

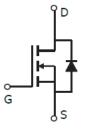
N-Channel Enhancement Mode Power MOSFET

Description

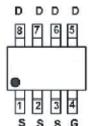
The RM5N150S8 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

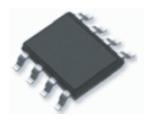
V_{DS} = 150V,I_D =4.6A


 $R_{DS(ON)} < 75 m\Omega \ @ \ V_{GS} = 10 V \quad (Typ:63 m\Omega)$

 $R_{DS(ON)}$ < 88m Ω @ V_{GS} =4.5V (Typ:70m Ω)


- Special process technology for high ESD capability
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current

Application


- DC/DC Primary Side Switch
- Telecom/Server
- Synchronous Rectification
- Halogen-free

Schematic diagram

Marking and pin assignment

SOP-8 top view

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
5N150	RM5N150S8	SOP-8	Ø330mm	12mm	4000 units

Absolute Maximum Ratings (T_A=25 ℃ unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	150	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous	I _D	4.6	А
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	2.9	А
Pulsed Drain Current	I _{DM}	35	А
Maximum Power Dissipation	P _D	3.1	W
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	°C

Thermal Characteristic

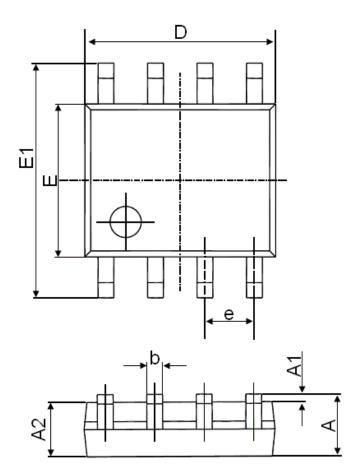
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	40	°C/W

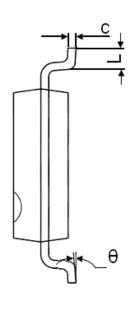
Electrical Characteristics (T_A=25 [°]C unless otherwise noted)

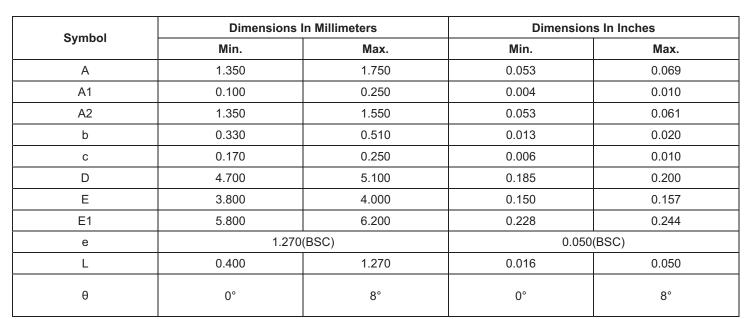
Static Characteristics

Parameter	Symbol	Conditions	Value			Unit
Farameter		Conditions	min	typ	max	Offic
Drain to Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =250μA	150	-	-	V
Gate Threshold Voltage	$V_{GS(th)}$	$V_{GS}=V_{DS}$, $I_{D}=250\mu A$	1	2	3	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} =0V, V _{DS} =150V, T _j =25°C	-	-	1	μА
		V _{GS} =0V, V _{DS} =150V, T _j =100°C	-	-	100	
Gate to Source Leakage Current	I _{GSS}	V _{GS} =±20V, V _{DS} =0V	-	-	±100	nA
Drain to Source on Resistance	R _{DS(on)}	V _{GS} =10V, I _D =5A	-	63	75	mΩ
		V _{GS} =4.5V, I _D =4A	-	70	88	
Transconductance	g _{fs}	V _{DS} =5V, I _D =5A	-	18	-	S
Gate Resistance	R_G	V _{GS} =0V, V _{DS} Open, f=1MHz	-	5.0	-	Ω

Dynamic Characteristics


Input Capacitance	C _{iss}	V _{GS} =0V, V _{DS} =75V, f=1MHz	-	625	-	
Output Capacitance	C _{oss}		-	37	-	рF
Reverse Transfer Capacitance	C _{rss}		-	13	-	
Total Gate Charge (10V)	Q _g (10V)		-	11.6	-	
Total Gate Charge (4.5V)	Q _g (4.5V)			6.5		nC
Gate to Source Charge	Q_{gs}	$-V_{DD}$ =75V, I_{D} =5A, V_{GS} =10V	-	1.2	-	IIC
Gate to Drain (Miller) Charge	Q_{gd}		-	4	-	
Turn on Delay Time	$t_{d(on)}$		-	10	-	
Rise time	t _r	V_{DD} =75V, I_{D} =5A, V_{GS} =10V,	-	7	-	ne
Turn off Delay Time	$t_{d(off)}$	$R_G=10\Omega$,	-	14	-	ns
Fall Time	t _f		-	3	-	


Reverse Diode Characteristics


Diode Forward Voltage	V_{SD}	V _{GS} =0V, I _F =5A	-	0.9	1.2	V
Reverse Recovery Time	t _{rr}	V =75V L =5A dL /dt=100A/	-	50	-	ns
Reverse Recovery Charge	Q _{rr}	V _R =75V, I _F =5A, dI _F /dt=100A/μs	-	70	-	nC

SOP-8 Package Information

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

