
Kickstart
Setup and control sof tware for motors with integrated drive 
electronics



2

Kickstart User Manual

Status:	 Kickstart V1.9.40

		  Doc Rev 1.0.12 – 31.01.2014

Copyright 2013 ebm-papst

All rights reserved. No parts of this work may be reproduced in any form or by any means – graphic, electronic, or mechanical, including 

photocopying, recording, taping, or information storage and retrieval systems – without the written permission of the publisher.

Trademarks

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The 

publisher and the author make no claim to these trademarks.

Disclaimer

While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors 

or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code 

that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused 

or alleged to have been caused directly or indirectly by this document. 

Subject to change without notice.

The respective current version of this operating manual is available on the ebm-papst internet site: www.ebmpapst.com

www.ebmpapst.com


3

1	 About This Manual� 4

1.1	 Symbols Used� 4

1.2	 Terms Used� 4

2	 Safety� 6

2.1	 Intended Use� 6

2.2	 Safety Notices� 6

3	 Overview� 7

4	 Installation� 9

5	 Using Kickstart� 10

5.1	 Getting started� 10

5.2	 Main Screen and Toolbar� 11

5.3	 User Level� 12

5.4	 Projects and Templates� 13

5.5	 Editing the Module Tree� 14

6	 Kickstart Modules� 15

6.1	 CAN Interface� 15

6.1.1	 CAN Monitor� 15

6.1.2	 CAN Sender� 16

6.2	 Drive01 / CANopen Drive� 17

6.2.1	 Setup� 18

6.2.2	 Object Editor� 18

6.2.3	 Script� 19

6.2.4	 Firmware� 19

6.3	 Motor Access / CANopen Node	20

6.3.1	 CANopen Node – Edit Mode� 21

6.3.2	 CANopen Node - UI Format� 21

6.4	 Network Manager� 22

6.5	 Scope� 23

6.5.1	 The Scope – Getting Started� 23

6.5.2	 Configuration� 24

6.5.3	 Recording Data� 25

6.5.4	 Plot� 25

6.5.5	 Trigger� 26

6.6	 UI Panel� 27

6.6.1	 UI Panel - Getting Started� 27

6.6.2	 UI Format Definition� 27

6.6.3	 Node IDs and Multi-Node Panels� 30

6.6.4	 Project and UI Files /  

Advanced User Interfaces� 31

Table of Contents



4

1	 About This Manual

1.1	 Symbols Used

The following symbols are used in this document:

WARNiNG

As defined by these operating instructions and the danger notices on the products, death, severe bodily injury or 

considerable damage to property could result if the appropriate safety measures are not taken.

Notice

Important information about the product or part of the operating instructions.

1.2	 Terms Used

Qualified personnel

Personnel who are familiar with the installation, assembly, commissioning and operation of the product and are qualified to carry out the 

respective activities.

CAN (CAN-Bus)

Controller Area Network. Field bus design according to ISO 11898-1.

CANopen

CAN-based higher layer protocol designed for use in motion-oriented machine control networks, as maintained by www.can-cia.org.

CAN Interface

Accessory to connect the PC with the CAN bus network. Usually this is a CAN-USB interface, but other options (e.g. CAN-NET via Ethernet 

TCP) can be available.

Node

CANopen device, identified by a Node ID in the range of 1..127.

CANopen Drive

EC position drive that can be configured and operated using Kickstart, e.g. ebm-papst ECI series.

Python

A programming and scripting language under OSI Open Source License, maintained by www.python.org. Kickstart currently uses the 

Python 2.6.7 implementation.

Data Object

A device parameter or value that can be read out and / or modified using Kickstart. For CANopen devices a data object is referenced by the 

Node ID, and the object index and subindex. Kickstart uses the following standard format for a Data Object ID:

127.1000h.00h (here: Node ID = 127, object index 1000h and subindex 0h)

CANopen object data values are obtained using SDO or PDO transfer.

http://www.can-cia.org
http://www.python.org
http://docs.python.org/release/2.6.7/


5

1	 About This Manual

SDO Service Data Object

CANopen SDO transfers are used for low priority reading and writing of device parameters and objects. SDO Upload (read from device) and 

SDO Download (write to device) specifications define different standard methods of reading and writing different types of data, including 

optimized transfers for large blocks of data.

PDO Process Data Object

CANopen devices produce or consume PDO CAN frames. They are used for fast data transfer of critical process data. Before using PDO 

transfer, the CANopen device must be configured, i.e. the content of the PDO object must be defined (PDO Mapping). Two types of PDOs are 

defined for CANopen:

Transmit PDO (TPDO) - process data produced by the device node, e.g. status and position information.

Receive PDO (RPDO) - process data consumed by the device node, e.g. control command.

XDD / XDC

XXML Device Description File (.xdd) / XML Device Configuration File (.xdc).

XDD files contain a dictionary of device functions and parameters and supersede the classic .eds files (Electronic DataSheet).

XDC file in addition contain parameter values for device configuration and supersede the .dcf file format (Device Configuration File).

Qt Quick / QML

Qt Quick is a new user interface (UI) technology and development kit for creating rich, attractive user interfaces in minimum time. QML is a 

declarative user interface language based on Javascript. It describes how user interface elements look and how they behave. Kickstart 

projects can make use of Qt Quick technology to build custom designed screens and attractive end user applications.

RS485-interface

The RS485 interface is a wired bus system for serial data transmissions. The transmission takes place via 2 wires. The digital signal is 

transmitted via these wires in differential form. In this way common-mode interference is suppressed effectively.

RS485-Communication

Communication between users and the drive software takes place via so-called telegrams. Each program contains specified data, which has 

to be received or sent. The drive software ignores telegrams that are not addressed to it.

http://qt.digia.com/product/
http://qt.digia.com/product/


6

2	 Safety

2.1	 Intended Use

This software is intended for the commissioning and service of position drives and other motionoriented machine control units. This software 

accesses the devices via a multi-layer application protocol, such as the CANopen application or the RS485 protocol.

2.2	 Safety Notices

WARNiNG

For all commissioning and service tasks, please refer to the technical documentation of your drive unit or automation 

device controlled by this software. All works must be performed by Qualified Personnel familiar with the drive units or 

devices.



7

3	 Overview

RS485 CAN-Bus

K4 motor

Kickstart software

Start screen

Kickstart K4

Start interface
Kickstart K5

Start interface

K5 motor

Kickstart is a modular PC software platform that can be used for a variety of configuration, commissioning and service tasks.

It is highly flexible and uses application-specific project and template files to present the user with exactly the functions and controls needed 

for a specific task. For example, a field engineer could work with a Kickstart project that performs exclusively application-specific service 

tasks, e.g. a drive firmware update. Meanwhile, developers and application engineers could work with a scalable, fully flexible interface, 

making use of the full range of Kickstart’s functionality. For example: 

•	 Commissioning and configuring field bus nodes, like drive units or controllers.

•	 Field bus monitoring (e.g. generating a CAN Bus trace file, CAN BUS monitor with Find and Filter functions).

•	 Communication via the RS485 takes place in the background. The user only has to concentrate on the defined objects. The protocol is 

implemented in the external converter box, the USB-CAN-RS485 adapter, as described in the manual.

•	 Scope data display: Live display of data from one or several drive parameters, logging to a file, trigger on specific events.

•	 Custom UI Panels: create, display and control elements for a specific application, e.g. machine control. Build a simple panel from 

predefined sliders and dials using simple drag and drop.



8

3	 Overview

Kickstart projects are made up of standard modules which are used as blocks. For example, the "CAN (USB) Interface" or "Drive01 / 

CANopen Drive" modules. Additional project templates containing other modules are available for specialised applications (scope, UI panels, 

etc.).



9

4	 Installation

The Kickstart application software is usually distributed in a .exe self extracting archive file.

Double-click the .exe file to copy the application to a directory on your computer, or a removable media, e.g. a disk-on-key USB memory 

stick.

Then start the Kickstart software by double-clicking on Kickstart.exe.

Notice

No installation (setup) is required, but please make sure you extracted all files and folders from the original .zip archive 

to a location on your PC or removable media.

Notice

Additional device driver installation can be required for hardware accessories like the CAN Interface (USB-CAN). Driver 

installation on Windows Vista, Windows 7 and other recent Windows versions is fully automatic when connecting the 

device for the first time. Please follow the Windows instructions.

Notice

The respective most up-to-date version of the Kickstart.exe file is available to download from the ebm-papst website 

(www.ebmpapst.com).

Notice

Compressed files must be decompressed using appropriate software. Information on this is available on www.winzip.de.

www.ebmpapst.com
www.winzip.de


10

5	 Using Kickstart

5.1	 Getting started

WARNiNG

Do not operate Kickstart within an automation network where any of the Kickstart CAN or CANopen communication could 

possibly disrupt the normal operation.

WARNiNG

Incorrect wiring or wrong cabling can damage electronic components, including the USB-CAN-RS485 adapter, the 

CAN-RS485 interface and the PC connected with the CAN Interface.

Notice

The USB-CAN-RS485 adapter is required as an accessory for the ebm-papst "Kickstart" software, in order to connect the 

PC with the K4 drive. The adapter can be ordered under Material No. 914 0000 400.

•	 Connect the USB-CAN-RS485-Interface to your equipment first, before connecting it to the PC.

•	 Switch on power supply for the CAN nodes.

•	 Connect the CAN Interface to your PC using the USB cable supplied.

•	 Start the Kickstart software application.

Kickstart presents a home screen that allows you to pick your specific application or project.

Kickstart Main Screen and Project Selector

•	 Pick a project or an application from the Project Selector list on the right.

•	 Alternatively, use  Open Project to load a Kickstart Project File (.kickzip or .kickpro) that you received for your specific application.



11

5	 Using Kickstart

5.2	 Main Screen and Toolbar

The Kickstart main screen is divided into three sections:

Kickstart Main Screen Layout

 Menu and Toolbar Area

The menu and toolbar area stays the same for all Kickstart project.

	 Main Toolbar Functions

	 	 New Project

Opens the Kickstart Home Project template. Usually, it is a project selector that allows you to pick your specific application.

	 	 Open Project

Opens an existing Kickstart project (.kickzip or .kickpro) or template (.kicktpl).

	 	 Save Project

Saves the currently open project including all configurations and additional files used within the project.

	 	 User Level

Changes the User Level. A password may be required.



12

5	 Using Kickstart

	 	 Stop Drives

Resets all drive units listed in the module area and communication between the drive and the computer back to the idle state.

WARNiNG

The Stop Drives function is not an emergency stop device. It cannot perform any safety or emergency functionality for 

your drive application. Please ensure that external emergency stop functions are effective, according to the safety 

regulations and requirements of your drive application.

 Modules Area

This area shows the Kickstart Modules available with the currently opened project. Greyed out items are modules that require a higher User 

Level for access. With a higher user level, you can also editing the Module Tree.

 Content Area

Clicking on a module symbol in the modules area  will open a detailed view of this module or a specific function (e.g. “CAN Monitor”) in 

the content  area . The content area allows docking and stacking of several module views. When saving a project, the layout of the 

content area is remembered and restored when re-opening the project.

5.3	 User Level

User levels can be used in Kickstart projects to limit access to modules that are not needed for standard operation, or that need to be used 

with extra precautions.

The password protection is not intended to prohibit access to certain users, but rather as an indication that you are now operating on a more 

advanced level. The default user levels and passwords are:

User Level Password

0 – Monitoring –

1 – Running –

2 – Running With Precaution expert

Notice

Different versions of the Kickstart software may use different user levels and passwords.

WARNiNG

The highest User level tasks can require additional expert knowledge about the controlled devices, or could possibly 

render a device unusable or cause other damage.

Changing the required User Level for a module

The minimum User Level required for a specific module is stored in the Kickstart project file. To modify these settings, perform the following 

steps:

•	 Store your project as a .kickpro Uncompressed Project File as described in  .

•	 You can edit the .kickpro file with a standard text editor or an appropriate XML editor. Look for the userLevel = "..." attributes and change 

them accordingly.

•	 To convert your modified project file back into a .kickzip or .kicktpl file, please follow the instructions in  . 



13

5	 Using Kickstart

5.4	 Projects and Templates

Everything you see in the modules and content area of Kickstart is defined in a Kickstart template or project file. The following file formats 

are used:

	 .kickpro Uncompressed Project Files

A Kickstart .kickpro file defines everything you can see in the Modules and Content area of Kickstart: CAN Interfaces, CANopen Drive 

units, Scope modules, a.s.o.

The .kickpro file is a standard XML file that can be edited by experienced users to build specific applications (e.g. work with three drive 

units instead of one, modify the user levels required for each module, create additional HTML documentation).

Notice

When manually editing .kickpro files, make sure you keep a copy of the original files. Check carefully that your modified 

file is a valid .xml file. A good XML editor can help validate the XML format and prevent invalid changes that could break 

the structure.

The .kickpro file is often accompanied by additional files that are necessary to run the project’s predefined tasks. These files can include:

•	 .css files for documentation formatting.

•	 .py files for Python script code that is executed by Kickstart or is compiled and loaded into a drive unit.

•	 .bin firmware files for updating drive unit application firmware.

	 .kickzip Compressed Project Files

.kickzip files are compressed file archives that contain: 

•	 One .kickpro file of the same name as the .kickzip archive

•	 Additional helper files (.css, .py, .bin, ...) as described above.

When opening a .kickzip project, Kickstart creates a temporary folder and extracts all files to this location.

When saving a .kickzip project, Kickstart first creates an updated .kickpro file in the temporary folder, and then creates the compressed 

.kickzip file containing all files from the temporary folder, including sub-directories.

Notice

You can extract the .kickpro file and all helper files by using menu File >  Save As... and choosing Kickstart 

Uncompressed Project (.kickpro) instead of the default .kickzip file format.

Notice

To create a .kickzip compressed file archive, first create a standard .zip file archive that contains the .kickpro file and 

all required helper files. Then change the file extension from .zip to .kickzip.

http://www.python.org


14

5	 Using Kickstart

	.kicktpl Template Files

A Kickstart installation comes with a number of predefined projects for specific tasks, stored as .kicktpl template files. The Project 

Selector and the projects defined in Getting started are examples for such templates.

Opening a .kicktpl file is no different to opening a .kickzip file, except that no file name for saving the project is chosen. If you are saving 

the project for the first time using  Save Project, you are prompted to provide a location and name of the new project – which will be 

saved as a .kickzip file.

Notice

You can create your own templates by using a .kickzip file and simply changing its extension to .kicktpl.

5.5	 Editing the Module Tree

To edit the modules tree in the Kickstart Main Screen, right-click on a module tile and choose an action from the displayed context menu.

Notice

User Level 2 is required for making the context menu accessible.

You can:

•	 Cut, Copy or Paste a module within the modules tree. To copy modules between different projects, open a second Kickstart instance with 

the second project.

•	 Delete a module and its children from the project tree.

•	 Rename a module.

The different Kickstart modules have master / slave relations that are not visible in the modules tree.

E.g. a CANopen Drive module always uses a CAN Interface module for CAN bus communication. When you rename such a slave module, e.g. 

from CAN Interface to CANUSB, the master / slave connections are automatically updated. However, when you Paste a module into a project, 

Kickstart might not be able to automatically choose the correct slave(s) for this module. In this case it is required to look at the original 

uncompressed project file (.kickpro file) and edit the related <slave> information manually.

Notice

Additional developer guides about the .kickpro file structure are available on request. Please contact your Application 

Support.

WARNiNG

The module tree editing actions are not reversible. Make sure you have a backup version of your project before modifying 

its contents.



15

6	 Kickstart Modules

6.1	 CAN Interface

Depending on the template, different modules / module names are available, i.e. the modules do not always have all the functions described 

here.

The  CAN Interface module controls the communication interface to the CAN network. This is usually a  CAN-USB interface with the 

following parameters:

•	 Communication Port

The default setting (first found) should work fine for most applications. If you need to choose a COM port manually (e.g. “COM6”), open 

the Windows Device Manager to find out the correct COM port number to be used with the  CAN-USB interface.

•	 Baud Rate

The (scan) setting is used when you are connecting to a CAN network or device with an unknown baud rate. The baud rate scan will 

actively reset the nodes and try to access any existing CAN node.

WARNiNG

The baud rate scan uses a CANopen NMT communication reset which will might will interfere with any running 

application. Never use baud rate scan in an automation network or in a drive application which is in normal operation 

mode.”

Notice

The baud rate scan or any previous access attempt with mismatching baud rate can render the network inaccessible. I.e. 

one or all CAN nodes, or the CAN interface’s controller itself have entered a “bus off” state and are no longer communi-

cating. If the baud rate scan fails for no obvious reason, please power cycle all CAN nodes and then the CAN Interface 

itself.

6.1.1	 CAN Monitor

Use the  CAN Monitor module to display the current communication on the CAN Bus, or log it to a text file using the Record function.

The Find / Filter function allows to search for specific CAN telegrams, resp. display a filtered version of the CAN bus traffic. The drop-down 

list in the Find / Filter contains some presets for useful filtering options. demonstrating how the filter works.

Filter Conditions
id = <MyCobID> – show only CAN frames with a specific COB ID

id != <MyCobID> – show only frames that do NOT contain this COB ID

dir = tx – show only frames transmitted by Kickstart

index = <ObjIdx>, subindex = <ObjSubIdx> – show only CANopen frames related to a SDO with the specified 

ObjIdx and ObjSubIdx

data = 80* – show only frames where the CAN data starts with hex 80

Multiple Conditions

You can use more than one filter condition in one filter, e.g.

dir = tx, index = <ObjIdx>, subindex = <ObjSubIdx> - show only frames from Kickstart that contain ObjIdx 

and ObjSubIdx. Only CAN frames that match ALL filter conditions (dir, index and subindex) will be displayed.



16

6	 Kickstart Modules

Inverting your filter
Starting your filter with the keyword exclude will hide anything that matches the filter condition, e.g.

exclude id = 581h, index=606c, index=6041 – show only SDO traffic for object 606c and 6041 for CANopen node 1

Comments
Use a # to add additional free text comments about your filter, e.g.

id != 81-ff # hide emergency msg

Auto Filter
Pressing Auto Filter will add a filter condition to suppress the CAN frame type with the most frequent appearance. Repeated use of Auto 

Filter is a convenient way to get an almost steady display where only rare CAN frames (e.g. control PDOs or emergencies) are shown.

Recording Monitored Frames
Use the Record button to start recording CAN frames to a text file. By default, the traced file will be stored in the projects’ folder with the 

date-time stamp of the beginning of recording. Make sure you save the project to have the recorded file accessible in the future.

To load a recorded file, use the Open button – this will load all CAN frames from the recorded file into the CAN monitor. Optionally, use 

Delete All to clear the monitor before opening the file.

Notice

Filtering only affects the screen display, not the actual CAN frame buffer or trace file recordings. After deactivating 

Find / Filter, the full CAN traffic is shown again.

Notice

The CAN Monitor display will only hold a limited amount of CAN frames in memory. Please use the Record function to 

record an unlimited amount of CAN frames to a standard text file (.txt). You can re-open a CAN trace file using any textual 

editor, or by using the Open button. This will load all frames into the monitor.

6.1.2	 CAN Sender

The  CAN Sender module can be used for simple CAN testing applications which require sending one or several fixed CAN frames.

It is not a full scripting engine but a simple macro sequence for quick and easy testing.

Available commands:

send <ID>,<data Size>,<data Hex>

delay <milliseconds>

wait <ID>,<data size>,<data Hex>[,<timeoutMillisec>]

ID and data size can be provided as hex expressions:

send 0x7e5,2,04 01

or

send 7e5h,0x2,04 01

wait supports string wildcards * and ? for the <data hex> parts. An additional timeout can be specified.



17

6	 Kickstart Modules

Example:

wait 581h,8,4b 41 60 00 ?? ?4 *,1000

(waits for a status word where the highest four bits are “4”. gives up after one second)

The following macros are supported inside the send and wait commands:

canid(<expression>) – calculates the expression and returns a CAN ID in hex format

canunsigned32(<expression>) or caninteger32(<expression>)– calculates the expression and returns a 4-byte 

CAN data block

canunsigned16(<expression>) or caninteger16(<expression>)– as above, but 2 byte

canunsigned8(<expression>) or caninteger8(<expression>)– as above, but 1 byte

Example:

nodeId = 1

velocity = 1000

send canid(0x600 + nodeId),8,23 ff 60 00 canunsigned32(velocity)

A simple do...loop syntax can be used for endless loops. Or use do...loop until found in combination with a wait macro.

Example:

do

	 do

		  ; request status

		  send canid(0x600 + nodeId),8,40 41 60 00 00 00 00 00

		  ; wait for target reached (status word upper four bits = 4)

		  ; using 0.5 seconds timeout

		  wait canid(0x580 + nodeId),8,4b 41 60 00 ?? ?4 ?? ??,500

	 loop until found

	 ; target has been reached. wait until drive moves again

	 do

		  send canid(0x600 + nodeId),8,40 41 60 00 00 00 00 00

		  wait canid(0x580 + nodeId),8,4b 41 60 00 ?? ?0 ?? ??,500

	 loop until found

loop

6.2	 Drive01 / CANopen Drive

Depending on the template, different modules / module names are available, i.e. the modules do not always have all the functions described 

here.

The  Drive 01 / CANopen Drive module offers basic configuration, testing and service tasks for CANopen positioning drives supported by 

this Kickstart application. Details on the actual drive models supported can be found in the Kickstart Projects / Templates included in your 

specific Kickstart software version.

Notice

The following sections on CANopen Drive panels provide a basic overview of the available functions. Details can depend 

on the actual drive model used and are documented in the Kickstart Projects / Templates section of the application itself.



18

6	 Kickstart Modules

6.2.1	 Setup

The  Setup panel is used for various configuration and simple testing tasks:

Notice

Use initial setup functions with care. It is strongly recommended to perform initial setup functions with only one drive unit 

connected to Kickstart, and not within a full CANopen installation with several drive nodes.

Initial Setup

Assign or change the CAN Node ID or CAN Baud Rate.

The following panels are available after starting a drive node using the Start Drive button:

•	 Test Velocity

Switch the drive to operation mode “Profile Velocity Mode” and perform basic velocity control (settarget velocity, acceleration and 

deceleration).

•	 Test Position

Switch the drive to operation mode “Profile Position Mode” and perform basic positioning control. (Set target position and enable 

positioning; set additional profile position parameters like velocity.)

•	 Homing

Test basic homing methods, including Homing Mode 35 to reset the actual position to zero (new reference position) without moving the 

drive.

6.2.2	 Object Editor

The  Object Editor module is used for reading, editing and writing device parameters. It is also where you can define any Data Object 

that can be used in other modules like the CANopen Node, Scope or the UI Panel modules. 

The Object Editor panel consists of two parts:

•	 Object Dictionary (Device Description)

The upper part of the Object Editor panel is used to display a dictionary of parameters available for a device. The parameter descriptions 

are defined by a XDD / XDC configuration file. Use the  Open Dict function to load a different / new configuration file.

•	 Object Editor

Drag one or several parameters from the Object Dictionary to the Object Editor table to make them available for reading, editing and 

writing.

	Object Editor Basic Functions

	 	 Read

Read the selected values from the device (CANopen Upload). If nothing is selected in the Object Editor table, all values are read.

	 	E dit

Use this function or double click on an element in the Value / Editor column. The values are not written to the device immediately, unless 

 Synch Mode is used.

	 	 Write

Write the selected values to the device (CANopen Download). If nothing is selected in the Object Editor table, all writable values are 

downloaded.



19

6	 Kickstart Modules

	 	 Store

Store the written parameters permanently. I.e. the CANopen device will continue to use these values after a voltage reset. This function is 

used after writing modified values using the  Write function.

	 	 Reset

Reset all device parameters to the factory settings.

	 	 Synch Mode

Read read-only parameters periodically. Writable parameters are read once. After that, every modification entered by the user will be 

downloaded to the device immediately.

	 	 Default

Copy the value from the dictionary’s Default column to the Value column, for the selected rows. If no rows are selected, all objects will 

be updated to the default values. To write these defaults into the device, use  Write.

	 	 Scaling

When operating at User Level 2, you can use the Scaling column to define how values should be scaled before showing them in the 

Value column. The same formats as used in Scaling for the Scope are supported.

Notice

For Read / Write values, only simple scaling factors like 0.25 are permitted. On Write, the entered value will be 

transformed back to the original raw ’unscaled’ value. When using scaling expressions like =x / 20+10, the object value 

becomes read-only and cannot be edited or written to the device.

6.2.3	 Script

The  Script Module is used to edit, compile and download Embedded Python scripts into a drive unit that supports it.

Notice

For details on the Embedded Python engine, sample code and applications please refer to the documentation available 

for your CANopen drive unit or contact Applications Support.

6.2.4	 Firmware

Using the  Firmware module you can update your device’s application firmware with a new software version provided in a .bin file 

format.

Notice

Before starting a Firmware download, make sure the Node ID is correct and the device is accessible, e.g. using the 

Drive Setup panel.

WARNiNG

Please make sure that you are using a correct .bin file intended for your specific device. Kickstart does not perform 

additional checks before downloading the file. Using a wrong or mismatching .bin file can damage your drive unit and 

make it impossible to download a correct .bin file in a second attempt.

http://www.python.org


20

6	 Kickstart Modules

6.3	 Motor Access / CANopen Node

Depending on the template, different modules / module names are available, i.e. the modules do not always have all the functions described 

here.

The  CANopen Node module offers a basic configuration screen for any type of CANopen node, e.g. a third-party servo drive, I/O module 

or sensor device.

The Parameter Editor table contains a list of CANopen objects and their values, similar to the Object Editor. 

For the selected object, additional display and editing controls are shown below the table. These elements are configurable by changing the 

UI Format column in Design Mode.

Notice

The appearance and behavior of the Parameter Editor depends on the Edit Mode setting. Some of the functionality 

described below is only relevant to specific Edit Mode settings.

	Parameter Editor functions

	 	 Read 

Read the value of a parameter, or of the entire list, depending on the Edit Mode.

	 	 Write

Write to the device the value of a selected parameter, or of the entire list, depending on the Edit Mode.

	 	 Store 

Store the written parameters permanently. I.e. the CANopen device will continue to use these values after a voltage reset. This function is 

used after writing modified values using the  Write function.

	 	 Reset 

Reset all device parameters to the factory settings.

	 	 Design Mode 

Allows adding and removing parameters from the list, as well as editing the UI Format and Comment columns, to modify the display and 

editing controls used for this element. 

In Design Mode you can:

•	 Add more objects: Drag data objects from the Object Editor and drop them on the Parameter Editor. Alternatively, Copy data objects 

from the Object Editor and Paste them into the parameter table.

•	 Modify the parameter's Name, UI Format and Comment. The UI Format configures the UI elements that are displayed for the 

parameter, as described in the UI Format documentation. The Comment defines the additional description text shown below the name 

in the UI elements' section.

•	 Apply Scaling factors and formulas, in the same way as for the Object Editor.

•	 Modify the Edit Mode.

Notice

User Level 2 is required for accessing Design Mode.



21

6	 Kickstart Modules

6.3.1	 CANopen Node – Edit Mode

The Edit Mode affects the appearance and behavior of the CANopen Node module. It can be modified from Design Mode.

Notice

User Level 2 is required to switch to Design Mode.

Name Description

0 – Standard
The read / write behavior is similar to the Object Editor, Read / Write works on the 

currently selected object only.

1 – List Read
No Write / Edit functionality, Read always reads the entire list of parameters, 

not only a single object.

2 – List Read/Write
No Store / Reset functionality. Read / Write always affect the entire list of 

parameters.

3 – Auto Store
Same as the EditMode = 2 but Write will always execute a Store action after 

writing the values, to make the parameter change permanent.

6.3.2	 CANopen Node - UI Format

Notice

User Level 2 is required to switch to Design Mode, which makes the UI Format column available for editing.

The UI Format column in the Parameter Editor table configures the editing control available for each data object.

Custom UI Format settings for each object allow a clean and intuitive on-the-fly visualization of its value. For example, a dial and a slider for 

integer data within a well-defined min / max range, or a combo box for multiple-choice parameters.

Notice

The UI Format settings described below are not identical to the ones used for the UI Panel. However, if you drag a data 

object from the UI Panel or the Object Editor and drop it on the CANopen Node panel, appropriate conversions and 

additions are applied.

The UI Format value is a list of key-value attribute pairs, delimited by semi-colons (“;”). The following is a description of the available 

attributes:

type

Defines the type of data to be visualized.

type Description

integer
Integer values are displayed as a textbox, a dial and a slider. See the range 

attribute to define min/max values.

text Texts are displayed using a textbox only.

combo

A combo box. This is useful for objects that accept a limited set of different values 

with different meanings. The  values available and their descriptions are defined 

using the options attribute. See below for more information and an example.



22

6	 Kickstart Modules

range

Defines the minimum and maximum values. For example:

range:0,100

range:-100,100

options

Used with type:combo. This specifies a list of available options and their corresponding values.

Format: 

options:<value_1>,<text _1>|<value_2>,<text_2> | ... (etc.)

For example, here is a combo box to choose between 4 different values (0, 1, 3 or 6):

type:combo; options:0,Reset|1,Profile Position|3,Velocity Mode|6,Homing Mode

Example UI Format Definitions

UI Format Description

type:text A simple label or a text box. This can be used to display or edit (if writable) any 

value.

type:integer; range:0,100 A textbox, a slider and a dial, accepting values between 0 and 100.

type:combo; options:0,Reset|

1,Profile Position|

3,Velocity Mode|6,Homing Mode

A combo box with the specified options (Reset, Profile Position, Velocity Mode, 

Homing Mode) and corresponding values (0, 1, 3, 6).

6.4	 Network Manager

Depending on the template, different modules / module names are available, i.e. the modules do not always have all the functions described 

here.

Use the  Network Manager to perform a baud rate and node scan for an unknown network, and build a Kickstart setup and operation 

module for every supported drive node found.

Network Scan

Use the following procedure for a successful scan:

•	 Connect the CAN Interface to the CANopen network

•	 Connect the CAN Interface to your PC via USB.

•	 Switch on power supply for the CANopen nodes

•	 Make sure in the CAN Interface module, baud rate is set to either (Scan), or the actual baud rate of your network

•	 Choose  Scan Network to find out about:

–– Scanned Node IDs – all existing node IDs within this network. 

–– Configurable Node IDs – supported drive nodes available for setup and operation through Kickstart.

•	 Choose  Build Project to create a Kickstart module for each of the IDs listed in the Configurable Node IDs text field.

WARNiNG

Never use baud rate scan or similar configuration tasks in running machinery or in a CANopen application in normal 

operation. See also the additional information in the CAN Interface module description.



23

6	 Kickstart Modules

Node Monitor

You can use the Node Monitor for a simple network overview which displays some basic information on every Node ID that is listed in the 

Scanned Node IDs text field.

•	 Make sure the Scanned Node IDs list is the list of nodes you want to monitor.

•	 Click the  Node Mon. Config to display a list of parameters that should be read for every node. You can drag additional Data Objects 

from the Object Editor module, and drop them on the Node Monitoring Configuration table.

•	 In the UI Format column, use the updates: keyword to specify how the values should be obtained, e.g. 

updates:r – read only once when starting the Node Monitor 

updates:r2000 – read every 2000 milliseconds 

(See UI Panel / UI Format Definition section for additional details on the updates: specifier)

•	 Click on  Node Monitor to start the network overview / node monitoring.

Notice

Node Monitor uses SDO transfer for reading out the values from the network nodes. Please make sure this is not 

conflicting with other operations on the CANopen network, e.g. service operation tasks such as Firmware downloads.

6.5	 Scope

Depending on the template, different modules / module names are available, i.e. the modules do not always have all the functions described 

here.

The  Scope module allows the user to display data in scalable plots. Data can be recorded to a file and reviewed later. 

6.5.1	 The Scope – Getting Started

•	 Drag one or several Data Objects from the Object Editor, and drop them on the Scope configuration table.

•	 Make sure the Sampling field is set to Software mode. Use the Rate field to adjust the sampling rate (samples / msec). Use the Scaling 

field to modify the values using a factor or a basic mathematical expression.

•	 Use the Start and Stop toolbar buttons to enable or disable sampling.

•	 To create a Plot Panel for a monitored data object, double-click its row in the configuration table. The plot will display the latest available 

data. To create a plot for multiple data objects, use Create Plot, and choose the data object (or multiple objects) to include in the plot.

•	 To configure and toggle triggers, use the Triggers module.

•	 Click Record to start a Recording and store all sampled data to a file.

•	 To load an existing recording, use the Open button and select a .csv file. You can define Triggers to filter the recorded data.

•	 To go back to live scope and data logging, use the Live Mode button.

Notice

When opening a .csv recording file, make sure that the matching .xml file is present in the same folder.



24

6	 Kickstart Modules

6.5.2	 Configuration

After dragging a Data Object from the Object Editor and dropping it on the configuration table, you can use the following fields to configure 

the data processing within the Scope module.

Sampling and Rate

This defines how the values for the data logging and scope are obtained.

Sampling Description

Off Sampling is disabled or inactive

Software Kickstart sends out SDO Upload requests to the node ID,
using the fixed time interval of Rate milliseconds.

TPDO<no>.<byteStart>.<size>

The object is available through Transmit PDO <no> (1..4).

Within the PDO frame, the data required starts at byte
position <byteStart> (0..7) and is <size> (1, 2, or 4) bytes
large. Example:

TPDO3.0.2 (The value is a 16-bit value obtained from the
first two bytes of Transmit PDO 3)

RPDO<no>.<byteStart>.<size> Same as TPDO, but for Receive PDO

Notice

The TPDO and RPDO methods are passive sampling methods. They do not perform the actual device PDO configuration 

(PDO mapping) and do change the CAN node state using NMT. They are safe to use within a running CANopen applica-

tion.

Scaling

Allows scaling and processing the raw data values. You can use a simple factor or more complex formulas, including offsets or even 

non-linear transformations. 

Examples:

Scaling Description

0.25 Scale the value by 0.25 (i.e. the displayed value is four times smaller than the raw data value).

100 Scale the value by 100 (i.e. the displayed value is multiplied by 100).

= x / 65536 + 10 Divide raw data value by 65536, then add 10.

= 1 / x Non-linear expressions like this are possible, too. However watch out for invalid results, e.g. 
“division by zero”. Kickstart will display these values as “0”.

Notice

The scaling is only applied to the displayed value, not to the recorded raw data. This means you can apply a different 

scaling expression at a later point (when loading the data using Open), or to rescale all data “on the fly”.



25

6	 Kickstart Modules

6.5.3	 Recording Data

Use the Record toolbar button to start and stop recording of all monitored data into a .csv file.

To make the filename contain the date and time of the recording’s start, use the placeholder DATETIME, which will be replaced with the 

proper timestamp. For example: the filename measurements_DATETIME.csv will be stored as  

measurements_2012-02-16T15-01- 32.csv.

To view the recorded data, use Open.

Notice

Only data objects that were configured for sampling in the Scope configuration table will be recorded. If Triggers are 

active, only data within the trigger event window will be recorded.

Notice

The recorded data .csv file is accompanied by an .xml file containing information about the recorded data objects. When 

copying the .csv file to a different location, make sure the .xml file is included, to ensure the data can be viewed.

6.5.4	 Plot

A Plot panel displays scoped data in a scalable plot. Multiple data objects can be represented by multiple curves in the same plot window.

You can change the Value / Div scale (Y axis) and Time / Div scale (X axis) to zoom in or out.

By default, the plot displays the latest data available. To display earlier data use the scrollbar below the plot.

Notice

All plot panels created are stored within the Kickstart project file. When re-opening the project, the panel is re-created 

automatically, but it will only display data once you Start the Scope or load a matching recording.

	 Reading a value at a specific time

The value cursor is a thin black vertical line with a time stamp. For each data object, a color mark and a black text label shows the actual 

value at this specific point in time. You can move the cursor to a different position by clicking on the plot window. You can also move the 

time range (and the time marked by the cursor) in small steps, by using the <– | and | –> buttons located next to the scrollbar.

	 Configuring the Value / Div scale

The Value / Div combo box configures the displayed range on the values’ scale, which is the Y-axis of the scoped data plot. Choose from 

any of the available presets. It is also possible to enter your own custom scale configuration.

Possible configuration modes: 

Auto – The scale changes automatically to display the current range of values.

Min / Max – The scale will is defined by the min / max boundaries entered.

Units / Div + Offset – The scale starts at the entered offset. The units / div value will define the number of units between each div, which 

is a minor tick on the scale. The minor ticks are those without a value to the side of them.

•	 There are two possible formats for the configuration: standard and shorthand. While typing, a label just beside the input control will 

display the normalized (standard) version of your scale. A message is displayed if your current input is invalid.



26

6	 Kickstart Modules

	E xamples for the Value / Div Scale

Scaling Methode Normalized (Standart) 
Format

Shorthand 
Format Description

Auto automatic a Scale will be automatically adjusted based on the current values displayed.

Min / Max
min=0 max=100

min=0.25 max=0.75

0m100

.25max0.75

The displayed scale will be between 0 and 100

The displayed scale will be between 0.25 and 0.75

Units / Div + Offset
100/div offset=0

0.1/div offset=-20

100

0.1o-20

The displayed scale will start at offset 0, with 100 units between each div.

The displayed range will start at offset - 20, with 0.1 units between each div.

6.5.5	 Trigger

A  Trigger is defined on a data object and can be set to a specific condition. Once the condition has been met, the data within a time 

window frame (called Trigger Event Window) will be forwarded. When no triggers are defined all data is forwarded directly as soon as it is 

monitored.

Trigger Event Window

Time period before and after a trigger event has been fired. When triggers are defined, only data within the event windows is monitored. All 

data that did not fire a trigger or is outside a trigger event window is ignored: it will not appear on plots and it will not be saved to a file when 

recording.

Trigger Configuration

Use the Pre-Trigger Time and Post-Trigger Time fields to define the size of the trigger event window.

Switch between triggered and non-triggered mode using the Trigger On / Off button.

Enter the trigger definitions in the definition table, using the format described below. A validation indicator next to the data shows if the 

entered trigger is valid. To remove a trigger from the table, enter an empty string.

Trigger Definition Format:

(data_object_id) – trigger on any change in the data object value

(data_object_id) < | > (trigger level) – trigger on rising (>) or falling (<) slope

Examples

002.6041h.00h – trigger on any change in the value of the specified data object

001.60ffh.00h < 200 – trigger when the value of the specified data object drops below 200

001.58ffh.00h > 100 – trigger when the value of the specified data object rises above 200

Notice

Even when using a Scaling factor, the trigger always works on the raw data value, not the scaled result.

Notice

You can use triggers as a post-processing and data analysis tool for Recorded Data. Set up and activate the triggers 

before opening the .csv file. After modifying the trigger settings, the recording data must be re-loaded using the Reload 

toolbar button.



27

6	 Kickstart Modules

6.6	 UI Panel

Depending on the template, different modules / module names are available, i.e. the modules do not always have all the functions described 

here.

The  UI Panel module can display data objects in configurable dynamic user interfaces, making use of Qt Quick / QML technology.

You can build personalized interfaces, suitable for different users and scenarios. Data Objects can be represented by graphic controls (dial, 

slider, option box) on a canvas. You can change the look and behavior of any element and create a smartphone-like user interface for your 

individual application.

Notice

The instructions in the Getting started section show how to compose a panel of a basic set of predefined UI controls, 

each communicating via a single Data Object and SDO communication requests, similar to the Object Editor Read and 

Write functions. For more advanced user interfaces with graphics and animations, please contact your Application 

Support.

6.6.1	 UI Panel - Getting Started

•	 The Start / Stop buttons control whether the interface is live, meaning whether it is communicating with the actual network nodes (e.g. 

CANopen devices) and reading or writing the specified data objects.

•	 Start designing or modifying your User Interface by clicking on the  Design Mode toolbar button.

Notice

User Level 2 is required for accessing Design Mode.

•	 In the Object Editor, edit the UI Format column of the parameters ( Data Objects ) you want to use for the UI Panel, to define their 

appearance and behavior. See UI Format Definition for syntax and examples.

•	 After the UI Format value is set, create your visual control by dragging the data object row from the Object Editor table onto the UI 

Panel’s white canvas area.

•	  Show Data Objects will display a table with the current data objects and their controls’ configuration. To modify the behavior of a 

created control, edit the UI Format column in the objects table. The UI will be refreshed with the latest changes. Appearance and 

positions are defined by the Instances column.

•	 Use the Scaling column to scale the raw data object values, in the same way scaling is available in the Object Editor and Scope modules. 

You may need to adjust the behavior of your UI controls based on the scaling. For example, adjustment of the value range for a slider to 

match the possible minimum and maximum values after scaling. Or adjusting the step size for a dial control.

•	 To create multiple instances of the same data object, drag the data object from the table onto the canvas again.

6.6.2	 UI Format Definition

Notice

User Level 2 is required for accessing the UI Format definitions in the Object Editor.

The UI Format column of data objects defines the appearance and behavior of the created control.

Its value is a list of key-value attribute pairs, delimited by semi-colons (“;”), describing the control’s appearance and behavior. The following 

is a description of all available attributes:



28

6	 Kickstart Modules

shape

Defines the type of control will be created when the Data Object is dropped on the UI Panel canvas. Available standard shapes:

shape: Description

label simple control used to display a read-only value

text text box control to display or edit a value

slider vertical slider control used to display or modify a value within a given range

dial dial control used to display or modify a value within a given range

radio a list of options displayed as radio buttons, each one representing a certain data object value (e.g. “3”) and a 
matching description (e.g. “Velocity Mode”). See the options description for more details.

bitfield a list of bit signals. Each signal corresponds to one bit of the control’s integer value. See the options and 
fieldsize descriptions for more details.

Notice

Every shape corresponds to one .qml file from the / QML folder of your Kickstart Project, e.g. KickLabel.qml,  

KickTextInput.qml, ...

You can design and use your own QML / Qt Quick elements by defining e.g. shape:MyOwnQmlControl.qml, with 

MyOwnQmlControl.qml being a modified version of one of the Kick... .qml files.

Notice

Once a shape has been created on the canvas, e.g. by using Drag&Drop, its type cannot be modified by changing the 

shape: definition. The shape: definition only applies to creating new elements.

To change the type of an existing control on the canvas, you need to modify the text in the Instances column at the right 

end of the Data Objects table.

updates

Defines how the UI control communicates with the actual data object. Its value defines if the data object’s value can be modified by the user, 

and also how the value is read from the device.

Examples:

updates: Description

r the value is read from the device only once, upon initialization.

r100 the value is read from the device periodically, in this case every 1000 milliseconds.

r,w the initial value is read from the device upon initialization and can then be modified by the user. User-modified 
values will be sent to the device.

Notice

You cannot combine periodical-reading with the control being user-modifiable. E.g. updates:r100,w is not a valid 

definition.



29

6	 Kickstart Modules

range

Defines the allowed range for input controls. It is only used by the slider and dial controls. 

Examples:

range:0,100

range:-100,100

Notice

When dragging an object from the Object Dictionary (Device Description) of the Object Editor module, the range is 

calculated from the original .xdd / .xdc device description file, if available. If no value range was specified in the device 

description file, a default range value is chosen.

step

Defines a valid positive step size for some of the range-based controls, such as the slider or the dial. The default step size is 1. Change the 

value to configure the control to round selected values to the specified step size.

Examples:

step:1 – the default behavior.

step:10 – only values that are multiples of 10 will be available.

fieldsize

Only used by bitfield shapes. Defines the number of bit signals used for this integer value.

Example:

fieldsize:8

This value is displayed as eight individual bit signals, with a running numeric value (bit index) ranging from 0 to 7.

If fieldsize is zero or not defined, the bitfield shape will only show the bit indexes defined in options: (see below).

options

Used by the radio and bitfield shapes. It specifies a list of available options and their corresponding values (resp. “bit indexes” for bitfield 

shapes).

The options are selectable / clickable, if the updates attribute specifies write (updates:r,w), and not read-only (updates:r1000).

Format:

options:<value_1>,<text _1>|<value_2>,<text_2> |... (etc.)

Example for a radio button control to choose between 4 different values (0, 1, 3 or 6):

shape:radio; options:0,Reset|1,Profile Position|3,Velocity Mode|6,Homing Mode

Example for a bit field representing 3 digital input signals

shape:bitfield; options:0,Limit Switch Left|1,Limit Switch Sight|2,Start



30

6	 Kickstart Modules

Example UI Format Definitions

UI Format Description

shape:label; updates:r A read-only label. The control’s value will be read from the device only upon 
initialization.

shape:label; updates:r200 A read-only label. The control’s value will be read from the device upon 
initialization and then periodically, every 200 milliseconds.

shape:text; updates:r,w A user-modifiable textbox, value is read from the device upon initialization. 
Once the user edits the value, it will be written to the device.

shape:slider; range:0,100; updates:r,w A user-modifiable slider, with the range between 0 and 100 and the step 
size 1.

shape:dial; range:-200,200; step:10; 

updates:r,w

A user-modifiable dial, with the range between -200 and 200, all selectable 
values being multiples of 10.

shape:radio; 

options:0,Off|1,On; 

updates:r,w

Two user-selectable radio buttons: Off and On, corresponding to the values 
0 and 1.

shape:bitfield; fieldsize:8; updates:rw A list of 8 digital output bits that can be toggled by clicking on them. For a 
data object that has the Name “Digital Output”, the elements would be 
labeled

Digital Output 0

Digital Output 1

...

Digital Output 7

shape:bitfield;

options:2,2 - Limit Switch Left|

5,5 - Limit Switch Right|

7,7 - Start;

updates:r1000;

A list of input bits, where only three bit indexes (2, 5 and 7) are 
shown / used:

2 – Limit Switch Left

5 – Limit Switch Right

7 – Start

6.6.3	 Node IDs and Multi-Node Panels

The basic UI Panel examples provided are set to Node ID = 001. Resp., if you drag Data Objects from the Object Editor as described 

previously, they will use the Node ID from the Object Editor settings.

Using  Design Mode and with  Show Data Objects activated, you can change Node IDs or duplicate a set of UI controls for a 

different Node ID or a second CANopen Device. Use the following functions, available from the toolbar:

	 	 Clone

After selecting one or several rows of the Data Objects table, use Clone to duplicate these elements and paste them into the UI Panel 

canvas using a different Node ID.

Notice

The cloned elements will receive the same Name text as the original elements. You can edit the text of the Name column 

in the Data Objects table so your UI elements show to which Node ID they belong. You can also use an application 

specific name, e.g. “print format adjustment 1”.

	 	 Change ID

Select one or several rows in the Data Objects table, then use Change ID to change the Node ID to a different value.



31

6.6.4	 Project and UI Files /  
Advanced User Interfaces

After composing your UI Panel, you can store the user interface created using the  Save Project function from the Kickstart main toolbar.

If you created your UI Panel by starting with one of the Kickstart templates provided, the saved file is a Kickstart Compressed Project file 

(.kickzip) by default.

For many advanced applications it is necessary to directly work on the uncompressed files stored inside the .kickzip file archive: For that:

•	 Save the project using menu File >  Save As... and choose Kickstart Uncompressed Project (.kickpro), not the default .kickzip file 

format.

•	 Now you can manually edit the original .kickpro file, if necessary, using a standard text or XML editor.

•	 The / QML sub-directory contains all Qt Quick / QML files that define your UI Panel application. You can use standard text editors or the  

Qt Quick development tools to work with these files, e.g. create modified versions with a different look or functions.

Notice

Additional developer guides about Qt Quick / QML within Kickstart are available on request. Please contact your Applica-

tion Support.

http://qt.digia.com/product/


32

www.ebmpapst.com

ebm-papst

St. Georgen GmbH & Co. KG

Hermann-Papst-Straße 1

78112 St. Georgen

Germany

Phone +49 7724 81-0

Fax +49 7724 81-1309

info2@de.ebmpapst.com



www.ebmpapst.com

ebm-papst

St. Georgen GmbH & Co. KG

Hermann-Papst-Straße 1

78112 St. Georgen

Germany

Phone +49 7724 81-0

Fax +49 7724 81-1309

info2@de.ebmpapst.com


	1	About This Manual
	1.1	Symbols Used
	1.2	Terms Used

	2	Safety
	2.1	Intended Use
	2.2	Safety Notices

	3	Overview
	4	Installation
	5	Using Kickstart
	5.1	Getting started
	5.2	Main Screen and Toolbar
	5.3	User Level
	5.4	Projects and Templates
	5.5	Editing the Module Tree

	6	Kickstart Modules
	6.1	CAN Interface
	6.1.1	CAN Monitor
	6.1.2	CAN Sender

	6.2	Drive01 / CANopen Drive
	6.2.1	Setup
	6.2.2	Object Editor
	6.2.3	Script
	6.2.4	Firmware

	6.3	Motor Access / CANopen Node
	6.3.1	CANopen Node – Edit Mode
	6.3.2	CANopen Node - UI Format

	6.4	Network Manager
	6.5	Scope
	6.5.1	The Scope – Getting Started
	6.5.2	Configuration
	6.5.3	Recording Data
	6.5.4	Plot
	6.5.5	Trigger

	6.6	UI Panel
	6.6.1	UI Panel - Getting Started
	6.6.2	UI Format Definition
	6.6.3	Node IDs and Multi-Node Panels
	6.6.4	Project and UI Files / 
Advanced User Interfaces



