

Product Termination Notification

Product Group: SIL/Thu May 20, 2021/PTN-SIL-014-2021-REV-0

Conversion to Cu Wire - SQS401ENW

DESCRIPTION OF CHANGE: The affected part number listed in this notification has been approved for termination. The recommended replacement part is the SQS411ENW-T1_GE3. This device offers a closely matched solution and an upgrade to the latest Cu wire material set for high volume production. The SQS411ENW-T1_GE3 uses our mature 1G P-Channel MOSFET technology from the same wafer fab and is assembled in the same facility as the SQS401EN-T1_GE3. A side by side comparison of the data sheet specifications is included with this notification.

REASON FOR CHANGE: Standardization of materials

EXPECTED INFLUENCE ON QUALITY/RELIABILTY/PERFORMANCE: None

PART NUMBERS/SERIES/FAMILIES AFFECTED: SQS401ENW-T1_GE3

VISHAY BRAND(s): Vishay Siliconix

TIME SCHEDULE:

Last Time Buy Date: Tue Dec 7, 2021 Last Time Ship Date: Wed Jun 1, 2022

SAMPLE AVAILABILITY: Qualified samples of replacement product are available immediately

PRODUCT IDENTIFICATION: SQS411ENW-T1_GE3

QUALIFICATION DATA: AEC Q101 qualification data of replacement product is available. Qualification PPAP is available now.

This PCN is considered approved, without further notification, unless we receive specific customer concerns before Sat Nov 27, 2021 or as specified by contract.

ISSUED BY: Lance Gurrola, Lance.Gurrola@vishay.com

For further information, please contact your regional Vishay office.

CONTACT INFORMATION:

Americas	Europe	Asia
Lance Gurrola	VISHAY Europe Sales GmbH	Vishay Intertechnology Asia Pte. Ltd
2565 Junction Ave	DrFelix-Zandman-Platz 1	37A Tampines Street 92 #07-01
San Jose United States 95134	Selb Germany 95100	Singapore Singapore 528886
business-americas@vishay.com	business-europe@vishay.com	business-asia@vishay.com
Phone: 4089705799	Phone: 49 9287 710	Phone: 65 6788 6668
Fax: 4089705799	Fax: 49 9287 70435	Fax: 65 6788 0988

Affected Part Number
AEC Q101 Qualified
Package Type
Process Technology
100% Rg & UIS Tested
Datasheet Rev

AGQ 401ENW
Yes
PPAK 1212
POM cells/in²
Yes
C / A

Absolute Maxium Ratings	Symbol	Test Conditions	Limit	Units
Drain-Source Voltage	VDS		-40	V
Gate-Source Voltage	VGS		±20	٧
Continuous Drain Current	ID	TC = 25°C	-16	A
Continuous Drain Current	ID	TC = 125°C	-16	A
Continuous Source Current (Diode Conduction)	IS		-16	A
Pulsed Drain Current	IDM		-64	A
Single Pulse Avalanche Current	IAS	L = 0.1mH	-26	A
Single Pulse Avalanche Energy	EAS	L = 0.1IIII	33.8	mJ
Max Power Dissipation	PD	TC = 25*C	62.5	W
Max Power Dissipation	PD	TC = 125°C	20	W
Opetating Junction	L1		-55 to +175	*C
Thermal Resistance J_A	RthJA	PCB Mount	81	*C/W

Specifications TJ=25°C unless otherwise noted		Test (Conditions	MIN	TYP	MAX	Units
Drain-Source Breakdown Voltage	VDS	VGS=0\	/, ID=250uA	-40			v
Gate-Source Threshold Voltage	VGS(th)	VDS=VG	iS, ID=250uA	-1.5	-2	-2.5	٧
Gate -Source Leakage	IGSS	VDS=0\	, VGS=±20V			±100	nA
		VGS=0V	VDS=-40V			-1	uA
Zero Voltage Drain Current	IDSS	VGS=0V	VDS=-40V, Tj=125°C			-50	uA
_		VGS=0V	VDS=-40V, Tj=125°C			-150	uA
On-State Drain Current	ID(ON)	VGS=-10V	VDS≥5V	-20			A
		VGS=-10V	ID=-12A		0.020	0.029	Ω
Drain-Source On-State Resistance	RDS(on)	VGS=-10V	ID=-12A, Tj=125°C		0.030	0.043	Ω
Diam Source on State Resistance	(LDS(GII)	VGS=-10V	ID=-12A, Tj=175°C		0.040	0.051	Ω
		VGS=-4.5V	ID=-9A		0.035	0.047	Ω
Forward Transconductance	gfs	VDS=-1	L5V, ID=-7A		12		S
Input Capacitance	Ciss				1565	1875	
Output Capacitance	Coss	VGS=0V VDS=-20V, f=1MHz			245	295	pF
Reverse Transfer Capacitance	Crss				170	205	
Total Gate Charge	Qg	VGS=-4 5V			17.7	21.2	nC
Gate-Source Charge	Qgs	VGS=-4.5V VDS=-20V, ID=-9.3A		5.6	6.6		
Gate-Drain Charge	Qgd				8.1	9.7	
Gate Resistance	Rg	f=1mHz		1.1	1.95	2.8	Ω
Turn-On Delay Time	td(on)				11	14	
Rise Time	tr	VDD=-20V, RL=14.2Ω, ID=-1.4A, Vgen=-10V, Rg=1Ω			10	13	ns
Turn-Off Delay Time	td(off)	VDD=-20V, KL=14.217, II		36.5	44		
Fall Time	tf				10.2	13	
Pulsed Source-Drain Current	ISM					-64	A
Forward Voltage	VSD	If=8.8A VGS=0V			-0.8	-1.1	٧
Body diode reverse recovery time	trr						ns
Body diode reverse recovery charge Qrr		L=4.4A. di/dt=100A/us					nC
Reverse recovery fall time	ta	1 ₁ -4.44, u/dt=100/yds					ns
Reverse recovery rise time	tb						ns
Body diode peak reverse recovery current	I _{RM(REC)}						A

 Replacement Part Number
 SQS411ENW

 AEC Q101 Qualified
 Yes

 Package Type
 PPAK 1212

 Process Technology
 10 Cells fin²

 100% Rg and UIS Tested
 Yes

 Datasheet Rev
 B

Symbol	Test Conditions	Limit	Units
VDS		-40	V
VGS		±20	V
ID	TC = 25°C	-16	A
ID	TC = 125°C	-16	A
IS		-16	A
IDM		-64	A
IAS	L = 0.1mH	-19	A
EAS	L=0.1mn	18	mJ
PD	TC = 25*C	53.6	w
PD	TC = 125°C	18	w
TJ		-55 to +175	*C
RthJA	PCB Mount	81	*C/W
RthJC		2.8	*C/W

	Test Co	onditions	MIN	TYP	MAX	Units
VDS	VGS=0V,	ID=250uA	-40			ν
VGS(th)	VDS=VGS	, ID=250uA	-1.5	-2	-2.5	v
IGSS	VDS=0V,	VDS=0V, VGS=±20V			±100	nA
	VGS=0V	VDS=60V			1	uA
IDSS	VGS=0V	VDS=60V, Tj=125*C			50	uA
	VGS=0V	VDS=60V, Tj=125*C			150	uA
ID(ON)	VGS=-10V	VDS≥-5V	-20			A
	VGS=-10V	ID=-8A		0.021	0.027	Ω
RDS(on)	VGS=-10V	ID=-8A, Tj=125°C			0.0405	Ω
ND3(UII)	VGS=-10V	ID=-8A, Tj=175°C			0.048	Ω
	VGS=-4.5V	ID=-6A		0.029	0.038	Ω
gfs	VDS=-15	V, ID=-7A		23		s
Ciss				2455	3191	pF
Coss	VGS=0V	VDS=-25V, f=1MHz		157	205	
Crss				187	228	
Qg				38	50	nC
Qgs VGS=-:	VGS=-10V	VDS=-20V, ID=-2.5A		6	8	
Qgd	1			7	10	i
Rg	f=1	mHz	2.5	4.2	6.7	Ω
td(on)				10.5	13.7	
				3	3.9	i
td(off)	VDD=-20V, RL=14.3Ω, ID=-1.4A, Vgen=-10V, Rg=1Ω			39.6	51.5	ns
tf				6.4	8.4	
ISM					-64	А
VSD	I _F =-8A VGS=0V			-0.8	-1.2	٧
trr						ns
Qrr	I=4.4A, di/dt=100A/us					nC
ta	I ₂ =4.4A, di ₃	ut-100M/us				ns
tb						ns
I _{RM(REC)}						A

Type of Change	Risk
None	None
Lower	None, value above rated current of -16A
Lower	At max current of -16A energy capability is the same.
Lower	None, lower Rds(on) will compensate
Lower	None
None	None
None	None
None	None

Type of Change	Risk
None	None
Lower	None
Higher	None
Changed	Very low. Switching speeds are not impacted
Changed	None
Changed	Very low. Switching speeds are not impacted
At -4.5V = 18nC	
typ	None
Changed	None
Changed	None
Changed	Very low. Switching speeds are not impacted
Changed	None
None	None
Changed	None