed prepreg material was selected to support the required controlled impedance traces. Layer 2 and Layer 15 have 
uninterrupted ground copper flood beneath all RF routes on Layer 1 and Layer 16. Layer 2 is also used in combination with Layer 4 to 
route high speed digital JESD lanes. These signal layers use Layer 3 and Layer 4 as references. Clean reference planes are important to 
maintain signal integrity on sensitive RF and high speed digital signal paths. Layer 3, Layer 5, and Layer 7 are used to route analog power 
domains. Routing of analog power planes and traces are discussed in more detail in the Power Management Layout Design section. Layer 
9 is a solid ground plane used to help isolate sensitive analog signal and power layers from potentially noisy digital signals routed in the 
lower half of the PCB. Layer 10 through Layer 14 are used to route a variety of digital power, GPIO, and control signals. Table 245 
describes the drill table for via structures used in the evaluation board to route all signals from the transceiver. Note that the metal and 
dielectric thicknesses have been balanced to ensure that the thickness of each half of the PCB is relatively equal to avoid uneven flexing or 
deforming under pressure or temperature changes. 

Via structures were selected based on signal routing requirements and manufacturing constraints. Ground planes are full copper floods 
with no splits except for vias, through-hole components, and isolation structures. Ground and power planes are all routed to the edge of 
the PCB with a 10 mil pullback from the edge to decrease the risk of a layer to layer short at the exposed board edge.  
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Figure 144. PCB Material Stack Up Diagram 

Table 245. Drill Table 
Start Layer End Layer Drill Type Plate Type Via Fill Drill Size (min) Drill Depth Pad Size(min) Stacked Vias 
1 16 Mech PTH Not applicable 33.00 84.06 

  

3 8 Mech Via Resin fill 7.90 27.06 
  

9 14 Mech Via Resin fill 7.90 26.51 
  

1 16 Mech Via Nonconductive via fill 7.90 84.06 
  

15 14 Laser Microvia CuVF_Button pattern 5.90 3.74 
 

Y 
16 15 Laser Microvia Nonconductive via fill 9.10 6.54 

 
Y 

8 7 Laser Microvia Dummy drill 7.90 3.37 
 

Y 
1 2 Laser Microvia Non-Conductive via fill 9.10 6.53 

 
Y 

2 3 Laser Via CuVF_Button pattern 5.90 3.74 
 

Y 
3 4 Laser Microvia CuVF_Button pattern 7.90 5.16 

 
Y 
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Controlled impedance traces, single ended and differential, are required to obtain best RF performance. Impedances of 50 Ω and 100 Ω 
are required for RF, high speed digital, and clock signals. Table 246 describes details about trace impedance controls used in the 
evaluation board and types of line structures used to obtain desired impedance and performance on and for given layers and impedances. 

Table 246. Impedance Table  

Layer Structure Type 

Target 
Impedance 
(Ω) 

Impedance 
Tolerance 
(Ω) 

Target Line 
Width 
(mils) 

Edge 
Coupled 
Pitch (mils) 

Reference 
Layers 

Modeled 
Line Width 
(mils) 

Modeled 
Impedance 
(Ω) 

Coplanar 
Space 
(mils) 

1 Single-ended 50.00 ±5 11.00 0.00 (2) 11.50 51.02 9.75 
1 Edge coupled 

differential 
50.00 ±5 27.00 32.00 (2) 27.50 50.54 9.75 

1 Edge coupled 
differential 

100.00 ±10 7.50 14.50 (2) 8.25 101.83 9.62 

2 Edge coupled 
differential 

100.00 ±10 4.25 12.00 (1, 3) 3.75 101.01 12.25 

4 Edge coupled 
differential 

100.00 ±10 3.75 9.50 (3, 5) 3.75 100.67 12.00 

4 Single-ended 50.00 ±5 4.50 0.00 (3, 5) 4.25 50.05 12.13 
6 Single-ended 50.00 ±5 4.50 0.00 (5, 7) 4.75 50.94 11.88 
8 Single-ended 38.00 ±3.8 5.00 0.00 (9, 7) 5.00 37.90 5.00 
10 Single-ended 50.00 ±5 3.00 0.00 (9, 11) 3.25 51.20 11.88 
10 Edge coupled 

differential 
100.00 ±10 3.00 11.00 (9, 11) 3.25 100.87 11.88 

11 Single-ended 50.00 ±5 4.50 0.00 (12, 10) 4.75 51.02 11.88 
11 Edge coupled 

differential 
100.00 ±10 4.00 9.00 (12, 10) 4.00 100.19 12.01 

12 Single-ended 50.00 ±5 4.50 0.00 (11, 13) 4.75 51.02 11.88 
12 Edge coupled 

differential 
100.00 ±10 4.00 9.00 (11, 13) 4.00 100.19 12.00 

16 Single-Ended 50.00 ±5 11.00 0.00 (15) 11.50 51.06 9.75 
16 Edge coupled 

differential 
100.00 ±10 7.50 14.50 (15) 8.25 101.85 9.62 
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FANOUT AND TRACE SPACING GUIDELINES 
The package used for these transceivers is a 14 mm × 14 mm 289-ball BGA package. The pitch between the pins is 0.8 mm. This small 
pitch makes it impractical to route all signals on a single layer. RF and high speed data pins are placed on the perimeter rows of the BGA 
to minimize complexity of the routing of these critical signals. Via in pad technology is used to escape all other signals to the layers on 
which they are routed. The recommended via size includes an 8 mil drill hole with a 12 mil capture pad. A combination of stacked micro 
vias, buried vias, and through vias are used to route signals to appropriate inner layers for further routing. JESD interface signals are 
routed on two inner signal layers utilizing controlled impedance traces. 

Figure 145 illustrates the fanout of RF differential channels from the transceiver on the top layer of the PCB. Note that each signal pair is 
designed with the required characteristic impedance and isolation to minimize crosstalk between channels. The isolation structures 
include a series of ground balls around each RF channel and the digital interface section of the transceiver. Connect these ground balls by 
traces to form a wall around each section, and then fill the area to make the ground as continuous as possible underneath the device. 
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Figure 145. CE Board RF Receiver and Transmitter Fanout and Layout 

COMPONENT PLACEMENT AND ROUTING GUIDELINES 
The transceiver requires few external components to function. Those components that are required must be carefully placed and routed 
to optimize performance. This section provides instructions for properly placing and routing some of those critical signals and components. 

Signals with Highest Routing Priority 

RF inputs and outputs, clocks, and high speed digital signals are the most critical for optimizing performance and must be routed with the 
highest priority. Figure 146 shows the general directions in which each of the signals must be routed so that they can be effectively 
isolated from aggressor signals. It can be difficult to keep all RF channels on a single outer layer. In such cases, it is recommended to route 
the receiver and transmitter channels on the top PCB layer with adequate channel to channel isolation and the observation receivers 
either on the internal layers or on the bottom layers. Ensure that the trace impedance is properly designed to 100 Ω differential including 
the vias needed to transfer the signals between PCB layers. 
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Figure 146. RF IO, DEVCLK, EXT LO, and SERDES Routing Guidelines 

Transmit, receive, and observation receive routing (also referred to as trace routing), physical design (trace width/spacing), matching 
network design, and balun placement significantly impact RF transceiver performance. Make every effort to optimize path design, 
component selection, and placement to avoid performance degradation. The RF Routing Guidelines section describes proper matching 
circuit placement and routing in greater detail. Additional related information can be found in the RF Port Interface Overview section. 

To achieve the desired levels of isolation between the RF signal paths, use the considerations and techniques described in the Isolation 
Techniques section in designs. 

For RF transmit outputs, install a 10 µF capacitor near the transmit balun(s) VANAx_1P8 dc feed(s). This capacitor acts as a reservoir for 
the transmit supply current. The Transmit Bias Supply Guidelines section discusses the transmit dc supply design in detail. 
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Connect external clock inputs to DEVCLK+ and DEVCLK− through ac coupling capacitors. Place a 100 Ω termination across the input 
near Pin C8 and Pin C9, as shown in Figure 147. Shield traces by ground planes above and below with vias staggered along the edges of 
the differential pair routing. This shielding is important because it protects the reference clock inputs from spurious signals that can 
transfer to different clock domains within the device. Refer to the Synthesizer Configuration section for more details regarding the clock signals. 
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Figure 147. DEVCLK and SYSREF Termination 

Route SERDES high speed digital interface traces at the beginning of the PCB design process with the same priority as the RF signals. The 
JESD204B/JESD204C Routing Recommendations section outlines launch and routing guidelines for these SERDES signals. Provide 
adequate isolation between interface differential pairs. 

Signals with Second Routing Priority 

Power supply routing and quality have a direct impact on overall system performance. The Power Management Layout  section provides 
recommendations for how to best route the power supplies to minimize loss as well as interference between RF channels. Follow the 
recommendations provided in the Power Management Layout Design section to ensure optimal RF and isolation performance. 

Signals with Lowest Routing Priority 

Route the remaining low frequency digital inputs and outputs, the auxiliary ADCs and DACs, and the SPI signals. It is important to route 
all digital signals bounded between Row E and Row R and Column 6 and Column 15 down and away from sensitive analog signals on 
PCB signal layers with a solid ground layer shielding other sensitive signals from the potentially noisy digital signals (refer to Figure 146 
for the ball diagram). The CE board uses Layer 9 as a solid ground flood on the entire layer to act as a shield and delineation between 
analog and digital domains. All RF, analog power, and high speed signaling is routed on Layer 1 through Layer 8 and Layer 16, while 
digital power and signaling is routed on Layer 10 through Layer 15. Auxiliary ADC and DAC signal traces are routed on layers separated 
from RF input/output and high speed digital, but are still on the analog side of the PCB. 

RF AND JESD TRANSMISSION LINE LAYOUT 
RF Routing Guidelines 

The evaluation boards use both surface coplanar waveguide and surface edge coupled coplanar waveguide transmission lines for transmit, 
receive, and observation receive RF signals. In general, Analog Devices does not recommend using vias to route RF traces unless a direct 
route on the same layer as the device is not possible. Keep balanced lines for differential mode signaling used between the transceiver and 
the RF balun as short as possible. Keep the length of the single-ended transmission lines for RF signals as short as possible. Keeping signal 
paths as short as possible reduces susceptibility to undesired signal coupling and reduces the effects of parasitic capacitance, inductance, 
and loss on the transfer function of the transmission line and impedance matching network system. The routing of these signal paths is 
the most critical factor in optimizing performance and, therefore, must be routed prior to any other signals and maintain the highest 
priority in the PCB layout process. 
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All 12 RF ports are impedance matched using π-matching networks, both differential and single-ended. Take care in the design of 
impedance matching networks including balun, matching components, and ac coupling capacitor selection. Additionally, DEVCLK can 
require impedance matching to ensure optimal performance. Figure 148 depicts the path from the device to the external connector that is 
used to route Tx4 on the CE board. Component placement for matching components are highlighted in red. Refer to the RF Port 
Interface Overview section for more information on RF impedance matching recommendations.  
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Figure 148. Transmit RF Routing and Matching Network 

All RF signals must have a solid ground reference under each path to maintain the desired impedance. Ensure that none of the critical 
traces run over a discontinuity in the ground reference. 

Transmit Bias Supply Guidelines 

Each transmitter requires approximately 125 mA supplied through an external connection. In the CE board, bias voltages are supplied at 
the dc feed of a center tapped balun in the RF signal path, as shown in Figure 149.  
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Figure 149. 1.8V Transmit Bias Routing at Balun 

To reduce switching transients because of attenuation setting changes, power the balun dc feed directly from the 1.8 V supply plane. 
Design the geometry of the plane to isolate each transmitter from the others. Figure 150 shows the 1.8 V supply distribution on the CE 
board. The primary 1.8 V distribution is through a plane that transitions to two wide fingers on Layer 5, which run up both sides of the 
device. The finger width is designed to minimize voltage drop at the tap points. Each transmitter is biased with a finger on Layer 3 that 
taps the main 1.8 V supply. The fingers are designed and routed to present a low impedance at the connection point to the transmit input. 
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Figure 150. 1.8 V Supply Distribution 

The evaluation board couples the supply into the transmitter via a center tapped balun, but is also provisioned for an external choke feed 
inductor with an ac decoupling capacitor. This topology helps improve transmitter to transmitter isolation.  

When a balun is selected that does not have a dc feed capability, RF chokes must be used to supply the current to the transmitters. Chokes 
are connected from the 1.8 V supply to each transmit output. Note that in this scenario, the transmit balun must be ac-coupled. The RF 
chokes must also be decoupled by capacitors from the power feed to ground. Place the ground connections to these capacitors as close as 
possible to the transmit output pins. Take care to match both chokes and their layout to avoid peaking because of current transients. 
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JESD204B/JESD204C Routing Recommendations 

The transceiver uses a JESD204B/JESD204C high speed serial interface. To ensure performance of this interface, keep the differential 
traces as short as possible by placing the device as close as possible to the baseband processor and routing the traces as directly as possible 
between the devices. Using a PCB material with a low dielectric constant and loss tangent is also strongly recommended. For a specific 
application, loss must be modeled to ensure adequate drive strength is available in both the transceiver and the baseband processor. 

Route the differential pairs on a single plane using a solid ground plane as a reference on the layers directly above and/or below the signal 
layer. Reference planes for the impedance controlled traces must not be segmented or broken along the entire length of a trace. 

All JESD lane traces must be impedance controlled and target 100 Ω differential. Ensure that the pair is loosely coplanar edge coupled. 
The CE board uses 4 mil wide traces and a separation of approximately 10 mil. These parameters can vary depending on the stack up and 
selected dielectric material. Minimize the pad area for all connector and passive components to reduce parasitic capacitance effects on the 
transmission lines, which can negatively impact signal integrity. Minimize using vias to route these signals as much as possible. Use blind vias 
wherever possible to eliminate via stub effects and use micro vias to minimize inductance. If using standard vias, use maximum length vias to 
minimize the stub size. For example, on an 8-layer board, use Layer 7 for the stripline pair, which reduces the stub length of the via to that 
of the height of a single layer. For each via pair, a pair of ground vias must be placed nearby to minimize the impedance discontinuity.  

For JESD signal traces, the recommendation is to route them on the top side of the board as a 100 Ω differential pair (coplanar edge 
coupled waveguide). In the case of the CE board, the JESD signals are routed on inner Layer 2 and Layer 4. To minimize coupling, these 
signals are placed on an inner layer using a via in the pad of the component footprint. AC coupling capacitors (100 nF) are placed in 
series near the FMC connector away from the chip. The JESD interface can operate at frequencies up to 16 GHz.  

Figure 151 and Figure 152 show the transition between ball and launch. Surrounding ground references above and below the signal layer 
are designed to tune the modal impedances ideal for the high speed signaling and according to the JESD204 standard.  
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Figure 151. JESD Signal Launch on Layer 2 
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Figure 152. JESD Signal Launch on Layer 4 

ISOLATION TECHNIQUES 
Given the density of sensitive and critical signals, significant isolation challenges are faced when designing a PCB for the transceiver. The 
isolation requirements listed in Table 247 were followed to accurately evaluate transceiver performance. Analytically determining 
aggressor to victim isolation in a system is complex and involves considering vector combinations of aggressor signals and coupling 
mechanisms.  

Isolation Goals 

Table 247 lists the isolation targets for each RF channel to channel combination type. To meet these goals with significant margin, 
isolation structures were designed into the CE board.  

Table 247. Port to Port Isolation Goals 
Port 650 MHz to 4 GHz 4 GHz to 6 GHz 
Transmit to Transmit 65 dB 60 dB 
Transmit to Receive 70 dB 65 dB 
Transmit to Observation Receive 70 dB 65 dB 
Receive to Receive 65 dB 60 dB 
Receive to Observation Receive 70 dB 65 dB 

Isolation Between RF I/O Ports 

The primary coupling mechanisms between the RF IO paths on the evaluation board include the following: 

• Magnetic field coupling  
• Surface propagation 
• Cross domain coupling via ground 

To reduce the impact of these coupling mechanisms on the CE board, several strategies were used. Large slots are opened in the ground 
plane between the RF IO paths. These discontinuities prevent surface propagation. A careful designer can notice various bends in the 
routing of differential paths. These routes were developed and tuned through iterative electromagnetic simulation to minimize magnetic 
field coupling between differential paths. These techniques are illustrated in Figure 153. 
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Figure 153. RF IO Isolation Structures 

Additional shielding is provided using connecting VSSA balls under the device to form a shield around the RF IO ball pairs. This ground 
provides a termination for stray electric fields. Figure 154 shows how this layout is done for Tx1. The same layout approach is used for 
each set of sensitive RF IO ports. Ground vias are used along the single-ended RF IO traces. Optimal via spacing is 1/10 of a wavelength 
for the highest signal frequency, but that spacing can vary somewhat because of practical layout considerations. The wavelength is 
dependent on the dielectric material relative permittivity (εr) and can be calculated using the following equation: 

ε
=

×
300( )
( ) r

wavelength m
frequency MHz
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Figure 154. Transmit Launch Shielding 

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029


ADRV9026/ADRV9029 System Development User Guide UG-1727 
 

Rev. 0 | Page 239 of 336 

RF IO baluns are spaced and aligned to reduce magnetic coupling from the structures in the balun package. Care must be taken to reduce 
crosstalk over shared grounds between baluns. Another precaution taken involves placing and orienting SMA connectors to minimize 
connector to connector coupling between ports.  

Isolation Between SERDES Lines 

The SERDES interface uses 16 lane pairs that can operate at speeds up to 16 GHz. Take care when creating the PCB layout to ensure that those 
lines are routed following the guidelines described in the JESD204B/JESD204C Routing Recommendations section. In addition, use isolation 
techniques to prevent crosstalk between the different SERDES lane pairs. Via fencing is the primary technique used on the CE board.  

Figure 155 illustrates the via fencing technique. Ground vias are placed along and between each pair of traces to provide isolation and 
decrease crosstalk. The spacing between vias, shown as Label A in Figure 155, follows the rule provided in the Isolation Between RF I/O 
Ports section. For the most accurate spacing of fencing vias, use layout simulation software.  

A
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Figure 155. SERDES Lane Via Fencing 

POWER MANAGEMENT LAYOUT DESIGN 
Because of the complexity and high level of integration in the transceiver, power supply routing is critical to achieve optimum RF performance. 
The transceiver is designed to minimize power supply coupled noise by implementing several internal linear regulators that isolate 
circuits from each other when connected to a common power supply rail. This design provides an improved level of isolation compared 
to previous products, but is only one level of protection. Proper power supply layout can also help isolate individual circuits in the device.  

Analog Power Ring Approach 

The RF section is designed as two hemispheres with two transmitters, two receivers, and as many as two observation receivers on each 
side. To reduce coupling between channels and keep each power supply input isolated from others, a star connection approach is used. 
This approach involves connecting each power supply input to a common power supply bus using an isolated trace designed specifically 
for the current requirements of the particular input. The CE board uses a power ring approach to provide the power supply bus for the 1.8 
V and 1.3 V analog supplies. The 1.8 V supply is routed as an inner ring to provide a more direct connection to the 1.8 V transmitter 
output supplies, and the 1.3 V supply is routed in a similar fashion as an outer ring that can be star connected to each 1.3 V supply on the 
device. Figure 156 shows this layout approach on the CE board. The inner purple “U” shape labeled 1P8 is the 1.8 V supply and the outer 
pink “U” shape labeled 1P3V is the 1.3 V supply. Note that neither shape forms a complete ring, which was done to better control the 
current path for each supply and avoid current loops and coupling between the two hemispheres of the board. There is also a thin strip of 
ground plane that is routed between the two supply rings to maintain some separation and prevention of direct coupling on the same 
layer. 
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Figure 156. Analog Power Ring Layout Approach 

Analog Power Star Connections 

The analog power ring approach provides ample locations for the individual star connections to be made. This approach enables the 
designer to control the current paths for each supply as well as design individual traces that better control the effect of voltage drops on 
other circuits when large load current changes occur. Each individual power supply input is evaluated for its maximum current 
consumption value, and the star connection trace is then designed to minimize the voltage drop for that particular supply input while still 
providing isolation from the other inputs. Figure 157 and Figure 158 illustrate how these star connections are made to the individual 
supply balls of the transceiver. Some of the connections are made directly to the corresponding supply ring and some are made through a 
ferrite bead or similar filter device. Note that the thickness and layer of each trace was determined to minimize voltage drops and 
maximize isolation between aggressor and victim inputs. The layers with the thicker metal in the stack up drawing are used for the inputs 
with the highest current consumption values. 
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Figure 157. 1.8 V Supply Routing Using Star Connections 
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Figure 158. 1.3 V Supply Routing Using Star Connections 
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Digital Power Routing 

The digital 1.0 V supply is the noisiest supply in the system and it is important to keep this supply shielded from the other supplies. This 
supply is also the highest current supply and the thickness of the traces must be adequate to carry the load current to the device without 
experiencing significant voltage drops. There are three digital power input pins to the device and the routing into the device is also 
critical. Each input that connects to an input pin must match the others in length and thickness so that there is no additional voltage drop 
in one connection compared to the others. Figure 159 illustrates the approach used on the CE board to supply this current. A digital 
power channel is routed from the power supply to the device and the entire area is flooded with copper to provide a low resistance supply 
trace. This channel is shielded on all sides so that the channel is isolated from other signals. Figure 160 shows a zoomed in view of the 
connection to the device. Note that all three connections are made using two traces to reduce the trace resistance. Each connection is 
equal in total copper volume to the others and their voltage drops are equal when the device is active. 

22
77

0-
15

8

 
Figure 159. Digital Supply Routing 
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Figure 160. Digital Supply Connection to Three VDIG Input Pins of the Device 

JESD 1.0 V Supply Inputs 

After careful evaluation, it was determined that the 1.0 V supply needed for the JESD interface can be supplied directly from the 1.0 V 
digital supply without any interference or noise problems. The CE boards have these supplies routed separately from the common 1.0 V 
supply shared by VDIG_1P0 as traces using a similar star connection approach that was used by the analog 1.3 V and 1.8 V supplies. Note 
that the serializer and deserializer supply inputs carry the majority of the current and these traces are made by creating filled areas as wide 
as possible to minimize voltage drop. The VTT_DES and VJSYN_1P0 traces carry little current and are, therefore, routed using standard 
traces. Figure 161 illustrates how these traces are routed to the device. Note that the VTT_DES and VJSYN_1P0 traces were routed on a 
different PCB layer than the VSER_1P0 and VDES_1P0 supplies. 
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Figure 161. SERDES Power Supply Input Routing 

Interface Supply Input 

The VIF interface supply is a low current input that provides the supply reference for the SPI serial interface. This supply can be routed as 
a signal trace with adequate thickness to minimize voltage drop when the device is active. Route this trace in the digital area similar to the 
VDIG_1P0 supply and keep the trace isolated from other signals to ensure that the trace is not corrupted by other active digital signals or 
by the JESD interface lanes. 

Ground Returns 

Another critical routing consideration is how to control the mixing of ground currents to avoid noise coupling between different power 
domains. One way to keep domains separated is to provide different ground return planes for each supply domain. This approach can 
complicate a dense PCB layout such as what is required for this transceiver. Another option is to connect all ground to the same plane 
system and use cutouts and channeling similar to those used in the RF sections to provide better channel to channel isolation. Creating 
such ground channels can provide the benefit of steering ground currents in a desired path without the complexity of trying to keep ground 
planes isolated from each other. The specifics of such designs are highly dependent on the PCB layout and the level of isolation is desired.  

Input Bypass Component Placement 

There are subtle component placement techniques for placing power supply bypass components that can have a substantial impact on 
radio performance. When placing components on power supply inputs, use the following guidelines: 

• Each power supply pin requires at a minimum a 0.1 µF bypass capacitor near the pin. For inputs that require a large current step, a 
10 µF capacitor in parallel is recommended. Place the ground side of the bypass capacitor(s) so that the ground currents flow away 
from other power pins and their bypass capacitors. 
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• Route power supply input traces to the bypass capacitor and the connect capacitor(s) as close to the supply pin as possible through a 
via to the component side of the PCB. If possible, it is recommended that the via be located inside the power supply pin pad to 
minimize trace inductance. 

• Some power supplies require a ferrite bead in series with the supply line to prevent RF noise from coupling between different inputs, 
while others can do without the extra protection. It is recommended that each line be connected with either a ferrite bead or a 0 Ω 
place holder as a series component. Ensure that the device is sized properly to handle the current load for the particular power 
supply input of concern.  

• Figure 162 and Figure 163 illustrate an example of how the power supply routing from the common power ring to a bypass capacitor 
and into the transceiver is implemented. Note that the bypass capacitor is connected directly to the vias leading from the bottom of 
the PCB to the ball pads on the top of the PCB. 
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Figure 162. Power Supply Routing Example with Ferrite Bead at the Input (VANA1_1P3) 
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Figure 163. Power Connection to Supply Ball with Bypass Capacitor Between Vias 

ANALOG SIGNAL ROUTING CONSIDERATIONS 
Other analog signals in and out of the transceiver such as the auxiliary ADCs and DACs do not require critical routing considerations. 
Use standard routing techniques for these signals to keep them shielded from interference or noise that can affect their desired levels.  
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DIGITAL SIGNAL ROUTING CONSIDERATIONS 
The digital signal routing (for example, SPI, enable controls, and GPIO) is the least sensitive area, but is nevertheless important to isolate 
from other signals to avoid digital noise coupling into other circuits. In the evaluation board, these signals are routed from the bottom of 
the board up through the same channel created for the VDIG power supply on Layer 10, Layer 11, and Layer 12. This routing provides the 
benefit of using the same ground return area as the VDIG supply, which keeps the return currents from intermixing with currents from 
the analog and RF functions of the transceiver. Most of these signals are static or infrequently change state and once signals are routed out 
of the device, they can be fanned out to other parts of the PCB without interfering with the radio functions. Figure 164 illustrates how the 
signals are routed out of the device following the same path as the VDIG supply (the brown area labeled “Digital Routing Region”). Note 
that there are designated layers on the customer evaluation PCB for digital routing and that these layers are isolated by ground layers from 
other sensitive signals such as the JESD lanes and the RF inputs and outputs. It is recommended to keep any traces that are nonstatic, such 
as the SPI or SPI2 buses, isolated from the sensitive analog, RF, and JESD signals by ensuring that there is ample ground between the 
traces and that there is no overlap of signals from layer to layer. 
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Figure 164. Digital Routing Out of the Transceiver 
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UNUSED PIN INSTRUCTIONS 
In some applications, the user may decide not to use all available inputs or outputs. In these cases, take care to follow the 
recommendations listed in Table 248 for unused pins.  

Table 248. Recommendations for Unused Pins 
Pin No. Type Mnemonic When pins are not used: 
A4, A5, A13, A14, P1, N1, N17, P17 O TX3+, TX3−, TX2+, TX2−, TX4+, TX4−, TX1+, TX1− Do not connect. 
E4, E5, E13, E14, L4, L5, L13, L14 I ORX3+, ORX3−, ORX1+, ORX1−, ORX4+, ORX4−, 

ORX2+, ORX2− 
Connect to VSSA. 

C1, B1, B17, C17, J1, H1, H17, J17 O RX3+, RX3−, RX2+, RX2−, RX4+, RX4−, RX1+, RX1− Connect to VSSA. 
F2, E2, E16, F16 I/O EXT_LO2+, EXT_LO2−, EXT_LO1+, EXT_LO1− Do not connect. 
C4, C5, L1, L2, L17, L16, C12, C13 I/O GPIO_ANA_7 to GPIO_ANA_0 Connect to VSSA with a 10 kΩ resistor or 

configure as outputs, drive low, and leave 
disconnected. 

E1, E17, F1, F17 I AUXADC_3, AUXADC_1, AUXADC_2, AUXADC_0 Do not connect. 
E7, E11, M7, M11 I TX3_EN, TX2_EN, TX4_EN, TX1_EN Connect to VSSA. 
G7, G11, J7, J11 I RX3_EN, RX2_EN, RX4_EN, RX1_EN Connect to VSSA. 
F7, F11, L7, L11 I ORX_CTRL_C, ORX_CTRL_B, ORX_CTRL_D, 

ORX_CTRL_A 
Connect to VSSA directly or with a 10 kΩ 
pull-down resistor. 

H11, K11, N11, E10, F10, G10, 
H10, J10, K10, E9, F9, E8, F8, 
G8, H8, J8, K8, H7, K7 

I/O GPIO_0 to GPIO_18 Connect to VSSA with a 10 kΩ resistor or 
configure as outputs, drive low, and leave 
disconnected. 

N7, N8 O GPINT2, GPINT1 Do not connect. 
M8 O SPI_DO Do not connect. 
P10 I TEST_EN Connect to VSSA. 
N6, P6, N12, N13, P7, P8 I SYNCIN3+, SYNCIN3-, SYNCIN1+, SYNCIN1-, 

SYNCIN2+, SYNCIN2-  
Connect to VSSA. 

N14, N15, P15, R15 O SYNCOUT2+, SYNCOUT2-, SYNCOUT1+, 
SYNCOUT1− 

Do not connect. 

U1, U2, T3, T4, U5, U6, T7, T8 O SERDOUTD+, SERDOUTD− SERDOUTC+, 
SERDOUTC−, SERDOUTB+, SERDOUTB−, 
SERDOUTA+, SERDOUTA−,  

Do not connect. 

U16, U17, T15, T14, U12, U13, 
T11, T10,  

I SERDIND+, SERDIND−, SERDINC+, SERDINC-, 
SERDINB+, SERDINB−, SERDINA+, SERDINA−  

Do not connect.  
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TRANSCEIVER EVALUATION SOFTWARE (TES) OPERATION 
The transceiver demonstration system enables the user to evaluate the transceiver without having to develop custom software or 
hardware. The system comprises a radio daughtercard, an ADS9 motherboard, a microSD card with an operating system, a power supply 
for the ADS9, a 12 V power supply that connects to a wall outlet, and a C#-based evaluation software application. The evaluation system 
uses Ethernet interface to communicate with the PC. 

INITIAL SETUP 
The ADRVTRX TES is the graphical user interface (GUI) used to communicate with the evaluation platform. The GUI can run with or without 
evaluation hardware connected. When the TES runs without the hardware connected, the TES can be fully configured for a particular operating 
mode. If the evaluation hardware is connected, the desired operating parameters can be setup with the TES and then the software can program 
the evaluation hardware. When the transceiver is configured, the evaluation software can be used to transmit waveforms generated from 
the internal NCO block or using custom waveform files as well as observe signals received on one of the receiver or observation input ports. An 
initialization sequence in form of an IronPython script can be generated and executed using the TES if customized scripts are desired.  

HARDWARE KIT 
The transceiver demonstration system kit contains the following: 

• The CE board in the form of a daughter card with an FMC connector 
• One 12 V wall connector power supply cable 
• One SD card that contains an image of a Linux operating system with the required evaluation software (SD card is 16 GB size, Type 10) 

The ADS9 demonstration system kit contains the following: 

• The ADS9 motherboard with an FMC connector 
• One 12 V, 1.5 A power supply for powering the board 

REQUIREMENTS 
The hardware and software require the following: 

• The ADS9 demonstration system kit. 
• The transceiver demonstration system kit (six options available). 
• The operating system on the controlling PC must be Windows 7 (×86 and ×64) or Windows 10 (×86 and ×64). 
• The PC must have a free Ethernet port with the following constraints: 

• If the Ethernet port is occupied by another LAN (local area network) connection, a USB to Ethernet adapter can be used. 
• The PC must be able to access over this dedicated Ethernet connection via the following ports: 

• Port 22: SSH protocol. 
• Port 55556: access to the evaluation software on the ADS9 platform. 

• TES. Contact a local Analog Devices representative to obtain access to this software. 
• The user must have administrative privileges. To run software automatic updates, the PC must have access to the internet. If 

internet access is restricted, a manual software update can be performed. 
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HARDWARE SETUP 
Before setup, the ADS9 platform requires the user to insert the SD card included with the evaluation kit into the J6 slot of the ADS9 
(MicroZED) platform. The evaluation hardware setup is shown in Figure 165 and Figure 166.  

S1: MUST BE IN
OFF POSITION

DS1: FPGA
ONLINE

S4: POWER ON

DS13: 12V_PIN

J6: MicroSD
CARD SLOT
(UNDER ETHERNET)

J1: ETHERNET
CONNECTION

SW1: SHUTDOWN

D3: BOOT STATUS
NOTE: BOOT TIME
IS 3 MINUTES
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Figure 165. Analog Devices ADS9 Motherboard Configured to Work with Transceiver Evaluation Boards  

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029


UG-1727 ADRV9026/ADRV9029 System Development User Guide 
 

Rev. 0 | Page 250 of 336 

ETHERNET
CONNECTION

SIGNAL SYNTHESIZER
REFERENCE CLOCK SOURCE

SIGNAL ANALYZER

Tx1

Tx2

Tx3

Tx4Rx4Rx3

Rx1Rx2

DAUGHTERCARD
POWER SUPPLY

12V/1.5A

MOTHERBOARD AC/DC
POWER SUPPLY

12V/5A

PC RUNNING TRANSCEIVER
EVALUATION SOFTWARE

22
77

0-
16

5

 
Figure 166. CE Board and ADS9 Motherboard with Connections Required for Transmit Testing 

To set up the evaluation board for testing, take the following steps: 

1. Connect the transceiver evaluation board and the ADS9 evaluation platform together as shown in Figure 166. Use the HPC FMC 
connector (P1001/P2). Ensure that the connectors are properly aligned. 

2. Insert the SD card that came with the evaluation kit into the ADS9 microSD card slot (J6). 
3. On the transceiver evaluation card, provide a reference clock source (122.88 MHz is the default, or frequency match the setting 

selected on the AD9528 configuration tab), at a 7 dBm power level to the J613 connector. This signal drives the reference clock into 
the AD9528 clock generation chip on the board. The REFA/REFA_N pins of the AD9528 generate the DEV_CLK for the device and 
REF_CLK for the FPGA on the ADS9 platform. 

4. Connect a 12 V, 1.5 A power supply to the ADS9 evaluation platform at the P1 header. 
5. Connect the ADS9 evaluation platform to the PC with an Ethernet cable (connect to P3). There is no driver installation required. 

If the Ethernet port is already occupied by another connection, use an USB to Ethernet adapter. 

On an Ethernet connection dedicated to the ADS9 platform, the user must manually set the following: 

• IPv4 address: 192.168.1.2  
• IPv4 subnet mask: 255.255.255.0 

Refer to Figure 167 for more details. Ensure that the following ports are not blocked by firewall software on the PC: 

• Port 22: SSH protocol  
• Port 55556: access to the evaluation software on the ADS9 platform 

Note that the ADS9 IP address is set by default to 192.168.1.10. 
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Figure 167. IP Settings for Ethernet Port Dedicated for ADS9 Platform 

HARDWARE OPERATION 
The following steps should be used to setup the evaluation platform for use with the Transceiver Evaluation Software. 

1. Switch the ADS9 motherboard power switch (S4) to the on position to turn on the evaluation system. If hardware is connected 
correctly, the green LED (DS13) on the ADS9 motherboard illuminates.  

2. The ADS9 motherboard uses a Linux operating system. Wait approximately 3 minutes before the system is ready for operation and 
can accept commands from PC software. Boot status can be observed on the ADS9 LED (D3, on the MicroZED daughtercard). This 
LED illuminates red for approximately 3 minutes after power-on. When the LED goes off, this indicates that the board is booted 
properly. When D3 transitions from red to off, the system is ready for normal operation and awaits connection with the PC over 
Ethernet (which must be established using TES). 

3. Connect the reference clock signal (122.88 MHz continuous wave tone, 7 dBm maximum) to J613 on the underside of the CE board.  
4. Before applying power to the CE board, ensure that each of the four transmit output ports (J501 to J504) are properly terminated. 
5. Connect power from the 12 V wall adapter to the CE board. When power is applied, DS801 and DS802 illuminate on the CE board. 
6. For transmitter testing, connect a spectrum analyzer to any transmit output on the evaluation board. Use a shielded RG-58, 50 Ω coaxial 

cable (1 m or shorter) to connect the spectrum analyzer. Terminate all transmit paths, either into spectrum analyzers or into 50 Ω if unused.  
7. Unplug the wall adaptor to power the CE board off before the motherboard.  
8. When power is removed from the CE board, click Disconnect in the TES window and then press and hold SW1 on the ADS9 

evaluation board (MicroZED daughter card) until LED D3 illuminates. When LED D3 starts to blink, it is safe to turn off the ADS9 
power using Switch S4.  

TES INSTALLATION 
Contact an Analog Devices representative to obtain access to the TES. When the initial software download completes, copy the software 
to the target system and unzip the files (if not already unzipped). The downloaded zip container has an executable file called ADRV9025 
Transceiver Evaluation Software_x64_FULL.exe (there is a x86 version available if the computer does not support x64 operation).  

Administrator privileges are required to install the TES. When an executable file is run, a standard installation process follows. Parts of 
the installation build are Microsoft .NET Framework 4.5 (which is mandatory for the software to operate) and IronPython 2.7.4 (which is 
optional and recommended). Figure 168 shows the recommended configuration. Note that the Microsoft .NET Framework and the 
IronPython 2.7.4 installations are not necessary to select once they have been installed. If updating the version of the TES, these boxes can 
be left cleared to save installation time. 
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Figure 168. Software Installation Components 

The last step of the instalation process is to select the shortcut configuration, as shown in Figure 169. The user can select a shortcut to be 
placed in the Windows Start menu and/or on the Windows desktop. 
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Figure 169. Transceiver Evaluation Software Shortcut Configuration 

STARTING THE TRANSCEIVER EVALUATION SOFTWARE 
Depending on the user selection during the installation process (see Figure 169), users can start the customer software by clicking on 
Start > All Programs > Analog Devices > ADRV9025 Transceiver Evaluation Software_x86_FULL > ADRV9025 Transceiver 
Evaluation Software or by clicking on the desktop shortcut labeled ADRV9025 Transceiver Evaluation Software. Figure 170 shows the 
opening page of the TES when the software is activated. 

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029


ADRV9026/ADRV9029 System Development User Guide UG-1727 
 

Rev. 0 | Page 253 of 336 

22
77

0-
16

9

 
Figure 170. TES Interface 

Demo Mode 

Figure 170 shows the opening page of the TES. In the case when evaluation hardware is not connected, the user can still use the software 
in demo mode by clicking Connect (top left corner of the window). The software moves into demo mode in which a superset of all 
transceiver family features is displayed. 

NORMAL OPERATION 
When hardware is connected to a PC and the user wants to start using the complete evaluation system, the TES establishes a connection 
with the ADS9 system via Ethernet when the Connect option in the dropdown menu is clicked. When proper connection is established, 
the user can click the DaughterCard position in the device tree on the left side of the window. When DaughterCard is clicked, 
information about revisions of different setup blocks appears in the main window. The bottom part of that window shows the TCP IP 
address set to 192.168.1.10 and the port number set to 55556. Figure 171 shows an example of correct connection between a PC and an 
ADS9 system with a daughter card connected.  
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Figure 171. Setup Revision Information 
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Configuring the Device 

Contained within the Config tab are subtabs that contain setup options for the transceiver. The first subtab displayed is the Overview tab.  
Figure 172 shows the initial window for the device. In this window the user can select the following: 

• Device to be programmed 
• Select profiles  

Profile Options 

The TES contains the following profile options: 

• ADRV9025Init_StdUseCase50_nonLinkSharing 
• ADRV9025Init_StdUseCase50_LinkSharing 
• ADRV9025Init_StdUseCase51_LinkSharing  
• ADRV9025Init_StdUseCase61_ LinkSharing 

These profiles configure the transceiver for different transmit, receive, and observation receive bandwidths, sample rates, and clock rates. 
The profiles also set different JESD configurations and lane rates. By default, the platform boots to JESD204B mode. Note that the 
available use cases can vary based on the version of the software being run.  
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Figure 172. Overview Tab 

Additional 204C use cases are also available. Switch the platform to 204C mode and then the available 204C profiles are displayed. To 
switch the platform, click Device > FPGA switch JESD > Jesd 204C, at which point the platform reboots (which takes approximately 3 
minutes). Upon reconnecting, the 204C profiles are available. 

Initialization 

The Initialization subtab provides access to the settings that are used to configure the transceiver at startup. This window allows the user 
to set the LO frequencies used, the initial transmit attenuation settings, the initial receive gain index settings, and the initial gain index for 
ORx1 (the only observation receive channel available at this stage in development). These and other settings that are provided in future 
revisions are shown in Figure 173. 
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Figure 173. Initialization Configuration Tab 

InitCals 

The InitCals subtab sets which calibrations take place at initialization. The default settings are shown in Figure 174. To enable or disable 
these settings, select the checkbox next to the calibration. A check mark indicates that the calibration is run at startup. 
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Figure 174. InitCals Tab with Default Settings 

Transmit Configuration 

The Tx tab is primarily informative and is based on the profile selection in the Overview tab (Figure 172). In this tab, the user can check 
clock rates at each filter node as well as filter characteristics and pass-band flatness. Quick zooming capability allows zooming of the pass-
band response as well as restoring to the full-scale plot. Figure 175 shows an example of the Tx tab with the resulting composite filter 
response for the chosen profile. 
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Figure 175. Tx Summary Tab 

Receive Configuration 

The Rx tab is primarily informative and is based on the profile selection in the Overview tab (see Figure 172). In this tab, the user can 
check clock rates at each filter node as well as filter characteristics and pass-band flatness. Quick zooming capability allows zooming of 
the pass-band response as well as restoring to the full-scale plot. Figure 176 shows an example of the Rx tab with the resulting composite 
filter response for the chosen profile. 
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Figure 176. Rx Summary Tab 

Observation Receive Configuration 

The ORx tab is primarily informative and is based on the profile selection in the Overview tab (Figure 172). In this tab, the user can check 
clock rates at each filter node as well as filter characteristics and pass-band flatness. Quick zooming capability allows zooming of the pass-
band response as well as restoring to the full-scale plot. Figure 177 shows an example of the ORx tab with the resulting composite filter 
response for the chosen profile. 
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Figure 177. ORx Summary Tab 

JESD Configuration 

The JESDb tab is primarily informative and is based on the profile selection in the Overview tab (see Figure 172). In this tab, the user can 
check the transmit deframer settings and the receive and observation receive framer settings. Figure 178 shows an example of the JESDb 
tab with the settings for Use Case 13. 
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Figure 178. JESD204B Summary Tab 

Programming the Evaluation System 

When all tabs are configured, press the Program button in the top menu line (highlighted in red text) to start initialization programming. 
The TES sends a series of API commands that are executed by a dedicated Linux application on the ADS9 platform.  

When programming is complete, the system is ready to operate. There is a progress bar at the bottom of the window. Figure 179 shows 
the window with the progress bar and message when the device has been programmed.  
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Figure 179. Device Programmed  

Initialization Script 

The TES allows the user to create a script with all API initialization calls in the form of IronPython functions. When the user clicks the 
Tools > Save Python Script option, the script can be given a file name and stored in a chosen location for future use. The TES generates 
the script in the form of a python (.py) file. That file can then be executed using the IronPython Script tab shown in Figure 185.  

The commands ultilized by the TES to initialize the transceiver are different than those described in the System Initialization section. 
These commands perform the same underlying task as the API initialization procedure. The three main commands used to initialize 
using the TES are shown in Figure 180. Help for these commands can be found in the client dynamic link library (DLL) help file. The first 
command loads the profile, the second command configures the AD9528, and the third command runs all the initialization API 
commands. It is not possible to initialize the transceiver in any other way using the TES platform. 

 
Figure 180 Iron Python Initialization Script Example 

TRANSMITTER OPERATION 
Select the Transmit tab to open a page as shown in Figure 181. The upper plot displays the FFT of the digital input data and the lower 
plot shows its time domain waveform. When multiple transmit outputs are enabled, the user can select desired data to be displayed in the 
spectrum plot using the checkboxes below the plot. In the time domain plot, the user can select Tx1, Tx2, Tx3, Tx4, or any combination 
of the data input channels, with I and/or Q data displayed. 

When the Transmit tab opens, the user can enter the RF transmit center frequency in MHz for transmit LO1 (used for transmit 
operation), change attenuation level, and transmit continuous wave tones.  
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Figure 181. Transmit Data Tab 

Transmitter Data Options 

The TES provides the following options for inputting transmitter data: 

• A single tone from the internal NCO can be generated on each channel by the evaluation system using the Tone Parameters window 
shown in Figure 182. TO acces this window, click the TONES button near the upper left of the Transmit page. In that window, the 
user can enable the tone (Number of Tones value = 0 to 3) to be transmitted on the selected transmit output.  

• The user can also choose to input a waveform file instead of using the internal NCO by selecting the LoadFile checkbox and entering 
the path to the waveform file. 
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Figure 182. Transmit Tone Parameters Setup Menu 

Press the play symbol in Figure 181 to move the transceiver to the transmit state and start a process where the NCO generated continuous 
wave data is enabled.  

The Tx2 Attenuation (dB) input allows the user to control analog attenuation in the Tx2 channel. The input provides 0.05 dB of attenuation 
control accuracy. The Tx3 Attenuation (dB) and Tx4 Attenuation (dB) perform the same operation on the Tx3 and Tx4 channels. 
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RECEIVER OPERATION 
Receive Signal Chain 

The Receive tab opens the window shown in Figure 183. The upper plot displays the FFT of the received input data and the lower plot 
shows its time domain waveform. When multiple receive inputs are enabled, the user can select the desired data to be displayed in the 
spectrum plot using the checkboxes below the plot. In the time domain plot, the user can select Rx1, Rx2, Rx3, Rx4, or any combination 
of the input channels, with I and/or Q data displayed. 

When the Receive tab is open, the user can enter the RF LO frequencies for the LO1 and LO2 PLLs, select which LO is used by Rx1 and 
Rx2, select which LO is used by Rx3 and Rx4, select the receive trigger type, enter the sample time for the data, and select the gain levels 
and tracking calibrations for each channel. Press the play symbol to enable the selected receivers and display their waveform data. 
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Figure 183. Receive Data Tab 

Observation Receive Signal Chain  

The Obs Rx tab opens the window shown in Figure 184. The upper plot displays the FFT of the received input data and the lower plot 
shows its time domain waveform. When multiple observation receive inputs are enabled, the user can select the desired data to be 
displayed in the spectrum plot using the checkboxes below the plot. In the time domain plot, the user can select Obs1, Obs2, Obs3, Obs4, 
or any combination of the input channels, with I and/or Q data displayed. 

When the Obs Rx tab is open, the user can enter the RF LO frequencies for the LO1, LO2, and Aux LO PLLs, select which LO is used by ObsRx1 
and ObsRx2, select which LO is used by ObsRx3 and ObsRx4, select the observation receive trigger type, enter the sample time for the data, and 
select the gain levels and QEC for each channel. Press the play symbol to enable the selected receivers and display their waveform data.  

Note that only Rx1 is enabled for use at this stage in product development. All four channels are available in future software revisions. 
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Figure 184. Obs Rx Data Tab 

SCRIPTING 
The Iron Python tab allows the user to use IronPython language to write a unique sequence of events and then execute them using the 
evaluation system. Scripts generated using this tab can be loaded, modified if needed, and run on the evaluation system. Figure 185 shows 
the Iron Python tab after executing the File > New script function. The top part of the window contains the IronPython commands while 
the bottom part of the window displays the script output. Scripts are run by clicking Build > Run. To save scripts that provide useful 
functions that may be useful in the future, click File > Save and enter the path and file name for saving the script. 

When the user configures the part to the desired profile, a script can be generated with all API initialization calls in the form of IronPython 
functions. Click Tools > Create Script > Python to accomplish this task. This function generates a script with the initialization sequence 
and opens a dialogue box to save the file. Basic script with no initializaion sequence can be generated by clicking File > New option.  
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Figure 185. Iron Python Scripting Window 
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IronPython Script Example 

The following example sets the RF LO frequency of LO1 and LO2 and reads back the configured values: 
 

################################################################################# 

#GUI Version: 0.1.0.19 

#DLL Version: 0.1.0.11 

#Cmd Server Version: 0.1.0.11 

#FPGA Version: 0xC900000F 

#ARM Version: 0.1.0.5(ADI_ADRV9025_ARMBUILD_TESTOBJ) 

#StreamVersion: 0.0.0.28 

################################################################################# 

 

#Import Reference to the DLL 

import System 

import clr 

import time 

from System import Array 

clr.AddReferenceToFileAndPath("C:\\Program Files (x86)\\Analog Devices\\ADRV9025 Transceiver 
Evaluation Software_x86_FULL\\adrvtrx_dll.dll") 

from adrv9025_dll import AdiEvaluationSystem 

from adrv9025_dll import Types 

from adrv9025_dll import Ad9528Types 

 

#Create an Instance of the Class 

Link = AdiEvaluationSystem.Instance  

 

if (Link.IsConnected): 

    fpga9025 = Link.FpgaGet() 

    adrv9025 = Link.ADRV9025Get(1) 

 

    print "Setting PLL LO1 and LO2" 

    adrv9025.RadioCtrl.PllFrequencySet(Types.adi_adrv9025_PllName_e.ADI_ADRV9025_LO1_PLL, 
3500000000) 

    adrv9025.RadioCtrl.PllFrequencySet(Types.adi_adrv9025_PllName_e.ADI_ADRV9025_LO2_PLL, 
3550000000) 

     

    print "Readback PLL" 

    lo1 = adrv9025.RadioCtrl.PllFrequencyGet(Types.adi_adrv9025_PllName_e.ADI_ADRV9025_LO1_PLL, 
0) 

    print "LO1 set to :" + str(lo1[1]) 

    lo2 = adrv9025.RadioCtrl.PllFrequencyGet(Types.adi_adrv9025_PllName_e.ADI_ADRV9025_LO2_PLL, 
0) 

    print "LO2 set to :" + str(lo2[1])  

 

else: 

    print "Not Connected" 

 

print "Finished Setting RF PLL" 
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Figure 186. Python Script Example 

When using the Iron Python tab window, the user can execute any API command that is available in the loaded software build.  

C CODE GENERATION 
It is possible to generate C initialization structure from the GUI. To generate this code, click Tools > Create Script > Init c files. 
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Figure 187. C Initialization Structure Save Screen 

When this option is selected, the GUI opens a dialogue box to select a location and file name to store this code. The preferred file name is 
initdata.c. The user can choose to store resource files at the same location or another location by clicking Yes or No on the prompt (see 
Figure 188). 
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Figure 188. C Initialization Structure File Storage Confirmation Screen 

 

 

 

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029


UG-1727 ADRV9026/ADRV9029 System Development User Guide 
 

Rev. 0 | Page 264 of 336 

To use this code, take the following steps: 

1. Copy the c_src folder from Adi.ADRV9025.Api\public\src to the /home/analog/adrv9025_c_example/ location on the platform. 
(create the adrv9025_c_example directory if not present).  

2. Copy the generated resources folder to the platform at the same /home/analog/adrv9025_c_example/ location. 
3. Copy the generated files, initdata.h, initdata.c, and main.c, to /home/analog/adrv9025_c_example/c_src/app/example/. 
4. Use the terminal to navigate to the example directory and run following the command to enter the directory (see Figure 189). 
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Figure 189. Linux Command Line to Enter Example Directory 

5. Run the make command at this location to compile the code. If no errors occur, this command generates an executable called main  
in /home/analog/adrv9025_c_example/c_src/app/example/. 
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Figure 190. Linux Command Line make Execution Example 

6. Run the ./main command in the same folder to run the initialization sequence. 

NCO SETUP 
The NCO is a digital block that can be used to provide an offset center frequency in the digital domain. This function can be used to 
offset signals in the frequency domain to allow multiple frequency bands to be processed when received on a single channel. The setup of 
these functions can be configured in the TES using the NCO tab Figure 191 shows the options and settings available for the NCO control 
for both receivers and transmitters.  
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Figure 191. NCO Setup Options 
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DIGITAL FRONT END TAB SETUP 
The ADRV9029 variant provides additional digital front end (DFE) functions to linearize power amplifier performance using digital 
predistortion and cress factor reduction (see the Digital Predistortion and Crest Factor Reduction (CFR) sections for details). The TES 
determines which variant is connected to the system when the platform is connected. If the ADRV9029 is detected, the TES automatically 
allows access to the DFE features tab for setup and evaluation. To use these features, select a use case that includes DPD capability prior to 
programming. In the Overview tab, highlight a use case profile such as the 50_LinkSharing option. This use case supports a transmitter 
sample rate of 122.88 Msps and a DPD actuator rate of 491.52 Msps, which translates into a 450 MHz DPD bandwidth. When this setting 
is selected, switch to the Initialization tab and ensure that all transmitter and receiver channels are running with the same LO. On this 
menu, setup the transmit channel to observation receive channel mapping and ensure that the observation receive LO is set to TXLO. 
Figure 192 and Figure 193 illustrate where these selections are made. When these settings are confirmed, click on the Program menu 
option to program the device with the appropriate settings. 

22
77

0-
19

0n

 
Figure 192. TES Overview Selection Tab 

22
77

0-
19

1

 
Figure 193. TES Initialization Tab 

When programming is complete, click the Tx tab and setup the transmit data file and signal level. Ensure that the signal level is adequate 
to produce a signal at the observation receiver input with a power level between −20 dBm and −25 dBm. When the transmitter levels are 
set, click the Obs Rx tab and clear the enable box for each observation receive channel so that these channels can be controlled by the 
DPD tracking calibrations. When the observation receiver signal level is confirmed to be in the proper range, go back to the Tx tab and 
disable the transmitter outputs so that they can be controlled by the DFE functions. 

DPD Setup 

There are three subtabs on the DFE setup tab. Select the DPD tab to select the configuration page for DPD functions. To evaluate DPD 
performance, take the following steps (see Figure 194 and Figure 195):  

1. Select the DPD model by clicking the Load Model from file… button.  
2. Configure the DPD tracking parameters (it is recommended to start with the default settings).  
3. Select which transmit channels will be evaluated. 
4. Click Apply Tracking Config. 
5. Click Run Path Delay Init Cal. 
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6. Check the signal level reported. If the level is not in the −20 dBm to −25 dBm range, check the cable connections. If still not at the 
expected level, try reprogramming the device with the desired settings. 

7. Click Apply Model on Device from M Table. 
8. Click Apply Model on Device from C Table. 
9. Click Enable DPD on select channels (only). 
10. Click the Transmit tab and click the play button to send data. 
11. Click the DFE tab and then the DPD tab, and click Reset DPD. 
12. Click Get Status & Statistics to evaluate the performance. 
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Figure 194. DPD Model and Tracking Configuration Setup 
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Figure 195. DPD Function Setup and Performance Statistics 
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DIGITAL PREDISTORTION (DPD) 
This section provides an overview of the DPD function provided in the ADRV9029 transceiver, including a hardware architecture 
overview, an overview of the DPD algorithm with references to features that enhance DPD robustness and performance in dynamic 
signaling conditions, and a summary of API software interface functions to configure these DPD functions. This functionality is only 
available in the ADRV9029 variant. The DPD enables users to achieve higher power amplifier efficiency by extending the linear operating 
region of the power amplifier, while still meeting adjacent channel leakage ratio (ACLR) requirements in the transmit signal chain for 
compliance with 3GPP and European Telecommunications Standards Institute (ETSI) standards for 5GNR, LTE, and other technologies. 
The ADRV9029 DPD supports a carrier bandwidth of up to 200 MHz. 

DFE SYSTEM LEVEL OVERVIEW 
The transceiver provides digital signal processing capabilities in the embedded ARM processor using closed-loop feedback signals from 
the observation receiver channels. These functions improve transmitter performance, measure system output, and reduce system power 
consumption. The list of functions includes the following: DPD, closed-loop gain control (CLGC), and crest factor reduction (CFR). 
These functions are collectively grouped together as the transceiver DFE. 

Figure 196 is a simplified system level overview of the transceiver signal chain with DFE processing blocks highlighted. There are five 
main DFE processing blocks that include the following: 

1. The CFR and hard clipper are used to reduce peak to average power ratio (PAPR) of the baseband signal, especially for multicarrier 
waveforms such as orthogonal frequency division multiplexing (OFDM). With reduced PAPR, the PA can operate at a higher output 
power, increasing the power amplifier efficiency. This function is explained in the Crest Factor Reduction (CFR) section.  

2. There are two half-band filters with a total interpolation factor of 4× before the DPD actuator. These blocks can provide a total of 1×, 
2×, or 4× interpolation. 

3. There are three DPD capture buffers, which include a pre-DPD actuator, a post DPD actuator, and observation buffers. Each buffer 
can capture a maximum of 4096 samples. 

4. The DPD actuator applies the inverse power amplifier model to the baseband signal for power amplifier linearization.  

5. There is a dual core embedded ARM processor in which the DPD and CLGC algorithms reside. One of the dual core ARM 
processors is a control processor (ARM-C), which is the master, and the second core is a dedicated ARM core for DPD processing 
(ARM-D). 
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Figure 196. ADRV9029 Signal Chain with DFE Processing Blocks Highlighted 
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DPD INTRODUCTION AND PRINCIPLE OF OPERATION 
DPD is a technique for improving the linearity of a nonlinear system such as a power amplifier by introducing precise antidistortion into 
the input waveform that compensates for the power amplifier in-band nonlinear products. DPD works on the principle of predistorting 
the transmit data in the digital domain to cancel the distortion caused by power amplifier compression in the analog domain. In this way, 
DPD can improve power amplifier power added efficiency by double or more to allow the power amplifier to be pushed further into 
saturation while maintaining linearity requirements.  

A baseband model of the power amplifier is created and trained on the input and output digital baseband samples that pass through the 
power amplifier, as shown in Figure 197. The predistorter then applies an inverse of the power amplifier model function to input samples 
before passing them to the transmitter output. The cascade of the predistorter response and the power amplifier response becomes a 
nearly linear system.  
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Figure 197. Concept of Digital Predistortion for Linearizing the Power Amplifier Response 

The intermodulation distortion products between various subcarriers because of power amplifier nonlinearities in a wideband 
transmission protocol such as LTE/NR manifest as power leaked into adjacent channels. ACLR is defined as the ratio of the transmitted 
power on the assigned channel to the power leaked in the adjacent radio channel. The ACLR performance improvement following the 
application of DPD to the baseband data is captured in Figure 198. These plots illustrate how the out of band nonlinearities because of 
intermodulation products of an LTE 20 MHz signal are reduced by 15 dB to 20 dB after the application of DPD. 
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Figure 198. Power Spectral Density Showing Improvement in ACLR After Application of DPD for a 20 MHz LTE Signal 
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TRANSCEIVER DPD OVERVIEW 
The DPD feature on this transceiver enables users to offload power amplifier linearization tasks from the baseband processor to the 
transceiver. With the DPD implemented on the transceiver, the user does not need to allocate JESD serializer/deserializer resources for 
observing power amplifier feedback data through the observation receiver channels, which results in significant system power savings. 
Interpolators leading to the DPD actuator allow the baseband processor to transmit data at a lower rate on the JESD204B and JESD204C 
link than is needed for the full DPD correction bandwidth. The lower data rate at JESD translates directly into power savings and less 
lanes. Integration of the DPD into the transceiver chip results in significant system level cost, space, and power savings when compared to 
conventional FPGA/ASIC-based implementations. 

A simplified block diagram of the transceiver DPD system is shown in Figure 199. The individual blocks include the following: 

• Transmit datapath. The digital baseband signal from the JESD deframer output goes through an optional CFR block for reduction of 
the overall PAPR of the signal, followed by a digital interpolation filter that interpolates the baseband signal by a factor of 1×, 2×, or 
4× for analyzing the baseband signal over the DPD analysis bandwidth. The inverse power amplifier model is applied by the DPD 
engine, followed by the rest of the transmit signal chain including digital to analog conversion and upconversion by a mixer before 
the signal is fed into the actual amplifier. 

• Observation datapath. The DPD algorithm relies on observing the nonlinearities via a feedback path. The feedback path is realized 
using an integrated observation receiver. The power amplifier output data is sampled through the observation receiver, 
downconverted, and digitized for further analysis by the firmware. 

• DPD processing. The DPD engine is based on an abbreviated implementation of generalized memory polynomial (GMP) that is a 
generalized subset of the well-known Volterra series. The simplified polynomial models a large number of power amplifier 
characteristics such as weak nonlinearities, temperature variation, and memory effects. The inverse power amplifier model is applied 
on the interpolated digital baseband samples through DPD actuator hardware. A dedicated embedded ARM processor (ARM-D) is 
used for computation of the GMP coefficients.  
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Figure 199. Simplified Block Diagram of Transceiver DPD 

DPD Actuator Overview 

The DPD actuator implements a programmable GMP calculator using the following equation: 

 (3) 

where: 
xGMP is the output of the actuator. 
u is the input of the actuator. 
i is the memory term.  
j is the cross term.  
k is the order term.  
ci,j,k  is the complex valued coefficient of the GMP terms.  

To compensate for memory effects in a large bandwidth signal, a higher order polynomial is required. The DPD actuator can be programmed to 
support up to 190 coefficients for wide bandwidth signals. The structure of the DPD actuator is shown in Figure 200. For every predistorted 
output, the GMP model calculates the sum of product expression. The product terms consist of a modeling coefficient (ci,j,k), a magnitude 
power term (|u(n-i)|k), and cross memory term u(n − j). Each DPD model consisting of GMP terms can utilize up to 31 LUTs on one 
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specified bank. The LUTs are 1k samples deep and organized in four banks of 8-bit tables (256 entries). Refer to the GMP Model and 
Look Up Table section for more information on the mapping GMP terms to LUTs. 
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Figure 200. ADRV9029 DPD Actuator Functional Diagram 

DPD Half-Band Filters 

There are two half-band filters that can be enabled based on the input data rate and the desired DPD actuator rate. Two important 
characteristics of the half-band filters are that the passband and stopband ripples are the same, and the passband edge and stopband edge 
frequencies are equidistant from the half-band frequency, FS/4.  

Each DPD half-band filter provides either a 1× or 2× interpolation rate. A maximum of 4× interpolation can be achieved by cascading 
two DPD half-band filters. DPD Half-Band 1 (HB1) supports a bandwidth of approximately 82% with respect to the input data rate. For 
example, DPD HB1 supports a 100 MHz bandwidth signal at a 122.88 MSPS input rate. DPD Half-Band 2 (HB2) supports a bandwidth of 
approximately 41% with respect to the input data rate. For example, DPD HB2 supports a 100 MHz bandwidth signal at a 245.76 MSPS 
input rate. These two characteristics of the half-band filters are shown in Figure 201 and Figure 202 for 2× interpolation, and in  
Figure 203 and Figure 204 for 4× interpolation. 
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Figure 201. Magnitude Response for HB1 Enabled (×2), 82% of FS  
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Figure 202. Zero Phase Response for HB1 Enabled (×2), 82% of FS 
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Figure 203. Magnitude Response for Both HB1 and HB2 Enabled (×4), 41% of FS 
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Figure 204. Zero Phase Response for Both HB1 and HB2 Enabled (×4), 41% of FS 
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DPD ALGORITHM OVERVIEW 
The ADRV9029 DPD algorithm supports both indirect learning and direct learning DPD mechanisms for extracting DPD model 
coefficients. The details of direct and indirect DPD learning mechanisms are provided in the following sections.  

The user can configure the transceiver DPD learning algorithm through the adi_adrv9025_DpdTrackingConfigSet() API using the 
settings listed in Table 249. 

Table 249. DPD Direct Learning Setting 
adi_adrv9025_DpdTrackingConfig_t. enableDirectLearning DPD Learning Mechanism Selected 
0 Indirect learning 
1 Direct learning 

Indirect Learning 

Indirect learning involves using the observation receiver data (power amplifier output data) as a reference for predicting the input 
samples corresponding to the reference. The function used for predicting the input samples is known as the inverse power amplifier 
model. When the prediction of input samples corresponding to the observed data is good, the estimated inverse power amplifier model is 
used to predistort the transmit data. In Figure 205, Y represents the observed samples at the output of the power amplifier and X 
represents the input samples to the power amplifier. The estimation engine computes the inverse power amplifier model that is applied to 
transmit data (U) in the DPD actuator.  
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Figure 205. DPD Indirect Learning Architecture 

The mathematical representation of the DPD coefficient estimation is shown in Figure 206. The DPD engine observes N samples of 
power amplifier input samples (X) and power amplifier output samples (Y), and computes M coefficients (c) corresponding to the inverse 
power amplifier function F(x).  
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Figure 206. DPD Indirect Learning Coefficient Computation 

The coefficient set (c) is estimated through a least squares approximation as described in matrix multiplication equations in Figure 207. 

Y = F × C
FH Y = (FHF)C
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Figure 207. Formulas to Estimate the DPD Coefficient Set 

DPD Direct Learning 

DPD direct learning involves using the pre-DPD actuator transmit signal (U) as reference to minimize the error between the observed 
(Y) and reference data (U), as shown in Figure 208. 
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Figure 208. DPD Direct Learning Architecture 

The mathematical representation of the DPD coefficient estimation via direct learning is described as an error, E, defined as the 
difference between the observed (Y) and pre-DPD actuator data (U) as follows: 

E = Y – U 

The power amplifier is modeled as the function, Fx, multiplied by adaptive coefficients, C, through the error matrix, E, as shown in Figure 209. 
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Figure 209. DPD Direct Learning Coefficient Computation 

The direct learning outcome is an iterative solution, where the current coefficients are based on the memory of previously computed 
coefficients and currently estimated coefficients (C).  

The direct learning approach uses a parameter, μ, which is the convergence factor that defines the step size for learning coefficients. The 
convergence factor μ lies in the range 0% to 100% and is user configurable in the transceiver using the 
adi_adrv9025_DpdTrackingConfigSet() through the parameter adi_adrv9025_DpdTrackingConfig_t.dpdMu API. A higher value of the 
convergence factor, μ, results in faster convergence. However, a significantly high value of μ can result in an unstable system. The user can 
start with a convergence factor of 50% and tune the value based on characterization of the system for convergence time and stability. 

Comparison Between DPD Indirect Learning and Direct Learning  

The DPD indirect learning algorithm is time efficient because it estimates coefficients through inversion in a single update. The DPD 
indirect learning algorithm is preferred when a quicker adaptive response is required by the system. 

The DPD direct learning algorithm is more accurate but iterative in nature as described in the previous section, and requires a longer 
time to converge compared to indirect learning. The direct learning algorithm is less sensitive to bandwidth mismatches and is preferred 
when the signal bandwidth is more than 100 MHz (for example, 2xNR100 or 8xLTE20 systems). 

DPD Coefficient Estimation 

The maximum number of coefficients is limited to 190 (M = 190), and the number of samples used to calculate the coefficients is typically 
16384 samples (N = 16384). Although the number of samples, N, is user configurable using the adi_adrv9025_DpdTrackingConfigSet() API, it 
is recommended to set the number of samples to 16384, which provides a balance between estimation time and sample size.  

The DPD algorithm runs on an ARM-D and calculates the coefficients corresponding to GMP terms of the inverse power amplifier 
model. This model predistorts the digital baseband signal before digital-to-analog conversion and transmission of samples to the 
transmitter upconverter (this output becomes the RF input to the power amplifier). The power amplifier output is sampled using an 
external loopback to an observation receiver channel input.  

The DPD engine then correlates the observation receiver and transmitter samples to calculate the latest set of coefficients. The DPD 
engine performs a brief check on model error before updating the LUTs that feed the correction coefficients into the DPD actuator 
hardware. Details regarding the GMP model, the actuator and the LUTs are provided in sections to follow. Because of the relatively simple 
implementation of this algorithm, the overall time taken to react to sudden changes in transmit waveforms is relatively short and is 
typically less than 1 second per transmitter channel (actual time depends on the configurable parameters of the DPD and ARM 
scheduling). Certain protection criteria are designed into the algorithm to prevent damage to the power amplifier because of large model 
errors. The DPD algorithm is scheduled once every second per transmitter channel in the firmware, which means the coefficients are 
updated once every second per transmitter channel. 
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GMP Model and Look Up Table 

For wideband signals such as LTE and 5GNR, power amplifiers begin to exhibit short term memory effects, which are effectively 
nonuniform frequency responses in certain components such as the biasing network, decoupling capacitors, or supply circuitry. A given 
output of the power amplifier depends not only on the current input, but also on past input values (similar to an FIR filter model). These 
memory effects can usually be captured with memory taps in the model if the power amplifier frequency response is locally smooth over 
the band. As bandwidth increases, more memory taps are required to accurately model the power amplifier. 

In this DPD implementation, the GMP is used to model the power amplifier in the baseband. A GMP model is represented using 
Equation 3.  

The DPD supports a sparse GMP model that consists of a maximum of 190 GMP terms and coefficients in which the memory term (i), 
the cross term (j) and the power term (k) are each restricted to a value from 0 to 15. A more complete equation for the GMP model with 
the limits on GMP terms is shown in the Figure 210. 

The GMP model is user programmable through the adi_adrv9025_DpdModelConfigSet() API. Details pertaining to programming the 
DPD model are captured later in this section. The GMP model for a particular operating point of the power amplifier is determined by 
the user and programmed into the transceiver during initialization. 

The GMP model is mapped to LUTs in the DPD actuator. Each feature is specified with a unique combination of i, j, and k indices. In 
general, low index values are more significant in sparse GMP models. Therefore, restrictions are placed on the actuator datapath 
accordingly. The LUT restrictions are shown in Figure 210. Note that the range of i and j are labeled per LUT. Each row shares the same 
multiplier, therefore, the same j value. Roaming A, B, C, and D LUTs are assigned to the top or bottom half of the table. 
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Figure 210. GMP Mapping to DPD Actuator LUTs 

The restrictions placed on the GMP terms mapped to the LUTs shown in Figure 210 include the following: 

• More LUTs are available for smaller i and j values clustered at the top of the LUT banks compared to fewer LUTs for high i and j 
values towards the bottom of the LUT bank. In general, low index values are more significant in sparse GMP models, therefore the 
user has more LUTs that can be mapped to lower i and j memory terms. 

• Each row in the LUT bank shown in Figure 210 share the same j values, which means that the GMP terms mapped to LUT0 to LUT7 
must have the same j value. Similarly, GMP terms mapped to LUT8 to LUT13, LUT14 to LUT17, and LUT18 to LUT25 must have the 
same j values, respectively. 

• LUT28, LUT29, LUT30, and LUT31 are reserved for internal use. These LUTs are not available for the user to program GMP terms. 
• LUT26 and LUT27 are floating LUTs, which means that these two LUTs can take a j value that is assigned to one of the four rows in 

the upper half of the LUT bank. For example, if LUT0 to LUT7 have j = 1, LUT8 to LUT13 have j = 2, LUT14 to LUT17 have j = 3 
and LUT18 to LUT21 have j = 4, the GMP terms mapped to LUT26 and LUT27 can have a j value in the range 1 to 4. 

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029


UG-1727 ADRV9026/ADRV9029 System Development User Guide 
 

Rev. 0 | Page 276 of 336 

A part of the user programmed GMP model is shown in Figure 211. Each row of the GMP model table consisting of the i,j,k LUT and 
coefficients is called a feature. 
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Figure 211. Example of User Programmed GMP Model 

The following equations represent the GMP terms that are mapped to LUT10, LUT11, and LUT12, as described in Figure 211. 

Xlut10 = |x(n − 2)|2× x(n − 1) + |x(n − 2)|3× x(n − 1)  

Ylut11 = |x(n − 3)| × x(n − 1) + |x(n − 3)|5× x(n − 1) + |x(n − 3)|7× x(n − 1) 

Ylut12 = |x(n − 4)| × x(n − 1) + |x(n − 4)|3× x(n − 1) + |x(n − 4)|8× x(n − 1) 

where Ylutxx is the output of the LUTxx. 

The user can program the complex coefficients to 0. The DPD tracking calibration determines the coefficients and applies them to the 
GMP terms on each update. 

The GMP model can be programmed using the adi_adrv9025_DpdModelConfigSet() API through the data structure adi_adrv9025_ 
DpdModelConfig_t. The total number of features in the model is conveyed through the adi_adrv9025_DpdModelConfig_t.dpdNumFeatures 
variable. Each row of the table or the ‘feature’ is programmed through the adi_adrv9025_DpdModelConfig_t.dpdFeatures array. Each 
element of the array corresponds to one row in the table shown in Figure 211.  

The values to load the adi_adrv9025_DpdModelConfig_t structure for the example in Figure 211 include the following (only values for 
feature [0] are shown): 

• adi_adrv9025_DpdModelConfig_t.dpdNumFeatures = 8 
• adi_adrv9025_DpdModelConfig_t.dpdFeatures[0].i = 2 
• adi_adrv9025_DpdModelConfig_t.dpdFeatures[0].j = 1 
• adi_adrv9025_DpdModelConfig_t.dpdFeatures[0].k = 2 
• adi_adrv9025_DpdModelConfig_t.dpdFeatures[0].lut = ADI_ADRV9025_DPD_LUT10 
• adi_adrv9025_DpdModelConfig_t.dpdFeatures[0].coeffReal = 0 
• adi_adrv9025_DpdModelConfig_t.dpdFeatures[0].coeffImaginary = 0 

INITIALIZING PRECALIBRATED COEFFICIENTS DURING STARTUP 
The DPD functionality on the transceiver provides a mechanism for loading precalibrated coefficients into the GMP model to prevent 
emissions and to guide DPD updates at the beginning during startup. There are three different use cases for loading precalibrated 
coefficients. 

Single Frequency Band Use Case 

In the single frequency band use case, all four transmit channels work in the same frequency band, as shown in Figure 212. Note that the 
power amplifier model is the same for all four channels., 
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Figure 212. Single Frequency Band (fBAND) Use Case Configuration 

For the API sequence for programming DPD models in a single frequency band use case, the factory calibrated coefficients can be 
programmed into the transceiver using the adi_adrv9025_DpdModelConfigSet API, as described in the previous section. The DPD reset 
with the LUT restore option must be exercised consecutively on all four channels to program the coefficients into the DPD actuator 
hardware. The API sequence for programming DPD models in a single frequency band use case is as follows: 
adi_adrv9025_DpdModelConfigSet() 
adi_adrv9025_DpdReset(ADI_ADRV9025_TX1, ADI_ADRV9025_DPD_LUT_RESTORE) 
adi_adrv9025_DpdReset(ADI_ADRV9025_TX2, ADI_ADRV9025_DPD_LUT_RESTORE) 
adi_adrv9025_DpdReset(ADI_ADRV9025_TX3, ADI_ADRV9025_DPD_LUT_RESTORE) 
adi_drv9025_DpdReset(ADI_ADRV9025_TX4, ADI_ADRV9025_DPD_LUT_RESTORE) 

Dual Frequency Band Use Case 

In the dual frequency band use case, the signals of Transmit Channel 1 and Transmit Channel 2 are centered at fband1 and those of 
Transmit Channel 3 and Transmit Channel 4 at fband2. Power amplifier characteristics are band dependent, so the DPD model that is 
loaded into Transmit Channel 1 and Transmit Channel 2 must be different than the model loaded into Transmit Channel 3 and Transmit 
Channel 4, as shown in Figure 213. 
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Figure 213. Case 2 Dual Frequency Band Use Case Configuration 

For the API sequence for programming DPD models in a dual frequency band use case, the factory calibrated coefficients can be 
programmed into the transceiver through the adi_adrv9025_DpdModelConfigSet() API for the two pairs of transmit channels, as 
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described in the previous section. The DPD reset with the LUT restore option must be exercised for two channels at a time. The API 
sequence for programming DPD models in a dual frequency band use case are as follows: 
adi_adrv9025_DpdModelConfigSet() /* Load model for Tx12 */ 
adi_adrv9025_DpdReset(ADI_ADRV9025_TX1, ADI_ADRV9025_DPD_LUT_RESTORE) 
adi_adrv9025_DpdReset(ADI_ADRV9025_TX2, ADI_ADRV9025_DPD_LUT_RESTORE) 
adi_adrv9025_DpdModelConfigSet()/* Load model for Tx34 */ 
adi_adrv9025_DpdReset(ADI_ADRV9025_TX3, ADI_ADRV9025_DPD_LUT_RESTORE) 
adi_adrv9025_DpdReset(ADI_ADRV9025_TX4, ADI_ADRV9025_DPD_LUT_RESTORE) 

Unique GMP Model Per Transmit Channel 

In addition to the use cases previously described, the user can initialize each transmit channel with a unique GMP model. This approach 
is typically used when each power amplifier exhibits a slightly different nonlinearity, which requires a different set of coefficients, as 
shown in Figure 214. 
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Figure 214. Use Case Where each Transmit Path Requires a Different Set of DPD Coefficients 

For the API sequence for programming a unique DPD model per transmit channel, the factory calibrated coefficients can be 
programmed into the transceiver through the adi_adrv9025_DpdModelConfigSet() API for the two pairs of transmit channels, as 
described in the previous section. The DPD reset with the LUT restore option must be exercised for each channel. The API sequence for 
programming a unique DPD model per transmit channel is as follows: 
adi_adrv9025_DpdModelConfigSet() /* Load model for Tx1 */ 
adi_adrv9025_DpdReset(ADI_ADRV9025_TX1, ADI_ADRV9025_DPD_LUT_RESTORE) 
adi_adrv9025_DpdModelConfigSet() /* Load model for Tx2 */ 
adi_adrv9025_DpdReset(ADI_ADRV9025_TX2, ADI_ADRV9025_DPD_LUT_RESTORE) 
adi_adrv9025_DpdModelConfigSet() /* Load model for Tx3 */ 
adi_adrv9025_DpdReset(ADI_ADRV9025_TX3, ADI_ADRV9025_DPD_LUT_RESTORE) 
adi_adrv9025_DpdModelConfigSet() /* Load model for Tx4 */ 
adi_adrv9025_DpdReset(ADI_ADRV9025_TX4, ADI_ADRV9025_DPD_LUT_RESTORE) 

DPD SAMPLE CAPTURE 
The DPD algorithm relies on observing the samples distorted by the power amplifier through an observation channel to estimate the DPD 
coefficients. The DPD algorithm captures the observation samples after the samples have been processed by the observation receiver channel, 
and before and after the DPD actuator in batches of 4096 samples. The total number of samples that the DPD algorithm must capture is 
configured using the adi_adrv9025_DpdTrackingConfigSet() API through the adi_adrv9025_DpdTrackingConfig_t.dpdSamples parameter. 
The number of samples must be a multiple of 4096. Increasing the number of samples increases the processing time and computation 
load. Conversely, a decreased number of samples can impact the accuracy of coefficient estimation. It is recommended that the number of 
samples be set to 16384, which provides a balance between accuracy of estimation of coefficients and processing time.  

For successful captures, the transmitter to observation channel external signal routing must be conveyed to the firmware through the 
adi_adrv9025_TxToOrxMappingSet() API. 

For accurate estimation of predistortion coefficients, the transmitter and observation receiver samples are aligned in time by the sample 
capture engine in the transceiver. To align the samples, the external path delay initial calibration must be executed using the 
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adi_adrv9025_InitCalsRun() API with a mask value of ADI_ADRV9025_EXTERNAL_PATH_DELAY (= 0x00200000) along with the 
requisite transmit channel mask. 

DPD Sample Capture Process 

The DPD algorithm implements a peak detection-based capture strategy because the high power signal levels contain more useful 
information for deriving DPD coefficients. The device calibration scheduler can initiate DPD capture at any available point in time when 
the transmit signal chain is enabled. The sequence of events involved in DPD sample capture process is shown in Figure 215.  
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Figure 215. DPD Tracking Calibration Sample Capture Sequence 

Peak Search Window and Peak Detection-Based Capture 

The DPD capture engine contains a peak detector that triggers captures on the largest peak seen in a specified time window, as shown in 
Figure 216. Peak detection occurs at the DPD input and after CFR correction is applied.  

The peak detection time window is specified in the number of samples at the DPD actuator rate using the adi_adrv9025_ 
DpdTrackingConfgSet() API through the adi_adrv9025_DpdTrackingConfig_t.dpdPeakSearchWindowSize parameter. While longer 
peak search windows result in more accurate high power DPD modeling, the capture process also takes longer to complete. The goal of 
peak search window optimization is to increase the probability of capturing high power data without penalizing the rest of the system 
operation. To do so, the system designer must study the worst case signal statistics. This DPD contains only one adaptation engine, so the 
capture mechanism is shared between all active channels. 
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Figure 216. DPD Peak Detection-Based Sample Capture Process for DPD Adaptation 

DPD Sample Capture in TDD Mode 

There are additional considerations that a system developer must take into account to configure the DPD in TDD mode. In TDD mode, 
the DPD sample capture process spans multiple TDD downlink slot periods (transmit on periods), with each batch of 4096 samples 
captured during one TDD downlink slot period (transmit on period) through the peak detection process described in the previous 
section. The peak search window size is specified by the adi_adrv9025_DpdTrackingConfig_t.dpdPeakSearchWindowSize parameter and 
configured using the adi_adrv9025_DpdTrackingConfgSet() API. The search window size is restricted to a maximum of one TDD 
downlink slot period (one transmit on period) − 4096 samples. 

An example of a typical sample capture process in TDD mode is illustrated in Figure 217. In this example, the total number of DPD 
samples specified by the adi_adrv9025_DpdTrackingConfig_t.dpdSamples parameter is set to 16384 samples or four batches of 4096 
samples. Each batch of 4096 samples corresponding to the P1, P2, P3, and P4 peaks, respectively, are captured over four TDD downlink 
slot periods (four transmit on periods). If each TDD downlink slot periods consists of M samples at the DPD actuator rate, the maximum 
peak search window size that can be configured using the adi_adrv9025_DpdTrackingConfig_t.dpdPeakSearchWindowSize parameter is 
restricted to (M − 4096) samples. At the end of four TDD downlink slot periods, a composite capture data consisting of four batches of 
4096 samples corresponding to the P1, P2, P3 and P4 peaks, respectively, are used to estimate the DPD coefficients, as described in the 
Indirect Learning section. 
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Figure 217. DPD Sample Capture Process in TDD Mode 

DPD DYNAMICS 
The transceiver DPD is designed to react to dynamic signaling conditions. The algorithm defines four models that can be implemented 
depending on the power levels to achieve the best dynamic performance. The four DPD models are defined in Table 250. 

Table 250. DPD Models Explained 
DPD Model Description 
M Table (Maximum Power Table ) 
(ADI_ADRV9025_DPD_MODEL_TABLE_M) 

Default model in all three DPD modes. The conditions for updating this table in different 
DPD modes include the following: 

 DPD MODE0. The model defined by the M table updates on every DPD iteration if the update 
criteria is met, as described in the ADI_ADRV9025_DPD_MODE0 section in Table 251. The 
update criteria is described in the following section. 

 DPD MODE1. The model defined by the M table updates when the rms power of the DPD 
capture samples exceeds previously recorded maximum rms power, as described in the 
ADI_ADRV9025_DPD_MODE1 section in Table 251. 

 DPD MODE2. The model defined by the M table updates only when the rms power of 
DPD capture samples exceeds the M threshold specified by the 
adi_adrv9025_DpdTrackingConfig_t.dpdMThreshold configuration, and the rms power of 
DPD capture samples exceeds the previously recorded maximum rms power. Refer to 
Table 251 for more details on DPD Mode 2 operation. 

C Table (Current Table) 
(ADI_ADRV9025_DPD_MODEL_TABLE_C) 

The model defined by the C table is a low power model only applicable in DPD MODE2 
when the rms power of DPD capture samples is below the M threshold value specified by 
adi_adrv9025_DpdTrackingConfig_t.dpdMThreshold configuration, as described in the 
ADI_ADRV9025_DPD_MODE2 section in Table 251. 

R Table (Recovery Table) 
(ADI_ADRV9025_DPD_MODEL_TABLE_R) 

The R table, or recovery table, is a recovery model that stores the coefficients generated 
from the highest power data captured by the DPD. The maximum power recorded by the 
recovery model does not decay unlike the maximum power recorded by the M table, 
which decays by 0.2 dB per update period. 

U Table (Unity Gain Table) 
(ADI_ADRV9025_DPD_MODEL_TABLE_U) 

The unity gain model in which the output is equal to the input. This model is usually 
activated in low power conditions where predistortion is not necessary. 

DPD Modes of Operation 

The DPD functionality supports three modes of operation that are listed in Table 251. The user can select one of the three modes based 
on the application. The DPD engine must react to changing signal conditions, and Analog Devices has developed proprietary algorithms 
that address this requirement. Within a cost bounded implementation, there is no solution that achieves absolute performance on any 
time scale of measurement. The Analog Devices solution is an optimized compromise between performance and complexity. 

The DPD mode of operation can be configured through the adi_adrv9025_DpdTrackingConfigSet() API using the 
adi_adrv9025_DpdTrackingConfig_t.dpdUpdateMode parameter. The DPD update mode can be set to one of the three enumerated lists 
of options represented by adi_adrv9025_DpdTrackingUpdateMode_e. 

Table 251. DPD Modes of Operation 
DPD Mode of Operation Description 
ADI_ADRV9025_DPD_MODE0 DPD coefficients corresponding to the GMP model are updated once every second. This mode offers the best 

sustained performance for any signal at the expense of transient emissions when the signal changes rapidly. 
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DPD Mode of Operation Description 
 Figure 218 shows the DPD updates in Mode 0. The DPD updates coefficients once every update period 

independent of the rms power measured by the DPD captures for coefficient computation. 
ADI_ADRV9025_DPD_MODE1 DPD coefficients corresponding to the GMP model are updated only if the rms power measured by the 

DPD exceeds the previously recorded maximum rms power by the DPD algorithm. The rms power is 
calculated on the samples captured by the DPD for coefficient computation. The number of samples to 
capture for a DPD update is specified by adi_adrv9025_DpdTrackingConfig_t.dpdSamples. Typically, this 
number is set to 16384 samples. The recorded maximum power decays at a fixed rate of 0.2 dB per update. 

 Figure 219 shows an illustration of DPD updates in Mode 1. The DPD algorithm updates coefficients only 
when the rms power measured by the DPD during the update exceeds the previously recorded 
maximum power. In this example, there is no update between Update 1 and Update 2 because the rms 
power is below the maximum power recorded. 

 DPD Mode 1 offers the best mitigation of transient emissions when the signal changes rapidly at the 
expense of sustained performance in certain low power signal conditions. 

ADI_ADRV9025_DPD_MODE2 In this mode, the DPD algorithm maintains two separate look up tables, one for the low power region 
and the other for the high power region. Depending on the RMS power measured by the DPD on the 
samples captured for coefficient computation, the DPD algorithm either switches to the high power look 
up table (M table) or the low power look up table (C table), and the same look up table is active until the 
next DPD update. The rms power threshold separating the low power and high power region is user 
configurable through the adi_adrv9025_DpdTrackingConfig_t. dpdMThreshold parameter. The rms 
power is calculated on the samples captured by the DPD for coefficient computation. The number of 
samples to capture for a DPD update is specified by adi_adrv9025_DpdTrackingConfig_t.dpdSamples. 
Typically, this number is set to 16384 samples, which offers a compromise between Mode 0 and Mode 1. 
There is some mitigation of transient emissions when the signal changes rapidly and sustained 
performance in many signaling conditions. 
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Figure 218. DPD Mode 0 Update Example 
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Figure 219. DPD Mode 1 Update Example 
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Figure 220. Illustration of DPD Updates in Mode 2 
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Transmitter Low Power Threshold 

The DPD continuously integrates the baseband power level at the input of the DPD actuator so that the DPD can switch between the different 
models described in Table 251. The power is measured for a period of 10 ms through a leaky integrator that runs continuously in the 
background. If the 10 ms integrated rms power of the DPD input samples is below the transmitter low power threshold specified by 
adi_adrv9025_DpdTrackingConfig_t.minAvgSignalLevel in linear scale, the unity gain table is activated, If the 10 ms integrated rms power of the 
DPD input samples is higher than the transmit low power threshold specified by adi_adrv9025_DpdTrackingConfig_t.minAvgSignalLevel in 
linear scale, the DPD model defined by the M table is activated in DPD Mode 0 and Mode 1. In DPD Mode 2, there is an additional 
threshold specified by adi_adrv9025_DpdTrackingConfig_t.dpdMThreshold described in the next section. The dynamics of the DPD 
based on the transmit baseband input level is shown in Figure 221. 
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Figure 221. DPD Dynamics and Transmit Low Power Threshold 

Transmitter M Threshold  

The M threshold is a maximum power threshold specified by adi_adrv9025_DpdTrackingConfig_t.dpdMThreshold that is valid only in 
DPD Mode 2 operation (adi_adrv9025_DpdTrackingConfig_t.dpdUpdateMode = ADI_ADRV9025_DPD_MODE2). There are two DPD 
models (M table, C table) that the DPD tracking calibration maintains and updates. The DPD model update mechanism in DPD Mode 2 
operation is described in Table 251. Note that the switching mechanism between the M table (high power), C table (low power), and U 
table (unity gain) models is based on the 10 ms integrated rms power of the DPD actuator input samples. 

The dynamics of the DPD based on the transmit baseband input level with the M threshold taken into consideration is shown in Figure 222. 
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Figure 222. ADRV9025 DPD Dynamics in DPD Mode 2 

Observation Receiver Low Power Threshold 

The observation receiver low power threshold can be used to compare observation samples against the threshold specified by 
adi_adrv9025_DpdTrackingConfig_t.minAvgSignalLevelOrx in linear scale to determine if a DPD update must be applied. This 
comparison can help avoid DPD updates when the signal level is low and, consequently, the signal-to-noise ratio of the observed samples 
is poor. If the rms power of the DPD capture samples is greater than the observation channel low power threshold, an update is applied to 
the appropriate DPD model if the transmit low power threshold condition described in the previous section is also satisfied. Table 252 
captures the various conditions related to the power levels and updates of transmitter and observation receiver captured samples.  
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Table 252. DPD Update Criteria Based on the Signal Level of Captured Samples 

DPD Capture Samples RMS Power Condition 

DPD Captured Transmit samples > 
adi_adrv9025_DpdTrackingConfig_ 
tminAvgSignalLevel  

DPD Captured Transmit 
samples < adi_adrv9025_ 
DpdTrackingConfig_ 
tminAvgSignalLevel  

DPD Captured Observation Receive Samples > adi_ 
adrv9025_DpdTrackingConfig_t.minAvgSignalLevelOrx 

DPD Update applied to M table in DPD Mode 0 
and Mode 1 

No DPD update applied.  

 DPD Update applied to C table/M table 
depending on 
adi_adrv9025_DpdTrackingConfig_t.dpdMThr
eshold in DPD Mode 2 

 

DPD Captured Observation Receive Samples < adi_ 
adrv9025_DpdTrackingConfig_t.minAvgSignalLevelOrx 

No DPD update applied No DPD update applied 

 

DPD REGULARIZATION 
DPD regularization is used to make the DPD coefficient estimation less sensitive to missing data and prevent overfitting. The DPD is 
essentially a curve fitting process, and Figure 223 outlines the optimum fitting to achieve in a system. A higher regularization prevents 
overfitting, which improves stability but limits the ACLR improvement. On the other hand, a low regularization allows better ACLR 
improvement, but stability of the DPD must be kept in check.  
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Figure 223. Comparison of Underfitting, Overfitting, and Balanced Fitting 

The AM to AM characteristics of a power amplifier for a case where there is sparse data in the high power region is shown in Figure 224. 
In this case, a low regularization value results in overfitting and causes instability. 
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Figure 224. Gain vs Input Magnitude of an Example PA. DPD Regularization helps Decrease Sensitivity to Sparse  
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Figure 225. Output Phase vs Input Magnitude of an Example PA. DPD Regularization helps Decrease Sensitivity to Sparse Data 

For the AM to AM characteristics shown in Figure 224, the effect of low regularization and optimum regularization on DPD is shown in 
Figure 226. With low regularization, the DPD algorithm has a tendency to overfit resulting in high power scattering. With the optimum 
regularization, the sensitivity of DPD algorithm to sparse data in high power is minimized.  
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Figure 226. Effect of Low DPD Regularization on DPD Stability 
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Figure 227. Effect of Optimum DPD Regularization on DPD Stability 

The DPD provides user configuration for regularization via adi_adrv9025_DpdModelConfig_t. dpdIndirectRegularizationValue and 
adi_adrv9025_DpdModelConfig_t.dpdDirectRegularizationValue for indirect learning and direct learning mechanisms configured via 
the adi_adrv9025_DpdTrackingConfigSet() API.  
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DPD Regularization in DPD Mode 2 

For DPD Mode 2 operation where separate predistortion coefficients are maintained for low power (C table) and high power (M table) 
data, a separate regularization value can also be applied to low power (C table) and high power (M table) models. This separate value is 
typically intended to be used with GaN PA applications where the power amplifier nonlinearity characteristics can vary for low power and 
high power signals. 

Table 253. DPD Regularization Parameters in DPD Mode 2 
Regularization Parameter Target DPD Actuator Model 
adi_adrv9025_DpdModelConfig_t.dpdIndirectRegularizationValue M table 
adi_adrv9025_DpdModelConfig_t.dpdIndirectRegularizationLowPowerValue C table 

Note that separate low power and high power regularization values are only applicable using the DPD indirect learning mechanism. 

DPD ROBUSTNESS 
This section provides an overview of the features that enhance DPD robustness. These features include DPD stability metrics and flexible 
architecture for setting up recovery actions based on these predefined DPD metrics. The user can optionally turn on the DPD robustness 
feature to protect the DPD against erroneous adaptations in abnormal conditions. 

In the transceiver DPD, abnormal conditions are detected by monitoring the following metrics:  

• Indirect error that indicates if the predistorted samples match the expected result after experiencing power amplifier distortion 
• Transmit capture rms power 
• Transmit capture peak power 
• Observed capture rms power 
• Observed capture peak power 
• Post DPD capture transmit to observation receive EVM (indirect EVM), which is a measure of nonlinearity in the gain line up 
• Pre-DPD capture transmit to observation receive EVM (direct EVM), which is a measure of DPD linearization performance 

From a user point of view, there are two sets of actions that are required to be taken: 

• Define the fault conditions via the adi_adrv9025_DpdFaultConditionSet() API. 
• Provide user configurable thresholds and actions for fault conditions defined in the previous step via the 

adi_adrv9025_DpdRecoveryActionSet() API. 

For example, measure the transmit capture power, and if the power < the threshold, abandon the adaptation. 

Calculation of Metrics 

When the DPD coefficients are estimated, the error between the predicted and measured predistortion is computed to determine the 
expected DPD performance. Detection of a large error prevents the application of bad coefficients, and can be calculated using the 
following equation: 

IndirectError = ||xtx − Fyc||/||xtx|| 

where: 
xtx is a vector of the transmit samples after DPD actuator (post DPD data).  
Fy is a matrix of features (such as items in GMP) formulated by observation receive samples.  
c is the DPD coefficients vector. 
|| ||is the operator and the (Euclidean) norm of vectors. 

Similarly, indirect EVM and direct EVM are calculated using the following equations: 

IndirectEVM = ||xtx − y||/||xtx|| 

DirectEVM = ||xtu − y||/||xtx|| 

where: 
xtu is a vector of the transmit samples before the DPD actuator (pre-DPD data).  
y is a vector of observation receive samples.  

All samples are time aligned and gain and phase equalized. The size of the vectors is the number of samples used in each update of the 
DPD coefficients. 
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The transmit signal mean and peak power are calculated from the pre-DPD samples in xtu and post DPD samples in xtx, respectively.  

The observation receiver mean and peak power are calculated by the samples in y.  

Defining Fault Conditions 

The user can define fault conditions through the adi_adrv9025_DpdFaultCondition_t data structure described in Table 254. The fault 
conditions are programmed through the adi_adrv9025_DpdFaultConditionSet() API.  

Table 254. DPD Fault Condition Definition Data Structure adi_adrv9025_DpdFaultCondition_t 
Member Data Type Description 
dpdMetric adi_adrv9025_DpdMetric_e This member is one of the seven DPD stability metrics described in the previous section. 

comparator adi_adrv9025_DpdComparator_e 

The user can select a greater than or less than comparator for defining a fault 
condition. For example, the user can define a fault condition where the transmit rms 
power is greater than a certain threshold and the observation receive rms power is 
lesser than a certain threshold. 

threshold0 Int16 This member defines a threshold for a lower severity level  
threshold1 Int16 This member defines a threshold for a higher severity level  

persistentCount UInt16 
The persistence count is defined with the expectation that more aggressive recovery 
actions are required in case the fault conditions persist. 

The list of currently available actions is shown in Table 255. The fault conditions defined in Table 254 can be associated with a recovery 
action programmed through the adi_adrv9025_DpdRecoveryActionSet() API. 

Table 255 ADRV902x Recovery Action Bit Mask Definition 
Action Index Description 
ADI_ADRV9025_DPD_RECOVERY_ACTION_SKIP_LUTS_UPDATE Abandon DPD adaptation on this iteration. 
ADI_ADRV9025_DPD_RECOVERY_ACTION_REVERT_LUTS_TO_UNITY Revert all DPD Models to unity gain coefficients 
ADI_ADRV9025_DPD_RECOVERY_ACTION_RESET_ADAPTATION_STATE Reset DPD firmware internal state variables that 

includes max power recorded by DPD applicable to 
M-Table in DPD Mode 1 and DPD Mode 2 that is 
relevant to the user. 

ADI_ADRV9025_DPD_RECOVERY_ACTION_SWITCH_LUTS_TO_M Switch to the max Power model. Please refer to 
DPD models section for more details on M-Table 

ADI_ADRV9025_DPD_RECOVERY_ACTION_SWITCH_LUTS_TO_R Switch to Recovery model defined as the model 
estimated on the highest power data seen by the 
DPD tracking calibration since reset. 

ADI_ADRV9025_DPD_RECOVERY_ACTION_6DB_DIG_ATTEN Attenuate transmit signal by 6dB.  
NOTE: Currently this action is NOT Supported. 

ADI_ADRV9025_DPD_RECOVERY_ACTION_RESET_FIRST_DPD_FLAG Resetting the first DPD flag runs 3 back to back 
DPD updates in indirect learning mode similar to 
the DPD behavior on very first update to speed up 
convergence. 
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The DPD fault conditions configured in the firmware on startup are listed in Table 256. 

Table 256. Default Definition of Fault Condition Matrix 

Metric Comparator 
Low 
Threshold 

High 
Threshold 

Persistent 
Count 

Mean TU Power (Pre-DPD)  Less Than −37 dBFS −46 dBFS 10 
Peak TU Power (Pre-DPD) Less Than −26 dBFS −35 dBFS 10 
Mean Transmit Power (Post DPD) Less Than −37 dBFS −46 dBFS 10 
Peak Transmit Power (Post DPD) Less Than −26 dBFS −35 dBFS 10 
Mean Observation Receive power (Post DPD) Less Than −34 dBFS −43 dBFS 10 
Peak Observation Receive power (Post DPD) Less Than −23 dBFS −32 dBFS 10 
Pre-DPD Capture Transmit to Observation Receive EVM (Direct EVM) Greater Than 5% 15% 10 
Post DPD Capture Transmit to Observation Receive EVM (Indirect EVM) Greater Than 8% 15% 10 
Indirect Error Greater Than 3% 12% 10 
Select Error Greater Than 3% 13% 10 

The DPD recovery actions configured in the firmware on startup are listed in Table 257. 

Table 257. Default Recovery Action Matrix 

Metric 
Recover Action if Low 
Threshold is Violated Once 

Recover Action if Low 
Threshold Violation Persists 

Recover Action if 
High Threshold 
is Violated Once 

Recover Action if 
High Threshold 
Violation Persists 

Mean TU Power (Pre-DPD) Abandon DPD LUT update Take no action Take no action Take no action 
Peak TU Power (Pre-DPD) Abandon DPD LUT update Take no action Take no action Take no action 
Mean Transmit Power (Post DPD) Abandon DPD LUT update Take no action Take no action Take no action 
Peak Transmit Power (Post DPD) Abandon DPD LUT update Take no action Take no action Take no action 
Mean Observation Receive Power 
(Post DPD) 

Abandon DPD LUT update Take no action Take no action Take no action 

Peak Observation Receive power 
(Post DPD) 

Abandon DPD LUT update Take no action Take no action Take no action 

Pre-DPD Capture Transmit to 
Observation Receive EVM (Direct 
EVM) 

Take no action Take no action Take no action Take no action 

Post DPD Capture Transmit to 
Observation Receive EVM 
(Indirect EVM) 

Take no action Take no action Take no action Take no action 

Indirect Error Abandon DPD LUT update Abandon the DPD LUT 
update, revert the LUTs to 
unity, reset DPD adaptation 
state, hardware reset the DPD 
actuator 

Take no action Take no action 

Select Error Abandon DPD LUT update Abandon the DPD LUT 
update, revert the LUTs to 
unity, reset DPD adaptation 
state, hardware reset the DPD 
actuator 

Take no action Take no action 

Note that the recovery actions follow a many to one mapping. Each of the four columns in the table indicate error conditions and each 
error condition has a unique metrics mask to which multiple fault condition metrics can be mapped by ‘OR’ing the metrics. 

For example, in the matrix shown in Table 258, Persistent0 looks for violation of lower thresholds from either indirect EVM, mean TU 
power, or peak transmit power, whereas Persistent1 looks for high threshold violations from indirect EVM only to trigger a recovery 
action.  
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Table 258. Example settings for Recovery Actions 

Error Condition 

Error0, Fault 
Condition 
Threshold0 Violated 
Once 

Persistent0, Fault Condition 
Threshold0 Violated Persistently 

Error1, Fault 
Condition 
Threshold0 Violated 
Once 

Persistent1, Fault Condition 
Threshold0 Violated Persistently 

Recovery Action Do nothing Skip the DPD LUT updates Do nothing Skip the DPD LUT updates and reset 
the DPD coefficients to unity gain 
(actuator output = actuator input) 

Fault Condition 
 

Indirect EVM, mean TU power, or 
peak TU power 

 
Indirect EVM only 

The following block of code shows an example of how to setup the recovery actions shown in Table 258. 
#Setup Recovery Action 
dpdRecoverActionArr = Array.CreateInstance(Types.adi_adrv9025_DpdRecoveryActionConfig_t, 2) 

#Recovery Action for violation of threshold0 – Only skip LUT updates for violation of soft threshold 
Thresh0ActionMask = int(Types.adi_adrv9025_DpdRecoveryAction_e.ADI_ADRV9025_DPD_RECOVERY_ACTION_SKIP_LUTS_UPDATE) 

#Recovery Action for violation of threshold1 –skip LUT updates, restore LUT to unity and reset adaptation state for 
violation of hard threshold 
thresh1ActionMask = 0 
thresh1ActionMask |= int(Types.adi_adrv9025_DpdRecoveryAction_e.ADI_DPD_RECOVERY_ACTION_SKIP_LUTS_UPDATE) 
thresh1ActionMask |= int(Types.adi_adrv9025_DpdRecoveryAction_e.ADI_DPD_RECOVERY_ACTION_REVERT_LUTS_TO_UNITY) 
thresh1ActionMask |= int(Types.adi_adrv9025_DpdRecoveryAction_e.ADI_DPD_RECOVERY_ACTION_RESET_ADAPTATION_STATE) 

#Configure Recovery Action for persistent violation of thershold0 
dpdRecoveryActionArr[0] = Types.adi_adrv9025_DpdRecoveryActionConfig_t() 
dpdRecoveryActionArr[0].dpdErrorState = Types.adi_adrv9025_DpdErrorState_e.ADI_DPD_ERR_STATE_PERSISTENT_0 
dpdRecoveryActionArr[0].dpdRecoveryAction.dpdMetricsMask =  

int(Types.adi_adrv9025_DpdMetric_e.ADI_ADRV9025_DPD_METRIC_INDIRECT_EVM) | 
int(Types.adi_adrv9025_DpdMetric_e.ADI_ADRV9025_DPD_METRIC_MEAN_TU_POWER) | 
int(Types.adi_adrv9025_DpdMetric_e.ADI_ADRV9025_DPD_METRIC_PEAK_TX_POWER) 

dpdRecoveryActionArr[0].dpdRecoveryAction.dpdActionMask = thresh0ActionMask 

#Configure Recovery Action for persistent violation of thershold1 
dpdRecoveryActionArr[1] = Types.adi_adrv9025_DpdRecoveryActionConfig_t() 
dpdRecoveryActionArr[1].dpdErrorState = Types.adi_adrv9025_DpdErrorState_e.ADI_DPD_ERR_STATE_PERSISTENT_1 
dpdRecoveryActionArr[1].dpdRecoveryAction.dpdMetricsMask = int(Types.adi_adrv9025_DPD_METRIC_INDIRECT_EVM) 
dpdRecoveryActionArr[1].dpdRecoveryAction.dpdActionMask = thresh1ActionMask 

#Program the recovery action in the device 
Link.platform.board.Adrv9025Device.Dfe.DpdRecoveryActionSet(txChannelMask, dpdRecoveryActionArr, 2) 

 

DPD ACTUATOR GAIN MONITORING FOR ROBUSTNESS  
Principle of Operation 

The DPD gain monitoring mechanism uses power meters at the input and output of the DPD actuator to determine when to switch 
between DPD models if the actuator gain violates a programmable threshold. The gain monitoring mechanism can be used to monitor 
gain over range as well as gain under range. Gain over range can occur when DPD is trying to expand gain to compensate for gain 
compression. A gain under range condition can occur because of bad coefficients or gain compression. 

Gain can be monitored either sample by sample or averaged over a number of samples. The maximum number of samples that can be 
averaged is 128k samples (~266 µs worth of samples at a 491.52 MSPS rate). The average gain over several thousands of samples should 
not typically exceed 1 dB. The gain monitoring mechanism can be setup to switch to a unity gain or any other model if the 
gain/attenuation across the actuator is in the range of several dBs. Figure 228 represents a high level overview of the DPD actuator 
hardware in the signal chain. 

Table 250 explains the DPD models implemented in the transceiver. The user has an option to switch to either one of these four DPD 
models in case the actuator output experiences high gain or high attenuation as explained in the previous section. 
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Figure 228. DPD Actuator Gain Monitoring Functional Diagram 

DPD Actuator Gain Monitoring Configurations 

The adjustments listed in Table 259 can be used to configure the DPD actuator gain monitoring feature.  

Table 259. DPD Gain Monitoring Configurations 
Gain Monitor Configuration Description 
adi_adrv9025_DpdActGainMonitorCtrl_t.dpdGainMonitorEnable Enable/Disable gain monitoring. 
adi_adrv9025_DpdActGainMonitorThresh_ 
t.dpdGainMonitorQualThresh 

Minimum signal level above which gain monitoring is exercised. MSB 
16 bits of I2 + Q2 32 bit data. 

adi_adrv9025_DpdActGainMonitorCtrl_ 
t.highGainModelAutoLoadEnable 

Configuration to explicitly enable/disable high gain over range detection. 

adi_adrv9025_DpdActGainMonitorCtrl_t Configuration to explicitly enable/disable low gain under range detection. 
adi_adrv9025_DpdActGainMonitorThresh_ 
t.dpdGainMonitorUpperThresh 

High gain threshold above which a model switch can be initiated by the 
gain monitoring hardware. This configuration is only applicable if gain 
overrange detection is enabled. 

adi_adrv9025_DpdActGainMonitorThresh_ 
t.dpdGainMonitorLowerThresh  

Low gain threshold(attenuation) below which a model switch can be 
initiated by the gain monitoring hardware. This configuration is only 
applicable if gain under range detection is enabled. 

adi_adrv9025_DpdActGainMonitorCtrl_ 
t.dpdGainMonitorUpperThreshModelSel 

Switch to this model upon violation of the high gain threshold. 

adi_adrv9025_DpdActGainMonitorCtrl_ 
t.dpdGainMonitorLowerThreshModelSel 

Switch to this model upon violation of the low gain threshold. 

adi_adrv9025_DpdActGainMonitorCtrl_t. 
dpdGainMonitorIIRDecay 

This configuration controls the number of samples over which gain is 
averaged. The decay rate can be calculated as N = (65536/(averaging_ 
window_size/2)) where the decay rate is equal to log2(N). 

DPD Actuator Gain Monitoring API 

The API functions used to control gain monitoring are listed in Table 260. 

Table 260. DPD Actuator Gain Monitoring API 
API Function Description 
adi_adrv9025_DpdActuatorGainMonitorConfigSet() This function sets the DPD gain monitor configuration described in Table 261. Gain 

monitoring can be used to automatically switch to selected models when the 
actuator gain overrange or underrange is seen. Gain violation thresholds are user 
configurable. This function takes in as argument, a pointer to the device data 
structure, and a pointer to an adi_adrv9025_DpdActGainMonitorConfig_t structure 
that contains the configurations shown in Table 261. 

adi_adrv9025_DpdActuatorGainMonitorConfigGet() This function returns the DPD gain monitor configuration applied in the device for 
the requested transmit channel. 
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Table 261. Gain Monitor Configuration Parameters 
Configuration Value 
Gain Monitor Enable Enabled 
Gain Detection Qualifying Threshold −42 dBFS 
Gain Overrange Detection Enable Enabled 
Gain Underrange Detection Enable Enabled 
Gain Overrange Threshold 6 dB  
Gain Underrange Threshold −6 dB 
Gain Overrange Model Select Unity gain (Model 3) 
Gain Underrange Model Select Recovery table (Model 2) 
Decay Rate 1 

The following code is an example python script to set up the gain monitor with the configuration described in Table 261. 
def setupDpdGainMonitor(): 

dpdGainMonitorCfg = Types.adi_adrv9025_DpdActGainMonitorConfig_t() 

dpdGainMonitorCfgGet = Types.adi_adrv9025_DpdActGainMonitorConfig_t() 

dpdGainMonitorCfg.txChannelMask = 0x01 

dpdGainMonitorCfg.dpdGainMonitorCtrl.dpdGainMonitorEnable = 1 #Enable Gain Monitoring 

dpdGainMonitorCfg.dpdGainMonitorCtrl.dpdGainMonitorIIREnable = 1 #Enable IIR for averaging samples. If set to 0, sample by sample gain 
detection is carried out 

dpdGainMonitorCfg.dpdGainMonitorCtrl.dpdGainMonitorIIRDecay = 1 #Sets the sample averaging window size to 128K samples 

dpdGainMonitorCfg.dpdGainMonitorCtrl.lowGainModelAutoLoadEnable = 1 #Enable DPD model switching on low gain threshold violation 

dpdGainMonitorCfg.dpdGainMonitorCtrl.highGainModelAutoLoadEnable = 1 #Enable DPD model switching on high gain threshold violation 

dpdGainMonitorCfg.dpdGainMonitorCtrl.dpdGainMonitorLowerThreshModelSel = Types.adi_adrv9025_DpdModelSel_e.ADI_ADRV9025_DPD_MODEL2 #Switch to 
R-Table on low gain violation 

dpdGainMonitorCfg.dpdGainMonitorCtrl.dpdGainMonitorUpperThreshModelSel = Types.adi_adrv9025_DpdModelSel_e.ADI_ADRV9025_DPD_MODEL3 #Switch to 
unity gain table on high gain violation 

dpdGainMonitorCfg.dpdGainMonitorThresh.dpdGainMonitorQualThresh = 1 #Upper 16 bits of I^2 +Q^2 32 bit data. A value of 1 equals -42dBFS 

dpdGainMonitorCfg.dpdGainMonitorThresh.dpdGainMonitorLowerThresh = 0x20 #Low gain threshold in 2.6 integer linear scale format 

dpdGainMonitorCfg.dpdGainMonitorThresh.dpdGainMonitorUpperThresh = 0x80 #High gain threshold in 2.6 integer linear scale format 

link.platform.board.Adrv9025Device.Dfe.DpdActuatorGainMonitorConfigSet(dpdGainMonitorCfg) | 

retVal = link.platform.board.Adrv9025Device.Dfe.DpdAtuatorGainConfigGet(Types.adi_adrv9025_TxChannels_e.ADI_ADRV9025_TX1, 
dpdGainMonitorCfgGet) 

dpdGainMonitorCfgGet = retVal[1] 

print “DPD Gain Monitor Enable = “, dpdGainMonitorCfgGet.dpdGainMonitorCtrl.dpdGainMonitorEnable 

print “DPD Gain Monitor IIR Enable = “, dpdGainMonitorCfgGet.dpdGainMonitorCtrl.dpdGainMonitorIIREnable 

print “DPD Gain Monitor IIR Decay = “, dpdGainMonitorCfgGet.dpdGainMonitorCtrl.dpdGainMonitorIIRDecay 

print “DPD Gain Monitor Low Gain Auto Model Ld En = “, dpdGainMonitorCfgGet.dpdGainMonitorCtrl.lowGainModelAutoLoadEnable 

print “DPD Gain Monitor High Gain Auto Model Ld En = “, dpdGainMonitorCfgGet.dpdGainMonitorCtrl.highGainModelAutoLoadEnable 

print “DPD Gain Monitor Qual Thresh = “, dpdGainMonitorCfgGet.dpdGainMonitorThresh.dpdGainMonitorQualThresh 

print “DPD Gain Monitor Low Gain Thresh = “, dpdGainMonitorCfgGet.dpdGainMonitorThresh.dpdGainMonitorLowerThresh 

 

DPD Actuator Gain Monitoring and Model Switching State Machine Representation 

The flow chart in Figure 229 describes the function of the gain monitoring state machine. The DPD gain monitoring, when enabled, runs 
independently from the DPD actuator. The DPD gain monitoring monitors the gain of the signal across the actuator until the DPD is 
turned off, as shown in the state diagram.  
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Figure 229. DPD Gain Monitoring State Machine 
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DPD ACTUATOR BYPASS 
The ADRV9029 DPD provides a mechanism to bypass predistortion through GPIO control. The GPIO input is level sensitive and 
activates the unity gain model for the duration of time where the GPIO level is high. The GPIO-based DPD actuator bypass is typically 
used for antenna calibrations in M-MIMO applications, where the predistortion must be disabled for the duration of antenna calibration 
to prevent predistortion from affecting antenna calibration accuracy. Figure 230 shows how this process is implemented. 
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Figure 230. DPD Actuator Bypass through GPIO 

The GPIO control for DPD actuator bypass is managed by the stream processor in the transceiver. To enable this feature, take the 
following steps: 

1. Configure the stream to associate a GPIO with DPD actuator bypass control and generate a stream binary. The TES can be used to 
configure the GPIO for DPD actuator bypass and generate the stream binary. The Tx Ant Cal GPIO Pin value in the Stream 
Settings in the initialization page can be used to configure the GPIO, and the stream binary can be generated using the Tools > 
Create Script function shown in Figure 231. 
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Figure 231. DPD Actuator Bypass GPIO Pin Stream Configuration Using TES 

2. Convey this stream configuration to the TES software by assigning the stream general-purpose input pins in the post MCS init structure. 
The following code is an example configuration where GPIO_06 is assigned to Stream GP Input 6 in the post MCS init structure. 

{ // streamGpioCfg 
ADI_ADRV9025_GPIO_INVALID,  // streamGpInput0 
ADI_ADRV9025_GPIO_INVALID,  // streamGpInput1 
ADI_ADRV9025_GPIO_INVALID,  // streamGpInput2 
ADI_ADRV9025_GPIO_INVALID,  // streamGpInput3 
ADI_ADRV9025_GPIO_INVALID,  // streamGpInput4 
ADI_ADRV9025_GPIO_INVALID,  // streamGpInput5 
ADI_ADRV9025_GPIO_06,  // streamGpInput6 
ADI_ADRV9025_GPIO_INVALID,  // streamGpInput7 
ADI_ADRV9025_GPIO_INVALID,  // streamGpInput8 
ADI_ADRV9025_GPIO_INVALID,  // streamGpInput9 
ADI_ADRV9025_GPIO_INVALID,  // streamGpInput10 
ADI_ADRV9025_GPIO_INVALID,  // streamGpInput11 
ADI_ADRV9025_GPIO_INVALID,  // streamGpInput12 
ADI_ADRV9025_GPIO_INVALID,  // streamGpInput13 
ADI_ADRV9025_GPIO_INVALID,  // streamGpInput14 
ADI_ADRV9025_GPIO_INVALID,  // streamGpInput15 

}, 
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Ensure that the GPIO assigned for controlling the DPD actuator bypass is driven to a low state during initialization to prevent 
interference with initial calibrations. 

DPD STATUS 
The user can obtain the status of the DPD tracking calibration during runtime through the adi_adrv9025_DpdStatusGet() API 
command, which updates a adi_adrv9025_DpdStatus_t data structure supplied by the user. The DPD status data structure returns the 
information shown in Table 262. 

Table 262. DPD Recovery Action Bit-mask Definition 
Member Data Type Description 
dpdErrorCode adi_adrv9025_DpdError_e DPD error status. Refer to the adi_adrv9025_dfe_types.h file for a full list of 

DPD error codes returned by the DPD status. If the DPD is functioning 
correctly, this parameter returns ADI_ADRV9025_DPD_NO_ERROR. 

dpdPercentComplete UInt32 Percentage of DPD update completed. 
dpdIterCount UInt32 Number of DPD updates scheduled. 
dpdUpdateCount UInt32 Number of successful DPD updates. 
dpdSyncStatus adi_adrv9025_ 

TrackingCalSyncStatus_e 
DPD and CLGC tracking calibrations are synchronized through a semaphore 
mechanism. This member returns SYNC_OK if both the DPD and CLGC are 
synchronized. If the CLGC is not enabled, this field can be ignored. 

dpdModelTable adi_adrv9025_DpdModelTableSel_e Currently active DPD model (M table, C table, or U table) described in Table 250. 
dpdStatistics adi_adrv9025_DpdStatistics_t Current values of DPD stability metrics described in Table 256. 

RECOMMENDED SEQUENCE FOR ENABLING THE DPD TRACKING CALIBRATION 
The sequence for running DPD tracking calibrations is shown in Table 263. 

Table 263. DPD Tracking Calibration Bring Up Sequence 
Step Action APIs used 
1 Program the device and run initial calibrations(including transmit QEC 

initial calibration) with the power amplifier turned off. 
Utility function adi_daughterboard_Program() can be 
used to program the device 

2 Setup external transmit to observational receive mapping. adi_adrv9025_TxToOrxMappingSet 
3 Adjust observational receive gain to an appropriate value to avoid 

saturation. The default gain index in ADRV9025 is 255 (0dB attenuation). 
adi_adrv9025_RxGainSet 

4 Turn on the power amplifier and run the external path delay initial 
calibration. Alternatively, factory calibrated path delay values can be 
programmed via ExternalPathDelaySet() commands. 

adi_adrv9025_InitCalsRun for calibrating path delay, 
adi_adrv9025_ExternalPathDelaySet(), and 
adi_adrv9025_ClgcExternalPathDelaySet() 

5 Run the transmit external LO Leakage initial calibration. adi_adrv9025_InitCalsRun 
6 If using ADRV9025 CFR, configure the CFR settings. adi_adrv9025_CfrConfigSet, adi_adrv9025_CfrEnableSet, 

and adi_adrv9025_CfrCorrectionPulseWrite_v2 
7 If using ADRV9025 CFR, run the CFR initial calibration. adi_adrv9025_InitCalsRun 
8 Load the DPD model. adi_adrv9025_DpdModelConfigSet 
9 Assert DPD reset. adi_adrv9025_DpdReset 
 If a unique DPD model is required to be applied to each Model, proceed 

to follow Step 10 to Step 17. 
 

10 Setup the DPD mode of operation, DPD peak search window size, and 
low power threshold. 

adi_adrv9025_DpdTrackingConfigSet 

11 Set up the DPD fault conditions and recovery actions(optional). adi_adrv9025_DpdFaultConditionSet, 
adi_adrv9025_DpdRecoveryActionSet 

12 Set up CLGC configurations and target loop gain. adi_adrv9025_ClgcConfigSet 
13 Enable the transmit QEC and transmit LO Leakage tracking calibrations. adi_adrv9025_TrackingCalsEnableSet 
14 Enable DPD tracking calibration. adi_adrv9025_TrackingCalsEnableSet 
15 Enable CLGC tracking calibration. adi_adrv9025_TrackingCalsEnableSet 
16 Monitor DPD tracking calibration status. adi_adrv9025_DpdStatusGet 
17 Monitor CLGC tracking calibration status. adi_adrv9025_ClgcStatusGet 
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DPD STABILITY METRICS CHARACTERIZATION 
The following stability metrics are at the disposal of the user for defining stability: 

• Transmit power thresholds 
• Observed power thresholds 
• Direct EVM, the difference between measured pre-DPD transmitted and observed samples 
• Indirect EVM, the difference between measured post DPD transmitted and observed samples 
• Indirect error, the difference between measured post DPD transmitted and predicted samples (predicted samples are obtained by 

applying the DPD model to the observed samples) 
• Select error, the same as indirect error but computed for post DPD transmitted samples whose amplitude is greater than –30 dBFS 

All of these metrics are user configurable. The following section provides characterization data that can provide some guidance regarding 
factors that can influence the configuration of the stability metrics defined. 

Measuring DPD Adaptation Performance Through Direct EVM and Indirect Error 

The following are three cases where the stability metrics direct EVM and indirect error parameters are compared for different ACLR 
performance levels of an NR100 signal TM3.1 signal. 

Case 1 

The ACLR performance is ~46.6 dBc in L3 channel and corresponds to a direct EVM of 2%. 
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Figure 232. Bad ACLR Performance Correlation with a High Direct EVM Value 

Case 2 

The ACLR performance is better (~47.5 dBc) than Case 1, which also corresponds to reduced direct EVM. 
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Figure 233. Improved ACLR Performance Corresponds to Improved Direct EVM 

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029


UG-1727 ADRV9026/ADRV9029 System Development User Guide 
 

Rev. 0 | Page 296 of 336 

Case 3 

The ACLR performance is optimal amongst the three cases (~48.5 dBc), which is reflected in the reduced direct EVM numbers. 
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Figure 234. Direct EVM for the Optimal ACLR Performance 

Observation Receiver Attenuation vs. Stability Metrics 

Shown below is the trend for the EVM and error stability metrics for different observation receiver channel attenuation values. It can be 
observed that as observation receiver attenuation is increased, the error percentage also increases. The same can be true for a low SNR 
transmitter to observation receiver channel. It is advised to increase the threshold for stability metrics as the observation receiver 
attenuation increases or the channel SNR decreases. 
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Figure 235. Observation Receive Attenuation vs. Stability Metrics 

Observation Receiver Interference 

Although unlikely, any interference in the observation receiver channel can cause DPD instability and can cause the firmware to derive 
incorrect DPD coefficients that result in poor performance, as shown in Figure 236, which includes the bench characterization of the 
observation receiver interference levels affecting ACLR and stability metrics. Depending on the application and the ACLR performance, 
the user can budget for the threshold of stability metrics. T1 represents the ACLR degradation at 5% indirect EVM, and T2 represents 
ACLR degradation at 15% EVM. Data2 represents the absolute value of ACLR in dBm as the power level of the interferer injected into the 
observation receiver increases. The total carrier power of the primary signal used for characterization is 26.23 dBm. 
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Figure 236. Observation Receive Interference vs. Stability Metrics 

Transmit Signal vs. Stability Metrics 

Shown in Figure 237 is the degradation of stability metrics with decreasing transmitter signal power. When the signal level is close to –36 
dBFS, it can be observed that the EVM percentages are close to 5%. At a transmitter signal level close to –46 dBFS, the EVM percentages 
are close to 15%, which causes further ACLR degradation.  
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Figure 237. Transmit Signal Level vs. ACLR Degradation 

Summary 

The following are some of the scenarios that could cause degradation of DPD performance. However, it is advised that the user 
characterize the system under test for EVM corruption that is specific to the system or conditions prevalent before configuring the 
thresholds. 

• The DPD performance can be measured by direct EVM. The direct EVM numbers are lower when the performance on the DPD 
adaptation is acceptable. 

• As observation receive attenuation increases, an increase in EVM percentages can be observed. 
• Interference or high noise levels in transmit and observation receive channels can cause the EVM and error percentages to increase. 

Fault conditions and corresponding recovery actions can be defined for EVM numbers to avoid incorrect DPD updates. 
• As the transmit signal level decreases, the EVM percentages increase. However, an argument can be made that DPD might not be 

required at lower signal levels for certain power amplifiers. 
• Take note of the DPD model that the user configures the part with. An incompatible prior DPD model configured by the user can 

cause the EVM and error percentages to increase leading to poor DPD performance. 
• Catastrophic conditions such as loss of signals can also lead to high EVM and error percentages that can be monitored by the user. 
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DPD CHARACTERIZATION FOR OPTIMIZING THE M THRESHOLD 
To complete a DPD characterization test for optimizing the M table threshold in DPD Mode 2, take the following steps: 

3. Bring up the DPD with a full power, full bandwidth signal (for example, TM3.1a at −14 dBFS and +100 MHz bandwidth). 
4. When the DPD converges, turn off the DPD. 
5. Sweep the power in 1 dB steps from full power to a ~15 dB backed off level. 
6. Record the ACPR, ACP, and EVM of the demodulated data at each level. See Figure 238 for an example tabulation of characterization data. 
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Figure 238. DPD Characterization for Optimizing M-Threshold in DPD Mode 2 

For this example, the characterization data relative to a 45 dBc ACP specification and 2.5% EVM is plotted in Figure 239, which shows 
that, although DPD performance is sustained across power levels, the EVM violates the 2.5% specification at approximately –24 dBFS. 
Based on the characterization data, it can be determined that that optimum M table threshold in DPD Mode 2 is –24 dBFS. 
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Figure 239. DPD Characterization Data Plot for Characterizing the M Threshold 

SETTING UP THE DPD USING THE GUI 
The DPD tab on the ADRV9029 TES GUI is the primary evaluation tool for the DPD feature. In addition, the DPD API and DLL can be used 
to interact and control the DPD via Python or C#. The ADRV9029 GUI supports an IronPython tab that can be used for scripting purposes. 

Pay close attention when adjusting signal levels at the transmit output and observation receive input to protect the power amplifier under 
evaluation and achieve the desired performance. Before enabling the DPD, enable the ADRV9029 power amplifier protection feature to 
prevent unexpected signal levels that damage the power amplifier under evaluation.  

The following section describes how to set up the DPD on the device using the TES. The user must ensure that the device is programmed 
using one of the DPD profiles where either one or both of the DPD half-bands are enabled. Use Case 51 is shown in Figure 240. While 
programming the device, the power amplifier must be turned off to avoid any damage from high amplitude signals transmitted during 
initial calibration. The user must ensure that the transmit to observation receive mapping is correct and that the observation receive LO is 
configured to use the transmit LO. When initialization is complete, the power amplifier can be turned on.  
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Figure 240. Use Case 51 Transmit Datapath Overview 

The user can load the desired waveform using the Tone Parameters pop-up window in the Transmit tab in the TES, as shown in  
Figure 241. If desired, the peak to average ratio (PAR) of the waveform can be adjusted using the ADRV9029 CFR feature (refer to the 
Crest Factor Reduction (CFR) section). Alternatively, a waveform with CFR applied to it can be loaded.  
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Figure 241. Load Waveform Using TES 

The DPD adaptation results in an expansion at the peak values of the waveform. The user can allow adequate headroom (3 dB to 5 dB) by 
typing the correct value in the Scaling (dB) textbox shown in Figure 241. Alternatively, the waveform can be scaled prior to loading.  

When the waveform is loaded, set the Tx Attenuation (dB) value to get the desired output power as shown in Figure 242. To transmit the 
waveform, click the play button in the Transmit tab. When the waveform has been played, the user can read the power at the output of 
the power amplifier via a spectrum analyzer or a power meter (more accurate method).  
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Figure 242. Setting Transmit Attenuation and Playing the Waveform 

The user can check to make sure observation receive is not saturated or too close to the noise floor. The observation receive gain can be 
adjusted to get appropriate signal levels.  

In the DFE tab shown in Figure 243, there is a specific subtab for DPD. The DPD subtab allows the user to fully configure and observe the 
DPD. The ACLR measurement window is not available at this point (the play button is not functional and is not used to enable any DPD 
feature). To configure the DPD, take the following steps: 

1. Load the model file from the PC (model files are provided by Analog Devices). Ensure that the real coefficient of the linear term (i = 1, j = 1, 
k = 0) is set to 1.  
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Figure 243. Load DPD Model File  

2. Configure the parameters in the DPD Tracking Config, shown in Figure 244. (the default values provide a sufficient starting point). 
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Figure 244. Configure DPD Tracking Config 

3. Select the desired transmit channel to apply the settings to. 
4. Apply the DPD tracking configuration by clicking Apply Tracking Config, as shown in Figure 245. 
5. Run the path delay initial calibration by clicking Run Path Delay Init Cal. 
6. Apply the DPD model on the M table or C table by clicking Apply Model on Device from M Table or Apply Model on Device from 

C Table (see Figure 245). 
7.  Click Enable DPD on selected channels (only) to enable the DPD tracking. 
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Figure 245. Apply DPD Settings 

8. Click Get Status & Statistics to reveal the DPD status and statistics for the respective transmit channel (see Figure 246). 
9. Click Reset DPD, as shown in Figure 246, to apply a full reset to the DPD. 
10. From the functional window in Figure 246, the user can fetch the model on the device by clicking Fetch Model from M Table and 

Save As and Fetch Model from C Table and Save As.  
11. To fetch the DPD tracking configuration that the chip is currently in, click Get Tracking Config in the same window. 
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Figure 246. Get DPD Status and Statistics  

To change the DPD model or apply a different tracking configuration parameter, take the following steps: 

1. Clear the transmit channel under consideration in Figure 245 and click Enable DPD on selected channels (only) to disable the DPD 
tracking.  

2. Click Reset DPD to apply a full reset. 
3. Load the model file from the PC (model files are provided by Analog Devices). Ensure that the real coefficient of the linear term (i = 

1, j = 1, k = 0) is set to 1.  
4. Configure the parameters in the DPD Tracking Config. 
5. Select the desired transmit channel to apply the settings to (Figure 245). 
6. Click Apply Tracking Config, as shown in Figure 245, to apply the DPD tracking configuration. 
7. Apply DPD model on the M or C tables by clicking Apply Model on Device from M Table and Apply Model on Device from C 

Table buttons (see Figure 245). 
8. Click Enable DPD on selected channels (only) to enable DPD tracking. 
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CREST FACTOR REDUCTION (CFR) 
The ADRV9029 variant provides CFR to assist in keeping power amplifiers linear. This functionality is only available in the ADRV9029 
variant. A typical communications RF subsystem consists of an antenna, power amplifier, and RF transceiver that translates digital 
baseband signals to RF, as shown in Figure 247. 
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Figure 247. Typical RF Subsystem 

It is highly desirable to drive the power amplifier at the highest input power possible without having the power amplifier saturate. Most 
modern communications protocols such as LTE are OFDM-based in which the final waveform is an orthogonal summation of subcarriers 
that carry information, and where each subcarrier has its own center frequency and modulation scheme. In the time domain, sometimes 
the peaks of these subcarriers can align to produce an aggregate large OFDM waveform peak (see Figure 251). 
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Figure 248. Time Domain View of a 1 kHz Carrier 
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Figure 249. Time Domain View of a 2 kHz Carrier 
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Figure 250. Time Domain View of a 5 kHz Carrier 
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Figure 251. Example illustration of Orthogonal Summation of Subcarriers Causing Large Peaks in an OFDM Waveform 

These peaks increase the overall dynamic range needed for the OFDM signal through a signal chain, which leads to an increase in the 
PAR of the signal.  

Modern communication power amplifiers used to amplify such OFDM waveforms are only linear for a certain power range. Most of the 
input signal (average power) are within this linear range. However, the signal can have peaks that exceed the power amplifier linear 
operation range. To avoid saturation of the output signal because of these peaks, the user can potentially attenuate the desired signal. This 
method ensures that the range required by the signal is within the power amplifier linear range. However, this method is undesirable as it 
reduces the average power at the expense of maintaining a given PAR, which makes the system less efficient. An alternative to attenuation 
is to use CFR where, instead of attenuating the whole signal, the user attenuates portions of the signal that are above the power amplifier 
linear range. This method results in a constant output power while reducing the PAR and thus ensuring that the signal remains within the 
power amplifier linear range (see Figure 252 for a summary). 
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Figure 252. Effect of Signal Attenuation vs. CFR 

It is important to note that CFR leads to higher in-band and out of band noise levels. This effect results in EVM degradation while also 
increasing the noise power spectral density, which results in an increase in ACLR. It is important to optimize the CFR algorithm to make 
sure that the CFR block impact is within the user system level specifications (derived from 3GPP specifications or other regulatory standards).  
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CFR ALGORITHM OVERVIEW 
Several CFR algorithms and implementations have been published in the CFR literature. Only a few have been commercially viable. 
Clipping and filtering and pulse cancellation are two of the more popular techniques. Even though optimal cancellation of peaks is 
technically achievable (target PAR requested is met exactly), the latency requirements imposed by modern communication standards 
makes the design of a real-time CFR engine challenging. Spectral regrowth of corrected peaks by interpolating stages in the datapath, 
such as interpolating filters and DACs, is also a concern. An ideal CFR block has low latency and zero missed peaks. 

The ADRV9029 implements CFR using a variation of the pulse cancellation technique by subtracting a precomputed pulse from the 
detected peaks to bring the signal within the power amplifier linear range. The CFR block consists of three copies of CFR engines, each of 
which uses a detection threshold to detect the peaks and a correction threshold to which the detected peaks are attenuated. The 
precomputed pulses can be stored within the device at startup or be updated during runtime. These spectrally shaped correction pulses 
are subtracted from the data stream to bring the signal within the power amplifier linear range. The correction pulse must be spectrally 
shaped to manage the noise leakage into adjacent bands. Figure 253 shows the architecture implemented in each of the CFR engines. 
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Figure 253. CFR Engine Architecture in ADRV9029 

The complex IQ signal (transmitter data) goes into a variable delay FIFO and correction is applied at its output. The input data also goes 
into an interpolator, which can interpolate by 1×, 2×, or 4× times the input sample rate. This interpolated data is then fed into a peak 
detector. The peak detector determines the location of all peaks in the signal and the delta by which they exceed the programmable 
threshold. This information is then fed into a linear system solver. These peaks can be corrected using a precomputed spectrally shaped 
pulse (also called correction pulse) which is stored in a pulse RAM. Multiple peaks can be simultaneously cancelled by time shifting and 
combining these spectrally shaped pulses.  

The linear system solver calculates the correction coefficients that get combined with the input signal (at the output of the delay FIFO) to 
produce an output signal which has a significantly lower peak to average ratio. This corrected output signal is then passed to two more 
similar CFR engines to correct missed peaks, as well as peaks that need further correction after passing through the first engine. 

The CFR block within the transceiver consists of three cascaded CFR engines followed by a hard clipper to clip the few peaks that are 
skipped by all three CFR engines. At the output of each engine, there is a multiplexer that can be programmed to bypass CFR or apply a 
correction (shown in Figure 254).  
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Figure 254. ADRV9029 Cascaded CFR Engine Blocks 

The hard clipper unit at the very end of the CFR block clips any signal above a programmable threshold. This threshold generally should 
not be lower than the thresholds used in the CFR engines as it leads to an increase in noise (both in-band and out of band). Each of the 
individual units in Figure 254 can be bypassed depending on the use case and desired performance.  
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The transceiver incorporates the CFR block at the very beginning of the transmitter datapath directly after the JESD block. Note that the 
CFR engine can handle a maximum input sampling rate of 245.76 MHz with an internal interpolation up to 4×. Therefore, the maximum 
sampling rate for the base and correction pulses is 983.04 MHz. 

OVERVIEW OF BLOCKS USED IN CFR 
This section provides a brief summary of the major blocks used in each of the CFR engines.  

Interpolator 

The interpolator can be programmed to interpolate the data by 4, 2, or 1. The main purpose of the interpolator is to produce finer timing 
resolution so that the peak detector can find the location of the peaks more accurately. The interpolator takes in the transmitter data and 
outputs the interpolated data to the peak detector. 

Peak Detector 

The purpose of the peak detector block is to find groups of peaks that are above a certain threshold and then output the peak I and Q 
values along with peak locations relative to the first peak. The peak detector looks for peaks that are above a certain programmable 
threshold. Because peaks do not occur often, a coarse peak detection on every sample is performed using the following method: 

1. Coarse peak detection, I or Q > Threshold/√2 
If this condition is false, then there is no need to compute the , I2 + Q2 complex calculation, which saves some power by avoiding 
frequent multiplications. In the case when the sample is larger, the magnitude of the incoming complex signal is checked to 
determine if the magnitude is above the threshold using the inequality shown in Step 2. 

2. Fine peak detection, I2 + Q2 > Threshold2 
If the condition in Step 1 is true, multiple consecutive samples that exceed the threshold can be found. These peaks can be corrected 
using a single pulse which is superimposed on to the maximum valued peak of the group of samples. 

The peak detector sends this peak location along with the values of the peak samples into the linear system solver. 

Linear System Solver 

When the peak location and its corresponding values are received, the linear solver calculates the complex difference between the peak 
value and the threshold. The linear solver calculates the weights for various pulses required to cancel the peak.  

These weights and peak location values are then used to scale and time shift the spectrally shaped pulses and generate the correction 
pulse. This correction pulse is then subtracted from the transmitter input data to generate the output signal (with a low PAR). 

Pulse RAM 

The pulse RAM holds the correction pulse for the carrier. It is possible to load two correction pulses corresponding to two desired carrier 
configurations. The user can pre-load these two correction pulses and be able to switch between two carrier configurations on-the-fly. 
This mode is known as the hot swap mode and is addressed by the adi_adrv9010_CfrCorrectionPulseWrite_v2 API command. 

API SOFTWARE INTEGRATION 
The API functions described in this section are required to set up the CFR block in the transceiver. This section first outlines the 
procedures required to use the CFR functionality and provides steps where each API function is called, and then discusses the various 
data structures used to set up the CFR engine as well as lists out the different API functions used to configure the CFR block. 

Setting Up the CFR  

The CFR can be set any time after part initialization. When the CFR parameters are set up and the correction pulses are loaded, use the 
initial calibration enumeration ADI_ADRV9025_CFR to run the CFR initial calibration. To configure the CFR engine, take the following 
steps: 

1. Program the CFR control configuration via adi_adrv9025_CfrControlConfigSet. 
2. Verify the CFR control configuration via adi_adrv9025_CfrCtrlConfigGet. 
3. Program the CFR correction pulse using adi_adrv9025_CfrCorrectionPulseWrite_v2. 
4. Enable the CFR engine via adi_adrv9025_CfrEnableSet. 
5. Optionally configure the hard clipper via adi_adrv9025_CfrHardClipperConfigSet. 
6. Execute the CFR initial calibration via adi_adrv9025_InitCalsRun. 
7. Optionally, set the active correction pulse to use in Mode 1 via the adi_adrv9025_CfrActiveCorrectionPulseSet API for carrier config 

hot swapping. 
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Updating Correction Pulses On-the-Fly  

The ADRV9029 provides the flexibility to change correction pulses on-the-fly without needing to run CFR initialization calibration. The 
recommended procedure assumes that the user has already successfully followed the initial procedure for setting up the CFR given in the 
Setting Up the CFR section. To update correction pulses on-the-fly, take the following steps: 

1. Program the CFR correction pulse using adi_adrv9025_CfrCorrectionPulseWrite_v2. 
2. Program the active correction pulse using adi_adrv9025_CfrActiveCorrectionPulseSet. 

This sequence allows users to upload CFR pulses during run-time operation. However, to change the CFR control settings (except for the 
CFR thresholds), the sequence in the Setting Up the CFR section must be followed. 

Modifying CFR Thresholds On-the-Fly 

The ADRV9029 permits changing CFR thresholds without needing to run CFR initial calibration. To modify CFR thresholds on-the-fly, 
take the following steps: 

1. Program the CFR thresholds using adi_adrv9010_CfrControlConfigSet. 
2. Enable modified thresholds using adi_adrv9025_CfrThresholdsRunTimeUpdate. 

API Functions and Data Structures 

This section outlines the API functions and data structures required for setting up the CFR.  

adi_adrv9025_CfrCtrlConfigSet(…) 

The following function sets up CFR mode, the peak threshold, the interpolation factor, and the delay through the CFR blocks. 
int32_t adi_adrv9025_CfrCtrlConfigSet (adi_adrv9025_Device_t *device, 
adi_adrv9025_CfrCtrlConfig_t cfrCtrlConfig[], uint8_t cfrCtrlCfgArraySize) 

This API must be called to setup the CFR control configuration before executing the CFR initial calibration. Currently, 
ADI_ADRV9010_CFR_MODE1 is the only mode of operation supported by the CFR engine. The user must provide the final correction 
pulse to be applied to the CFR input in this mode. To calculate the threshold (cfrPeakThreshold), use the following equation: 

cfrPeakThreshold = 10(Target PAR dB/20) × RMS_INPUT 

The user can setup an interpolation factor of 1×, 2×, or 4× to be applied to the transmitter data before peak detection. The user can also 
setup the CFR engine delay (cfrTxDelay) between n = 129 and n = 511, which translates to n+1 cycles per engine. The delay is applied to 
all enabled CFR engines. CFR latency is (cfrTxDelay +1) × numCfrEnginesEnabled + 3, where the additional 3 cycles comes from the 
hard clipper. The sample rate for the cycles here are at the transmitter JESD rate. 

Each transmitter channel CFR block consists of three cascaded CFR engines followed by a hard clipper to clip the few peaks that are 
skipped by all three CFR engines. The CFR control configuration is applied to all three CFR engines by this function. The threshold is 
adjusted internally by the device firmware before applying it to each of the three CFR engines. The hard clipper can be optionally enabled 
via the adi_adrv9025_CfrHardClipperConfigSet API function. 

This function can be called any time after device initialization and the ARM boot up is complete. The hard clipper setting is currently set 
at initialization and has to be setup before running the CFR initial calibration.  

This function can be called after device initialization and the ARM processor boot up is complete but before the CFR initial calibration is 
executed. See Table 264 and Table 265 for the adi_adrv9025_ CfrCtrlConfigSet(…) Parameters and the adi_adrv9025_CfrCtrlConfig_t 
data structure, respectively. 

Table 264. adi_adrv9025_CfrCtrlConfigSet(…) Parameters 
Parameter Description 
*device  A pointer to the device settings structure  
cfrCtrlConfig An array of CFR control configuration structures 
cfrCtrlCfgArraySize The number of configurations contained in the cfrCtrlConfig array 

Table 265. adi_adrv9025_CfrCtrlConfig_t Data Structure 
Data Type Structure Member Valid Values Description 
uint32_t txChannelMask 0 to 15  A mask consisting of 'OR'ed transmitter channels for which the 

CFR core configuration is applied (1 bit for each channel). 
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Data Type Structure Member Valid Values Description 
adi_adrv9010_ 
CfrModeSel_e 

cfrMode 1 Selects the mode in which the CFR is required to operate in. 
Currently, Mode 1 is the only supported mode. 

uint16_t cfrTxDelay 129…511 Sets the CFR delay per engine in units of samples at the CFR 
input rate (JESD 204B/C transmitter rate). 

float cfrPeakThreshold 0…1 Sets the target CFR peak detection and correction 
threshold. The threshold is calculated as: 
cfrPreakThreshold = 10(Target PAR/20) × RMS_INPUT 
The peak threshold is set to 0.79 by default. 

float cfrEngine1PeakThresholdScaler 0…1 Threshold scaler for engine CFR Engine 3 
float cfrEngine2PeakThresholdScaler 0…1 Threshold scaler for engine CFR Engine 2 
float cfrEngine3PeakThresholdScaler 0…1 Threshold scaler for engine CFR Engine 1 
float cfrCorrectionThresholdScaler 0…1 Threshold scaler for CFR correction 
adi_adrv9010_ 
CfrInterpolationSel_e 

cfrInterpolationFactor 1, 2, 4 Selects the interpolation factor to apply to the CFR input 
before peak detection. The CFR peak detectors can run at a 
higher (interpolated) rate to enable more optimal peak 
detection. 

uint8_t cfrEngine1MaxNumOfPeaks 0…5 Sets the maximum number of peaks to remove in one 
group for the respective CFR engines (default value = 5). 
The user must set this value to 0 when engine is disabled. It 
is suggested to have a descending order of the maximum 
number of peaks where Engine 1 has the highest value. 

uint8_t cfrEngine2MaxNumOfPeaks 0…5 
uint8_t cfrEngine3MaxNumOfPeaks 0…5 

adi_adrv9025_CfrCtrlConfigGet(…) 

The following function retrieves the core control configuration parameters for the CFR engine. 
int32_t adi_adrv9025_CfrCtrlConfigGet(adi_adrv9025_Device_t * device, adi_adrv9025_TxChannels_e  
txChannel, adi_adrv9025_CfrCtrlConfig_t *  cfrCtrlConfig)  

This function reads the CFR mode, peak threshold, interpolation factor, and the delay currently programmed into the device. 

This function can be called after the device initialization and the ARM processor boot up are complete. 

Table 266. adi_adrv9025_CfrCtrlConfigGet(…) Parameters 
Parameter Description 
*device A pointer to the device settings structure 
txChannel A target transmitter channel whose CFR control configuration is required to be read back 
*cfrCtrlConfig A pointer to the CFR control configuration structure which is updated with the CFR control settings from the device 

adi_adrv9025_CfrCorrectionPulseWrite_v2(…) 

The following function can be used to program the complex coefficients of the final CFR correction pulse. 
int32_t adi_adrv9025_CfrCorrectionPulseWrite_v2(adi_adrv9025_Device_t * device, uint32_t  
txChannelMask, adi_adrv9025_CfrCorrectionPulse_t cfrCorrectionPulses[], uint8_t  
numCorrectionPulses); 

This function is intended to be used when the CFR engine is operating in ADI_ADRV9025_CFR_MODE1 mode.  

This function expects the user to provide only the first half the correction pulse because it is assumed that the correction pulse is 
conjugate symmetric. This API supports the programming of the correction pulses in the following use cases: 

• A final correction pulse of a maximum length of 1025 (maximum half pulse length of 512) in Mode 1 for a single carrier configuration. 
Note that run-time carrier hot swapping is not supported if a pulse length of 1025 (half pulse length of 512) is used. In this case, the 
full pulse must be switched during transmit off. 

• Two final correction pulses of a maximum length of 513 (maximum half pulse length of 256) corresponding to two carrier configurations 
for on-the-fly carrier configuration switching for Mode 1 operation. Run-time carrier switching can be executed via the adi_adrv9025_ 
CfrActiveCorrectionPulseSet() API which activates the correction pulse corresponding to the requested carrier configuration. 

This function cab be called after device initialization and the ARM processor boot up is complete. 
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Table 267. adi_adrv9025_CfrCorrectionPulseWrite_v2(…) Parameters 
Parameter Description 
*device  A pointer to the device settings structure. 
txChannelMask A transmitter channel selection mask to write cfrCorrectionPulses with multiple channel selection allowed. 
cfrCorrectionPulses An array that consists of the final correction pulse(s) in Mode 1 operation. Note that in the case of programming two 

correction pulses for carrier hot swapping, cfrCorrectionPulses[0] corresponds to ADI_ADRV9025_CFR_CARRIER_HOT_ 
SWAP_CORR_PULSE_1 and cfrCorrectionPulses[1] corresponds to 
ADI_ADRV9025_CFR_CARRIER_HOT_SWAP_CORR_PULSE_2. 

numCorrectionPulses The number of correction pulse coefficients to be programmed in the CFR engine. Note that a maximum of two correction 
pulses can be programmed if the half pulse length of the two correction pulses are less than or equal to 256, and a 
maximum of 1 correction pulse can be programmed if the half pulse length of the correction pulse is greater than 256. 

Table 268. adi_adrv9025_CfrCorrectionPulse_t Data Structure 
Data Type Structure Member Valid Values Description 
int16_t coeffRealHalfPulse 

 
An array consisting of the first half of the real part of the complex CFR 
correction pulse coefficients 

int16_t coeffImaginaryHalfPulse 
 

An array consisting of the first half of the imaginary part of the complex 
CFR correction pulse coefficients 

uint16_t numCoeffs 512 (maximum) Number of coefficients contained in the coeffReal and coeffImaginary arrays 

adi_adrv9025_CfrCorrectionPulseRead_v2(…) 
The following function can be used to read back the current complex coefficients of the final CFR correction pulse programmed in the device.  
int32_t adi_adrv9025_CfrCorrectionPulseRead_v2(adi_adrv9025_Device_t * device, 
adi_adrv9025_TxChannels_e txChannel, uint8_t maxCorrectionPulsesToRead, 
adi_adrv9025_CfrCorrectionPulse_t cfrCorrectionPulses[], uint8_t * numCorrectionPulsesRead); 

This function reads the final correction pulse to be used by the CFR engine to perform CFR correction when the CFR engine is 
configured to operate in (ADI_ADRV9025_CFR_MODE1). A maximum of two correction pulses of a half pulse length of 256 or a 
maximum of one correction pulse of a half pulse length of 512 can be read back from the device. 

Note that this function can be called only when the transmitter channel is off and the CFR engines are not active. This function can be 
called only when the target transmitter channel is off after the device initialization and the ARM processor boot up are complete. 

Table 269. adi_adrv9025_CfrCorrectionPulseRead_v2(…) Parameters 
Parameter Description 
*device  A pointer to the device settings structure. 
txChannel A target transmitter channel whose correction pulse coefficients are requested. 
maxCorrectionPulsesToRead The maximum number of correction pulses to read, which is also the size of the cfrCorrectionPulses parameter. 

The maximum number of correction pulses supported for readback is currently two. 
cfrCorrectionPulses An array of CFR correction pulses that is updated with the CFR correction pulses retrieved from the device. 
numCorrectionPulsesReturned The number of correction pulses actually read back from the CFR engine. The user can pass a NULL 

statement to this parameter if this information is not required. 

adi_adrv9010_CfrEnableSet(…) 

The following function enables or disables the CFR engines present before the DPD engine in the transmitter datapath. 
int32_t adi_adrv9025_CfrEnableSet(adi_adrv9025_Device_t *device, adi_adrv9025_CfrEnable_t 
cfrEnable[], uint8_t cfrEnableArraySize); 

The CFR control configuration settings can be applied via adi_adrv9025_CfrCtrlConfigSet. 

To apply CFR correction to transmitter data, the user can set adi_adrv9025_CfrEnable_t.cfrEngineXEnable to 1 and adi_adrv9025_ 
CfrEnable_t.cfrEngineXBypassEnable to 0. To bypass the CFR engine, the user can set adi_adrv9025_CfrEnable_t.cfrEngineXEnable to 1 
and adi_adrv9025_CfrEnable_t.cfrEngineXBypassEnable to 1. To disable the CFR engine completely, the user can set 
adi_adrv9025_CfrEnable_t.cfrEngineXEnable to 0. 

Note that this is a function run at initialization and the enabling/disabling of CFR engine cannot be performed during runtime. 

This function can be called after the device initialization and the ARM processor boot up are complete but before the CFR initial 
calibration is executed. 
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Table 270. adi_adrv9025_CfrEnableSet(…) Parameters 
Parameter Description 
*device  A pointer to the device settings structure  
cfrEnable An array of CFR enable control configuration structures 
cfrEnableArraySize The number of configurations contained in the cfrEnable array 

adi_adrv9025_CfrEnableGet(…) 

The following function retrieves the current state of CFR engine enables.  
int32_t adi_adrv9025_CfrEnableGet(adi_adrv9025_Device_t *device, adi_adrv9025_TxChannels_e 
txChannel, adi_adrv9025_CfrEnable_t *cfrEnable); 

This function can be called after the device initialization and the ARM processor boot up are complete. 

Table 271. adi_adrv9025_CfrEnableGet(…) Parameters 
Parameter Description 
*device  A pointer to the device settings structure  
txChannel A target transmitter channel whose enable status is requested 
*cfrEnable A pointer to a CFR enable structure that updates with the enable settings in the device 

adi_adrv9025_CfrHardClipperConfigSet(…) 

The following function enables/disables the CFR hard clipper and configures the hard clipper threshold. 
int32_t adi_adrv9025_CfrHardClipperConfigSet(adi_adrv9025_Device_t *device, 
adi_adrv9025_CfrHardClipperConfig_t cfrHardClipperConfig[], uint8_t cfrHardClipperCfgArraySize); 

The CFR hard clipper threshold is applied to an approximation of √I2 + Q2.The threshold is normalized to 1 and is relative to 0 dBFS 
which means that a threshold of 1 corresponds to a threshold of 0 dBFS. It is not recommended to set the hard clipper threshold to a value 
less than −7 dBFS to ensure optimum performance. 

This function can be called any time after the device initialization and the ARM boot up are complete. The hard clipper setting is 
currently an initialization setting and must be setup before running the CFR initial calibration. There is no support for dynamically 
changing the hard clipper threshold during runtime. 

Table 272. adi_adrv9025_ CfrHardClipperConfigSet(…) Parameters 
Parameter Description 
*device  Pointer to the device settings structure  
cfrHardClipperConfig An array consisting of the CFR hard clipper configurations 
cfrHardClipperCfgArraySize Number of configurations in cfrHardClipperConfig array 

adi_adrv9025_CfrHardClipperConfigGet(…) 

The following function retrieves the CFR hard clipper setting for the requested transmitter channel.  
int32_t adi_adrv9025_CfrHardClipperConfigGet (adi_adrv9025_Device_t *device, 
adi_adrv9025_TxChannels_e txChannel, adi_adrv9025_CfrHardClipperConfig_t *cfrHardClipperConfig); 

This function can be called any time after the device initialization and the ARM boot up are complete. 

Table 273. adi_adrv9025_ CfrHardClipperConfigGet(…) Parameters 
Parameter Description 
*device  A pointer to the device settings structure  
txChannel A target transmitter channel for which the CFR hard clipper status is requested 
*cfrHardClipperConfig A pointer to the CFR hard clipper configuration that updates with the device hard clipper configuration settings 

adi_adrv9025_CfrHardClipperConfig_t 

The adi_adrv9025_CfrHardClipperConfig_t data structure contains the information to set up the hard clipper unit in the device. 
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Table 274. CFR Hard Clipper Settings Structure Member Description 
Data 
Type Structure Member 

Valid 
Values Description 

uint32_t txChannelMask 0..15  This mask consists of OR'ed transmitter channels for which the hard clipper 
configuration is applied (1 bit for each channel). 

uint8_t cfrHardClipperEnable 0..1 1: enable the hard clipper on the channels requested 
   0: disable hard clipper 
float cfrHardClipperThreshold 0..1 This normalized threshold for the hard clipper ranges from 0 to 1. The threshold is 

relative to 0 dBFS, which means that a threshold value of 1 corresponds to 0 dBFS. The 
threshold is applied to an approximation of √I2 + Q2 

adi_adrv9025_CfrStatusGet(…) 

The following function reads the CFR status for the requested transmitter channel. 
int32_t adi_adrv9025_CfrStatusGet(adi_adrv9010_Device_t * device, adi_adrv9010_TxChannels_e 
txChannel, adi_adrv9025_CfrStatus_t * cfrStatus); 

This function retrieves the CFR error code for the last CFR error occurred, along with the statistics information that includes the number 
of peaks skipped, number of peaks detected, and the number of peaks clipped by each CFR engine. The user can also monitor the CFR 
status to retrieve errors encountered during CFR initial calibration execution. The CFR statistics can be retrieved using this function. 

This function can be called any time after the device initialization. 

Table 275. adi_adrv9025_CfrStatusGet(…) Parameters 
Parameter Description 
*device  Pointer to the device settings structure  
txChannel Enum to select the target transmitter channel whose CFR status is requested 
*cfrStatus Pointer to the status structure that will be updated with the status retrieved from the device 

adi_adrv9025_CfrStatus_t 

The adi_adrv9025_CfrStatus_t data structure holds the transmitter CFR engine status for each channel.  

Table 276. CFR Status Structure Member Description 
Structure Member Description 
adi_adrv9025_CfrError_e Enumerated list of CFR Errors. 
adi_adrv9025_CfrStatistics_t  Data structure to hold transmitter CFR engine statistics. 

adi_adrv9025_CfrError_e 

The adi_adrv9025_CfrError_e data structure holds the enumerated list of CFR errors.  

Table 277. CFR Error Structure Member Description 
Structure Member Description 
ADI_ADRV9025_CFR_CONFIGURATION_ERROR  Error code to convey that the mandatory CFR configurations were not done 

(not active/used). 
ADI_ADRV9025_CFR_PROG_PULSE_MODE_ERROR  Error code to convey that an unsupported pulse mode was selected. 
ADI_ADRV9025_CFR_INPUT_RATE_HIGH_ERROR  Error code to convey that the transmitter channel sample rate is higher than 

245.76 MHz. 
ADI_ADRV9025_CFR_CTRL_CMD_NOT_SUPPORTED_ERROR Error code to convey that the control command is not supported 

adi_adrv9025_CfrStatistics_t 

The adi_adrv9025_CfrStatistics_t data structure holds the transmitter CFR engine statistics for each transmitter channel. 
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Table 278. CFR Statistics Structure Member Description 
Data Type Structure Member Description 
uint64_t cfrEngine1PeaksDetected Number of peaks detected by CFR Engine 1 since the last reset 
uint64_t cfrEngine1PeaksSkipped Number of peaks skipped by CFR Engine 1 since the last reset 
uint64_t cfrEngine2PeaksDetected Number of peaks detected by CFR Engine 2 since the last reset 
uint64_t cfrEngine2PeaksSkipped Number of peaks skipped by CFR Engine 2 since the last reset 
uint64_t cfrEngine3PeaksDetected Number of peaks detected by CFR Engine 3 since the last reset 
uint64_t cfrEngine3PeaksSkipped Number of peaks skipped by CFR Engine 3 since the last reset 
uint64_t cfrNumSamplesClipped Number of samples clipped by the CFR engine since the last reset 

adi_adrv9025_CfrActiveCorrectionPulseSet(…) 

The following function switches the final correction pulse to apply in the CFR engine in Mode 1 (ADI_ADRV9025_CFR_MODE1) operation.  
int32_t adi_adrv9025_CfrActiveCorrectionPulseSet(adi_adrv9025_Device_t *device, uint32_t 
txChannelMask, adi_adrv9025_CfrCarrierHotSwapCorrPulseSel_e cfrCorrectionPulseSel); 

This function can be used to activate one of the two final correction pulses corresponding to two carrier configurations when the active 
carrier configuration is changed during runtime (carrier configuration hot swapping). 

This function can only be executed if two correction pulses of a length of 512 (half pulse length of 256) or lesser are programmed into the device 
prior to calling this function. If a single correction pulse of a length of 512 or lesser (half pulse length of 256 or lesser) is programmed in 
the device, this function has no effect. The correction pulses can be programmed via the adi_adrv9025_CfrCorrectionPulseWrite_v2() API. 

Note that this function does not change the CFR configuration including the peak threshold or interpolation factor, and the CFR engine 
enables when the active correction pulse is switched. By default, the device activates ADI_ADRV9025_CFR_CARRIER_HOT_SWAP_ 
CORR_PULSE_1 on reset. The CFR engines must be enabled for the active correction pulse switching to take place. Calling this function 
when the CFR engines are disabled has no effect. 

This runtime function can be called any time after device initialization and two correction pulses of a length of 512 or less (half pulse 
length of 256 or less) are programmed via the adi_adrv9025_CfrCorrectionPulseWrite_v2() API and the CFR initial calibration has been 
executed. The CFR initial calibration can be executed via the adi_adrv9025_InitCalsRun() API. The mode of operation must be set to 
ADI_ADRV9025_CFR_MODE1 via the adi_adrv9025_CfrCtrlConfigSet() API. At the time of calling this function, the CFR engine must 
be enabled. Otherwise, the active correction pulse switching does not occur. 

Table 279. adi_adrv9025_CfrActiveCorrectionPulseSet(…) Parameters 
Parameter Description 
*device  A pointer to the device settings structure  
txChannel A mask consisting of OR’ed transmitter channels for which the requested correction pulse is required to be activated 
cfrCorrectionPulseSel Selection for the correction pulse to activate 

adi_adrv9025_CfrCarrierHotSwapCorrPulseSel_e 

The adi_adrv9025_CfrStatistics_t data structure holds the transmitter CFR engine statistics for each transmitter channel.  

Table 280. CfrCarrierHotSwapCorrPulseSel_e Member Description 
Structure Member Description 
ADI_ADRV9025_CFR_CARRIER_HOT_SWAP_CORR_PULSE_1 Sets the active CFR correction pulse to Pulse 1 when two correction pulses of 

half pulse lengths of 256 or less are programmed 
ADI_ADRV9025_CFR_CARRIER_HOT_SWAP_CORR_PULSE_2 Sets the active CFR correction pulse to Pulse 2 when two correction pulses of 

half pulse lengths of 256 or less are programmed 

adi_adrv9025_CfrActiveCorrectionPulseGet(…)  

The following function returns the correction pulse currently activated in the CFR engine in Mode 1 (ADI_ADRV9025_CFR_MODE1) 
operation. 
int32_t adi_adrv9025_CfrActiveCorrectionPulseGet(adi_adrv9025_Device_t *device, 
adi_adrv9025_TxChannels_e txChannel, adi_adrv9025_CfrCarrierHotSwapCorrPulseSel_e 
*cfrCorrectionPulseSel); 
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This function can be used to retrieve the status of the correction pulse currently activated in the device. By default, the device activates 
ADI_ADRV9025_CFR_CARRIER_HOT_SWAP_CORR_PULSE_1 on reset. 

This runtime function can be called any time after device initialization and two correction pulses of a length of 512 or less (half pulse 
length of 256 or less) are programmed via the adi_adrv9025_CfrCorrectionPulseWrite_v2() API and the CFR initial calibration has been 
executed. The CFR initial calibration can be executed via the adi_adrv9025_InitCalsRun() API. 

Table 281. adi_adrv9025_CfrActiveCorrectionPulseGet(…) Parameters 
Parameter Description 
*device  A pointer to the device settings structure  
txChannel A target transmitter channel for which the active correction pulse status is requested 
*cfrCorrectionPulseSel A pointer to memory that updates with the currently active CFR correction pulse 

TYPICAL PROCEDURE TO SET UP CFR USING THE GUI 
This section describes how to set up CFR on the device using Transceiver Evaluation Software (TES). The user can load the desired 
waveform using the Tones pop-up window in the Transmit tab on TES as shown in Figure 255. 
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Figure 255. Load Waveform Using Transceiver Evaluation Software 

When the waveform loads, it is transmitted using the play button on the transmit tab. As an example, an LTE 20 MHz waveform with 
PAR of 12.2 dB is uploaded as shown in Figure 255. The uncorrected waveform complementary cumulative distribution function (CCDF) 
is shown in Figure 256. 
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Figure 256. CCDF of Example 20 MHz LTE Signal with PAR of 12.2 dB (Uncorrected Waveform) 

The DFE tab is used in the TES to set up the CFR engines as shown in Figure 257. 
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Figure 257. CFR Engine Setup Using the TES 

Load File can be used to load the correction pulse (see Figure 258). This correction pulse is specific to the waveform being used (LTE 20 MHz 
in the example shown) and is sampled at the peak detection rate. The CFR peak threshold is set to 0.47, which corresponds to a target 
PAR calculated using the following equation: 

Target PAR = 0 × log10 (CFR Peak Threshold/RMSInputSignal) 
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Using the previous equation, the target PAR is around 8.75 dB. However, if the user wants to derive the CFR peak threshold value needed 
to achieve a desired target PAR, use the following equation: 

CFR Peak Threshold = RMSInputSignal × 10 (Target PAR/20) 

The user must then enable the required number of CFR engines, as shown in Figure 258. 
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Figure 258. Enabling CFR Using TES 

When Apply is clicked (which runs the CFR initial calibration), the CFR engines enable, and the corrected waveform can be observed on 
the spectrum analyzer, as shown in Figure 259. 
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Figure 259. CCDF of Corrected Waveform Using CFR 

As shown in Figure 259, the corrected CCDF curve has a PAR of 8.75 dB, which corresponds to the CFR peak threshold that was 
previously set. No spectral regrowth is shown and the desired PAR can be achieved.  
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Impact on EVM 

This section describes the impact of using the CFR engines within the transceiver on EVM performance. The same LTE 20 MHz tone 
(PAR = 12.67 dB) used in the previous section is also used in this example. The setup information for this waveform is as follows: 

• Carrier 1 center frequency = 0 MHz 
• Output sample rate = 245.76 MHz 
• DAC resolution = 16 
• Output data format = 2s Complement 
• Scaling = 0 dB 
• Modulation = 64QAM 
• Test model = 3.1 
• Final PAR (dB) = 12.2 

The EVM observed before applying the CFR is shown in Figure 260. 
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Figure 260. Observed EVM Before Applying CFR 

Applying the CFR settings discussed in the Typical Procedure to Set Up CFR Using the GUI section where the target PAR is set to 8 dB, 
the degradation observed in EVM is shown in Figure 261. 

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029


ADRV9026/ADRV9029 System Development User Guide UG-1727 
 

Rev. 0 | Page 317 of 336 

22
77

0-
25

5

 
Figure 261. Observed EVM After Applying CFR (Target PAR = 8 dB) 

We can see above that the rms EVM degraded from 0.6% to 2% due to application of CFR. From a quick sweep of the rms EVM at 
different target PAR, we see the trend shown in Figure 262. Note that different systems have different requirements for maximum 
tolerable EVM degradation due to CFR, which would drive the minimum achievable PAR for a given waveform configuration. Note also 
that the performance shown here is highly dependent on the “goodness” of the CFR correction pulse. With a different pulse, we should 
expect a different result. 
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Figure 262. Target PAR vs. EVM 
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CLOSED LOOP GAIN CONTROL (CLGC) 
CLGC OVERVIEW 
CLGC is a closed-loop tracking calibration that adjusts front-end transmit attenuations to maintain a constant desired gain in the 
transmit path from baseband input to power amplifier output such that the power amplifier output power is constant with respect to 
changes in temperature or other variations. To set the desired transmit gain, adjust the transmit front-end attenuation such that the power 
amplifier output reaches the desired power with the maximum nominal level of the baseband signal. The digital swing of the baseband 
signal is not affected because the attenuation is applied on the analog front end of the transmit channel. 

The power amplifier output power can fluctuate around the target level over the time because of temperature changes and other factors 
given a constant baseband signal level. The CLGC helps reduce the fluctuation and meet the standard and regulatory requirements (for 
example, ±2 dB fluctuation is required by the LTE/5GNR standard). The baseband signal level can change significantly because of the 
dynamics of power control and traffic load in a network (for example, dynamic range can be up to 20 dB in LTE). The CLGC helps keep 
the output power linearly proportional to the baseband signal level. 

ELEMENTS OF CLGC 
Figure 263 shows a simplified block diagram of the CLGC system. The CLGC algorithm observes the transmit data (x(n)), the post power 
amplifier observation data (y(n)), and adjusts the transmit front-end attenuation such that the overall loop gain (observation receive 
data/transmit data) remains constant. 
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Figure 263. CLGC Simplified Block Diagram  

The elements of the CLGC system include the following: 

• Transmit datapath. The digital baseband signal from the ADRV9025 deframer output goes through a CFR block for reduction of the 
overall peak to average ratio of the signal followed by a digital upconverter that interpolates the baseband signal by a factor of 1×, 2×, 
or 4× for analyzing the baseband signal over the DPD analysis bandwidth. The upconverted data before the DPD actuator is then 
used as the reference transmit data for the closed loop gain control algorithm. 

• Observation datapath. The CLGC algorithm relies on observing any fluctuations in the power amplifier output power through a 
feedback path. The feedback path is realized through the observation receiver. The power amplifier output data is coupled into the 
observation receiver, downconverted, and digitized for loop gain estimation and correction by the firmware. 

• Capture engine. The transmit and observation receive samples for CLGC measurement are captured and aligned in the capture 
engine, preprocessing is performed, and the preprocessed samples are passed onto the embedded ARM processor for CLGC 
measurement and loop gain control. 

• CLGC processing. The CLGC algorithm itself is implemented in the firmware running on an embedded ARM-C in the transceiver. 
The CLGC is a tracking calibration that tracks the observed and baseband data and uses a loop gain estimator to track changes in the 
overall loop gain. Refer to the CLGC Algorithm Overview section for an overview of the CLGC algorithm. 
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CLGC ALGORITHM OVERVIEW 
The CLGC algorithm is designed to maintain a constant loop gain and overcome any minor fluctuations in the power amplifier output 
power because of variations in temperature and other operating conditions. Loop gain is defined as the ratio of the power level of 
observed data to the power level of the baseband transmit data as follows: 

Loop Gain = Observation Receive RMS Power/Transmit RMS Power 

The CLGC algorithm relies on the post power amplifier feedback data to estimate the loop gain and adjust the front-end transmit 
attenuation on the transceiver. The observation points of the CLGC algorithm are shown in Figure 264.  
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Figure 264. CLGC Algorithm Observation Points 

The signal path from the reference baseband transmit input to the observed data for loop gain estimation can be divided into four 
sections, as listed in Table 282. The total loop gain observed at the observation receiver includes the front-end attenuation out of the 
transceiver, the gain of the power amplifier, the coupling attenuation for feedback, and the observation receiver front-end attenuation. 

Table 282. Observed Data for Loop Gain Estimation 
Section Gain Equation Comments 
Transmit Section Xtx(n) = gTX + (x(n) + 

vtx_DAC_Quant(n)) 
gTX = total transmit attenuation  

  x(n) = transmit baseband data  
  vtx_DAC_Quant = transmit DAC quantization noise 
Power Amplifier Section XPA(n) = gPA. Xtx(n) + vPA(n) gPA = power amplifier gain at the power amplifier operating point 
  vPA = additive noise determined by ACLR 
Coupling Section Yorx(n) = gCPL.XPA(n) + vorx(n) gCPL = coupling attenuation in the observation receive path 
  vorx = in-band thermal noise and additive noise determined by noise 

figure in observation receive path 
Observation Receive 
Section 

y(n) = gorx. Yorx(n) + 
vorx_ADC_Quant(n) 

gorx = front-end observation receive attenuation 

  vorx_ADC_Quant = observation receive ADC quantization noise. 

Total gain seen at y(n),  

g = gorx × gCPL × gPA × gTX 

Observation 

To relate the observation receive samples to the transmit samples in the loop gain estimation engine, use the following equation: 

y(n) = gx(n) + v(n) 

where: 
x(n) is the input transmit samples from a user BBIC. 
y(n) is the output samples from observation receive. 
v(n) is the equivalent additive noise from the entire loop, which can include thermal noise, quantization noise, phase noise, and nonlinear 
distortions. 
g is the desired loop gain set by the user based on a nominal level of x(n) and an expected output power of the power amplifier.  
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Loop Gain Estimation and Convergence 

A simplified equation of the loop gain estimation is described below. The rms power is calculated on captured transmit samples (x(n)) 
and observation receive samples (y(n)), where N is the total number of samples captured per CLGC update. The value N is configured by 
the user. Refer to the CLGC Measurement section for details on CLGC sample capture. 

Estimated Loop Gain = Observation Receive RMS Power/Transmit Power = 

2

2

0 ( )

0 ( )

N y n
n
N y x
n

=

=

∑

∑
 

With the loop gain estimated, a loop gain error can be defined as follows: 

Loop Gain Error = Estimated Loop Gain/Expected Loop Gain 

The estimated loop gain is determined by the CLGC algorithm, and the expected loop gain is configured by the user. The objective of the 
CLGC is to reduce the loop gain error ratio to 1 dB or 0 dB. The CLGC converges to the expected loop gain by tuning the transceiver 
front-end transmit attenuation, as shown in Figure 264. 

ENABLING THE CLGC TRACKING CALIBRATION 
The CLGC tracking calibration can be enabled using the adi_adrv9025_TrackingCalsEnableSet() API. The user can pass the CLGC tracking 
calibration mask values defined in the adi_adrv9025_cals_types.h file as argument to the adi_adrv9025_TrackingCalsEnableSet() API. The 
mask values are described in Table 283. 

Table 283 CLGC Tracking Calibration Mask 
CLGC Tracking Calibration Mask Value Description 
ADI_ADRV9025_TRACK_TX1_CLGC 0x0000000000100000 Enable CLGC tracking calibration on Tx1 
ADI_ADRV9025_TRACK_TX2_CLGC 0x0000000000200000 Enable CLGC tracking calibration on Tx2 
ADI_ADRV9025_TRACK_TX3_CLGC 0x0000000004000000 Enable CLGC tracking calibration on Tx3 
ADI_ADRV9025_TRACK_TX4_CLGC 0x0000000008000000 Enable CLGC tracking calibration on Tx4 

There are at least three prerequisites for enabling the CLGC tracking calibration including the following: 

1. The correct transmit to observation receive mapping must be configured during initialization. The adi_adrv9025_TxToOrxMappingSet() 
API can be used for this purpose. The correct mapping of the transmit path to the observation path must be communicated to the 
firmware to capture data from the correct observation receiver.  

2. The path delay initial calibration must be executed through the adi_adrv9025_InitCalsRun() API with the mask value equal to 
ADI_ADRV9025_EXTERNAL_PATH_DELAY. The external path delay from the transmit to observation receive path is required to 
align the transmit and observation receive samples for estimating loop gain. 

3. The DPD model must be loaded and the DPD reset must be asserted. This step is required to initialize the DPD actuator. 

Please refer to the Recommended Sequence for Enabling CLGC Tracking Calibration section in this document for the list of commands 
to be used for bringing up CLGC. 

The user can pass a 64-bit unsigned integer with OR’d values of the CLGC mask to enable the CLGC tracking calibration on the requested 
transmit channel. For example, to enable the CLGC tracking calibration on all four transmit channels, the user can pass the parameters 
shown in Table 284 as arguments to the adi_adrv9025_TrackingCalsEnableSet() API. 

Table 284. CLGC Tracking Calibration Enable Example Arguments to the adi_adrv9025_TrackingCalsEnableSet() API 
Parameter Data Type Description Value 
enableMask uint64_t The 64-bit ‘OR’ed mask that consists of tracking calibrations to 

enable/disable 
(ADI_ADRV9025_TRACK_TX1_CLGC | 
ADI_ADRV9025_TRACK_TX2_CLGC | 
ADI_ADRV9025_TRACK_TX3_CLGC | 
ADI_ADRV9025_TRACK_TX4_CLGC) 

enableDisableFlag Enumeration Indicates whether the mask value passed in the enableMask 
parameter is to be used for enabling or disabling the tracking 
calibration 

ADI_ADRV9025_TRACKING_CAL_ENABLE 

Similarly, to disable the CLGC tracking calibration, the user can set the argument enableDisableFlag to an enumeration value 
ADI_ADRV9025_TRACKING_CAL_DISABLE to disable the CLGC tracking calibration on the requested channels. 
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Note that when the CLGC tracking calibration is enabled, the CLGC does not actively control the loop gain. The user must explicitly 
configure the loop gain control enable via the adi_adrv9025_ClgcConfigSet() API to enable actively control the CLGC loop gain. Details 
regarding the CLGC modes of operation are described in the CLGC Measurement section. 

The CLGC tracking calibration works in synchronization with the DPD algorithm, and the CLGC is scheduled once per second by the firmware. 

CLGC MODES OF OPERATION 
The CLGC functionality can operate in either of the following two modes: 

• Passive loop gain measurement. This mode of operation is typically activated to determine the initial operating point of the power 
amplifier. When a transmitter is activated, the user determines the power amplifier operating point by sending traffic and measuring 
the overall loop gain from observation receive to transmit. During this stage, the user can take advantage of the passive loop gain 
measurement mode in which the CLGC algorithm measures the loop gain without actively adjusting the transmit front-end 
attenuation. When the ideal operating point is determined, the user can then enable active loop gain control mode. 

• Active loop gain control. In this mode, the CLGC measures the loop gain from observation receive to the transmit baseband and 
adjusts the transmit front-end gain to maintain the loop gain. This mode of operation is typically activated during runtime when the 
initial operating points are determined, and the initial observation receive gain and transmit attenuation settings are configured. For 
the active loop gain control mode, the user must configure the expected loop gain using the adi_adrv9025_ClgcConfigSet() API 
through the clgcExpectedLoopGain_dB parameter in the adi_adrv9025_ClgcConfig_t data structure.  

The user can select the CLGC mode of operation through the adi_adrv9025_ClgcConfigSet() API using the clgcEnableGainControl 
parameter in the adi_adrv9025_ClgcConfig_t data structure, as shown in Table 285. 

Table 285. CLGC Mode of Operation Configuration 
clgcEnableGainControl CLGC Mode Activated 
0 Passive loop gain measurement 
1 Active loop gain control 

Figure 265 captures a typical CLGC bring up sequence during which the passive and active loop gain control modes are active at various stages.  

In passive loop gain measurement mode, the user can retrieve the observation receive rms power and transmit rms power as well as the 
loop gain estimated by the CLGC algorithm using the adi_adrv9025_ClgcStatusGet() API. The adi_adrv9025_ClgcStatus_t structure has 
the clgcLoopGain, clgcTxRmsPower, and clgcOrxRmsPower members that can be monitored to adjust the initial operating point of the 
power amplifier and determine the desired loop gain. 

The passive loop gain measurement mode is mostly used in a factory calibration setting. The optimal operating point for the power amplifier is 
determined, the loop gain, transmit attenuation and observation receive gain values are noted, and the values are used in the field.  
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Figure 265. CLGC Modes of Operation During Bring Up 
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CLGC MEASUREMENT  
The CLGC measurement cycle is common to both passive loop gain measurement and active loop gain control modes. In active loop gain 
control mode, the transmit attenuation is also adjusted by the CLGC algorithm. The transmit attenuation adjustment is described in the 
following section. 

The CLGC measurement relies on the sample batch size, the power level of the samples and the SNR of the observed data. The CLGC captures 
samples in batches specified by the clgcMeasurementBatchTime_us parameter defined in the adi_adrv9025_ClgcConfig_t data structure. 
The user must tune the measurement batch size based on the signal characteristics that they are most likely to encounter. Refer to the 
Case Study for Configuring CLGC Batch Sampling Period section, which goes through an example case study for determining the 
optimum batch measurement size. The list of parameters used to determine a successful capture is listed in Table 286.  

Table 286. CLGC Measurement Configuration 
Parameter Description User Configuration Access 
Capture 
Batch Time 

This parameter determines the duration of samples to be captured per batch 
specified in microseconds. A maximum of 65536 µs can be configured. 

adi_adrv9025_ClgcConfig_t. 
clgcMeasurementBatchTime_us 

Maximum 
Number of 
Batches 

The CLGC measurement continues to capture samples in batches until the 
required SNR criteria is met or the number of batches exceeds 512. If the 
number of batches captured exceeds 512 and the requisite SNR criteria is not 
met, an error is flagged and the CLGC aborts the calibration.  

Fixed value of 512, not user configurable 

Transmit 
Qualifying 
Threshold 

If the captured transmit samples are below this user configured threshold, the 
samples are discarded. 

adi_adrv9025_ClgcConfig_t. 
clgcTxQualifyingThreshold_dBFS 

Observation 
Receive 
Qualifying 
Threshold 

If the captured observation receive samples are below this user configured 
threshold, the samples are discarded. 

adi_adrv9025_ClgcConfig_t. 
clgcOrxQualifyingThreshold_dBFS 

Transmit and Observation Receive Qualifying Threshold 

As described in Table 286, the CLGC samples are required to meet the threshold criteria to be considered for loop gain estimation. The 
thresholds are configured by the user through the adi_adrv9025_ClgcConfigSet() API using the clgcTxQualifyingThreshold_dBFS and 
clgcOrxQualifyingThreshold_dBFS parameters that are part of the adi_adrv9025_ClgcConfig_t data structure. If either one of the 
transmit or observation receive samples do not meet the criteria, the entire batch of transmit and observation receive captured data is 
discarded. An example scenario in which the transmit/observation receive signals meet the threshold criteria in Batch 1 where the rms 
power in Batch 2 fails to meet the threshold criteria is shown in Figure 266. Therefore, samples in Batch 2 are discarded and not 
considered for measurement.  
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Figure 266. Transmit and Observation Receive Qualifying Threshold for CLGC Measurement 

The complete CLGC measurement cycle for a single update period is shown in Figure 267. The flowchart explains the measurement, and 
its interactions with the measurement parameters are described in Table 286. Note that the CLGC only captures samples until the 
transmit/observation receive threshold and the observation receive SNR criteria are met. When the threshold and SNR criteria are met, 
the CLGC proceeds to measure the loop gain and does not capture any further samples. 
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Figure 267. CLGC Measurement Cycle 
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CLGC TRANSMIT ATTENUATION CONTROL 
As shown in Figure 263, the CLGC algorithm tunes the transmit front-end attenuation in the transceiver to converge to the requested loop gain. 
The user is required to configure the attenuation limits and the step size parameters through the adi_adrv9025_ClgcConfigSet() API. 
The transmit attenuation control parameters that a user must configure are described in Table 287. 

Table 287. transmit attenuation control user configuration 
Parameter Description User Configuration Access 
Minimum Transmit 
Attenuation 

The absolute value of the lower limit of transmit attenuation is configured in dB. 
For example, if the lower transmit attenuation limit is configured as 3 dB, the 
CLGC algorithm cannot adjust the transmit front-end attenuation beyond 3 dB. 

adi_adrv9025_ClgcConfig_t. 
clgcMinTxAttenAdjust_dB 

 This parameter can be used to mitigate CLGC over compensating during any 
catastrophic situations when observation receive data is corrupted and loop 
gain estimated is bad. Setting the minimum transmit attenuation limit 
ensures that the power amplifier is not over driven. 

 

Maximum Transmit 
Attenuation 

The absolute value of the upper limit of transmit attenuation is configured in dB. 
For example, if the upper transmit attenuation limit is configured as 30 dB, the 
CLGC algorithm cannot adjust the transmit front-end attenuation beyond 30 dB. 

adi_adrv9025_ClgcConfig_t. 
clgcMaxTxAttenAdjust_dB 

 This parameter can be used to mitigate CLGC over compensating during any 
catastrophic situations when observation receive data is corrupted and loop 
gain estimated is bad. Setting the maximum transmit attenuation limit 
ensures that the transmit front-end attenuation does not go underrange. 

 

Transmit Gain 
Adjustment Step 

This parameter sets the maximum step size for adjusting the transmit 
attenuation per CLGC update with a resolution of 0.05 dB. 

adi_adrv9025_ClgcConfig_t. 
clgcMaxGainAdjustmentStepSize_dB 

The transmit gain adjustment step size is a trade-off between the time required to converge vs. transient spectral emissions due. A smaller 
transmit gain adjustment step results in smaller transient emissions but takes a longer time to converge. A large step size can result in 
transient emissions because of a large change in power, but the convergence time is lower compared to a smaller step size. 

An example of this adjustment is shown in Figure 268 where the desired loop gain is 2.8 × transmit gain adjustment step size relative to 
the initial loop gain. The CLGC algorithm adjusts the transmit attenuation over three update periods to reach the desired loop gain, as 
shown in in Figure 268. Note that the CLGC update period is 1 second. 
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Figure 268. CLGC Loop Gain Convergence for 2.8× Step Size 

Figure 269 represents the complete CLGC update cycle including the measurement and transmit attenuation control for a single CLGC update. 
The flow diagram represents the measurement and update for a single CLGC update cycle. 
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Figure 269. CLGC Active Loop Gain Control Update Cycle 
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CLGC API SUMMARY 
Table 288. CLGC API Software Overview 
API Function Description 
adi_adrv9025_ClgcConfigSet This function configures the CLGC measurement and transmit attenuation control parameters as described 

in previous sections. This API can also be used to turn the loop gain control on or off. 
adi_adrv9025_ClgcConfigGet This function retrieves the CLGC configuration currently active in the transceiver device. 
adi_adrv9025_ClgcStatusGet This function retrieves the CLGC status. 

CLGC CONFIGURATION SUMMARY 
Table 289. Summary of CLGC Parameters Configurable in the adi_adrv9025_ClgcConfig_t Data Structure 
Parameter Description Range 
txChannelMask This parameter is a mask that consists of OR'ed transmit 

channels for which the CLGC configuration is applied. 
0x00 to 0x0F, Bit0 to Bit3 
represent channels Tx1 to Tx4. 

clgcEnableGainControl This parameter enables the tracking and adjustment of the loop 
gain in CLGC. If this parameter is set to 0, the CLGC tracking 
calibration only measures the power levels and does not execute 
loop gain control. 

0: disable loop gain control 
1: enable loop gain control 

clgcMeasurementBatchTime_us This parameter is a sampling period per batch of CLGC samples. 10 µs to 65536 µs 
clgcExpectedLoopGain_dB This parameter is configured by the user depending on the 

optimum operating point of the power amplifier. 
No limits imposed, the expected 
loop gain depends on the 
application 

clgcTxQualifyingThreshold_dBFS This parameter is the minimum threshold for the transmit signal 
required to run CLGC tracking. 

The qualifying threshold must 
not go below −70 dBFS for 
optimum performance 

clgcOrxQualifyingThreshold_dBFS This parameter is the minimum threshold for the observation 
receive signal required to run CLGC tracking. 

The qualifying threshold must 
not go below −70 dBFS for 
optimum performance  

clgcMaxGainAdjustmentStepSize_dB This parameter is the maximum loop gain adjustment step size 
(ranging from 0 dB to 6 dB) for transmit attenuation in dB. 

The maximum step size that a 
user can configure is 6 dB 

clgcMinTxAttenAdjust_dB This parameter is the minimum transmit attenuation in dB allowed. The minimum transmit attenuation 
value that can be set on the 
transceiver transmit front end is 
0 dB 

clgcMaxTxAttenAdjust_dB This parameter is the maximum transmit attenuation in dB allowed. The maximum transmit 
attenuation value that can be set 
on the transceiver transmit front 
end is 41.95 dB 

CLGC STATUS 
The CLGC status can be retrieved using the adi_adrv9025_ClgcStatusGet() API. The CLGC status is contained in the adi_adrv9025_ 
ClgcStatus_t data structure. Table 290 contains a summary of CLGC status parameters in the adi_adrv9025_ClgcStatus_t data structure.  

Table 290. Summary of CLGC Status Information 
Parameter Description 
clgcLoopGain Transmit to observation receive loop gain equal to (observation receive rms power)/(transmit rms power) in linear 

scale measured during the last CLGC update 
clgcTxRmsPower Transmit rms power in linear scale measured during the last CLGC update 
clgcOrxRmsPower Observation receive rms power in linear scale measured during the last CLGC update 
activeTxAttenIndex Active transmit attenuation table index applied to the transmit path, the attenuation applied to the transmit 

channel is equal to (activeTxAttenIndex × 0.05) dB 
activeOrxGainIndex Active gain index of the observation receive channel mapped to the transmit channel for which measurements are requested 
clgcTrackingCalStatus Generic calibration status data structure that includes the update count, the iteration count, and so on 
clgcCaptureStatus Enumeration to denote the CLGC transmit to observation receive data capture status for loop gain control/power 

measurement (refer to the CLGC Errors section for details regarding this enumeration) 
clgcState Enumeration to denote the current CLGC runtime state (refer to the CLGC Errors section for details regarding this 

enumeration) 
clgcSyncStatus Enumeration to denote the status of CLGC and DPD synchronization, the CLGC and DPD algorithms on the 

transceiver are synchronized so that the gain and phase is coherent 
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CLGC ERRORS 
The CLGC error status is captured in parameters clgcState and clgcCaputreStatus members of structure adi_adrv9025_ClgcStatus_t.  
Table 291 captures the CLGC runtime errors (clgcState) and the recommend user actions. Table 292 captures the CLGC capture errors 
(clgcCaputreStatus). 

Table 291. CLGC Runtime Errors 
ClgcState Error Enumeration Description Recommended Recovery Actions 
ADI_ADRV9025_CLGC_ 
INITIAL_RUN 

CLGC algorithm is still in initialization state. This runtime state does 
not necessarily indicate error because the CLGC remains in this state 
perpetually if the loop gain control is disabled.  

Reducing the capture time and/or 
the number of batches to capture 
can help recover from this error.  

 If the loop gain control is enabled via adi_adrv9010_ClgcConfigSet() and 
the CLGC status returns this runtime error status, the status can then be 
classified as an error state. The most likely cause of this error is that the 
data capture required to compute CLGC loop gain was not completed. 

Verify that a correct transmit to 
observation receive mapping is 
configured. 

ADI_ADRV9025_CLGC_LO_ 
LIMIT_TX_ATTEN 

The absolute value of the lower limit of transmit attenuation has been 
reached. For example, if the minimum transmit attenuation limit has 
been configured as 3 dB and the user requests a loop gain that causes 
CLGC to decrease the transmit attenuation to less than 3 dB, the CLGC 
limits the transmit attenuation to 3 dB and returns this error status. 

Adjust the transmit attenuation 
lower limit to increase the range of 
transmit attenuation accessible to 
the CLGC algorithm. 

 The minimum transmit attenuation can be configured via the 
adi_adrv9025_ClgcConfigSet( ) API. 

If the absolute minimum value of 
transmit attenuation is reached (0 
dB), it is recommended to adjust 
the loop gain such that the loop 
gain falls within the range 
acceptable to the user. 

ADI_ADRV9025_CLGC_HI_ 
LIMIT_TX_ATTEN 

The absolute value of the upper limit of transmit attenuation has 
been reached. For example, if the maximum transmit attenuation limit 
has been configured as 10 dB and the user requests a loop gain that 
causes CLGC to increase the transmit attenuation to a value greater 
than 30 dB, the CLGC limits the transmit attenuation to 30 dB and 
returns this error status. 

Adjust the transmit attenuation 
upper limit to increase the range 
of transmit attenuation accessible 
to the CLGC algorithm. 

 The maximum transmit attenuation can be configured via the 
adi_adrv9010_ClgcConfigSet( ) API. 

If the absolute maximum value of 
transmit attenuation is reached, it 
is recommended to adjust the loop 
gain such that the loop gain falls 
within the range acceptable to the 
user. 

ADI_ADRV9025_CLGC_USER_ 
CHANGE_LOOP_GAIN 

An expected loop gain change from the user has been detected and 
CLGC reinitializes. 

No action is expected from the user. 
If the CLGC does not recover from 
this state, examine the observation 
receive qualifying threshold. 

ADI_ADRV9025_CLGC_ 
USER_CHANGE_TX_ATTEN 

A transmit attenuation change from the user has been detected and 
CLGC reinitializes. 

No action is expected from the user. 
If the CLGC does not recover from 
this state, examine the transmit 
qualifying threshold. 

ADI_ADRV9025_CLGC_ 
MAX_LIMIT_NUM_BATCHES 

The limit for the maximum number of batches per CLGC run has been 
breached and the CLGC is not able to estimate the loop gain correctly 
for the CLGC to converge. 

Increase the batch sample time. 

  The observation receive channel 
has a low SNR that can be causing 
this error. Examine the observation 
receive path. 

ADI_ADRV9025_CLGC_ 
ASSERT_PA_PROTECTION 

The CLGC algorithm has detected a power amplifier protection assertion. Decrease transmit attenuation of 
the signal to recover from a power 
amplifier protection error. 

  Increase the digital backoff in the 
baseband transmit signal. 
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CLGC CAPTURE ERRORS 

Table 292. CLGC Capture Errors 
ClgcState Error Enumeration Description Recommended Recovery Actions 
ADI_ADRV9025_CLGC_CAP_START_FUNC_ 
ORX_ERR 

The CLGC observation receive capture did not 
complete successfully. 

Verify that the observation receive 
channel in question is not enabled. 

  Verify that a valid path exists between 
the transmit channel and observation 
receive channel in question. 

ADI_ADRV9025_CLGC_CAP_SAVE_FUNC_ERR The CLGC capture did not complete 
successfully. This error occurs if the correlator 
hardware in the device did not successfully 
stop or the observation receive channel did 
not successfully release after a CLGC capture. 

Disable CLGC. Verify that other 
calibrations are still running. If other 
calibrations are still running, a full 
firmware reset can be required. 

ADI_ADRV9025_CLGC_CAP_DONE_ERR The CLGC capture aborted because of an error. This error can be because of other errors 
in the system. Examine that other parts of 
the system are operating correctly. 

  A full firmware reset can be required if the 
CLGC gets stuck in this state. 

RECOMMENDED SEQUENCE FOR ENABLING CLGC TRACKING CALIBRATION 

Table 293. DPD Tracking Calibation Bring Up Sequence 
Step Action ADRV9025 APIs used 
1 Program the device and run initial calibrations (including the TxQEC 

initial calibration) with the power amplifier turned off. 
Utility function adi_daughterboard_Program() can be 
used to program the device 

2 Setup external transmit to observation receive mapping. adi_adrv9025_TxToOrxMappingSet 
3 Adjust observation receive gain to an appropriate value to avoid saturation. 

The default gain index in the ADRV9029 is 255 (0 dB attenuation). 
adi_adrv9025_RxGainSet 

4 Turn on the power amplifier and run the external path delay initial 
calibration.  

adi_adrv9025_InitCalsRun 

5 Run the transmit external LO leakage initial calibration. adi_adrv9025_InitCalsRun 
6 If using ADRV9029 CFR, configure the CFR settings. adi_adrv9025_CfrConfigSet, 

adi_adrv9025_CfrEnableSet, 
adi_adrv9025_CfrCorrectionPulseWrite_v2 

7 If using ADRV9029 CFR, run the CFR initial calibration. adi_adrv9025_InitCalsRun 
8 Load the DPD model. adi_adrv9025_DpdModelConfigSet 
9 Assert the DPD reset. adi_adrv9025_DpdReset 
10 Setup the DPD mode of operation, DPD peak search window size, and 

low power threshold. 
adi_adrv9025_DpdTrackingConfigSet 

11 Setup the DPD fault conditions and recovery actions(optional). adi_adrv9025_DpdFaultConditionSet, 
adi_adrv9025_DpdRecoveryActionSet 

12 Setup the CLGC configurations and target the loop gain. adi_adrv9025_ClgcConfigSet 
13 Enable the transmit QEC and transmit LO leakage tracking calibrations. adi_adrv9025_TrackingCalsEnableSet 
14 Enable the DPD tracking calibration. adi_adrv9025_TrackingCalsEnableSet 
15 Enable the CLGC tracking calibration. adi_adrv9025_TrackingCalsEnableSet 
16 Monitor the DPD tracking calibration.status. adi_adrv9025_DpdStatusGet 
17 Monitor the CLGC tracking calibration status. adi_adrv9025_ClgcStatusGet 

CASE STUDY FOR CONFIGURING CLGC BATCH SAMPLING PERIOD 
Signal Under Test 

Figure 270 shows the demodulated version of the 5GNR TM2 signal under test. The signal has a bandwidth of 100 MHz, and a subcarrier 
spacing of 30 kHz (numerology µ = 1). The signal has a rms power of ~−38.14 dBFS. 
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Figure 270. VSA Demodulated 5GNR TM2 Signal Under Test 

Time and Frequency Resource Block Allocations 

Time and frequency resource allocation on the 5GNR signal under test is shown in Figure 271. The signal has most of the resource blocks 
allocated to PDCCH (downlink control information) and PDSCH_DMRS reference symbols that are QPSK modulated.  

There are 48 resource blocks allocated to the downlink control information PDCCH data. The User Equipment (UE) performs blind 
decoding for synchronization with the help of PDCCH symbols. 

There are at least 48 resource blocks allocated to PDSCH DMRS reference symbols that are used for channel estimation. Because the 
5GNR standard does not have cell specific reference symbols, which is why DMRS symbols are used. 

The remaining resource blocks (<10) are allocated for PDSCH physical layer user data.  
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Figure 271. Time and Frequency Resource Block Allocations of 5GNR TM2 Signal Under Test 

Frequency Spectrum of the Signal 

The signal has most of the synchronization data and reference symbols concentrated in two subcarriers at the edges of the spectrum, and 
one subcarrier in the middle of the 100 MHz bandwidth. The subcarrier spacing is 30 kHz.  
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Figure 272. Frequency Domain Spectrum of the Subcarriers 

Time Domain Analysis of the Signal 

A time domain view of the signal zoomed in for ~860 µs is shown in Figure 273. The time has been further subdivided into four timing 
intervals (T1, T2, T3, and T4) during which different resource blocks are active and consist of different frequency contents. The symbol 
period is ~33.34 µs for normal Cyclic Prefix (CP). 

T1 T2 T3 T4
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Figure 273. Time Domain View of the 5GNR TM2 Signal Under Test 

Power Amplifier Characteristics 

The gain vs. Output Power (POUT) over frequency of the SKY66397-12 power amplifier for a single carrier continuous wave (CW) tone at 
2.49 GHz, 2.59 GHz, 2.63 GHz, and 2.69 GHz, respectively, in band n41 operation (2.5 GHz to 2.7 GHz) is shown in Figure 274. The 
carrier at 2.69 GHz experiences a gain of less than 1 dB compared to the carrier at 2.49 GHz at lower powers, and a gain of less than 2 dB 
at higher power levels. 
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Figure 274. SKY66397 Gain vs. Pout over varios Operating Frequency  
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The forward gain (S21) of the power amplifier vs frequency is shown in Figure 275. The operating range of this power amplifier is 
2.5 GHz to 2.7 GHz. The gain is not constant across the operating frequency of the power amplifier. 
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Figure 275. Forward Gain of SKY66397 Power Amplifier vs. Frequency 

CLGC Loop Gain Estimation 

Shown in Figure 276 is a simplified overview of CLGC loop gain estimation. A more detailed flow of measurement can be found in CLGC 
Measurement section. The CLGC algorithm captures transmit and observation receive data in batches. If the captured data meets the required 
threshold and SNR criteria, the CLGC algorithm proceeds to estimate the loop gain and apply the transmit attenuation correction. 
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Figure 276. Simplified Flow Diagram of CLGC Data Sampling 

Analysis of Results With 10 µs Batch Sampling Period 

Based on experiment results, a direct correlation between transmit output power variation and CLGC loop gain variation was noticed. 
Shown in Figure 277 is the CLGC loop gain variation data collected with the 5GNR TM2 signal (described in the Signal Under Test section) as 
the test vector, with target loop gain set to 1.5 dB. A dynamic range of ±1.2 dB can be noticed over time with the CLGC batch sampling 
period configured as 10 µs. 
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Figure 277. CLGC Loop Gain vs. Time 

Factors Affecting CLGC Loop Gain Estimation 

The following are the several factors that could affect CLGC loop gain estimation. 

• Signal characteristics. As outlined in the Signal Under Test section, the TM2 signal has a symbol period of 33.34 µs and each symbol 
period does not have all subcarriers active. The time and frequency resource block allocation is highlighted in the Time and Frequency 
Resource Block Allocations section, and the time distribution of the frequency content is captured in the Time Domain Analysis of the 
Signal section. 

• Power amplifier characteristics. The power amplifier gain over frequency is not constant, as captured in the Power Amplifier 
Characteristics section. Given that the signal under test has subcarriers separated by approximately 50 MHz, and that the subcarriers 
are all not active in the same symbol period, the gain estimated depends on the symbols captured by the observation receive. 

• CLGC sampling period. As noted by the signal characteristics and the power amplifier characteristics, the CLGC might have to sample 
multiple symbols to get a composite view of the loop gain across frequencies. The default CLGC sampling period of 10 µs per batch is 
less than one symbol period of the signal under test. To get a composite view of the overall gain, the CLGC must sample a larger 
amount of data for loop gain estimation. Contrast this sample with a fully filled TM3.1 signal in Figure 278, which has all the subcarriers 
active in one symbol period and it does not require a larger sampling period to get a composite view of the gain.  

22
77

0-
27

2

 
Figure 278. Fully Occupied TM3.1 Signal, Time and Frequency Resource Block View 

Results With Increased CLGC Sampling Period 

Figure 279 captures CLGC loop gain monitored over one hour with the TM2 signal described in Signal Under Test section with the 
CLGC sampling period increased to 1.5 ms from 10 µs. The loop gain by and large remains stable within ±0.05 dB variation, with only 
three iterations where the loop gain varies by greater than 0.05 dB. The loop gain stability is significantly better compared to the 10 µs 
sampling period shown in Figure 277. 
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Figure 279. CLGC Loop Gain vs. Time, with CLGC Sampling Period Increased to 1.5 ms 

CLGC RECOMMENDATIONS 
A recommendation for the user to overcome the issue described in Analysis of Results With 10 µs Batch Sampling Period section is to 
tune the CLGC sampling period to be at least equal to the time period of minimum number of symbols during which they expect to see a 
good variety in subcarrier frequencies across the carrier bandwidth, so as to capture the power amplifier gain across frequencies as 
described in the Results With Increased CLGC Sampling Period section. 

In 5G NR traffic carrying only synchronization and reference symbols for channel estimation, there can be several different combinations 
of demodulation reference symbols (DMRS) locations, number of symbols carrying DMRS, and up to four bandwidth parts in a single 
carrier bandwidth. 

Given the different combinations and frequencies of reference symbols, an approach to determine the CLGC sampling period is to carry 
out a statistical analysis of the signal that can be considered a tough case and use that analysis as a starting point for the CLGC sampling 
period. A signal such as TM2 used in this case, with sparsely populated subcarriers at the edges of the carrier bandwidth, can qualify as a 
tough case for the CLGC. 

In the signal under test described in Signal Under Test section where the power is distributed across resource blocks that are sparse, for 
average power level of the captured samples to be close to the average frame power level, resource blocks in different subcarrier 
frequencies must be accounted for. This ensures a sufficient statistical probability of different subcarriers being engaged, and therefore a 
variety in gain response of the power amplifier seen by the CLGC algorithm. 

A statistical analysis of the NR TM2 signal described in the Signal Under Test section is described in Table 294. The expected value 
(average) of the waveform over 1 frame = −37.1 dBFS A statistical analysis of the 5GNR TM2 signal under test with different moving 
average durations yields the results in Table 294. 

Table 294. Statistical Analysis of Moving the Average of 5GNR TM2 Signal Under Test 
Sl Number Moving Average Duration (µs) Mean (dBFS) Standard Deviation (dB) 
1 10 −36.5 2.95 
2 100 −37.55 1.49 
3 1000 −37.14 0.012 

Compare the statistics from a TM2 signal from 1 with a fully filled TM3.1 NR100 signal in Figure 278 that has a rms value of −12 dBFS 
per frame. A 10 µs moving average of the TM3.1 NR100 signal results in a mean of −11.99 dBFS and a standard deviation of 0.12 dB, 
which is close to the frame rms of −12 dBFS. 

To further illustrate the point of Table 294, the distribution of moving average computed for the waveform under test for an average 
duration equal to 10 µs, 100 µs. and 1000 µs is shown in Figure 280 and Figure 281. The standard deviation decreases and convergence 
towards the expected value increases as the averaging duration increases for the signal under test. 

https://www.analog.com/adrv9026
https://www.analog.com/adrv9029


UG-1727 ADRV9026/ADRV9029 System Development User Guide 
 

Rev. 0 | Page 334 of 336 

22
77

0-
27

4

0.30

0.25

0.20

PD
F

0.15

1.00

0.05

0
–45 –40 –35

PDF OF MOVING AVERAGE FUNCTION OF TM2 WAVEFORM UNDER TEST

–30  
Figure 280. Distribution of Moving Average 10 µs and 100 µs  

22
77

0-
27

5

1.0

0.9

0.8

PD
F

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
–37.9 –37.8 –37.7 –37.6 –37.5 –37.4 –37.3 –37.2 –37.1 –37.0

PDF OF MOVING AVERAGE DURATION = 1ms FOR A 5GNR TM2 WAVEFORM UNDER TEST

–36.9  
Figure 281. Moving Average Distribution with Duration = 1 ms 

The cumulative distribution function of the waveform for different averaging durations also provides insight into averaging duration that 
can ensure stability for the signal under test by engaging different subcarriers across frequencies in a CLGC sampling period. 

With the averaging duration set to 1 ms, the CDF of the signal is guaranteed to lie between −37.2 dBFS to −37.1 dBFS for 99.83% of the time. 
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Figure 283. CDF Function for Signal Averaged over 100 µs 
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Figure 284. CDF Function for Signal Averaged over 1 ms 
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These finding can be summarized as follows: 

• The channel output power instability is directly proportional to the CLGC loop gain variation observed. 
• The channel output power stability depends on the signal characteristics, power amplifier characteristics, and the CLGC sampling period. 
• As a starting point, the user can perform a statistical analysis of the signal and can use the averaging period with least standard 

deviation from the expected frame power level as the CLGC sampling period, which ensures sufficient statistical probability of 
engaging subcarriers across frequencies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors). 
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