

Adafruit PyPortal - IoT for CircuitPython

Created by Kattni Rembor

https://learn.adafruit.com/adafruit-pyportal

Last updated on 2023-02-28 02:28:03 PM EST

©Adafruit Industries Page 1 of 207

7

10

23

25

28

30

33

35

40

43

Table of Contents

Overview

Pinouts

• Microcontroller and Flash

• WiFi

• Display and Display Connector

• Sensors

• microSD Card Slot

• Speaker and Speaker Connector

• I2C Connector

• Digital/Analog Connectors

• Status LED and NeoPixel

• USB Connector

• Reset Button

What is CircuitPython?

• CircuitPython is based on Python

• Why would I use CircuitPython?

Update the UF2 Bootloader

• Updating Your Bootloader

Updating the PyPortal Demo Code

• Step 1 - Update Firmware to Latest

• Step 2 - Update Example Code to Latest

• Step 3 - Check Display & Add WiFi Secrets

• Step 4 - If you are getting odd errors

Install CircuitPython

• Set up CircuitPython Quick Start!

• PyPortal Default Files

Installing the Mu Editor

• Download and Install Mu

• Starting Up Mu

• Using Mu

Creating and Editing Code

• Creating Code

• Editing Code

• Back to Editing Code...

• Naming Your Program File

Connecting to the Serial Console

• Are you using Mu?

• Serial Console Issues or Delays on Linux

• Setting Permissions on Linux

• Using Something Else?

Interacting with the Serial Console

©Adafruit Industries Page 2 of 207

46

51

62

68

73

The REPL

• Entering the REPL

• Interacting with the REPL

• Returning to the Serial Console

CircuitPython Libraries

• The Adafruit Learn Guide Project Bundle

• The Adafruit CircuitPython Library Bundle

• Downloading the Adafruit CircuitPython Library Bundle

• The CircuitPython Community Library Bundle

• Downloading the CircuitPython Community Library Bundle

• Understanding the Bundle

• Example Files

• Copying Libraries to Your Board

• Understanding Which Libraries to Install

• Example: ImportError Due to Missing Library

• Library Install on Non-Express Boards

• Updating CircuitPython Libraries and Examples

• CircUp CLI Tool

CircuitPython Pins and Modules

• CircuitPython Pins

• import board

• I2C, SPI, and UART

• What Are All the Available Names?

• Microcontroller Pin Names

• CircuitPython Built-In Modules

Frequently Asked Questions

• Using Older Versions

• Python Arithmetic

• Wireless Connectivity

• Asyncio and Interrupts

• Status RGB LED

• Memory Issues

• Unsupported Hardware

Troubleshooting

• Always Run the Latest Version of CircuitPython and Libraries

• I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

• Bootloader (boardnameBOOT) Drive Not Present

• Windows Explorer Locks Up When Accessing boardnameBOOT Drive

• Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied

• CIRCUITPY Drive Does Not Appear or Disappears Quickly

• Device Errors or Problems on Windows

• Serial Console in Mu Not Displaying Anything

• code.py Restarts Constantly

• CircuitPython RGB Status Light

• CircuitPython 7.0.0 and Later

• CircuitPython 6.3.0 and earlier

• Serial console showing ValueError: Incompatible .mpy file

• CIRCUITPY Drive Issues

• Safe Mode

• To erase CIRCUITPY: storage.erase_filesystem()

• Erase CIRCUITPY Without Access to the REPL

• For the specific boards listed below:

©Adafruit Industries Page 3 of 207

91

94

103

105

119

125

127

• For SAMD21 non-Express boards that have a UF2 bootloader:

• For SAMD21 non-Express boards that do not have a UF2 bootloader:

• Running Out of File Space on SAMD21 Non-Express Boards

• Delete something!

• Use tabs

• On MacOS?

• Prevent & Remove MacOS Hidden Files

• Copy Files on MacOS Without Creating Hidden Files

• Other MacOS Space-Saving Tips

• Device Locked Up or Boot Looping

"Uninstalling" CircuitPython

• Backup Your Code

• Moving Circuit Playground Express to MakeCode

• Moving to Arduino

Welcome to the Community!

• Adafruit Discord

• CircuitPython.org

• Adafruit GitHub

• Adafruit Forums

• Read the Docs

PyPortal CircuitPython Setup

• Adafruit CircuitPython Bundle

Internet Connect!

• What's a secrets file?

• Connect to WiFi

• Requests

• HTTP GET with Requests

• HTTP POST with Requests

• Advanced Requests Usage

• WiFi Manager

CircuitPython BLE

• CircuitPython BLE UART Example

• Update the AirLift Firmware

• Install CircuitPython Libraries

• Install the Adafruit Bluefruit LE Connect App

• Copy and Adjust the Example Program

• Talk to the AirLift via the Bluefruit LE Connect App

Arduino IDE Setup

Using with Arduino IDE

• Install SAMD Support

• Install Adafruit SAMD

• Install Drivers (Windows 7 & 8 Only)

• Blink

• Successful Upload

• Compilation Issues

• Manually bootloading

• Ubuntu & Linux Issue Fix

©Adafruit Industries Page 4 of 207

135

138

143

144

152

158

158

Arduino Libraries

• Install Libraries

• Adafruit NeoPixel

• Adafruit SPIFlash

• Adafruit Zero DMA

• Adafruit GFX

• Adafruit ILI9341

• Adafruit HX8357

• Adafruit Touchscreen

• Analog Devices ADT7410

• WiFiNINA

• Adafruit ImageReader

Arduino Test

Graphics Demos

• TouchPaint

• Amiga Boing!

• Mandelbrot

Adapting Sketches to M0 & M4

• Analog References

• Pin Outputs & Pullups

• Serial vs SerialUSB

• AnalogWrite / PWM on Feather/Metro M0

• analogWrite() PWM range

• analogWrite() DAC on A0

• Missing header files

• Bootloader Launching

• Aligned Memory Access

• Floating Point Conversion

• How Much RAM Available?

• Storing data in FLASH

• Pretty-Printing out registers

• M4 Performance Options

• CPU Speed (overclocking)

• Optimize

• Cache

• Max SPI and Max QSPI

• Enabling the Buck Converter on some M4 Boards

WipperSnapper Setup

• What is WipperSnapper

• Sign up for Adafruit.io

• Add a New Device to Adafruit IO

• Feedback

• Troubleshooting

• "Uninstalling" WipperSnapper

WipperSnapper Essentials

LED Blink

• Where is the LED on my board?

• Create a LED Component on Adafruit IO

• Usage

©Adafruit Industries Page 5 of 207

161

166

171

176

181

196

197

200

203

NeoPixel LED

• Where is the NeoPixel on my board?

• Create the NeoPixel Component

• Set the NeoPixel's RGB Color

• Set NeoPixel Brightness

Read a Push-button

• Parts

• Wiring

• Create a Push-button Component on Adafruit IO

Analog Input (Light Sensor)

• Analog to Digital Converter (ADC)

• Light Sensor

• Where is the Light Sensor on my board?

• Create a Light Sensor Component

• Light Sensor Usage

I2C Sensor

• Where is the I2C sensor on my board?

• Create ADT7410 Sensor Component

• Read I2C Sensor Values

Build the PyPortal Stand

• Prep

• Sandwich

• Legs

• Add Long Screws

• Screw It All Together

• Bonus! Penny Roll Weight

• Laser Cutter Files for PyPortal Stand

Updating ESP32 Firmware

Parsing JSON

• Parsing JSON from the Web

• Installing Project Code

• Parsing local JSON files

PyPortal Hardware FAQ

Downloads

• Files

• PyPortal Schematic and Fab Print

• PyPortal Pynt 3D Model

• PyPortal Pynt Schematic and Fab Print

©Adafruit Industries Page 6 of 207

Overview

PyPortal, is our easy-to-use IoT device that allows you to create all the things for the

“Internet of Things” in minutes. Make custom touch screen interface GUIs, all open-

source, and Python-powered using tinyJSON / APIs to get news, stock values,

weather, cat photos, and more – all over Wi-Fi with the latest technologies. Create

little pocket universes of joy that connect to something good. Rotate it 90 degrees,

it’s a web-connected conference badge #badgelife.

©Adafruit Industries Page 7 of 207

The PyPortal uses an ATMEL (Microchip) ATSAMD51J20, and an Espressif ESP32 Wi-Fi

coprocessor with TLS/SSL (secure web) support built-in. PyPortal has a 3.2″ 320 x

240 color TFT with resistive touch screen.

PyPortal includes: speaker, light sensor, temperature sensor, NeoPixel, microSD card

slot, 8MB flash, plug-in ports for I2C, and 2 analog/digital pins. There are 3D files

available for custom enclosures and the board has mounting holes which are also

compatible with badge lanyard fasteners.

The PyPortal Pynt is the little sister to our popular PyPortal () - zapped with a shink ray

to take the design from a 3.2" diagonal down to 2.4" diagonal screen - but otherwise

the same! PyPortal Pynt has a 2.4″ diagonal 320 x 240 color TFT with resistive touch

screen. Compared to the original PyPortal, the Pynt does not include a ADT7410

temperature sensor. Other than the ADT7410, the Pynt's display, processor, STEMMA

conectors and WiFi have the exact same wiring as the original 3.2" PyPortal so all

Arduino/CircuitPython code will run exactly the same - just smaller!

©Adafruit Industries Page 8 of 207

https://www.adafruit.com/product/4116

The M4 and ESP32 are a great couple - and each bring their own strengths to this

board. The SAMD51 M4 has native USB so it can show up like a disk drive, act as a

MIDI or HID keyboard/mouse, and of course bootload and debug over a serial port. It

also has DACs, ADC, PWM, and tons of GPIO. Meanwhile, the ESP32 has secure WiFi

capabilities, and plenty of Flash and RAM to buffer sockets. By letting the ESP32

focus on the complex TLS/SSL computation and socket buffering, it frees up the

SAMD51 to act as the user interface. You get a great programming experience thanks

to the native USB with files available for drag-n-drop, and you don't have to spend a

ton of processor time and memory to do SSL encryption/decryption and certificate

management. It's the best of both worlds!

©Adafruit Industries Page 9 of 207

PyPortal is Open-Source hardware and Open-Source software, and it runs

CircuitPython and Arduino code. Using CircuitPython, the device shows up as a USB

drive and the code can be edited in any IDE, text editor, etc. You can have your IoT

project up and running in minutes!

Pinouts

©Adafruit Industries Page 10 of 207

Click here to view a PDF version of the pinout diagram ()

Click here to view a PDF version of the pinout diagram ()

There are so many great features on the Adafruit PyPortal and PyPortal Pynt. Let's

take a look at what's available!

The PyPortal Pynt has the D3 and D4 sockets mislabeled, they should be

swapped (to match the pyportal classic, above)

©Adafruit Industries Page 11 of 207

https://github.com/adafruit/Adafruit-PyPortal-PCB/blob/master/Adafruit%20PyPortal%20Pinout.pdf
https://github.com/adafruit/Adafruit-PyPortal-PCB/blob/master/Adafruit%20PyPortal%20Pinout.pdf
https://github.com/adafruit/Adafruit-PyPortal-PCB/blob/master/Adafruit%20PyPortal%20Pynt%20Pinout.pdf

Microcontroller and Flash

The main processor chip is the

ATSAMD51J20 Cortex M4 running at

120MHz with 3.3v logic/power. It has 1MB

of Flash and 256KB of RAM.

We also include 8 MB of QSPI Flash for

storing images, sounds, animations,

whatever!

©Adafruit Industries Page 12 of 207

https://learn.adafruit.com//assets/71965
https://learn.adafruit.com//assets/71965
https://learn.adafruit.com//assets/86110
https://learn.adafruit.com//assets/86110

WiFi

The WiFi capability uses an Espressif

ESP32 Wi-Fi coprocessor with TLS/SSL

support built-in.

The ESP32 uses the SPI port for data, and

also uses a CS pin (board.ESP_CS or

Arduino 8), Ready/Busy pin

(board.ESP_BUSY or Arduino 5), and

reset pin (board.ESP_RESET or Arduino

7)

For advanced use or reprogramming on Arduino, we also connect the main RX/

TX UART to the ESP32 via Serial1 . In CircuitPython use board.ESP_RX and

board.ESP_TX . (CircuitPython 6.0.0 and earlier uses board.RX and

board.TX).

You can also connect to the ESP32 RTS pin (used in some serial contexts) on bo

ard.ESP_RTS or Arduino 51 .

The ESP32 GPIO0 pin for bootloader enable is connected to board.ESP_GPIO0

or Arduino 6

•

•

•

©Adafruit Industries Page 13 of 207

https://learn.adafruit.com//assets/71988
https://learn.adafruit.com//assets/71988
https://learn.adafruit.com//assets/86109
https://learn.adafruit.com//assets/86109

Display and Display Connector

On the front of the PyPortal is a 3.2″ 320 x

240 color TFT with resistive touch screen!

On the front of the Pynt is a 2.4″ diagonal

320 x 240 color TFT with resistive touch

screen!

On the back, there is a large connector

near the middle, the display connector. It

connects the display on the front to the

board.

To give you the most data throughput we

configure the screen for 8-bit interfacing.

That means 8 data lines and a collection of

4 or 5 control lines. If you really want to

use the screen in SPI mode, you can do so

by soldering closed the SPI jumper and

cutting/resoldering the 8/SPI jumper over

to the SPI side. That's for advanced users!

©Adafruit Industries Page 14 of 207

https://learn.adafruit.com//assets/71985
https://learn.adafruit.com//assets/71985
https://learn.adafruit.com//assets/71986
https://learn.adafruit.com//assets/71986
https://learn.adafruit.com//assets/86107
https://learn.adafruit.com//assets/86107

The touchscreen is fully analog/resistive. It can be read using our Arduino/

CircuitPython drivers. The connections are as follows:

YD on board.TOUCH_YD or Arduino A4

XL on board.TOUCH_XL or Arduino A5

YU on board.TOUCH_YU or Arduino A6

XR on board.TOUCH_XR or Arduino A7

The 8 bit LCD interface is not exposed in CircuitPython (it's managed internally). In

Arduino it's on Digital 34 thru 41, which is on a PORTA 8-bit boundary (PA16-PA23) and

can be used for DMA or fast port writes. This probably doesn't affect you.

There are multiple control pins

TFT Reset - board.TFT_RESET or Arduino 24

TFT WR - board.TFT_WR or Arduino 25 (this is also the board.TFT_DC pin if

using in SPI mode)

TFT RD - board.TFT_RD or Arduino 9

TFT RS - board.TFT_RS or Arduino 10

TFT CS - board.TFT_CS or Arduino 11

TFT TE - board.TFT_TE or Arduino 12

There is also a TFT backlight, transistor-connected to board.TFT_BACKLIGHT or

Arduino 25 . You can PWM control it. There are 6 white LEDs connected in parallel, so

having it be full on will draw quite a bit of current (over 100mA!)

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 15 of 207

https://learn.adafruit.com//assets/86108
https://learn.adafruit.com//assets/86108

Sensors

There are two built in sensors.

On the top of the PyPortal (not the Pynt) is

the ADT7410 Analog Devices temperature

sensor with 16-bit 0.0078°C temperature

resolution and 0.5°C temperature

tolerance. The sensor is I2C connected,

use the Arduino or CircuitPython libraries

to read it.

There is also an ambient light sensor on

the side, which points through to the front,

as seen in the second image. The light

sensor is an analog input, connected to

board.LIGHT (CircuitPython) or A2

(Arduino) you can read it as any analog

value ranging from 0 (dark) to 1023 (in

Arduino) or 65535 (CircuitPython) when

bright.

©Adafruit Industries Page 16 of 207

https://learn.adafruit.com//assets/71967
https://learn.adafruit.com//assets/71967
https://learn.adafruit.com//assets/71972
https://learn.adafruit.com//assets/71972
https://learn.adafruit.com//assets/86105
https://learn.adafruit.com//assets/86105

microSD Card Slot

On the left side, there is a microSD card

slot. A microSD card is the best way to add

extra storage to your project and provide

space for streams to be processed!

The SD card is on the main SPI port

(shared with the ESP32) and a CS line. In

CircuitPython, the CS pin is board.SD_CS .

In Arduino it's digital 32 .

There is also a card detect pin on

board.SD_CARD_DETECT (CircuitPython)

or Arduino 33

©Adafruit Industries Page 17 of 207

https://learn.adafruit.com//assets/86106
https://learn.adafruit.com//assets/86106
https://learn.adafruit.com//assets/71987
https://learn.adafruit.com//assets/71987
https://learn.adafruit.com//assets/86104
https://learn.adafruit.com//assets/86104

Speaker and Speaker Connector

There is a speaker and a speaker

connector.

The grey squarish bit on the bottom is a

speaker. There is a small class D amplifier

connected to the speaker so it can get

quite loud!

There is also a speaker connector, which

is a Molex PicoBlade (). You can attach one

of the speakers available in the Adafruit

shop, or solder a connector to your

favorite speaker. If you do, cut the small

solder jumper to the left of the buzzer so

that you only have one speaker activated

(and also it will be louder!)

The speaker is connected to the DAC0 output from the SAMD51, via a class D

amplifier. The analog output is known as board.AUDIO_OUT in CircuitPython. In

Arduino it's A0 .

You can disable the speaker amplifier by setting the shutdown pin to output and low.

It's on board.SPEAKER_ENABLE and Arduino 50

I2C Connector

If using the I2C connector, you must cut the 5V VCC trace to the left and solder it

to the 3V pad instead - the SAMD51 does not like it if there are even light pullups

to 5V and may hang on boot otherwise!

©Adafruit Industries Page 18 of 207

https://learn.adafruit.com//assets/71974
https://learn.adafruit.com//assets/71974
https://learn.adafruit.com//assets/86103
https://learn.adafruit.com//assets/86103
https://www.digikey.com/product-detail/en/molex-llc/0532610271/WM7620CT-ND/699107

There is a 4-pin JST I2C connector in the

center on the right, that is STEMMA and

Grove compatible. The I2C has pullups to

3.3V power and is connected to the

ADT7410 already.

In CircuitPython, you can use the STEMMA

connector

with board.SCL and board.SDA ,

or board.STEMMA_I2C() .

The I2C connector defaults to 5V. There is

a jumper you can cut or solder to change it

between 5V and 3V.

The connector is a JST PH-sized

connector. STEMMA QT breakout boards

use JST SH connectors, which are smaller,

so you will need a JST PH to SH connector

(for example, this one ()).

©Adafruit Industries Page 19 of 207

https://learn.adafruit.com//assets/71990
https://learn.adafruit.com//assets/71990
https://learn.adafruit.com//assets/86102
https://learn.adafruit.com//assets/86102
https://www.adafruit.com/product/4424

Digital/Analog Connectors

On the right side are two connectors

labeled D3 and D4. These are 3-pin JST

digital or analog connectors for sensors or

NeoPixels. These pins can be analog

inputs or digital I/O.

They have protection 1K resistors + 3.6V

zener diodes so you can drive an LED

directly from the output. Connect to them

via board.D3 and board.D4 or Arduino

3 and 4 . For analog reading in arduino

use A1 for D3 and A3 for D4 (yeah sorry it's

not matchy!)

D3/A1 is the second DAC.

The PyPortal Pynt has the D3 and D4 sockets mislabeled, they should be

swapped (to match the pyportal classic, above)

©Adafruit Industries Page 20 of 207

https://learn.adafruit.com//assets/71991
https://learn.adafruit.com//assets/71991
https://learn.adafruit.com//assets/86101
https://learn.adafruit.com//assets/86101

Status LED and NeoPixel

There are two LEDs on the board.

There is the RGB status NeoPixel labeled

"STATUS". It is connected to

board.NEOPIXEL or Arduino 2

As well, there is the D13 LED. This is

attached to board.L and Arduino 13

©Adafruit Industries Page 21 of 207

https://learn.adafruit.com//assets/71975
https://learn.adafruit.com//assets/71975
https://learn.adafruit.com//assets/86099
https://learn.adafruit.com//assets/86099

USB Connector

There is one USB port on the board.

On the left side, towards the bottom, is a

USB Micro port, which is used for

powering and programming the board.

©Adafruit Industries Page 22 of 207

https://learn.adafruit.com//assets/71980
https://learn.adafruit.com//assets/71980
https://learn.adafruit.com//assets/86098
https://learn.adafruit.com//assets/86098

Reset Button

The reset button is located on the top in

the middle.

Click it once to re-start your firmware.

Click twice to enter bootloader mode.

What is CircuitPython?

CircuitPython is a programming language designed to simplify experimenting and

learning to program on low-cost microcontroller boards. It makes getting started

easier than ever with no upfront desktop downloads needed. Once you get your

board set up, open any text editor, and get started editing code. It's that simple.

©Adafruit Industries Page 23 of 207

https://learn.adafruit.com//assets/71989
https://learn.adafruit.com//assets/71989
https://learn.adafruit.com//assets/86097
https://learn.adafruit.com//assets/86097

CircuitPython is based on Python

Python is the fastest growing programming language. It's taught in schools and

universities. It's a high-level programming language which means it's designed to be

easier to read, write and maintain. It supports modules and packages which means it's

easy to reuse your code for other projects. It has a built in interpreter which means

there are no extra steps, like compiling, to get your code to work. And of course,

Python is Open Source Software which means it's free for anyone to use, modify or

improve upon.

CircuitPython adds hardware support to all of these amazing features. If you already

have Python knowledge, you can easily apply that to using CircuitPython. If you have

no previous experience, it's really simple to get started!

Why would I use CircuitPython?

CircuitPython is designed to run on microcontroller boards. A microcontroller board is

a board with a microcontroller chip that's essentially an itty-bitty all-in-one computer.

The board you're holding is a microcontroller board! CircuitPython is easy to use

because all you need is that little board, a USB cable, and a computer with a USB

connection. But that's only the beginning.

Other reasons to use CircuitPython include:

You want to get up and running quickly. Create a file, edit your code, save the

file, and it runs immediately. There is no compiling, no downloading and no

uploading needed.

You're new to programming. CircuitPython is designed with education in mind.

It's easy to start learning how to program and you get immediate feedback from

the board.

•

•

©Adafruit Industries Page 24 of 207

Easily update your code. Since your code lives on the disk drive, you can edit it

whenever you like, you can also keep multiple files around for easy

experimentation.

The serial console and REPL. These allow for live feedback from your code and

interactive programming.

File storage. The internal storage for CircuitPython makes it great for data-

logging, playing audio clips, and otherwise interacting with files.

Strong hardware support. CircuitPython has builtin support for microcontroller

hardware features like digital I/O pins, hardware buses (UART, I2C, SPI), audio I/

O, and other capabilities. There are also many libraries and drivers for sensors,

breakout boards and other external components.

It's Python! Python is the fastest-growing programming language. It's taught in

schools and universities. CircuitPython is almost-completely compatible with

Python. It simply adds hardware support.

This is just the beginning. CircuitPython continues to evolve, and is constantly being

updated. Adafruit welcomes and encourages feedback from the community, and

incorporate it into the development of CircuitPython. That's the core of the open

source concept. This makes CircuitPython better for you and everyone who uses it!

Update the UF2 Bootloader

Your SAMD51 M4 board bootloader may need to be updated to fix an intermittent bug

that can erase parts of internal flash.

Updating Your Bootloader

To see if you need to update your bootloader, get the UF2 boot drive to appear as a

mounted drive on your computer, in a file browser window. If you're running

MakeCode, click the reset button once. If you're running CircuitPython or an Arduino

program, double-click the reset button.

When you see the ...BOOT drive (FEATHERBOOT, METROM4BOOT, ITSYM4BOOT, PO

RTALBOOT, etc.) , click the drive in the file browser window and then double-click the

INFO_UF2.TXT file to see what's inside.

•

•

•

•

•

Update the Bootloader on your SAMD51 M4 board to prevent a somewhat rare

problem of parts of internal flash being overwritten on power-up.

©Adafruit Industries Page 25 of 207

The example screenshots below are for a PyGamer. What you see for your board will

be largely the same except for the board name and the BOOT drive name.

The bootloader version is listed in INFO_UF2.TXT. In this example, the version is v3.6.

0.

If the bootloader version you see is older than v3.9.0, you need to update. For

instance, the bootloader above needs to be upgraded.

Download the latest version of the bootloader updater from the circuitpython.org

Downloads page for your board.

©Adafruit Industries Page 26 of 207

Latest board downloads

The bootloader updater will be named update-bootloader-

name_of_your_board-v3.9.0.uf2 or some later version. Drag that file from your D

ownloads folder onto the BOOT drive:

•

©Adafruit Industries Page 27 of 207

https://circuitpython.org/downloads

After you drag the updater onto the boot drive, the red LED on the board will flicker

and then blink slowly about five times. A few seconds later, the BOOT will appear in

the Finder. After that, you can click on the BOOT drive and double-click INFO_UF2.TX

T again to confirm you've updated the bootloader.

Updating the PyPortal Demo Code

Your PyPortal that came with AdaBox has older running firmware, libraries and

software.

The files are the same for the PyPortal and the PyPortal Pynt.

Before you start, you'll NEED to update your PyPortal!

©Adafruit Industries Page 28 of 207

Step 1 - Update Firmware to Latest

Visit this page and follow the instructions to download and update the latest

CircuitPython firmware. You will need to download the latest UF2 firmware file,

double-click to enter the bootloader, then drag the UF2 over to the PORTALBOOT

drive. ()

Your PyPortal will no longer run the example code once you do this - that's OK! We

have to finish the other two steps

Step 2 - Update Example Code to Latest

Your PyPortal may have come with an example Quotes demo, or perhaps its blank.

Either way, you can install the latest Quotes demo package by clicking here to

download a zip:

PyPortal 4.x Demo Files

PyPortal 5.x Demo Files

First, delete all the files from your CIRCUITPY drive (so you don't have any old

lingering files)

Unzip this and go into the boards/pyportal/5.x folder. You will see files such as code.p

y and pyportal_startup.bmp. Copy over everything in the boards/pyportal/5.x folder.

That means code.py and the lib folder will be in the 'root' directory of CIRCUITPY.

Note: These are the files that shipped with the Adabox 11 PyPortal. The libraries

within this zip are out of date and not compatible with the current version of

CircuitPython! The code will not run on the latest CircuitPython. Please use the

updated information below to load the updates libraries on your PyPortal.

The following zip includes the latest libraries as of May 2020. Please visit https://

circuitpython.org/libraries to download the latest bundle and update all of the

libraries to the latest.

©Adafruit Industries Page 29 of 207

https://learn.adafruit.com/adafruit-pyportal/install-circuitpython
https://learn.adafruit.com/adafruit-pyportal/install-circuitpython
https://learn.adafruit.com/adafruit-pyportal/install-circuitpython
https://learn.adafruit.com/adafruit-pyportal/install-circuitpython
https://github.com/adafruit/circuitpython-default-files/tree/main/boards/pyportal/4.x
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://cdn-learn.adafruit.com/assets/assets/000/090/931/original/PyPortal_5x_demo_files.zip?1588870430

Step 3 - Check Display & Add WiFi Secrets

Once everything is fully copied, you will be prompted to edit secrets.py

Do that to enable WiFi support

Step 4 - If you are getting odd errors

If your filesystem somehow got corrupted, or you're getting unusual errors, try erasing

the filesystem to clear out any corrupt files (), by:

download the QSPI Eraser UF2 file ()

load it onto the PyPortal by entering the bootloader and dragging it onto

PORTALBOOT

wait until the back LED goes from yellow to green

Go to Step 1 to re-load the firmware and demo code!

Install CircuitPython

CircuitPython () is a derivative of MicroPython () designed to simplify experimentation

and education on low-cost microcontrollers. It makes it easier than ever to get

prototyping by requiring no upfront desktop software downloads. Simply copy and

edit files on the CIRCUITPY "flash" drive to iterate.

The following instructions will show you how to install CircuitPython. If you've already

installed CircuitPython but are looking to update it or reinstall it, the same steps work

for that as well!

Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

Download the latest version of

CircuitPython for the PyPortal via

CircuitPython.org

•

•

•

•

©Adafruit Industries Page 30 of 207

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#old-way-for-the-circuit-playground-express-feather-m0-express-and-metro-m0-express-20-25
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#old-way-for-the-circuit-playground-express-feather-m0-express-and-metro-m0-express-20-25
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#old-way-for-the-circuit-playground-express-feather-m0-express-and-metro-m0-express-20-25
https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/pyportal/

Download the latest version of

CircuitPython for the PyPortal Pynt

via CircuitPython.org

Click the link above to download the latest

version of CircuitPython for the PyPortal.

Download and save it to your desktop (or

wherever is handy).

Plug your PyPortal into your computer

using a known-good USB cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Double-click the Reset button on the top in

the middle (magenta arrow) on your board,

and you will see the NeoPixel RGB LED

(green arrow) turn green. If it turns red,

check the USB cable, try another USB port,

etc. Note: The little red LED next to the

USB connector will pulse red. That's ok!

If double-clicking doesn't work the first

time, try again. Sometimes it can take a

few tries to get the rhythm right!

©Adafruit Industries Page 31 of 207

https://circuitpython.org/board/pyportal_pynt/
https://learn.adafruit.com//assets/73615
https://learn.adafruit.com//assets/73615
https://learn.adafruit.com//assets/71993
https://learn.adafruit.com//assets/71993

You will see a new disk drive appear called

PORTALBOOT.

Drag the adafruit-circuitpython-pyportal-

<whatever>.uf2 file to PORTALBOOT.

The LED will flash. Then, the

PORTALBOOT drive will disappear and a

new disk drive called CIRCUITPY will

appear.

If you haven't added any code to your

board, the only file that will be present is

boot_out.txt. This is absolutely normal! It's

time for you to add your code.py and get

started!

That's it, you're done! :)

PyPortal Default Files

Click below to download a zip of the files that shipped on the PyPortal or PyPortal

Pynt.

PyPortal Default Files

©Adafruit Industries Page 32 of 207

https://learn.adafruit.com//assets/72029
https://learn.adafruit.com//assets/72029
https://learn.adafruit.com//assets/72030
https://learn.adafruit.com//assets/72030
https://learn.adafruit.com//assets/71995
https://learn.adafruit.com//assets/71995
https://github.com/adafruit/circuitpython-default-files/tree/main/boards/pyportal/4.x

PyPortal Pynt Default Files

Installing the Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's

written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial

console is built right in so you get immediate feedback from your board's serial

output!

Download and Install Mu

Download Mu from https://codewith.mu ().

Click the Download link for downloads and

installation instructions.

Click Start Here to find a wealth of other

information, including extensive tutorials

and and how-to's.

Mu is our recommended editor - please use it (unless you are an experienced

coder with a favorite editor already!).

Windows users: due to the nature of MSI installers, please remove old versions of

Mu before installing the latest version.

Ubuntu users: Mu currently (checked May 4, 2022) does not install properly on

Ubuntu 22.04. See https://github.com/mu-editor/mu/issues to track this issue.

See https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

and https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-

circuitpython for other editors to use.

©Adafruit Industries Page 33 of 207

https://github.com/adafruit/circuitpython-default-files/tree/main/boards/pyportal_pynt/5.x
https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://github.com/mu-editor/mu/issues
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-circuitpython

Starting Up Mu

The first time you start Mu, you will be

prompted to select your 'mode' - you can

always change your mind later. For now

please select CircuitPython!

The current mode is displayed in the lower

right corner of the window, next to the

"gear" icon. If the mode says "Microbit" or

something else, click the Mode button in

the upper left, and then choose

"CircuitPython" in the dialog box that

appears.

Mu attempts to auto-detect your board on

startup, so if you do not have a

CircuitPython board plugged in with a

CIRCUITPY drive available, Mu will inform

you where it will store any code you save

until you plug in a board.

To avoid this warning, plug in a board and

ensure that the CIRCUITPY drive is

mounted before starting Mu.

Using Mu

You can now explore Mu! The three main sections of the window are labeled below;

the button bar, the text editor, and the serial console / REPL.

©Adafruit Industries Page 34 of 207

https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679

Now you're ready to code! Let's keep going...

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and

running. This section covers how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. Adafruit

strongly recommends using Mu! It's designed for CircuitPython, and it's really simple

and easy to use, with a built in serial console!

If you don't or can't use Mu, there are a number of other editors that work quite well.

The Recommended Editors page () has more details. Otherwise, make sure you do

"Eject" or "Safe Remove" on Windows or "sync" on Linux after writing a file if you

aren't using Mu. (This is not a problem on MacOS.)

©Adafruit Industries Page 35 of 207

https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

Creating Code

Installing CircuitPython generates a

code.py file on your CIRCUITPY drive. To

begin your own program, open your editor,

and load the code.py file from the

CIRCUITPY drive.

If you are using Mu, click the Load button

in the button bar, navigate to the

CIRCUITPY drive, and choose code.py.

Copy and paste the following code into your editor:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

If you're using a KB2040, QT Py or a Trinkey, please download the NeoPixel blink

example ().

The KB2040, QT Py and the Trinkeys do not have a built-in little red LED! There is

an addressable RGB NeoPixel LED. The above example will NOT work on the

KB2040, QT Py or the Trinkeys!

The NeoPixel blink example uses the onboard NeoPixel, but the time code is the

same. You can use the linked NeoPixel Blink example to follow along with this

guide page.

©Adafruit Industries Page 36 of 207

https://learn.adafruit.com//assets/105703
https://learn.adafruit.com//assets/105703
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py

It will look like this. Note that under the

while True: line, the next four lines

begin with four spaces to indent them, and

they're indented exactly the same amount.

All the lines before that have no spaces

before the text.

Save the code.py file on your CIRCUITPY

drive.

The little LED should now be blinking. Once per half-second.

Congratulations, you've just run your first CircuitPython program!

On most boards you'll find a tiny red LED.

On the ItsyBitsy nRF52840, you'll find a tiny blue LED.

On QT Py M0, QT Py RP2040, and the Trinkey series, you will find only an RGB

NeoPixel LED.

©Adafruit Industries Page 37 of 207

https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105705

Editing Code

To edit code, open the code.py file on your

CIRCUITPY drive into your editor.

Make the desired changes to your code.

Save the file. That's it!

Your code changes are run as soon as the file is done saving.

There's one warning before you continue...

The CircuitPython code on your board detects when the files are changed or written

and will automatically re-start your code. This makes coding very fast because you

save, and it re-runs. If you unplug or reset the board before your computer finishes

writing the file to your board, you can corrupt the drive. If this happens, you may lose

the code you've written, so it's important to backup your code to your computer

regularly.

There are a couple of ways to avoid filesystem corruption.

1. Use an editor that writes out the file completely when you save it.

Check out the Recommended Editors page () for details on different editing options.

Don't click reset or unplug your board!

If you are dragging a file from your host computer onto the CIRCUITPY drive, you

still need to do step 2. Eject or Sync (below) to make sure the file is completely

written.

©Adafruit Industries Page 38 of 207

https://learn.adafruit.com//assets/105706
https://learn.adafruit.com//assets/105706
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make

it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually

eject, but it will force the operating system to save your file to disk. On Linux, use the

sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file

manager to drag a file onto CIRCUITPY.

Oh No I Did Something Wrong and Now The CIRCUITPY

Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this

happens, follow the steps found on the Troubleshooting () page of every board

guide to get your board up and running again.

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file

into your editor. You'll make a simple change. Change the first 0.5 to 0.1 . The code

should look like this:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.1)

 led.value = False

 time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your

board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it

looks like this:

©Adafruit Industries Page 39 of 207

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

while True:

 led.value = True

 time.sleep(0.1)

 led.value = False

 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on

and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly

because you've increased the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them

to see what happens! These were simple changes, but major changes are done using

the same process. Make your desired change, save it, and get the results. That's

really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.tx

t, code.py, main.txt and main.py. CircuitPython looks for those files, in that order, and

then runs the first one it finds. While code.py is the recommended name for your code

file, it is important to know that the other options exist. If your program doesn't seem

to be updating as you work, make sure you haven't created another code file that's

being read instead of the one you're working on.

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called

a "print statement". This is a line you include in your code that causes your code to

output text. A print statement in CircuitPython (and Python) looks like this:

print("Hello, world!")

This line in your code.py would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial

console comes in!

©Adafruit Industries Page 40 of 207

The serial console receives output from your CircuitPython board sent over USB and

displays it so you can see it. This is necessary when you've included a print statement

in your code and you'd like to see what you printed. It is also helpful for

troubleshooting errors, because your board will send errors and the serial console will

display those too.

The serial console requires an editor that has a built in terminal, or a separate

terminal program. A terminal is a program that gives you a text-based interface to

perform various tasks.

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board

making using the serial console really really easy.

First, make sure your CircuitPython board

is plugged in.

If you open Mu without a board plugged

in, you may encounter the error seen here,

letting you know no CircuitPython board

was found and indicating where your code

will be stored until you plug in a board.

If you are using Windows 7, make sure you

installed the drivers ().

Once you've opened Mu with your board plugged in, look for the Serial button in the

button bar and click it.

The Mu window will split in two, horizontally, and display the serial console at the

bottom.

©Adafruit Industries Page 41 of 207

https://learn.adafruit.com//assets/105925
https://learn.adafruit.com//assets/105925
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers

Serial Console Issues or Delays on Linux

If you're on Linux, and are seeing multi-second delays connecting to the serial

console, or are seeing "AT" and other gibberish when you connect, then the

modemmanager service might be interfering. Just remove it; it doesn't have much use

unless you're still using dial-up modems.

To remove modemmanager , type the following command at a shell:

sudo apt purge modemmanager

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the S

erial button, you need to add yourself to a user group to have permission to connect

to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

If nothing appears in the serial console, it may mean your code is done running

or has no print statements in it. Click into the serial console part of Mu, and press

CTRL+D to reload.

©Adafruit Industries Page 42 of 207

After running the command above, reboot your machine to gain access to the group.

On other Linux distributions, the group you need may be different. See the Advanced

Serial Console on Linux () for details on how to add yourself to the right group.

Using Something Else?

If you're not using Mu to edit, are using or if for some reason you are not a fan of its

built in serial console, you can run the serial console from a separate program.

Windows requires you to download a terminal program. Check out the Advanced

Serial Console on Windows page for more details. ()

MacOS has Terminal built in, though there are other options available for download. C

heck the Advanced Serial Console on Mac page for more details. ()

Linux has a terminal program built in, though other options are available for

download. Check the Advanced Serial Console on Linux page for more details. ()

Once connected, you'll see something like the following.

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, you're going to

edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print

anything you like! Just include your phrase between the quotation marks inside the

parentheses. For example:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

©Adafruit Industries Page 43 of 207

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello, CircuitPython!")

 led.value = True

 time.sleep(1)

 led.value = False

 time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

Excellent! Our print statement is showing up in our console! Try changing the printed

text to something else.

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello back to you!")

 led.value = True

 time.sleep(1)

 led.value = False

 time.sleep(1)

Keep your serial console window where you can see it. Save your file. You'll see what

the serial console displays when the board reboots. Then you'll see your new change!

©Adafruit Industries Page 44 of 207

The Traceback (most recent call last): is telling you the last thing your board

was doing before you saved your file. This is normal behavior and will happen every

time the board resets. This is really handy for troubleshooting. Let's introduce an error

so you can see how it is used.

Delete the e at the end of True from the line led.value = True so that it says le

d.value = Tru

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello back to you!")

 led.value = Tru

 time.sleep(1)

 led.value = False

 time.sleep(1)

Save your file. You will notice that your red LED will stop blinking, and you may have a

colored status LED blinking at you. This is because the code is no longer correct and

can no longer run properly. You need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose.

You may have 200 lines of code, and have no idea where your error could be hiding.

This is where the serial console can help. Let's take a look!

The Traceback (most recent call last): is telling you that the last thing it was

able to run was line 10 in your code. The next line is your error: NameError: name

'Tru' is not defined . This error might not mean a lot to you, but combined with

knowing the issue is on line 10, it gives you a great place to start!

©Adafruit Industries Page 45 of 207

Go back to your code, and take a look at line 10. Obviously, you know what the

problem is already. But if you didn't, you'd want to look at line 10 and see if you could

figure it out. If you're still unsure, try googling the error to get some help. In this case,

you know what to look for. You spelled True wrong. Fix the typo and save your file.

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking

again.

The serial console will display any output generated by your code. Some sensors,

such as a humidity sensor or a thermistor, receive data and you can use print

statements to display that information. You can also use print statements for

troubleshooting, which is called "print debugging". Essentially, if your code isn't

working, and you want to know where it's failing, you can put print statements in

various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and

programming!

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL.

The REPL allows you to enter individual lines of code and have them run immediately.

It's really handy if you're running into trouble with a particular program and can't

figure out why. It's interactive so it's great for testing new ideas.

©Adafruit Industries Page 46 of 207

Entering the REPL

To use the REPL, you first need to be connected to the serial console. Once that

connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll

see Press any key to enter the REPL. Use CTRL-D to reload. Follow those

instructions, and press any key on your keyboard.

The Traceback (most recent call last): is telling you the last thing your board

was doing before you pressed Ctrl + C and interrupted it. The KeyboardInterrupt

is you pressing CTRL+C. This information can be handy when troubleshooting, but for

now, don't worry about it. Just note that it is expected behavior.

If your code.py file is empty or does not contain a loop, it will show an empty output

and Code done running. . There is no information about what your board was

doing before you interrupted it because there is no code running.

If you have no code.py on your CIRCUITPY drive, you will enter the REPL immediately

after pressing CTRL+C. Again, there is no information about what your board was

doing before you interrupted it because there is no code running.

©Adafruit Industries Page 47 of 207

Regardless, once you press a key you'll see a >>> prompt welcoming you to the

REPL!

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released.

Next, it gives you the type of board you're using and the type of microcontroller the

board uses. Each part of this may be different for your board depending on the

versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL

From this prompt you can run all sorts of commands and code. The first thing you'll do

is run help() . This will tell you where to start exploring the REPL. To run code in the

REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

©Adafruit Industries Page 48 of 207

First part of the message is another reference to the version of CircuitPython you're

using. Second, a URL for the CircuitPython related project guides. Then... wait. What's

this? To list built-in modules type `help("modules")`. Remember the

modules you learned about while going through creating code? That's exactly what

this is talking about! This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

This is a list of all the core modules built into CircuitPython, including board .

Remember, board contains all of the pins on the board that you can use in your

code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might

look like nothing happened, but that's not the case! If you recall, the import

statement simply tells the code to expect to do something with that module. In this

case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

This is a list of all of the pins on your board that are available for you to use in your

code. Each board's list will differ slightly depending on the number of pins available.

Do you see LED ? That's the pin you used to blink the red LED!

©Adafruit Industries Page 49 of 207

The REPL can also be used to run code. Be aware that any code you enter into the

REPL isn't saved anywhere. If you're testing something new that you'd like to keep,

make sure you have it saved somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that

says, "Hello, World." You're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire

programs into the REPL to test them. Remember that nothing typed into the REPL is

saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to

see if a few new lines of code will work. It's fantastic for troubleshooting code by

entering it one line at a time and finding out where it fails. It lets you see what

modules are available and explore those modules.

Try typing more into the REPL to see what happens!

Returning to the Serial Console

When you're ready to leave the REPL and return to the serial console, simply press CT

RL+D. This will reload your board and reenter the serial console. You will restart the

program you had running before entering the REPL. In the console window, you'll see

any output from the program you had running. And if your program was affecting

anything visual on the board, you'll see that start up again as well.

Everything typed into the REPL is ephemeral. Once you reload the REPL or return

to the serial console, nothing you typed will be retained in any memory space. So

be sure to save any desired code you wrote somewhere else, or you'll lose it

when you leave the current REPL instance!

©Adafruit Industries Page 50 of 207

You can return to the REPL at any time!

CircuitPython Libraries

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. These files are called libraries. Some of them

are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder

called lib. Part of what makes CircuitPython so great is its ability to store code

separately from the firmware itself. Storing code separately from the firmware makes

it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If

not, simply create the folder yourself. When you first install CircuitPython, an empty lib

directory will be created for you.

CircuitPython libraries work in the same way as regular Python modules so the Python

docs () are an excellent reference for how it all should work. In Python terms, you can

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 51 of 207

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

place our library files in the lib directory because it's part of the Python path by

default.

One downside of this approach of separate libraries is that they are not built in. To

use them, one needs to copy them to the CIRCUITPY drive before they can be used.

Fortunately, there is a library bundle.

The bundle and the library releases on GitHub also feature optimized versions of the

libraries with the .mpy file extension. These files take less space on the drive and

have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with

the entire bundle. Therefore, you will need to load the libraries you need when you

begin working with your board. You can find example code in the guides for your

board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get

libraries on board.

The Adafruit Learn Guide Project Bundle

The quickest and easiest way to get going with a project from the Adafruit Learn

System is by utilising the Project Bundle. Most guides now have a Download Project

Bundle button available at the top of the full code example embed. This button

downloads all the necessary files, including images, etc., to get the guide project up

and running. Simply click, open the resulting zip, copy over the right files, and you're

good to go!

The first step is to find the Download Project Bundle button in the guide you're

working on.

The Download Project Bundle button is only available on full demo code

embedded from GitHub in a Learn guide. Code snippets will NOT have the

button available.

©Adafruit Industries Page 52 of 207

The Download Project Bundle button downloads a zip file. This zip contains a series

of directories, nested within which is the code.py, any applicable assets like images or

audio, and the lib/ folder containing all the necessary libraries. The following zip was

downloaded from the Piano in the Key of Lime guide.

When you open the zip, you'll find some nested directories. Navigate through them

until you find what you need. You'll eventually find a directory for your CircuitPython

When you copy the contents of the Project Bundle to your CIRCUITPY drive, it

will replace all the existing content! If you don't want to lose anything, ensure you

copy your current code to your computer before you copy over the new Project

Bundle content!

The Piano in the Key of Lime guide was chosen as an example. That guide is

specific to Circuit Playground Express, and cannot be used on all boards. Do not

expect to download that exact bundle and have it work on your non-CPX

microcontroller.

©Adafruit Industries Page 53 of 207

version (in this case, 7.x). In the version directory, you'll find the file and directory you

need: code.py and lib/. Once you find the content you need, you can copy it all over

to your CIRCUITPY drive, replacing any files already on the drive with the files from

the freshly downloaded zip.

Once you copy over all the relevant files, the project should begin running! If you find

that the project is not running as expected, make sure you've copied ALL of the

project files onto your microcontroller board.

That's all there is to using the Project Bundle!

The Adafruit CircuitPython Library Bundle

Adafruit provides CircuitPython libraries for much of the hardware they provide,

including sensors, breakouts and more. To eliminate the need for searching for each

library individually, the libraries are available together in the Adafruit CircuitPython

Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release by clicking

the button below. The libraries are being constantly updated and improved, so you'll

always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For

example, you would download the 6.x library bundle if you're running any version of

CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython

7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible

mpy errors due to changes in library interfaces possible during major version

changes.

Click to visit circuitpython.org for the

latest Adafruit CircuitPython Library

Bundle

In some cases, there will be other files such as audio or images in the same

directory as code.py and lib/. Make sure you include all the files when you copy

things over!

©Adafruit Industries Page 54 of 207

https://circuitpython.org/libraries

Download the bundle version that matches your CircuitPython firmware version. If you

don't know the version, check the version info in boot_out.txt file on the CIRCUITPY

drive, or the initial prompt in the CircuitPython REPL. For example, if you're running

v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably

don't want that unless you are doing advanced work on libraries.

The CircuitPython Community Library

Bundle

The CircuitPython Community Library Bundle is made up of libraries written and

provided by members of the CircuitPython community. These libraries are often

written when community members encountered hardware not supported in the

Adafruit Bundle, or to support a personal project. The authors all chose to submit

these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit. As

you would with any library, if you run into problems, feel free to file an issue on the

GitHub repo for the library. Bear in mind, though, that most of these libraries are

supported by a single person and you should be patient about receiving a response.

Remember, these folks are not paid by Adafruit, and are volunteering their personal

time when possible to provide support.

Downloading the CircuitPython Community Library Bundle

You can download the latest CircuitPython Community Library Bundle release by

clicking the button below. The libraries are being constantly updated and improved,

so you'll always want to download the latest bundle.

Click for the latest CircuitPython

Community Library Bundle release

The link takes you to the latest release of the CircuitPython Community Library

Bundle on GitHub. There are multiple versions of the bundle available. Download the

bundle version that matches your CircuitPython firmware version. If you don't know

the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the

initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,

download the 7.x library bundle.

©Adafruit Industries Page 55 of 207

https://github.com/adafruit/CircuitPython_Community_Bundle/releases

Understanding the Bundle

After downloading the zip, extract its contents. This is usually done by double clicking

on the zip. On Mac OSX, it places the file in the same directory as the zip.

Open the bundle folder. Inside you'll find two information files, and two folders. One

folder is the lib bundle, and the other folder is the examples bundle.

Now open the lib folder. When you open the folder, you'll see a large number of .mpy

files, and folders.

Example Files

All example files from each library are now included in the bundles in an examples

directory (as seen above), as well as an examples-only bundle. These are included for

two main reasons:

Allow for quick testing of devices.

Provide an example base of code, that is easily built upon for individualized

purposes.

•

•

©Adafruit Industries Page 56 of 207

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you

extracted from the downloaded zip. Inside you'll find a number of folders and .mpy

files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire

folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the

downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename

it to code.py to run it.

Understanding Which Libraries to Install

You now know how to load libraries on to your CircuitPython-compatible

microcontroller board. You may now be wondering, how do you know which libraries

you need to install? Unfortunately, it's not always straightforward. Fortunately, there is

an obvious place to start, and a relatively simple way to figure out the rest. First up:

the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or

more import statements. These typically look like the following:

import library_or_module

If a library has multiple .mpy files contained in a folder, be sure to copy the entire

folder to CIRCUITPY/lib.

•

©Adafruit Industries Page 57 of 207

However, import statements can also sometimes look like the following:

from library_or_module import name

from library_or_module.subpackage import name

from library_or_module import name as local_name

They can also have more complicated formats, such as including a try / except

block, etc.

The important thing to know is that an import statement will always include the

name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or

other code shown here, as the purpose of this section involves only the import list.

import time

import board

import neopixel

import adafruit_lis3dh

import usb_hid

from adafruit_hid.consumer_control import ConsumerControl

from adafruit_hid.consumer_control_code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always

built-in CircuitPython modules. How do you know the difference? Time to visit the

REPL.

In the Interacting with the REPL section () on The REPL page () in this guide, the

help("modules") command is discussed. This command provides a list of all of the

built-in modules available in CircuitPython for your board. So, if you connect to the

serial console on your board, and enter the REPL, you can run help("modules") to

see what modules are available for your board. Then, as you read through the impor

t statements, you can, for the purposes of figuring out which libraries to load, ignore

the statement that import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.

Your list may look similar or be anything down to a significant subset of this list for

smaller boards.

•

•

•

©Adafruit Industries Page 58 of 207

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

Now that you know what you're looking for, it's time to read through the import

statements. The first two, time and board , are on the modules list above, so they're

built-in.

The next one, neopixel , is not on the module list. That means it's your first library!

So, you would head over to the bundle zip you downloaded, and search for neopixel.

There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your CI

RCUITPY drive. The following one, adafruit_lis3dh , is also not on the module list.

Follow the same process for adafruit_lis3dh, where you'll find adafruit_lis3dh.mpy,

and copy that over.

The fifth one is usb_hid , and it is in the modules list, so it is built in. Often all of the

built-in modules come first in the import list, but sometimes they don't! Don't assume

that everything after the first library is also a library, and verify each import with the

modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are

formatted like this, the first thing after the from is the library name. In this case, the

library name is adafruit_hid . A search of the bundle will find an adafruit_hid folder.

When a library is a folder, you must copy the entire folder and its contents as it is in

the bundle to the lib folder on your CIRCUITPY drive. In this case, you would copy the

entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit_hid . Sometimes you will

need to import more than one thing from the same library. Regardless of how many

times you import the same library, you only need to load the library by copying over

the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on

your CircuitPython-compatible board!

©Adafruit Industries Page 59 of 207

There are cases, however, where libraries require other libraries internally. The

internally required library is called a dependency. In the event of library

dependencies, the easiest way to figure out what other libraries are required is to

connect to the serial console and follow along with the ImportError printed there.

The following is a very simple example of an ImportError , but the concept is the

same for any missing library.

Example: ImportError Due to Missing

Library

If you choose to load libraries as you need them, or you're starting fresh with an

existing example, you may end up with code that tries to use a library you haven't yet

loaded. This section will demonstrate what happens when you try to utilise a library

that you don't have loaded on your board, and cover the steps required to resolve the

issue.

This demonstration will only return an error if you do not have the required library

loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board

import time

import simpleio

led = simpleio.DigitalOut(board.LED)

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see

what's going on.

©Adafruit Industries Page 60 of 207

You have an ImportError . It says there is no module named 'simpleio' . That's

the one you just included in your code!

Click the link above to download the correct bundle. Extract the lib folder from the

downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file you're

looking for! Follow the steps above to load an individual library file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose

the library that matches the one you're missing.

Library Install on Non-Express Boards

If you have an M0 non-Express board such as Trinket M0, Gemma M0, QT Py M0, or

one of the M0 Trinkeys, you'll want to follow the same steps in the example above to

install libraries as you need them. Remember, you don't need to wait for an ImportEr

ror if you know what library you added to your code. Open the library bundle you

downloaded, find the library you need, and drag it to the lib folder on your CIRCUITPY

drive.

You can still end up running out of space on your M0 non-Express board even if you

only load libraries as you need them. There are a number of steps you can use to try

to resolve this issue. You'll find suggestions on the Troubleshooting page ().

Updating CircuitPython Libraries and

Examples

Libraries and examples are updated from time to time, and it's important to update the

files you have on your CIRCUITPY drive.

©Adafruit Industries Page 61 of 207

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

To update a single library or example, follow the same steps above. When you drag

the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates

include things like bug fixes and new features. It's important to check in every so

often to see if the libraries you're using have been updated.

CircUp CLI Tool

There is a command line interface (CLI) utility called CircUp () that can be used to

easily install and update libraries on your device. Follow the directions on the install

page within the CircUp learn guide (). Once you've got it installed you run the

command circup update in a terminal to interactively update all libraries on the

connected CircuitPython device. See the usage page in the CircUp guide () for a full

list of functionality

CircuitPython Pins and Modules

CircuitPython is designed to run on microcontrollers and allows you to interface with

all kinds of sensors, inputs and other hardware peripherals. There are tons of guides

showing how to wire up a circuit, and use CircuitPython to, for example, read data

from a sensor, or detect a button press. Most CircuitPython code includes hardware

setup which requires various modules, such as board or digitalio . You import

these modules and then use them in your code. How does CircuitPython know to look

for hardware in the specific place you connected it, and where do these modules

come from?

This page explains both. You'll learn how CircuitPython finds the pins on your

microcontroller board, including how to find the available pins for your board and

what each pin is named. You'll also learn about the modules built into CircuitPython,

including how to find all the modules available for your board.

CircuitPython Pins

When using hardware peripherals with a CircuitPython compatible microcontroller,

you'll almost certainly be utilising pins. This section will cover how to access your

board's pins using CircuitPython, how to discover what pins and board-specific

objects are available in CircuitPython for your board, how to use the board-specific

objects, and how to determine all available pin names for a given pin on your board.

©Adafruit Industries Page 62 of 207

https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/usage

import board

When you're using any kind of hardware peripherals wired up to your microcontroller

board, the import list in your code will include import board . The board module is

built into CircuitPython, and is used to provide access to a series of board-specific

objects, including pins. Take a look at your microcontroller board. You'll notice that

next to the pins are pin labels. You can always access a pin by its pin label. However,

there are almost always multiple names for a given pin.

To see all the available board-specific objects and pins for your board, enter the REPL

(>>>) and run the following commands:

import board

dir(board)

Here is the output for the QT Py. You may have a different board, and this list will vary,

based on the board.

The following pins have labels on the physical QT Py board: A0, A1, A2, A3, SDA, SCL,

TX, RX, SCK, MISO, and MOSI. You see that there are many more entries available in

board than the labels on the QT Py.

You can use the pin names on the physical board, regardless of whether they seem to

be specific to a certain protocol.

For example, you do not have to use the SDA pin for I2C - you can use it for a button

or LED.

On the flip side, there may be multiple names for one pin. For example, on the QT Py,

pin A0 is labeled on the physical board silkscreen, but it is available in CircuitPython

as both A0 and D0 . For more information on finding all the names for a given pin,

see the What Are All the Available Pin Names? () section below.

The results of dir(board) for CircuitPython compatible boards will look similar to

the results for the QT Py in terms of the pin names, e.g. A0, D0, etc. However, some

boards, for example, the Metro ESP32-S2, have different styled pin names. Here is the

output for the Metro ESP32-S2.

©Adafruit Industries Page 63 of 207

https://learn.adafruit.com/circuitpython-essentials/circuitpython-pins-and-modules#what-are-all-the-available-names-3082670-14

Note that most of the pins are named in an IO# style, such as IO1 and IO2. Those pins

on the physical board are labeled only with a number, so an easy way to know how to

access them in CircuitPython, is to run those commands in the REPL and find the pin

naming scheme.

I2C, SPI, and UART

You'll also see there are often (but not always!) three special board-specific objects

included: I2C , SPI , and UART - each one is for the default pin-set used for each of

the three common protocol busses they are named for. These are called singletons.

What's a singleton? When you create an object in CircuitPython, you are instantiating

('creating') it. Instantiating an object means you are creating an instance of the object

with the unique values that are provided, or "passed", to it.

For example, When you instantiate an I2C object using the busio module, it expects

two pins: clock and data, typically SCL and SDA. It often looks like this:

i2c = busio.I2C(board.SCL, board.SDA)

Then, you pass the I2C object to a driver for the hardware you're using. For example,

if you were using the TSL2591 light sensor and its CircuitPython library, the next line

of code would be:

tsl2591 = adafruit_tsl2591.TSL2591(i2c)

However, CircuitPython makes this simpler by including the I2C singleton in the boa

rd module. Instead of the two lines of code above, you simply provide the singleton

as the I2C object. So if you were using the TSL2591 and its CircuitPython library, the

two above lines of code would be replaced with:

tsl2591 = adafruit_tsl2591.TSL2591(board.I2C())

If your code is failing to run because it can't find a pin name you provided, verify

that you have the proper pin name by running these commands in the REPL.

©Adafruit Industries Page 64 of 207

This eliminates the need for the busio module, and simplifies the code. Behind the

scenes, the board.I2C() object is instantiated when you call it, but not before, and

on subsequent calls, it returns the same object. Basically, it does not create an object

until you need it, and provides the same object every time you need it. You can call

board.I2C() as many times as you like, and it will always return the same object.

What Are All the Available Names?

Many pins on CircuitPython compatible microcontroller boards have multiple names,

however, typically, there's only one name labeled on the physical board. So how do

you find out what the other available pin names are? Simple, with the following script!

Each line printed out to the serial console contains the set of names for a particular

pin.

On a microcontroller board running CircuitPython, first, connect to the serial console.

In the example below, click the Download Project Bundle button below to download

the necessary libraries and the code.py file in a zip file. Extract the contents of the zip

file, open the directory CircuitPython_Essentials/Pin_Map_Script/ and then click on

the directory that matches the version of CircuitPython you're using and copy the

contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

#

The board.I2C(), board.SPI(), and board.UART() singletons do not exist on all

boards. They exist if there are board markings for the default pins for those

devices.

The UART/SPI/I2C singletons will use the 'default' bus pins for each board - often

labeled as RX/TX (UART), MOSI/MISO/SCK (SPI), or SDA/SCL (I2C). Check your

board documentation/pinout for the default busses.

©Adafruit Industries Page 65 of 207

SPDX-License-Identifier: MIT

"""CircuitPython Essentials Pin Map Script"""

import microcontroller

import board

board_pins = []

for pin in dir(microcontroller.pin):

 if isinstance(getattr(microcontroller.pin, pin), microcontroller.Pin):

 pins = []

 for alias in dir(board):

 if getattr(board, alias) is getattr(microcontroller.pin, pin):

 pins.append("board.{}".format(alias))

 if len(pins) > 0:

 board_pins.append(" ".join(pins))

for pins in sorted(board_pins):

 print(pins)

Here is the result when this script is run on QT Py:

Each line represents a single pin. Find the line containing the pin name that's labeled

on the physical board, and you'll find the other names available for that pin. For

example, the first pin on the board is labeled A0. The first line in the output is board.

A0 board.D0 . This means that you can access pin A0 with both board.A0 and

board.D0 .

You'll notice there are two "pins" that aren't labeled on the board but appear in the

list: board.NEOPIXEL and board.NEOPIXEL_POWER . Many boards have several of

these special pins that give you access to built-in board hardware, such as an LED or

an on-board sensor. The Qt Py only has one on-board extra piece of hardware, a

NeoPixel LED, so there's only the one available in the list. But you can also control

whether or not power is applied to the NeoPixel, so there's a separate pin for that.

That's all there is to figuring out the available names for a pin on a compatible

microcontroller board in CircuitPython!

©Adafruit Industries Page 66 of 207

Microcontroller Pin Names

The pin names available to you in the CircuitPython board module are not the same

as the names of the pins on the microcontroller itself. The board pin names are

aliases to the microcontroller pin names. If you look at the datasheet for your

microcontroller, you'll likely find a pinout with a series of pin names, such as "PA18" or

"GPIO5". If you want to get to the actual microcontroller pin name in CircuitPython,

you'll need the microcontroller.pin module. As with board , you can run dir(mi

crocontroller.pin) in the REPL to receive a list of the microcontroller pin names.

CircuitPython Built-In Modules

There is a set of modules used in most CircuitPython programs. One or more of these

modules is always used in projects involving hardware. Often hardware requires

installing a separate library from the Adafruit CircuitPython Bundle. But, if you try to

find board or digitalio in the same bundle, you'll come up lacking. So, where do

these modules come from? They're built into CircuitPython! You can find an

comprehensive list of built-in CircuitPython modules and the technical details of their

functionality from CircuitPython here () and the Python-like modules included here ().

However, not every module is available for every board due to size constraints or

hardware limitations. How do you find out what modules are available for your board?

There are two options for this. You can check the support matrix (), and search for

your board by name. Or, you can use the REPL.

Plug in your board, connect to the serial console and enter the REPL. Type the

following command.

help("modules")

©Adafruit Industries Page 67 of 207

https://circuitpython.readthedocs.io/en/latest/shared-bindings/index.html#modules
https://circuitpython.readthedocs.io/en/latest/docs/library/index.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html#

That's it! You now know two ways to find all of the modules built into CircuitPython for

your compatible microcontroller board.

Frequently Asked Questions

These are some of the common questions regarding CircuitPython and CircuitPython

microcontrollers.

What are some common acronyms to know?

CP or CPy = CircuitPython ()

CPC = Circuit Playground Classic () (does not run CircuitPython)

CPX = Circuit Playground Express ()

CPB = Circuit Playground Bluefruit ()

Using Older Versions

I have to continue using CircuitPython 6.x or earlier.

Where can I find compatible libraries?

We are no longer building or supporting the CircuitPython 6.x or earlier library

bundles. We highly encourage you to update CircuitPython to the latest version ()

and use the current version of the libraries (). However, if for some reason you

cannot update, here are the last available library bundles for older versions:

2.x bundle ()

3.x bundle ()

4.x bundle ()

5.x bundle ()

6.x bundle ()

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

•

•

•

•

•

©Adafruit Industries Page 68 of 207

https://circuitpython.org
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20211213/adafruit-circuitpython-bundle-6.x-mpy-20211213.zip

Python Arithmetic

Does CircuitPython support floating-point numbers?

All CircuitPython boards support floating point arithmetic, even if the

microcontroller chip does not support floating point in hardware. Floating point

numbers are stored in 30 bits, with an 8-bit exponent and a 22-bit mantissa. Note

that this is two bits less than standard 32-bit single-precision floats. You will get

about 5-1/2 digits of decimal precision.

(The broadcom port may provide 64-bit floats in some cases.)

Does CircuitPython support long integers, like regular

Python?

Python long integers (integers of arbitrary size) are available on most builds, except

those on boards with the smallest available firmware size. On these boards,

integers are stored in 31 bits.

Boards without long integer support are mostly SAMD21 ("M0") boards without an

external flash chip, such as the Adafruit Gemma M0, Trinket M0, QT Py M0, and the

Trinkey series. There are also a number of third-party boards in this category.

There are also a few small STM third-party boards without long integer support.

time.localtime() , time.mktime() , time.time() , and

time.monotonic_ns() are available only on builds with long integers.

Wireless Connectivity

How do I connect to the Internet with CircuitPython?

If you'd like to include WiFi in your project, your best bet is to use a board that is

running natively on ESP32 chipsets - those have WiFi built in!

If your development board has an SPI port and at least 4 additional pins, you can

check out this guide () on using AirLift with CircuitPython - extra wiring is required

and some boards like the MacroPad or NeoTrellis do not have enough available

pins to add the hardware support.

For further project examples, and guides about using AirLift with specific hardware,

check out the Adafruit Learn System ().

©Adafruit Industries Page 69 of 207

https://learn.adafruit.com/adafruit-io-basics-airlift
https://learn.adafruit.com/search?q=airlift

How do I do BLE (Bluetooth Low Energy) with

CircuitPython?

The nRF52840 and nRF52833 boards have the most complete BLE

implementation. Your program can act as both a BLE central and peripheral. As a

central, you can scan for advertisements, and connect to an advertising board. As a

peripheral, you can advertise, and you can create services available to a central.

Pairing and bonding are supported.

ESP32-C3 and ESP32-S3 boards currently provide an incomplete () BLE

implementation. Your program can act as a central, and connect to a peripheral.

You can advertise, but you cannot create services. You cannot advertise

anonymously. Pairing and bonding are not supported.

The ESP32 could provide a similar implementation, but it is not yet available. Note

that the ESP32-S2 does not have Bluetooth capability.

On most other boards with adequate firmware space, BLE is available for use with

AirLift () or other NINA-FW-based co-processors. Some boards have this

coprocessor on board, such as the PyPortal (). Currently, this implementation only

supports acting as a BLE peripheral. Scanning and connecting as a central are not

yet implemented. Bonding and pairing are not supported.

Are there other ways to communicate by radio with

CircuitPython?

Check out Adafruit's RFM boards ()for simple radio communication supported by

CircuitPython, which can be used over distances of 100m to over a km, depending

on the version. The RFM SAMD21 M0 boards can be used, but they were not

designed for CircuitPython, and have limited RAM and flash space; using the RFM

breakouts or FeatherWings with more capable boards will be easier.

Asyncio and Interrupts

Is there asyncio support in CircuitPython?

There is support for asyncio starting with CircuitPython 7.1.0, on all boards except

the smallest SAMD21 builds. Read about using it in the Cooperative Multitasking in

CircuitPython () Guide.

©Adafruit Industries Page 70 of 207

https://github.com/adafruit/circuitpython/issues/5926
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-pyportal/circuitpython-ble
https://www.adafruit.com/?q=rfm&sort=BestMatch
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts - please use asyncio for

multitasking / 'threaded' control of your code

Status RGB LED

My RGB NeoPixel/DotStar LED is blinking funny colors -

what does it mean?

The status LED can tell you what's going on with your CircuitPython board. Read

more here for what the colors mean! ()

Memory Issues

What is a MemoryError?

Memory allocation errors happen when you're trying to store too much on the

board. The CircuitPython microcontroller boards have a limited amount of memory

available. You can have about 250 lines of code on the M0 Express boards. If you

try to import too many libraries, a combination of large libraries, or run a program

with too many lines of code, your code will fail to run and you will receive a

MemoryError in the serial console.

What do I do when I encounter a MemoryError?

Try resetting your board. Each time you reset the board, it reallocates the memory.

While this is unlikely to resolve your issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries

are available in the bundle in a .mpy format which takes up less memory than .py

format. Be sure that you're using the latest library bundle () for your version of

CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments,

remove extraneous or unneeded code, or any other clean up you can do to

shorten your code. If you're using a lot of functions, you could try moving those

into a separate library, creating a .mpy of that library, and importing it into your

code.

©Adafruit Industries Page 71 of 207

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

You can turn your entire file into a .mpy and import that into code.py. This means

you will be unable to edit your code live on the board, but it can save you space.

Can the order of my import statements affect memory?

It can because the memory gets fragmented differently depending on allocation

order and the size of objects. Loading .mpy files uses less memory so its

recommended to do that for files you aren't editing.

How can I create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross .

You can download mpy-cross for your operating system from here (). Builds are

available for Windows, macOS, x64 Linux, and Raspberry Pi Linux. Choose the

latest mpy-cross whose version matches the version of CircuitPython you are

using.

To make a .mpy file, run ./mpy-cross path/to/yourfile.py to create a

yourfile.mpy in the same directory as the original file.

How do I check how much memory I have free?

Run the following to see the number of bytes available for use:

import gc

gc.mem_free()

Unsupported Hardware

Is ESP8266 or ESP32 supported in CircuitPython? Why

not?

We dropped ESP8266 support as of 4.x - For more information please read about it

here ()!

As of CircuitPython 8.x we have started to support ESP32 and ESP32-C3 and have

added a WiFi workflow for wireless coding! ()

We also support ESP32-S2 & ESP32-S3, which have native USB.

©Adafruit Industries Page 72 of 207

https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/circuitpython-with-esp32-quick-start

Does Feather M0 support WINC1500?

No, WINC1500 will not fit into the M0 flash space.

Can AVRs such as ATmega328 or ATmega2560 run

CircuitPython?

No.

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are

a few things you may encounter and how to resolve them.

Always Run the Latest Version of

CircuitPython and Libraries

As CircuitPython development continues and there are new releases, Adafruit will

stop supporting older releases. You need to update to the latest CircuitPython. ().

You need to download the CircuitPython Library Bundle that matches your version of

CircuitPython. Please update CircuitPython and then download the latest bundle ().

As new versions of CircuitPython are released, Adafruit will stop providing the

previous bundles as automatically created downloads on the Adafruit CircuitPython

Library Bundle repo. If you must continue to use an earlier version, you can still

download the appropriate version of mpy-cross from the particular release of

CircuitPython on the CircuitPython repo and create your own compatible .mpy library

files. However, it is best to update to the latest for both CircuitPython and the library

bundle.

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 73 of 207

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries

I have to continue using CircuitPython 5.x or earlier.

Where can I find compatible libraries?

Adafruit is no longer building or supporting the CircuitPython 5.x or earlier library

bundles. You are highly encourged to update CircuitPython to the latest version () and

use the current version of the libraries (). However, if for some reason you cannot

update, links to the previous bundles are available in the FAQ ().

Bootloader (boardnameBOOT) Drive Not

Present

You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship with the UF2

bootloader ()installed. The Feather M0 Basic, Feather M0 Adalogger, and similar

boards use a regular Arduino-compatible bootloader, which does not show a boardna

meBOOT drive.

MakeCode

If you are running a MakeCode () program on Circuit Playground Express, press the

reset button just once to get the CPLAYBOOT drive to show up. Pressing it twice will

not work.

MacOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the

BOOT drive. See this forum post () for how to fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade

to Windows 10 with the driver package installed? You don't need to install this

package on Windows 10 for most Adafruit boards. The old version (v1.5) can interfere

with recognizing your device. Go to Settings -> Apps and uninstall all the "Adafruit"

driver programs.

©Adafruit Industries Page 74 of 207

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions#faq-3105289
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/makecode/sharing-and-saving?view=all#step-1-bootloader-mode
https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215

Windows 7 or 8.1

To use a CircuitPython-compatible board with Windows 7 or 8.1, you must install a

driver. Installation instructions are available here ().

It is recommended () that you upgrade to Windows 10 if possible; an upgrade is

probably still free for you. Check here ().

You should now be done! Test by unplugging and replugging the board. You should

see the CIRCUITPY drive, and when you double-click the reset button (single click on

Circuit Playground Express running MakeCode), you should see the appropriate boar

dnameBOOT drive.

Let us know in the Adafruit support forums () or on the Adafruit Discord () if this does

not work for you!

Windows Explorer Locks Up When

Accessing boardnameBOOT Drive

On Windows, several third-party programs that can cause issues. The symptom is that

you try to access the boardnameBOOT drive, and Windows or Windows Explorer

seems to lock up. These programs are known to cause trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64.

They acquired hardware to test, and released a beta version that fixes the

problem. This may have been incorporated into the latest release. Please let us

know in the forums if you test this.

Hard Disk Sentinel

Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely.

Disabling some aspects of Kaspersky does not always solve the problem. This

problem has been reported to Kaspersky.

ESET NOD32 anti-virus: There have been problems with at least version

9.0.386.0, solved by uninstallation.

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0) .

Windows 7 drivers for CircuitPython boards released since then, including

RP2040 boards, are not yet available. The boards work fine on Windows 10. A

new release of the drivers is in process.

•

•

•

•

©Adafruit Industries Page 75 of 207

https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://forums.adafruit.com
https://adafru.it/discord

Copying UF2 to boardnameBOOT Drive

Hangs at 0% Copied

On Windows, a Western DIgital (WD) utility that comes with their external USB drives

can interfere with copying UF2 files to the boardnameBOOT drive. Uninstall that utility

to fix the problem.

CIRCUITPY Drive Does Not Appear or

Disappears Quickly

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. There has not

yet been settings change discovered that prevents this. Complete uninstallation of

Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this problem on

Windows 7. The user turned off both Smart Firewall and Auto Protect, and CIRCUITPY

then appeared.

Sophos Endpoint security software can cause CIRCUITPY to disappear () and the

BOOT drive to reappear. It is not clear what causes this behavior.

Device Errors or Problems on Windows

Windows can become confused about USB device installations. This is particularly

true of Windows 7 and 8.1. It is recommended () that you upgrade to Windows 10 if

possible; an upgrade is probably still free for you: see this link ().

If not, try cleaning up your USB devices. Use Uwe Sieber's Device Cleanup Tool () (on

that page, scroll down to "Device Cleanup Tool"). Download and unzip the tool.

Unplug all the boards and other USB devices you want to clean up. Run the tool as

Administrator. You will see a listing like this, probably with many more devices. It is

listing all the USB devices that are not currently attached.

©Adafruit Industries Page 76 of 207

https://forums.adafruit.com/viewtopic.php?f=60&t=187629
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://www.cnet.com/tech/services-and-software/windows-10-download/
https://www.uwe-sieber.de/misc_tools_e.html

Select all the devices you want to remove, and then press Delete. It is usually safe

just to select everything. Any device that is removed will get a fresh install when you

plug it in. Using the Device Cleanup Tool also discards all the COM port assignments

for the unplugged boards. If you have used many Arduino and CircuitPython boards,

you have probably seen higher and higher COM port numbers used, seemingly

without end. This will fix that problem.

Serial Console in Mu Not Displaying

Anything

There are times when the serial console will accurately not display anything, such as,

when no code is currently running, or when code with no serial output is already

running before you open the console. However, if you find yourself in a situation

where you feel it should be displaying something like an error, consider the following.

Depending on the size of your screen or Mu window, when you open the serial

console, the serial console panel may be very small. This can be a problem. A basic

CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.

code.py output:

Traceback (most recent call last):

 File "code.py", line 7

SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

©Adafruit Industries Page 77 of 207

Therefore, if your serial console panel is five lines tall or less, you may only see blank

lines or blank lines followed by Press any key to enter the REPL. Use CTRL-D

to reload. . If this is the case, you need to either mouse over the top of the panel to

utilise the option to resize the serial panel, or use the scrollbar on the right side to

scroll up and find your message.

This applies to any kind of serial output whether it be error messages or print

statements. So before you start trying to debug your problem on the hardware side,

be sure to check that you haven't simply missed the serial messages due to serial

output panel height.

code.py Restarts Constantly

CircuitPython will restart code.py if you or your computer writes to something on the

CIRCUITPY drive. This feature is called auto-reload, and lets you test a change to your

program immediately.

Some utility programs, such as backup, anti-virus, or disk-checking apps, will write to

the CIRCUITPY as part of their operation. Sometimes they do this very frequently,

causing constant restarts.

Acronis True Image and related Acronis programs on Windows are known to cause

this problem. It is possible to prevent this by disabling the " ()Acronis Managed

Machine Service Mini" ().

If you cannot stop whatever is causing the writes, you can disable auto-reload by

putting this code in boot.py or code.py:

import supervisor

supervisor.disable_autoreload()

©Adafruit Industries Page 78 of 207

https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder

CircuitPython RGB Status Light

Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED

on the board that indicates the status of CircuitPython. A few boards designed before

CircuitPython existed, such as the Feather M0 Basic, do not.

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB LEDs,

but do NOT have a status LED. The LEDs are all green when in the bootloader. In

versions before 7.0.0, they do NOT indicate any status while running CircuitPython.

CircuitPython 7.0.0 and Later

The status LED blinks were changed in CircuitPython 7.0.0 in order to save battery

power and simplify the blinks. These blink patterns will occur on single color LEDs

when the board does not have any RGB LEDs. Speed and blink count also vary for

this reason.

On start up, the LED will blink YELLOW multiple times for 1 second. Pressing the

RESET button (or on Espressif, the BOOT button) during this time will restart the board

and then enter safe mode. On Bluetooth capable boards, after the yellow blinks, there

will be a set of faster blue blinks. Pressing reset during the BLUE blinks will clear

Bluetooth information and start the device in discoverable mode, so it can be used

with a BLE code editor.

Once started, CircuitPython will blink a pattern every 5 seconds when no user code is

running to indicate why the code stopped:

1 GREEN blink: Code finished without error.

2 RED blinks: Code ended due to an exception. Check the serial console for

details.

3 YELLOW blinks: CircuitPython is in safe mode. No user code was run. Check

the serial console for safe mode reason.

When in the REPL, CircuitPython will set the status LED to WHITE. You can change the

LED color from the REPL. The status indicator will not persist on non-NeoPixel or

DotStar LEDs.

•

•

•

©Adafruit Industries Page 79 of 207

CircuitPython 6.3.0 and earlier

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt, main.py, or main.txt) is running

pulsing GREEN: code.py (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for

a reset to indicate that it should start in safe mode

pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted

steady WHITE: REPL is running

steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate

the line number of the error. The color of the first flash indicates the type of error:

GREEN: IndentationError

CYAN: SyntaxError

WHITE: NameError

ORANGE: OSError

PURPLE: ValueError

YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHIT

E flashes are thousands' place, BLUE are hundreds' place, YELLOW are tens' place,

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 80 of 207

and CYAN are one's place. So for example, an error on line 32 would flash YELLOW

three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

Serial console showing ValueError:

Incompatible .mpy file

This error occurs when importing a module that is stored as a .mpy binary file that

was generated by a different version of CircuitPython than the one its being loaded

into. In particular, the mpy binary format changed between CircuitPython versions 6.x

and 7.x, 2.x and 3.x, and 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to download

a newer version of the library that triggered the error on import . All libraries are

available in the Adafruit bundle ().

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find

that your CIRCUITPY stops showing up in your file explorer, or shows up as NO_NAM

E. These are indicators that your filesystem has issues. When the CIRCUITPY disk is

not safely ejected before being reset by the button or being disconnected from USB,

it may corrupt the flash drive. It can happen on Windows, Mac or Linux, though it is

more common on Windows.

©Adafruit Industries Page 81 of 207

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

Be aware, if you have used Arduino to program your board, CircuitPython is no longer

able to provide the USB services. You will need to reload CircuitPython to resolve this

situation.

The easiest first step is to reload CircuitPython. Double-tap reset on the board so you

get a boardnameBOOT drive rather than a CIRCUITPY drive, and copy the latest

version of CircuitPython (.uf2) back to the board. This may restore CIRCUITPY

functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try putting

the board into safe mode.

Safe Mode

Whether you've run into a situation where you can no longer edit your code.py on

your CIRCUITPY drive, your board has gotten into a state where CIRCUITPY is read-

only, or you have turned off the CIRCUITPY drive altogether, safe mode can help.

Safe mode in CircuitPython does not run any user code on startup, and disables auto-

reload. This means a few things. First, safe mode bypasses any code in boot.py

(where you can set CIRCUITPY read-only or turn it off completely). Second, it does not

run the code in code.py. And finally, it does not automatically soft-reload when data is

written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,

safe mode gives you the opportunity to correct it without losing all of the data on the

CIRCUITPY drive.

Entering Safe Mode in CircuitPython 7.x and Later

To enter safe mode when using CircuitPython 7.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

1000ms. On some boards, the onboard status LED will blink yellow during that time. If

you press reset during that 1000ms, the board will start up in safe mode. It can be

difficult to react to the yellow LED, so you may want to think of it simply as a "slow"

double click of the reset button. (Remember, a fast double click of reset enters the

bootloader.)

©Adafruit Industries Page 82 of 207

Entering Safe Mode in CircuitPython 6.x

To enter safe mode when using CircuitPython 6.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

700ms. On some boards, the onboard status LED (highlighted in green above) will

turn solid yellow during this time. If you press reset during that 700ms, the board will

start up in safe mode. It can be difficult to react to the yellow LED, so you may want to

think of it simply as a slow double click of the reset button. (Remember, a fast double

click of reset enters the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse

yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently

blink yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.

Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.

Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not

run until you press the reset button, or unplug and plug in your board, to get out of

safe mode.

At this point, you'll want to remove any user code in code.py and, if present, the boot.

py file from CIRCUITPY. Once removed, tap the reset button, or unplug and plug in

your board, to restart CircuitPython. This will restart the board and may resolve your

drive issues. If resolved, you can begin coding again as usual.

If safe mode does not resolve your issue, the board must be completely erased and

CircuitPython must be reloaded onto the board.

You WILL lose everything on the board when you complete the following steps. If

possible, make a copy of your code before continuing.

©Adafruit Industries Page 83 of 207

To erase CIRCUITPY: storage.erase_filesystem()

CircuitPython includes a built-in function to erase and reformat the filesystem. If you

have a version of CircuitPython older than 2.3.0 on your board, you can update to the

newest version () to do this.

Connect to the CircuitPython REPL () using Mu or a terminal program.

Type the following into the REPL:

>>> import storage

>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Erase CIRCUITPY Without Access to the REPL

If you can't access the REPL, or you're running a version of CircuitPython previous to

2.3.0 and you don't want to upgrade, there are options available for some specific

boards.

The options listed below are considered to be the "old way" of erasing your board.

The method shown above using the REPL is highly recommended as the best method

for erasing your board.

For the specific boards listed below:

If the board you are trying to erase is listed below, follow the steps to use the file to

erase your board.

 1. Download the correct erase file:

Circuit Playground Express

Feather M0 Express

1.

2.

If at all possible, it is recommended to use the REPL to erase your CIRCUITPY

drive. The REPL method is explained above.

©Adafruit Industries Page 84 of 207

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098

Feather M4 Express

Metro M0 Express

Metro M4 Express QSPI Eraser

Trellis M4 Express (QSPI)

Grand Central M4 Express (QSPI)

PyPortal M4 Express (QSPI)

Circuit Playground Bluefruit (QSPI)

Monster M4SK (QSPI)

PyBadge/PyGamer QSPI Eraser.UF2

CLUE_Flash_Erase.UF2

Matrix_Portal_M4_(QSPI).UF2

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The status LED will turn yellow or blue, indicating the erase has started.

 5. After approximately 15 seconds, the status LED will light up green. On the

NeoTrellis M4 this is the first NeoPixel on the grid

 6. Double-click the reset button on the board to bring up the boardnameBOOT d

rive.

 7. Drag the appropriate latest release of CircuitPython () .uf2 file to the boardnam

eBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

©Adafruit Industries Page 85 of 207

https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613
https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%28QSPI%29.UF2?1611076081
https://circuitpython.org/downloads

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps

starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (). You'll also need to load your code and reinstall your

libraries!

For SAMD21 non-Express boards that have a UF2

bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that have a UF2

bootloader include Trinket M0, GEMMA M0, QT Py M0, and the SAMD21-based

Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps to erase

your board.

 1. Download the erase file:

SAMD21 non-Express Boards

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The boot LED will start flashing again, and the boardnameBOOT drive will

reappear.

 5. Drag the appropriate latest release CircuitPython () .uf2 file to the

boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page () YYou'll also need to load your code and reinstall

your libraries!

©Adafruit Industries Page 86 of 207

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2
https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython

For SAMD21 non-Express boards that do not have a UF2

bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that do not have a

UF2 bootloader include the Feather M0 Basic Proto, Feather Adalogger, or the

Arduino Zero.

If you are trying to erase a non-Express board that does not have a UF2 bootloader, f

ollow these directions to reload CircuitPython using bossac (), which will erase and

re-create CIRCUITPY.

Running Out of File Space on SAMD21 Non-

Express Boards

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. This includes boards like the Trinket M0,

GEMMA M0, QT Py M0, and the SAMD21-based Trinkey boards.

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its

likely you'll run out of space but don't panic! There are a number of ways to free up

space.

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there

are libraries in the lib folder that you aren't using anymore or test code that isn't in

use. Don't delete the lib folder completely, though, just remove what you don't need.

©Adafruit Industries Page 87 of 207

file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation

The board ships with the Windows 7 serial driver too! Feel free to delete that if you

don't need it or have already installed it. It's ~12KiB or so.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the

recommendation is to indent code with four spaces for every indent. In general, that

is recommended too. However, one trick to storing more human-readable code is to

use a single tab character for indentation. This approach uses 1/4 of the space for

indentation and can be significant when you're counting bytes.

On MacOS?

MacOS loves to generate hidden files. Luckily you can disable some of the extra

hidden files that macOS adds by running a few commands to disable search indexing

and create zero byte placeholders. Follow the steps below to maximize the amount of

space available on macOS.

Prevent & Remove MacOS Hidden Files

First find the volume name for your board. With the board plugged in run this

command in a terminal to list all the volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full

path to the volume is the /Volumes/CIRCUITPY path.

Now follow the steps from this question () to run these terminal commands that stop

hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY

cd /Volumes/CIRCUITPY

rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}

mkdir .fseventsd

touch .fseventsd/no_log .metadata_never_index .Trashes

cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your

board's volume if it's different. At this point all the hidden files should be cleared from

the board and some hidden files will be prevented from being created.

©Adafruit Industries Page 88 of 207

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

Alternatively, with CircuitPython 4.x and above, the special files and folders

mentioned above will be created automatically if you erase and reformat the

filesystem. WARNING: Save your files first! Do this in the REPL:

>>> import storage

>>> storage.erase_filesystem()

However there are still some cases where hidden files will be created by MacOS. In

particular if you copy a file that was downloaded from the internet it will have special

metadata that MacOS stores as a hidden file. Luckily you can run a copy command

from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on macOS

you need to be careful to copy files to the board with a special command that

prevents future hidden files from being created. Unfortunately you cannot use drag

and drop copy in Finder because it will still create these hidden extended attribute

files in some cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For

example to copy a file_name.mpy file to the board use a command like:

cp -X file_name.mpy /Volumes/CIRCUITPY

(Replace file_name.mpy with the name of the file you want to copy.)

Or to copy a folder and all of the files and folders contained within, use a command

like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before

copying.

if lib does not exist, you'll create a file named lib !

cp -X file_name.mpy /Volumes/CIRCUITPY/lib

This is safer, and will complain if a lib folder does not exist.

cp -X file_name.mpy /Volumes/CIRCUITPY/lib/

©Adafruit Industries Page 89 of 207

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden

files here's how to do so. First, move into the Volumes/ directory with cd /Volumes/ ,

and then list the amount of space used on the CIRCUITPY drive with the df

command.

That's not very much space left! The next step is to show a list of the files currently on

the CIRCUITPY drive, including the hidden files, using the ls command. You cannot

use Finder to do this, you must do it via command line!

There are a few of the hidden files that MacOS loves to generate, all of which begin

with a ._ before the file name. Remove the ._ files using the rm command. You can

remove them all once by running rm CIRCUITPY/._* . The * acts as a wildcard to

apply the command to everything that begins with ._ at the same time.

Finally, you can run df again to see the current space used.

Nice! You have 12Ki more than before! This space can now be used for libraries and

code!

©Adafruit Industries Page 90 of 207

Device Locked Up or Boot Looping

In rare cases, it may happen that something in your code.py or boot.py files causes

the device to get locked up, or even go into a boot loop. A boot loop occurs when the

board reboots repeatedly and never fully loads. These are not caused by your

everyday Python exceptions, typically it's the result of a deeper problem within

CircuitPython. In this situation, it can be difficult to recover your device if CIRCUITPY

is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery

option. When the device boots up in safe mode it will not run the code.py or boot.py

scripts, but will still connect the CIRCUITPY drive so that you can remove or modify

those files as needed.

The method used to manually enter safe mode can be different for different devices.

It is also very similar to the method used for getting into bootloader mode, which is a

different thing. So it can take a few tries to get the timing right. If you end up in

bootloader mode, no problem, you can try again without needing to do anything else.

For most devices:

Press the reset button, and then when the RGB status LED blinks yellow, press the

reset button again. Since your reaction time may not be that fast, try a "slow" double

click, to catch the yellow LED on the second click.

For ESP32-S2 based devices:

Press and release the reset button, then press and release the boot button about 3/4

of a second later.

Refer to the diagrams above for boot sequence details.

"Uninstalling" CircuitPython

A lot of our boards can be used with multiple programming languages. For example,

the Circuit Playground Express can be used with MakeCode, Code.org CS

Discoveries, CircuitPython and Arduino.

Maybe you tried CircuitPython and want to go back to MakeCode or Arduino? Not a

problem. You can always remove or reinstall CircuitPython whenever you want! Heck,

you can change your mind every day!

©Adafruit Industries Page 91 of 207

There is nothing to uninstall. CircuitPython is "just another program" that is loaded

onto your board. You simply load another program (Arduino or MakeCode) and it will

overwrite CircuitPython.

Backup Your Code

Before replacing CircuitPython, don't forget to make a backup of the code you have

on the CIRCUITPY drive. That means your code.py any other files, the lib folder etc.

You may lose these files when you remove CircuitPython, so backups are key! Just

drag the files to a folder on your laptop or desktop computer like you would with any

USB drive.

Moving Circuit Playground Express to

MakeCode

On the Circuit Playground Express (this currently does NOT apply to Circuit

Playground Bluefruit), if you want to go back to using MakeCode, it's really easy. Visit

makecode.adafruit.com () and find the program you want to upload. Click Download to

download the .uf2 file that is generated by MakeCode.

Now double-click your CircuitPython board until you see the onboard LED(s) turn

green and the ...BOOT directory shows up.

Then find the downloaded MakeCode .uf2 file and drag it to the CPLAYBOOT drive.

©Adafruit Industries Page 92 of 207

https://makecode.adafruit.com

Your MakeCode is now running and CircuitPython has been removed. Going forward

you only have to single click the reset button to get to CPLAYBOOT. This is an

idiosyncrasy of MakeCode.

Moving to Arduino

If you want to use Arduino instead, you just use the Arduino IDE to load an Arduino

program. Here's an example of uploading a simple "Blink" Arduino program, but you

don't have to use this particular program.

Start by plugging in your board, and double-clicking reset until you get the green

onboard LED(s).

Within Arduino IDE, select the matching board, say Circuit Playground Express.

Select the correct matching Port:

©Adafruit Industries Page 93 of 207

Create a new simple Blink sketch example:

// the setup function runs once when you press reset or power the board

void setup() {

 // initialize digital pin 13 as an output.

 pinMode(13, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

Make sure the LED(s) are still green, then click Upload to upload Blink. Once it has

uploaded successfully, the serial Port will change so re-select the new Port!

Once Blink is uploaded you should no longer need to double-click to enter

bootloader mode. Arduino will automatically reset when you upload.

Welcome to the Community!

©Adafruit Industries Page 94 of 207

CircuitPython is a programming language that's super simple to get started with and

great for learning. It runs on microcontrollers and works out of the box. You can plug it

in and get started with any text editor. The best part? CircuitPython comes with an

amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for

anyone to use, edit, copy and improve upon. This also means CircuitPython becomes

better because of you being a part of it. Whether this is your first microcontroller

board or you're a seasoned software engineer, you have something important to offer

the Adafruit CircuitPython community. This page highlights some of the many ways

you can be a part of it!

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community

comes together to volunteer and provide live support of all kinds. From general

discussion to detailed problem solving, and everything in between, Discord is a digital

maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your

needs. Each channel is shown on Discord as "#channelname". There's the #help-with-

projects channel for assistance with your current project or help coming up with ideas

for your next one. There's the #show-and-tell channel for showing off your newest

creation. Don't be afraid to ask a question in any channel! If you're unsure, #general is

a great place to start. If another channel is more likely to provide you with a better

answer, someone will guide you.

©Adafruit Industries Page 95 of 207

The help with CircuitPython channel is where to go with your CircuitPython questions.

#help-with-circuitpython is there for new users and developers alike so feel free to

ask a question or post a comment! Everyone of any experience level is welcome to

join in on the conversation. Your contributions are important! The #circuitpython-dev

channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord.

Supporting others doesn't always mean answering questions. Join in celebrating

successes! Celebrate your mistakes! Sometimes just hearing that someone else has

gone through a similar struggle can be enough to keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your

granddaughter to.

Visit https://adafru.it/discord ()to sign up for Discord. Everyone is looking forward to

meeting you!

CircuitPython.org

Beyond the Adafruit Learn System, which you are viewing right now, the best place to

find information about CircuitPython is circuitpython.org (). Everything you need to get

started with your new microcontroller and beyond is available. You can do things like

download CircuitPython for your microcontroller () or download the latest

CircuitPython Library bundle (), or check out which single board computers support

Blinka (). You can also get to various other CircuitPython related things like Awesome

CircuitPython or the Python for Microcontrollers newsletter. This is all incredibly

useful, but it isn't necessarily community related. So why is it included here? The Cont

ributing page ().

©Adafruit Industries Page 96 of 207

https://adafru.it/discord
https://circuitpython.org
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/blinka
https://circuitpython.org/blinka
https://circuitpython.org/contributing
https://circuitpython.org/contributing

CircuitPython itself is written in C. However, all of the Adafruit CircuitPython libraries

are written in Python. If you're interested in contributing to CircuitPython on the

Python side of things, check out circuitpython.org/contributing (). You'll find

information pertaining to every Adafruit CircuitPython library GitHub repository, giving

you the opportunity to join the community by finding a contributing option that works

for you.

Note the date on the page next to Current Status for:

If you submit any contributions to the libraries, and do not see them reflected on the

Contributing page, it could be that the job that checks for new updates hasn't yet run

for today. Simply check back tomorrow!

Now, a look at the different options.

Pull Requests

The first tab you'll find is a list of open pull requests.

GitHub pull requests, or PRs, are opened when folks have added something to an

Adafruit CircuitPython library GitHub repo, and are asking for Adafruit to add, or

merge, their changes into the main library code. For PRs to be merged, they must first

be reviewed. Reviewing is a great way to contribute! Take a look at the list of open

©Adafruit Industries Page 97 of 207

https://circuitpython.org/contributing

pull requests, and pick one that interests you. If you have the hardware, you can test

code changes. If you don't, you can still check the code updates for syntax. In the

case of documentation updates, you can verify the information, or check it for spelling

and grammar. Once you've checked out the update, you can leave a comment letting

us know that you took a look. Once you've done that for a while, and you're more

comfortable with it, you can consider joining the CircuitPythonLibrarians review team.

The more reviewers we have, the more authors we can support. Reviewing is a crucial

part of an open source ecosystem, CircuitPython included.

Open Issues

The second tab you'll find is a list of open issues.

GitHub issues are filed for a number of reasons, including when there is a bug in the

library or example code, or when someone wants to make a feature request. Issues

are a great way to find an opportunity to contribute directly to the libraries by

updating code or documentation. If you're interested in contributing code or

documentation, take a look at the open issues and find one that interests you.

If you're not sure where to start, you can search the issues by label. Labels are

applied to issues to make the goal easier to identify at a first glance, or to indicate the

difficulty level of the issue. Click on the dropdown next to "Sort by issue labels" to see

the list of available labels, and click on one to choose it.

©Adafruit Industries Page 98 of 207

If you're new to everything, new to contributing to open source, or new to

contributing to the CircuitPython project, you can choose "Good first issue". Issues

with that label are well defined, with a finite scope, and are intended to be easy for

someone new to figure out.

If you're looking for something a little more complicated, consider "Bug" or

"Enhancement". The Bug label is applied to issues that pertain to problems or failures

found in the library. The Enhancement label is applied to feature requests.

Don't let the process intimidate you. If you're new to Git and GitHub, there is a guide ()

to walk you through the entire process. As well, there are always folks available on Di

scord () to answer questions.

Library Infrastructure Issues

The third tab you'll find is a list of library infrastructure issues.

This section is generated by a script that runs checks on the libraries, and then

reports back where there may be issues. It is made up of a list of subsections each

containing links to the repositories that are experiencing that particular issue. This

page is available mostly for internal use, but you may find some opportunities to

©Adafruit Industries Page 99 of 207

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https:adafru.it/discord
https:adafru.it/discord

contribute on this page. If there's an issue listed that sounds like something you could

help with, mention it on Discord, or file an issue on GitHub indicating you're working

to resolve that issue. Others can reply either way to let you know what the scope of it

might be, and help you resolve it if necessary.

CircuitPython Localization

The fourth tab you'll find is the CircuitPython Localization tab.

If you speak another language, you can help translate CircuitPython! The translations

apply to informational and error messages that are within the CircuitPython core. It

means that folks who do not speak English have the opportunity to have these

messages shown to them in their own language when using CircuitPython. This is

incredibly important to provide the best experience possible for all users.

CircuitPython uses Weblate to translate, which makes it much simpler to contribute

translations. You will still need to know some CircuitPython-specific practices and a

few basics about coding strings, but as with any CircuitPython contributions, folks are

there to help.

Regardless of your skill level, or how you want to contribute to the CircuitPython

project, there is an opportunity available. The Contributing page () is an excellent

place to start!

Adafruit GitHub

©Adafruit Industries Page 100 of 207

https://circuitpython.org/contributing

Whether you're just beginning or are life-long programmer who would like to

contribute, there are ways for everyone to be a part of the CircuitPython project. The

CircuitPython core is written in C. The libraries are written in Python. GitHub is the

best source of ways to contribute to the CircuitPython core (), and the CircuitPython

libraries (). If you need an account, visit https://github.com/ () and sign up.

If you're new to GitHub or programming in general, there are great opportunities for

you. For the CircuitPython core, head over to the CircuitPython repository on GitHub,

click on "Issues ()", and you'll find a list that includes issues labeled "good first issue ()"

. For the libraries, head over to the Contributing page Issues list (), and use the drop

down menu to search for "good first issue ()". These issues are things that have been

identified as something that someone with any level of experience can help with.

These issues include options like updating documentation, providing feedback, and

fixing simple bugs. If you need help getting started with GitHub, there is an excellent

guide on Contributing to CircuitPython with Git and GitHub ().

Already experienced and looking for a challenge? Checkout the rest of either issues

list and you'll find plenty of ways to contribute. You'll find all sorts of things, from new

driver requests, to library bugs, to core module updates. There's plenty of

opportunities for everyone at any level!

When working with or using CircuitPython or the CircuitPython libraries, you may find

problems. If you find a bug, that's great! The team loves bugs! Posting a detailed issue

to GitHub is an invaluable way to contribute to improving CircuitPython. For

CircuitPython itself, file an issue here (). For the libraries, file an issue on the specific

library repository on GitHub. Be sure to include the steps to replicate the issue as well

as any other information you think is relevant. The more detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of

CircuitPython or a library onto your CircuitPython hardware, and use it. Let us know

about any problems you find by posting a new issue to GitHub. Software testing on

both stable and unstable releases is a very important part of contributing

CircuitPython. The developers can't possibly find all the problems themselves! They

need your help to make CircuitPython even better.

©Adafruit Industries Page 101 of 207

https://github.com/adafruit/circuitpython
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues
https://github.com/
https://github.com/adafruit/circuitpython/issues
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https://github.com/adafruit/circuitpython/issues

On GitHub, you can submit feature requests, provide feedback, report problems and

much more. If you have questions, remember that Discord and the Forums are both

there for help!

Adafruit Forums

The Adafruit Forums () are the perfect place for support. Adafruit has wonderful paid

support folks to answer any questions you may have. Whether your hardware is giving

you issues or your code doesn't seem to be working, the forums are always there for

you to ask. You need an Adafruit account to post to the forums. You can use the same

account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums

are a more reliable source of information. If you want to be certain you're getting an

Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything

Adafruit. The Adafruit CircuitPython () category under "Supported Products & Projects"

is the best place to post your CircuitPython questions.

Be sure to include the steps you took to get to where you are. If it involves wiring,

post a picture! If your code is giving you trouble, include your code in your post!

These are great ways to make sure that there's enough information to help you with

your issue.

©Adafruit Industries Page 102 of 207

https://forums.adafruit.com
https://forums.adafruit.com/viewforum.php?f=60

You might think you're just getting started, but you definitely know something that

someone else doesn't. The great thing about the forums is that you can help others

too! Everyone is welcome and encouraged to provide constructive feedback to any of

the posted questions. This is an excellent way to contribute to the community and

share your knowledge!

Read the Docs

Read the Docs () is a an excellent resource for a more detailed look at the

CircuitPython core and the CircuitPython libraries. This is where you'll find things like

API documentation and example code. For an in depth look at viewing and

understanding Read the Docs, check out the CircuitPython Documentation () page!

PyPortal CircuitPython Setup

To use all the amazing features of your PyPortal with CircuitPython, you must first

install a number of libraries. This page covers that process.

Adafruit CircuitPython Bundle

Download the Adafruit CircuitPython Library Bundle. You can find the latest release

here:

©Adafruit Industries Page 103 of 207

https://circuitpython.readthedocs.io/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-documentation

Latest Adafruit CircuitPython Library

Bundle

Download the adafruit-circuitpython-bundle-*.x-mpy-*.zip bundle zip file where *.x

MATCHES THE VERSION OF CIRCUITPYTHON YOU INSTALLED, and unzip a folder of

the same name. Inside you'll find a lib folder. You have two options:

You can add the lib folder to your CIRCUITPY drive. This will ensure you have all

the drivers. But it will take a bunch of space on the 8 MB disk

Add each library as you need it, this will reduce the space usage but you'll need

to put in a little more effort.

At a minimum we recommend the following libraries, in fact we more than

recommend. They're basically required. So grab them and install them into CIRCUITP

Y/lib now!

adafruit_esp32spi - This is the library that gives you internet access via the

ESP32 using (you guessed it!) SPI transport. You need this for anything Internet

adafruit_requests - This library allows us to perform HTTP requests and get

responses back from servers. GET/POST/PUT/PATCH - they're all in here!

adafruit_pyportal - This is our friendly wrapper library that does a lot of our

projects, displays graphics and text, fetches data from the internet. Nearly all of

our projects depend on it!

adafruit_portalbase - This library is the base library that adafruit_pyportal library

is built on top of.

adafruit_touchscreen - a library for reading touches from the resistive

touchscreen. Handles all the analog noodling, rotation and calibration for you.

adafruit_io - this library helps connect the PyPortal to our free datalogging and

viewing service

adafruit_imageload - an image display helper, required for any graphics!

adafruit_display_text - not surprisingly, it displays text on the screen

adafruit_bitmap_font - we have fancy font support, and its easy to make new

fonts. This library reads and parses font files.

adafruit_slideshow - for making image slideshows - handy for quick display of

graphics and sound

neopixel - for controlling the onboard neopixel

adafruit_adt7410 - library to read the temperature from the on-board Analog

Devices ADT7410 precision temperature sensor (not necessary for Titano or

Pynt)

adafruit_bus_device - low level support for I2C/SPI

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 104 of 207

https://circuitpython.org/libraries

adafruit_fakerequests - This library allows you to create fake HTTP requests by

using local files.

Internet Connect!

Once you have CircuitPython setup and libraries installed we can get your board

connected to the Internet. Note that access to enterprise level secured WiFi networks

is not currently supported, only WiFi networks that require SSID and password.

To get connected, you will need to start by creating a secrets file.

What's a secrets file?

We expect people to share tons of projects as they build CircuitPython WiFi widgets.

What we want to avoid is people accidentally sharing their passwords or secret

tokens and API keys. So, we designed all our examples to use a secrets.py file, that is

in your CIRCUITPY drive, to hold secret/private/custom data. That way you can share

your main project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

This file is where you keep secret settings, passwords, and tokens!

If you put them in the code you risk committing that info or sharing it

secrets = {

 'ssid' : 'home ssid',

 'password' : 'my password',

 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones

 'github_token' : 'fawfj23rakjnfawiefa',

 'hackaday_token' : 'h4xx0rs3kret',

 }

Inside is a python dictionary named secrets with a line for each entry. Each entry has

an entry name (say 'ssid') and then a colon to separate it from the entry key 'home

ssid' and finally a comma ,

At a minimum you'll need the ssid and password for your local WiFi setup. As you

make projects you may need more tokens and keys, just add them one line at a time.

See for example other tokens such as one for accessing github or the hackaday API.

Other non-secret data like your timezone can also go here, just cause it's called

secrets doesn't mean you can't have general customization data in there!

•

©Adafruit Industries Page 105 of 207

For the correct time zone string, look at http://worldtimeapi.org/timezones () and

remember that if your city is not listed, look for a city in the same time zone, for

example Boston, New York, Philadelphia, Washington DC, and Miami are all on the

same time as New York.

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other

project-sharing sites.

Connect to WiFi

OK now you have your secrets setup - you can connect to the Internet.

To do this, you need to first install a few libraries, into the lib folder on your CIRCUITP

Y drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory examples/ and then

click on the directory that matches the version of CircuitPython you're using and copy

the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import board

import busio

from digitalio import DigitalInOut

import adafruit_requests as requests

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

©Adafruit Industries Page 106 of 207

http://worldtimeapi.org/timezones

from adafruit_esp32spi import adafruit_esp32spi

Get wifi details and more from a secrets.py file

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

print("ESP32 SPI webclient test")

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an AirLift Shield:

esp32_cs = DigitalInOut(board.D10)

esp32_ready = DigitalInOut(board.D7)

esp32_reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:

esp32_cs = DigitalInOut(board.D13)

esp32_ready = DigitalInOut(board.D11)

esp32_reset = DigitalInOut(board.D12)

If you have an externally connected ESP32:

NOTE: You may need to change the pins to reflect your wiring

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

requests.set_socket(socket, esp)

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:

 print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware_version)

print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():

 print("\t%s\t\tRSSI: %d" % (str(ap["ssid"], "utf-8"), ap["rssi"]))

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except OSError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

print("My IP address is", esp.pretty_ip(esp.ip_address))

print(

 "IP lookup adafruit.com: %s" %

esp.pretty_ip(esp.get_host_by_name("adafruit.com"))

)

print("Ping google.com: %d ms" % esp.ping("google.com"))

esp._debug = True

print("Fetching text from", TEXT_URL)

r = requests.get(TEXT_URL)

print("-" * 40)

print(r.text)

©Adafruit Industries Page 107 of 207

print("-" * 40)

r.close()

print()

print("Fetching json from", JSON_URL)

r = requests.get(JSON_URL)

print("-" * 40)

print(r.json())

print("-" * 40)

r.close()

print("Done!")

And save it to your board, with the name code.py.

Don't forget you'll also need to create the secrets.py file as seen above, with your

WiFi ssid and password.

In a serial console, you should see something like the following. For more information

about connecting with a serial console, view the guide Connecting to the Serial

Console ().

In order, the example code...

Initializes the ESP32 over SPI using the SPI port and 3 control pins:

©Adafruit Industries Page 108 of 207

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

Tells our requests library the type of socket we're using (socket type varies by

connectivity type - we'll be using the adafruit_esp32spi_socket for this example).

We'll also set the interface to an esp object. This is a little bit of a hack, but it lets us

use requests like CPython does.

requests.set_socket(socket, esp)

Verifies an ESP32 is found, checks the firmware and MAC address

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:

 print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware_version)

print("MAC addr:", [hex(i) for i in esp.MAC_address])

Performs a scan of all access points it can see and prints out the name and signal

strength:

for ap in esp.scan_networks():

 print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

Connects to the AP we've defined here, then prints out the local IP address, attempts

to do a domain name lookup and ping google.com to check network connectivity

(note sometimes the ping fails or takes a while, this isn't a big deal)

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

print("My IP address is", esp.pretty_ip(esp.ip_address))

print(

 "IP lookup adafruit.com: %s" %

esp.pretty_ip(esp.get_host_by_name("adafruit.com"))

OK now we're getting to the really interesting part. With a SAMD51 or other large-RAM

(well, over 32 KB) device, we can do a lot of neat tricks. Like for example we can

implement an interface a lot like requests () - which makes getting data really really

easy

©Adafruit Industries Page 109 of 207

http://docs.python-requests.org/en/master/

To read in all the text from a web URL call requests.get - you can pass in https

URLs for SSL connectivity

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

print("Fetching text from", TEXT_URL)

r = requests.get(TEXT_URL)

print('-'*40)

print(r.text)

print('-'*40)

r.close()

Or, if the data is in structured JSON, you can get the json pre-parsed into a Python

dictionary that can be easily queried or traversed. (Again, only for nRF52840, M4 and

other high-RAM boards)

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

print("Fetching json from", JSON_URL)

r = requests.get(JSON_URL)

print('-'*40)

print(r.json())

print('-'*40)

r.close()

Requests

We've written a requests-like () library for web interfacing named Adafruit_CircuitPyth

on_Requests (). This library allows you to send HTTP/1.1 requests without "crafting"

them and provides helpful methods for parsing the response from the server.

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory examples/ and then

click on the directory that matches the version of CircuitPython you're using and copy

the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 110 of 207

https://requests.readthedocs.io/en/master/
https://github.com/adafruit/Adafruit_CircuitPython_Requests
https://github.com/adafruit/Adafruit_CircuitPython_Requests

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

adafruit_requests usage with an esp32spi_socket

import board

import busio

from digitalio import DigitalInOut

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with

"ssid" and

"password" keys with your WiFi credentials. DO NOT share that file or commit it

into Git or other

source control.

pylint: disable=no-name-in-module,wrong-import-order

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:

esp32_cs = DigitalInOut(board.D13)

esp32_ready = DigitalInOut(board.D11)

esp32_reset = DigitalInOut(board.D12)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface

socket.set_interface(esp)

requests.set_socket(socket, esp)

©Adafruit Industries Page 111 of 207

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

JSON_GET_URL = "https://httpbin.org/get"

JSON_POST_URL = "https://httpbin.org/post"

print("Fetching text from %s" % TEXT_URL)

response = requests.get(TEXT_URL)

print("-" * 40)

print("Text Response: ", response.text)

print("-" * 40)

response.close()

print("Fetching JSON data from %s" % JSON_GET_URL)

response = requests.get(JSON_GET_URL)

print("-" * 40)

print("JSON Response: ", response.json())

print("-" * 40)

response.close()

data = "31F"

print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))

response = requests.post(JSON_POST_URL, data=data)

print("-" * 40)

json_resp = response.json()

Parse out the 'data' key from json_resp dict.

print("Data received from server:", json_resp["data"])

print("-" * 40)

response.close()

json_data = {"Date": "July 25, 2019"}

print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))

response = requests.post(JSON_POST_URL, json=json_data)

print("-" * 40)

json_resp = response.json()

Parse out the 'json' key from json_resp dict.

print("JSON Data received from server:", json_resp["json"])

print("-" * 40)

response.close()

The code first sets up the ESP32SPI interface. Then, it initializes a request object

using an ESP32 socket and the esp object.

import board

import busio

from digitalio import DigitalInOut

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

import adafruit_requests as requests

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")

©Adafruit Industries Page 112 of 207

while not esp.is_connected:

 try:

 esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')

 except RuntimeError as e:

 print("could not connect to AP, retrying: ",e)

 continue

print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface

requests.set_socket(socket, esp)

HTTP GET with Requests

The code makes a HTTP GET request to Adafruit's WiFi testing website - http://

wifitest.adafruit.com/testwifi/index.html ().

To do this, we'll pass the URL into requests.get() . We're also going to save the

response from the server into a variable named response .

Having requested data from the server, we'd now like to see what the server

responded with. Since we already saved the server's response , we can read it back.

Luckily for us, requests automatically decodes the server's response into human-

readable text, you can read it back by calling response.text .

Lastly, we'll perform a bit of cleanup by calling response.close() . This closes,

deletes, and collect's the response's data.

print("Fetching text from %s"%TEXT_URL)

response = requests.get(TEXT_URL)

print('-'*40)

print("Text Response: ", response.text)

print('-'*40)

response.close()

While some servers respond with text, some respond with json-formatted data

consisting of attribute–value pairs.

CircuitPython_Requests can convert a JSON-formatted response from a server into a

CPython dict. object.

We can also fetch and parse json data. We'll send a HTTP get to a url we know returns

a json-formatted response (instead of text data).

Then, the code calls response.json() to convert the response to a CPython dict .

©Adafruit Industries Page 113 of 207

http://wifitest.adafruit.com/testwifi/index.html
http://wifitest.adafruit.com/testwifi/index.html

print("Fetching JSON data from %s"%JSON_GET_URL)

response = requests.get(JSON_GET_URL)

print('-'*40)

print("JSON Response: ", response.json())

print('-'*40)

response.close()

HTTP POST with Requests

Requests can also POST data to a server by calling the requests.post method,

passing it a data value.

data = '31F'

print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))

response = requests.post(JSON_POST_URL, data=data)

print('-'*40)

json_resp = response.json()

Parse out the 'data' key from json_resp dict.

print("Data received from server:", json_resp['data'])

print('-'*40)

response.close()

You can also post json-formatted data to a server by passing json_data into the

requests.post method.

 json_data = {"Date" : "July 25, 2019"}

print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))

response = requests.post(JSON_POST_URL, json=json_data)

print('-'*40)

json_resp = response.json()

Parse out the 'json' key from json_resp dict.

print("JSON Data received from server:", json_resp['json'])

print('-'*40)

response.close()

Advanced Requests Usage

Want to send custom HTTP headers, parse the response as raw bytes, or handle a

response's http status code in your CircuitPython code?

We've written an example to show advanced usage of the requests module below.

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

©Adafruit Industries Page 114 of 207

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory examples/ and then

click on the directory that matches the version of CircuitPython you're using and copy

the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import board

import busio

from digitalio import DigitalInOut

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with

"ssid" and

"password" keys with your WiFi credentials. DO NOT share that file or commit it

into Git or other

source control.

pylint: disable=no-name-in-module,wrong-import-order

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:

 print("could not connect to AP, retrying: ", e)

©Adafruit Industries Page 115 of 207

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface

socket.set_interface(esp)

requests.set_socket(socket, esp)

JSON_GET_URL = "http://httpbin.org/get"

Define a custom header as a dict.

headers = {"user-agent": "blinka/1.0.0"}

print("Fetching JSON data from %s..." % JSON_GET_URL)

response = requests.get(JSON_GET_URL, headers=headers)

print("-" * 60)

json_data = response.json()

headers = json_data["headers"]

print("Response's Custom User-Agent Header: {0}".format(headers["User-Agent"]))

print("-" * 60)

Read Response's HTTP status code

print("Response HTTP Status Code: ", response.status_code)

print("-" * 60)

Close, delete and collect the response data

response.close()

WiFi Manager

That simpletest example works but it's a little finicky - you need to constantly check

WiFi status and have many loops to manage connections and disconnections. For

more advanced uses, we recommend using the WiFiManager object. It will wrap the

connection/status/requests loop for you - reconnecting if WiFi drops, resetting the

ESP32 if it gets into a bad state, etc.

Here's a more advanced example that shows the WiFi manager and also how to POST

data with some extra headers:

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory examples/ and then

click on the directory that matches the version of CircuitPython you're using and copy

the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 116 of 207

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import time

import board

import busio

from digitalio import DigitalInOut

import neopixel

from adafruit_esp32spi import adafruit_esp32spi

from adafruit_esp32spi import adafruit_esp32spi_wifimanager

print("ESP32 SPI webclient test")

Get wifi details and more from a secrets.py file

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

"""Use below for Most Boards"""

status_light = neopixel.NeoPixel(

 board.NEOPIXEL, 1, brightness=0.2

) # Uncomment for Most Boards

"""Uncomment below for ItsyBitsy M4"""

status_light = dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1,

brightness=0.2)

Uncomment below for an externally defined RGB LED

import adafruit_rgbled

from adafruit_esp32spi import PWMOut

RED_LED = PWMOut.PWMOut(esp, 26)

GREEN_LED = PWMOut.PWMOut(esp, 27)

BLUE_LED = PWMOut.PWMOut(esp, 25)

©Adafruit Industries Page 117 of 207

status_light = adafruit_rgbled.RGBLED(RED_LED, BLUE_LED, GREEN_LED)

wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light)

counter = 0

while True:

 try:

 print("Posting data...", end="")

 data = counter

 feed = "test"

 payload = {"value": data}

 response = wifi.post(

 "https://io.adafruit.com/api/v2/"

 + secrets["aio_username"]

 + "/feeds/"

 + feed

 + "/data",

 json=payload,

 headers={"X-AIO-KEY": secrets["aio_key"]},

)

 print(response.json())

 response.close()

 counter = counter + 1

 print("OK")

 except OSError as e:

 print("Failed to get data, retrying\n", e)

 wifi.reset()

 continue

 response = None

 time.sleep(15)

You'll note here we use a secrets.py file to manage our SSID info. The wifimanager is

given the ESP32 object, secrets and a neopixel for status indication.

Note, you'll need to add a some additional information to your secrets file so that the

code can query the Adafruit IO API:

aio_username

aio_key

You can go to your adafruit.io View AIO Key link to get those two values and add

them to the secrets file, which will now look something like this:

This file is where you keep secret settings, passwords, and tokens!

If you put them in the code you risk committing that info or sharing it

secrets = {

 'ssid' : '_your_ssid_',

 'password' : '_your_wifi_password_',

 'timezone' : "America/Los_Angeles", # http://worldtimeapi.org/timezones

 'aio_username' : '_your_aio_username_',

 'aio_key' : '_your_aio_key_',

 }

•

•

©Adafruit Industries Page 118 of 207

Next, set up an Adafruit IO feed named test

If you do not know how to set up a feed, follow this page and come back when

you've set up a feed named test . ()

We can then have a simple loop for posting data to Adafruit IO without having to deal

with connecting or initializing the hardware!

Take a look at your test feed on Adafruit.io and you'll see the value increase each

time the CircuitPython board posts data to it!

CircuitPython BLE

CircuitPython BLE UART Example

It's easy to use Adafruit AirLift ESP32 co-processor boards for Bluetooth Low Energy

(BLE) with CircuitPython. When you reset the ESP32, you can put it in WiFi mode (the

default), or in BLE mode; you cannot use both modes simultaneously.

Here's a simple example of using BLE to connect CircuitPython with the Bluefruit

Connect app. Use CircuitPython 6.0.0 or later.

Note: Don't confuse the ESP32 with the ESP32-S2, which is a different module with a

similar name. The ESP32-S2 does not support BLE.

•

©Adafruit Industries Page 119 of 207

https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed

On-Board Airlift Co-Processor - No Wiring Needed

If you have an Adafruit Metro M4 AirLift Lite, an Adafruit PyPortal (regular, Pynt or Tita

no), an Adafruit MatrixPortal, or other Adafruit board with an onboard ESP32 co-

processor, then everything is prewired for you, and the pins you need to use are

predefined in CircuitPython.

Update the AirLift Firmware

You will need to update the AirLift's firmware to at least version 1.7.1. Previous versions

of the AirLift firmware do not support BLE.

Follow the instructions in the guide below, and come back to this page when you've

upgraded the AirLift's firmware:

Upgrade ESP32 AirLift Firmware

Install CircuitPython Libraries

Make sure you are running the latest version of Adafruit CircuitPython () for your

board; you'll need 6.0.0 or later.

Next you'll need to install the necessary libraries to use the hardware and BLE.

Carefully follow the steps to find and install these libraries from Adafruit's

CircuitPython library bundle (). Our CircuitPython starter guide has a great page on

how to use the library bundle ().

Install these libraries from the bundle:

adafruit_airlift

Currently the AirLift support for CircuitPython only provides BLE peripheral

support. BLE central is under development. So you cannot connect to BLE

devices like Heart Rate monitors, etc., but you can act as a BLE peripheral

yourself.

Ensure the AirLift firmware is version 1.7.1 or higher for BLE to work.

•

©Adafruit Industries Page 120 of 207

https://learn.adafruit.com/upgrading-esp32-firmware/upgrade-an-airlift-all-in-one-board
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

adafruit_ble

Before continuing make sure your board's lib folder or root filesystem has the adafruit

_airlift and adafruit_ble folders copied over.

Install the Adafruit Bluefruit LE Connect App

The Adafruit Bluefruit LE Connect iOS and Android apps allow you to connect to BLE

peripherals that provide a over-the-air "UART" service. Follow the instructions in the B

luefruit LE Connect Guide () to download and install the app on your phone or tablet.

Copy and Adjust the Example Program

Copy the program below to the file code.py on CIRCUITPY on your board.

TAKE NOTE: Adjust the program as needed to suit the AirLift board you have.

Comment and uncomment lines 12-39 below as necessary.

import board

from adafruit_ble import BLERadio

from adafruit_ble.advertising.standard import ProvideServicesAdvertisement

from adafruit_ble.services.nordic import UARTService

from adafruit_airlift.esp32 import ESP32

If you are using a Metro M4 Airlift Lite, PyPortal,

or MatrixPortal, you can use the default pin settings.

Leave this DEFAULT line uncommented.

esp32 = ESP32() # DEFAULT

If you are using CircuitPython 6.0.0 or earlier,

on PyPortal and PyPortal Titano only, use the pin settings

below. Comment out the DEFAULT line above and uncomment

the line below. For CircuitPython 6.1.0, the pin names

have changed for these boards, and the DEFAULT line

above is correct.

esp32 = ESP32(tx=board.TX, rx=board.RX)

If you are using an AirLift FeatherWing or AirLift Bitsy Add-On,

use the pin settings below. Comment out the DEFAULT line above

and uncomment the lines below.

If you are using an AirLift Breakout, check that these

choices match the wiring to your microcontroller board,

or change them as appropriate.

esp32 = ESP32(

reset=board.D12,

gpio0=board.D10,

busy=board.D11,

chip_select=board.D13,

tx=board.TX,

rx=board.RX,

)

•

©Adafruit Industries Page 121 of 207

https://learn.adafruit.com/bluefruit-le-connect/
https://learn.adafruit.com/bluefruit-le-connect/

If you are using an AirLift Shield,

use the pin settings below. Comment out the DEFAULT line above

and uncomment the lines below.

esp32 = ESP32(

reset=board.D5,

gpio0=board.D6,

busy=board.D7,

chip_select=board.D10,

tx=board.TX,

rx=board.RX,

)

adapter = esp32.start_bluetooth()

ble = BLERadio(adapter)

uart = UARTService()

advertisement = ProvideServicesAdvertisement(uart)

while True:

 ble.start_advertising(advertisement)

 print("waiting to connect")

 while not ble.connected:

 pass

 print("connected: trying to read input")

 while ble.connected:

 # Returns b'' if nothing was read.

 one_byte = uart.read(1)

 if one_byte:

 print(one_byte)

 uart.write(one_byte)

Talk to the AirLift via the Bluefruit LE

Connect App

Start the Bluefruit LE Connect App on your phone or tablet. You should see a

CIRCUITPY device available to connect to. Tap the Connect button (1):

©Adafruit Industries Page 122 of 207

You'll then see a list of Bluefruit Connect functions ("modules"). Choose the UART

module (2):

©Adafruit Industries Page 123 of 207

On the UART module page, you can type a string and press Send (3). You'll see that

string entered, and then see it echoed back (echoing is in gray).

©Adafruit Industries Page 124 of 207

Arduino IDE Setup

The first thing you will need to do is to download the latest release of the Arduino

IDE. You will need to be using version 1.8 or higher for this guide

Arduino IDE Download

After you have downloaded and installed the latest version of Arduino IDE, you will

need to start the IDE and navigate to the Preferences menu. You can access it from

the File menu in Windows or Linux, or the Arduino menu on OS X.

©Adafruit Industries Page 125 of 207

http://www.arduino.cc/en/Main/Software

A dialog will pop up just like the one shown below.

We will be adding a URL to the new Additional Boards Manager URLs option. The list

of URLs is comma separated, and you will only have to add each URL once. New

Adafruit boards and updates to existing boards will automatically be picked up by the

Board Manager each time it is opened. The URLs point to index files that the Board

Manager uses to build the list of available & installed boards.

To find the most up to date list of URLs you can add, you can visit the list of third party

board URLs on the Arduino IDE wiki (). We will only need to add one URL to the IDE in

this example, but you can add multiple URLS by separating them with commas. Copy

and paste the link below into the Additional Boards Manager URLs option in the

Arduino IDE preferences.

©Adafruit Industries Page 126 of 207

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls
https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls

https://adafruit.github.io/arduino-board-index/

package_adafruit_index.json

Here's a short description of each of the Adafruit supplied packages that will be

available in the Board Manager when you add the URL:

Adafruit AVR Boards - Includes support for Flora, Gemma, Feather 32u4,

ItsyBitsy 32u4, Trinket, & Trinket Pro.

Adafruit SAMD Boards - Includes support for Feather M0 and M4, Metro M0 and

M4, ItsyBitsy M0 and M4, Circuit Playground Express, Gemma M0 and Trinket

M0

Arduino Leonardo & Micro MIDI-USB - This adds MIDI over USB support for the

Flora, Feather 32u4, Micro and Leonardo using the arcore project ().

If you have multiple boards you want to support, say ESP8266 and Adafruit, have

both URLs in the text box separated by a comma (,)

Once done click OK to save the new preference settings. Next we will look at

installing boards with the Board Manager.

Now continue to the next step to actually install the board support package!

Using with Arduino IDE

The Feather/Metro/Gemma/QTPy/Trinket M0 and M4 use an ATSAMD21 or ATSAMD51

chip, and you can pretty easily get it working with the Arduino IDE. Most libraries

(including the popular ones like NeoPixels and display) will work with the M0 and M4,

especially devices & sensors that use I2C or SPI.

•

•

•

©Adafruit Industries Page 127 of 207

https://github.com/rkistner/arcore

Now that you have added the appropriate URLs to the Arduino IDE preferences in the

previous page, you can open the Boards Manager by navigating to the Tools->Board

menu.

Once the Board Manager opens, click on the category drop down menu on the top

left hand side of the window and select All. You will then be able to select and install

the boards supplied by the URLs added to the preferences.

Install SAMD Support

First up, install the latest Arduino SAMD Boards (version 1.6.11 or later)

You can type Arduino SAMD in the top search bar, then when you see the entry, click I

nstall

Remember you need SETUP the Arduino IDE to support our board packages -

see the previous page on how to add adafruit's URL to the preferences

©Adafruit Industries Page 128 of 207

Install Adafruit SAMD

Next you can install the Adafruit SAMD package to add the board file definitions

Make sure you have Type All selected to the left of the Filter your search... box

You can type Adafruit SAMD in the top search bar, then when you see the entry, click I

nstall

Even though in theory you don't need to - I recommend rebooting the IDE

Quit and reopen the Arduino IDE to ensure that all of the boards are properly

installed. You should now be able to select and upload to the new boards listed in the

Tools->Board menu.

Select the matching board, the current options are:

Feather M0 (for use with any Feather M0 other than the Express)

Feather M0 Express

Metro M0 Express

Circuit Playground Express

Gemma M0

Trinket M0

QT Py M0

ItsyBitsy M0

Hallowing M0

Crickit M0 (this is for direct programming of the Crickit, which is probably not

what you want! For advanced hacking only)

Metro M4 Express

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 129 of 207

Grand Central M4 Express

ItsyBitsy M4 Express

Feather M4 Express

Trellis M4 Express

PyPortal M4

PyPortal M4 Titano

PyBadge M4 Express

Metro M4 Airlift Lite

PyGamer M4 Express

MONSTER M4SK

Hallowing M4

MatrixPortal M4

BLM Badge

Install Drivers (Windows 7 & 8 Only)

When you plug in the board, you'll need to possibly install a driver

Click below to download our Driver Installer

Download Latest Adafruit Drivers

package

Download and run the installer

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 130 of 207

https://github.com/adafruit/Adafruit_Windows_Drivers/releases

Run the installer! Since we bundle the SiLabs and FTDI drivers as well, you'll need to

click through the license

Select which drivers you want to install, the defaults will set you up with just about

every Adafruit board!

©Adafruit Industries Page 131 of 207

Click Install to do the installin'

Blink

Now you can upload your first blink sketch!

Plug in the M0 or M4 board, and wait for it to be recognized by the OS (just takes a

few seconds). It will create a serial/COM port, you can now select it from the drop-

down, it'll even be 'indicated' as Trinket/Gemma/Metro/Feather/ItsyBitsy/Trellis!

©Adafruit Industries Page 132 of 207

Please note, the QT Py and Trellis M4 Express are two of our very few boards that

does not have an onboard pin 13 LED so you can follow this section to practice

uploading but you wont see an LED blink!

Now load up the Blink example

// the setup function runs once when you press reset or power the board

void setup() {

 // initialize digital pin 13 as an output.

 pinMode(13, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

And click upload! That's it, you will be able to see the LED blink rate change as you

adapt the delay() calls.

Successful Upload

If you have a successful upload, you'll get a bunch of red text that tells you that the

device was found and it was programmed, verified & reset

If you are having issues, make sure you selected the matching Board in the menu

that matches the hardware you have in your hand.

©Adafruit Industries Page 133 of 207

After uploading, you may see a message saying "Disk Not Ejected Properly" about the

...BOOT drive. You can ignore that message: it's an artifact of how the bootloader and

uploading work.

Compilation Issues

If you get an alert that looks like

Cannot run program "{runtime.tools.arm-none-eabi-gcc.path}\bin\arm-non-eabi-g++"

Make sure you have installed the Arduino SAMD boards package, you need both Ard

uino & Adafruit SAMD board packages

©Adafruit Industries Page 134 of 207

Manually bootloading

If you ever get in a 'weird' spot with the bootloader, or you have uploaded code that

crashes and doesn't auto-reboot into the bootloader, click the RST button twice (like a

double-click)to get back into the bootloader.

The red LED will pulse and/or RGB LED will be green, so you know that its in

bootloader mode.

Once it is in bootloader mode, you can select the newly created COM/Serial port and

re-try uploading.

You may need to go back and reselect the 'normal' USB serial port next time you want

to use the normal upload.

Ubuntu & Linux Issue Fix

 Follow the steps for installing Adafruit's udev rules on this page. ()

Arduino Libraries

OK now that you have Arduino IDE set up, drivers installed if necessary and you've

practiced uploading code, you can start installing all the Libraries we'll be using to

program it.

There's a lot of libraries!

©Adafruit Industries Page 135 of 207

file:///home/adafruit-arduino-ide-setup/linux-setup#udev-rules

Install Libraries

Open up the library manager...

And install the following libraries:

Adafruit NeoPixel

This will let you light up the status LED on the back

Adafruit SPIFlash

This will let you read/write to the onboard FLASH memory with super-fast QSPI

support

Adafruit Zero DMA

This is used by the Graphics Library if you choose to use DMA

©Adafruit Industries Page 136 of 207

Adafruit GFX

This is the graphics library used to draw to the screen

If using an older (pre-1.8.10) Arduino IDE, locate and install Adafruit_BusIO (newer

versions do this automatically when installing Adafruit_GFX).

Adafruit ILI9341

The display on the PyPortal!

Adafruit HX8357

The display on the PyPortal Titano!

Adafruit Touchscreen

For reading touchscreen points on the resistive touchscreen

©Adafruit Industries Page 137 of 207

Analog Devices ADT7410

For reading temperature data from the onboard ADT7410

WiFiNINA

Will talk to the ESP32 WiFi co-processor to connect to the internet!

Adafruit ImageReader

For reading bitmaps from SD and displaying

Arduino Test

Once you've got the IDE installed and libraries in place you can run our test sketch.

This will check all the hardware, and display it on the screen, its sort of a universal

test because every part is checked. It's also a great reference if you want to know

how to read the light sensor or initialize the touch screen.

©Adafruit Industries Page 138 of 207

It's normal to get SD Card...Failed if there is no SD card in the socket.

The light sensor value ranges from 0 (dark) to 1023 (bright)

The temperature sensor will heat up if the backlight is on for a while, that's also

normal! To avoid self-heating turn or or lower down the backlight brightness

D3 and D4 measure the analog voltages on the 3 pin JST connectors. They'll be

floating until some voltage is applied to them.

You can download the ready-to-go UF2 file and drag it onto the bootloader drive. To

enter the bootloader, double click the reset button.

PyPortal_Self_Test.UF2

// SPDX-FileCopyrightText: 2019 Limor Fried for Adafruit Industries

//

// SPDX-License-Identifier: MIT

// This program does a test of all the hardware so you can get an example of how to

read

// sensors, touchscreen, and display stuff!

#include "SPI.h"

#include "Adafruit_GFX.h"

#include "Adafruit_ILI9341.h"

#include <Adafruit_SPIFlash.h>

Click the Download Project Bundle button below to ensure you get both the

Arduino program and the associated coin.h audio file!

©Adafruit Industries Page 139 of 207

https://cdn-learn.adafruit.com/assets/assets/000/107/658/original/PyPortal_Self_Test.UF2?1641322245

#include "Adafruit_ADT7410.h"

#include "TouchScreen.h"

#include <SdFat.h>

#include <WiFiNINA.h>

#include "coin.h"

#define RED_LED 13

#define TFT_RESET 24

#define TFT_BACKLIGHT 25

#define LIGHT_SENSOR A2

#define SD_CS 32

#define SPKR_SHUTDOWN 50

#define TFT_D0 34 // Data bit 0 pin (MUST be on PORT byte boundary)

#define TFT_WR 26 // Write-strobe pin (CCL-inverted timer output)

#define TFT_DC 10 // Data/command pin

#define TFT_CS 11 // Chip-select pin

#define TFT_RST 24 // Reset pin

#define TFT_RD 9 // Read-strobe pin

#define TFT_BACKLIGHT 25

// ILI9341 with 8-bit parallel interface:

Adafruit_ILI9341 tft = Adafruit_ILI9341(tft8bitbus, TFT_D0, TFT_WR, TFT_DC, TFT_CS,

TFT_RST, TFT_RD);

Adafruit_FlashTransport_QSPI flashTransport(PIN_QSPI_SCK, PIN_QSPI_CS, PIN_QSPI_IO0,

PIN_QSPI_IO1, PIN_QSPI_IO2, PIN_QSPI_IO3);

Adafruit_SPIFlash flash(&flashTransport);

Adafruit_ADT7410 tempsensor = Adafruit_ADT7410();

#define YP A4 // must be an analog pin, use "An" notation!

#define XM A7 // must be an analog pin, use "An" notation!

#define YM A6 // can be a digital pin

#define XP A5 // can be a digital pin

TouchScreen ts = TouchScreen(XP, YP, XM, YM, 300);

#define X_MIN 750

#define X_MAX 325

#define Y_MIN 840

#define Y_MAX 240

Adafruit_GFX_Button coin = Adafruit_GFX_Button();

SdFat SD;

void setup() {

 Serial.begin(115200);

 //while (!Serial);

 Serial.println("All Test!");

 pinMode(RED_LED, OUTPUT);

 pinMode(TFT_BACKLIGHT, OUTPUT);

 digitalWrite(TFT_BACKLIGHT, HIGH);

 pinMode(TFT_RESET, OUTPUT);

 digitalWrite(TFT_RESET, HIGH);

 delay(10);

 digitalWrite(TFT_RESET, LOW);

 delay(10);

 digitalWrite(TFT_RESET, HIGH);

 delay(10);

 tft.begin();

 tft.fillScreen(ILI9341_BLACK);

 tft.setTextSize(2);

 tft.setTextColor(ILI9341_GREEN);

 tft.setTextWrap(true);

 tft.setCursor(0, 0);

©Adafruit Industries Page 140 of 207

 tft.print("QSPI Flash...");

 if (!flash.begin()){

 Serial.println("Could not find flash on QSPI bus!");

 tft.setTextColor(ILI9341_RED);

 tft.println("FAILED");

 while (1);

 }

 Serial.println("Reading QSPI ID");

 Serial.print("JEDEC ID: 0x"); Serial.println(flash.getJEDECID(), HEX);

 tft.setTextColor(ILI9341_GREEN);

 tft.print("QSPI Flash JEDEC 0x"); tft.println(flash.getJEDECID(), HEX);

 /*************** SD CARD */

 tft.setCursor(0, 48);

 tft.print("SD Card...");

 if (!SD.begin(SD_CS)) {

 Serial.println("Card init. failed!");

 tft.setTextColor(ILI9341_RED);

 tft.println("FAILED");

 tft.setTextColor(ILI9341_GREEN);

 } else {

 tft.println("OK!");

 }

 /*************** WiFi Module */

 tft.setCursor(0, 64);

 tft.print("WiFi Module...");

 WiFi.status();

 delay(100);

 if (WiFi.status() == WL_NO_MODULE) {

 Serial.println("ESP32 SPI not found");

 tft.setTextColor(ILI9341_RED);

 tft.println("FAILED");

 tft.setTextColor(ILI9341_GREEN);

 } else {

 Serial.println("ESP32 SPI mode found");

 tft.println("OK!");

 }

 /*************** Temperature sensor */

 tft.setCursor(0, 80);

 tft.print("ADT7410...");

 if (!tempsensor.begin()) {

 Serial.println("Couldn't find ADT7410!");

 tft.setTextColor(ILI9341_RED);

 tft.println("FAILED");

 tft.setTextColor(ILI9341_GREEN);

 } else {

 Serial.println("ADT7410 found");

 tft.println("OK!");

 }

 coin.initButton(&tft, 120, 280, 100, 50, ILI9341_WHITE, ILI9341_YELLOW,

ILI9341_BLACK, "Sound", 2);

 coin.drawButton();

 analogWriteResolution(12);

 analogWrite(A0, 128);

 pinMode(SPKR_SHUTDOWN, OUTPUT);

 digitalWrite(SPKR_SHUTDOWN, LOW);

}

void loop() {

 digitalWrite(RED_LED, HIGH);

 tft.setTextColor(ILI9341_WHITE);

 // read light sensor

 tft.fillRect(160, 100, 240, 16, ILI9341_BLACK);

 tft.setCursor(0, 100);

©Adafruit Industries Page 141 of 207

 uint16_t light = analogRead(LIGHT_SENSOR);

 Serial.print("light sensor: "); Serial.println(light);

 tft.print("Light sensor: "); tft.println(light);

 // read temp sensor

 tft.fillRect(150, 116, 240, 16, ILI9341_BLACK);

 tft.setCursor(0, 116);

 float temp = tempsensor.readTempC();

 Serial.print("temp sensor: "); Serial.println(temp, 2);

 tft.print("Temp sensor: "); tft.println(temp, 2);

 // externals

 tft.fillRect(0, 132, 240, 32, ILI9341_BLACK);

 tft.setCursor(0, 132);

 float d3 = (float)analogRead(A1) * 3.3 / 1024;

 float d4 = (float)analogRead(A3) * 3.3 / 1024;

 Serial.print("STEMMA: ");

 Serial.print(d3,1); Serial.print(", ");

 Serial.print(d4,1); Serial.println();

 tft.print("D3: "); tft.println(d3,1);

 tft.print("D4: "); tft.println(d4,1);

 tft.fillRect(80, 164, 240, 16, ILI9341_BLACK);

 tft.setCursor(0, 164);

 tft.print("Touch: ");

 TSPoint p = ts.getPoint();

 // we have some minimum pressure we consider 'valid'

 // pressure of 0 means no pressing!

 if (p.z > ts.pressureThreshhold) {

 Serial.print("X = "); Serial.print(p.x);

 Serial.print("\tY = "); Serial.print(p.y);

 Serial.print("\tPressure = "); Serial.println(p.z);

 int16_t x = map(p.x, X_MIN, X_MAX, 0, 240);

 int16_t y = map(p.y, Y_MIN, Y_MAX, 0, 320);

 tft.print("("); tft.print(x); tft.print(", "); tft.print(y); tft.println(")");

 if (coin.contains(x, y)) {

 Serial.println("Ding!");

 coin.press(true);

 } else {

 coin.press(false);

 }

 } else {

 coin.press(false);

 }

 if (coin.justPressed()) {

 coin.drawButton(true);

 digitalWrite(SPKR_SHUTDOWN, HIGH);

 uint32_t i, prior, usec = 1000000L / SAMPLE_RATE;

 prior = micros();

 for (uint32_t i=0; i<sizeof(coinaudio); i++) {

 uint32_t t;

 while((t = micros()) - prior < usec);

 analogWrite(A0, (uint16_t)coinaudio[i]);

 prior = t;

 }

 digitalWrite(SPKR_SHUTDOWN, LOW);

 }

 if (coin.justReleased()) {

 coin.drawButton(false);

 }

 digitalWrite(RED_LED, LOW);

 delay(20);

}

©Adafruit Industries Page 142 of 207

Graphics Demos

One of the nice things about how we set up the PyPortal is it uses a 8 bit parallel

display connection, which can be driven much faster than classic SPI displays. Not

only do you write 8 bits at a time instead of one, the SPI peripheral tops out at about

24MHz! Combined with DMA you can get surprising speeds. Another nifty hack is

taking advantage of the 256KB of SRAM on the SAMD51J20 - you can buffer an entire

240x320 16-bit color bitmap and then draw the whole thing at once

TouchPaint

Our classic touchscreen painting demo is a

good example of how to read touch points,

convert the raw readings to calibrated

coordinates and then draw something on

the screen. It's in Adafruit_ILI9341 called

touchpaint_pyportal ()

Amiga Boing!

As featured above, this draws a checkered ball around the screen, a classic Amiga

demo. Available in the Adafruit_ILI9341 library as the pyportal_boing demo (). It's an

intense demo showing how to calculate a scan line and render it post computation.

Mandelbrot

This is a good demo to show how we allocate a full display buffer, do all our

calculations, then draw it all at once. Also in Adafruit_ILI9341 under example mandelbr

ot ()

©Adafruit Industries Page 143 of 207

https://learn.adafruit.com//assets/73301
https://learn.adafruit.com//assets/73301
https://github.com/adafruit/Adafruit_ILI9341/tree/master/examples/touchpaint_pyportal
https://github.com/adafruit/Adafruit_ILI9341/tree/master/examples/touchpaint_pyportal
https://github.com/adafruit/Adafruit_ILI9341/tree/master/examples/touchpaint_pyportal
https://github.com/adafruit/Adafruit_ILI9341/tree/master/examples/pyportal_boing
https://github.com/adafruit/Adafruit_ILI9341/tree/master/examples/pyportal_boing
https://github.com/adafruit/Adafruit_ILI9341/tree/master/examples/mandelbrot
https://github.com/adafruit/Adafruit_ILI9341/tree/master/examples/mandelbrot
https://github.com/adafruit/Adafruit_ILI9341/tree/master/examples/mandelbrot
https://github.com/adafruit/Adafruit_ILI9341/tree/master/examples/mandelbrot

Adapting Sketches to M0 & M4

The ATSAMD21 and 51 are very nice little chips, but fairly new as Arduino-compatible

cores go. Most sketches & libraries will work but here’s a collection of things we

noticed.

The notes below cover a range of Adafruit M0 and M4 boards, but not every rule will

apply to every board (e.g. Trinket and Gemma M0 do not have ARef, so you can skip

the Analog References note!).

Analog References

If you'd like to use the ARef pin for a non-3.3V analog reference, the code to use is

analogReference(AR_EXTERNAL) (it's AR_EXTERNAL not EXTERNAL)

Pin Outputs & Pullups

The old-style way of turning on a pin as an input with a pullup is to use

pinMode(pin, INPUT)

digitalWrite(pin, HIGH)

This is because the pullup-selection register on 8-bit AVR chips is the same as the

output-selection register.

For M0 & M4 boards, you can't do this anymore! Instead, use:

pinMode(pin, INPUT_PULLUP)

Code written this way still has the benefit of being backwards compatible with AVR.

You don’t need separate versions for the different board types.

Serial vs SerialUSB

99.9% of your existing Arduino sketches use Serial.print to debug and give output. For

the Official Arduino SAMD/M0 core, this goes to the Serial5 port, which isn't exposed

on the Feather. The USB port for the Official Arduino M0 core is called SerialUSB

instead.

©Adafruit Industries Page 144 of 207

In the Adafruit M0/M4 Core, we fixed it so that Serial goes to USB so it will

automatically work just fine.

However, on the off chance you are using the official Arduino SAMD core and not the

Adafruit version (which really, we recommend you use our version because it’s been

tuned to our boards), and you want your Serial prints and reads to use the USB port,

use SerialUSB instead of Serial in your sketch.

If you have existing sketches and code and you want them to work with the M0

without a huge find-replace, put

#if defined(ARDUINO_SAMD_ZERO) && defined(SERIAL_PORT_USBVIRTUAL)

 // Required for Serial on Zero based boards

 #define Serial SERIAL_PORT_USBVIRTUAL

#endif

right above the first function definition in your code. For example:

AnalogWrite / PWM on Feather/Metro M0

After looking through the SAMD21 datasheet, we've found that some of the options

listed in the multiplexer table don't exist on the specific chip used in the Feather M0.

For all SAMD21 chips, there are two peripherals that can generate PWM signals: The

Timer/Counter (TC) and Timer/Counter for Control Applications (TCC). Each SAMD21

has multiple copies of each, called 'instances'.

Each TC instance has one count register, one control register, and two output

channels. Either channel can be enabled and disabled, and either channel can be

inverted. The pins connected to a TC instance can output identical versions of the

same PWM waveform, or complementary waveforms.

©Adafruit Industries Page 145 of 207

Each TCC instance has a single count register, but multiple compare registers and

output channels. There are options for different kinds of waveform, interleaved

switching, programmable dead time, and so on.

The biggest members of the SAMD21 family have five TC instances with two

'waveform output' (WO) channels, and three TCC instances with eight WO channels:

TC[0-4],WO[0-1]

TCC[0-2],WO[0-7]

And those are the ones shown in the datasheet's multiplexer tables.

The SAMD21G used in the Feather M0 only has three TC instances with two output

channels, and three TCC instances with eight output channels:

TC[3-5],WO[0-1]

TCC[0-2],WO[0-7]

Tracing the signals to the pins broken out on the Feather M0, the following pins can't

do PWM at all:

Analog pin A5

The following pins can be configured for PWM without any signal conflicts as long as

the SPI, I2C, and UART pins keep their protocol functions:

Digital pins 5, 6, 9, 10, 11, 12, and 13

Analog pins A3 and A4

If only the SPI pins keep their protocol functions, you can also do PWM on the

following pins:

TX and SDA (Digital pins 1 and 20)

analogWrite() PWM range

On AVR, if you set a pin's PWM with analogWrite(pin, 255) it will turn the pin fully

HIGH. On the ARM cortex, it will set it to be 255/256 so there will be very slim but

•

•

•

•

•

•

•

•

©Adafruit Industries Page 146 of 207

still-existing pulses-to-0V. If you need the pin to be fully on, add test code that checks

if you are trying to analogWrite(pin, 255) and, instead, does a

digitalWrite(pin, HIGH)

analogWrite() DAC on A0

If you are trying to use analogWrite() to control the DAC output on A0, make sure

you do not have a line that sets the pin to output. Remove: pinMode(A0, OUTPUT) .

Missing header files

There might be code that uses libraries that are not supported by the M0 core. For

example if you have a line with

#include <util/delay.h>

you'll get an error that says

fatal error: util/delay.h: No such file or directory

 #include <util/delay.h>

 ^

compilation terminated.

Error compiling.

In which case you can simply locate where the line is (the error will give you the file

name and line number) and 'wrap it' with #ifdef's so it looks like:

#if !defined(ARDUINO_ARCH_SAM) && !defined(ARDUINO_ARCH_SAMD) && !

defined(ESP8266) && !defined(ARDUINO_ARCH_STM32F2)

 #include <util/delay.h>

#endif

The above will also make sure that header file isn't included for other architectures

If the #include is in the arduino sketch itself, you can try just removing the line.

Bootloader Launching

For most other AVRs, clicking reset while plugged into USB will launch the bootloader

manually, the bootloader will time out after a few seconds. For the M0/M4, you'll need

©Adafruit Industries Page 147 of 207

to double click the button. You will see a pulsing red LED to let you know you're in

bootloader mode. Once in that mode, it wont time out! Click reset again if you want to

go back to launching code.

Aligned Memory Access

This is a little less likely to happen to you but it happened to me! If you're used to 8-

bit platforms, you can do this nice thing where you can typecast variables around. e.g.

uint8_t mybuffer[4];

float f = (float)mybuffer;

You can't be guaranteed that this will work on a 32-bit platform because mybuffer

might not be aligned to a 2 or 4-byte boundary. The ARM Cortex-M0 can only directly

access data on 16-bit boundaries (every 2 or 4 bytes). Trying to access an odd-

boundary byte (on a 1 or 3 byte location) will cause a Hard Fault and stop the MCU.

Thankfully, there's an easy work around ... just use memcpy!

uint8_t mybuffer[4];

float f;

memcpy(&f, mybuffer, 4)

Floating Point Conversion

Like the AVR Arduinos, the M0 library does not have full support for converting

floating point numbers to ASCII strings. Functions like sprintf will not convert floating

point. Fortunately, the standard AVR-LIBC library includes the dtostrf function which

can handle the conversion for you.

Unfortunately, the M0 run-time library does not have dtostrf. You may see some

references to using #include <avr/dtostrf.h> to get dtostrf in your code. And while it

will compile, it does not work.

Instead, check out this thread to find a working dtostrf function you can include in

your code:

http://forum.arduino.cc/index.php?topic=368720.0 ()

©Adafruit Industries Page 148 of 207

http://forum.arduino.cc/index.php?topic=368720.0

How Much RAM Available?

The ATSAMD21G18 has 32K of RAM, but you still might need to track it for some

reason. You can do so with this handy function:

extern "C" char *sbrk(int i);

int FreeRam () {

 char stack_dummy = 0;

 return &stack_dummy - sbrk(0);

}

Thx to http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879 ()

for the tip!

Storing data in FLASH

If you're used to AVR, you've probably used PROGMEM to let the compiler know

you'd like to put a variable or string in flash memory to save on RAM. On the ARM, its

a little easier, simply add const before the variable name:

const char str[] = "My very long string";

That string is now in FLASH. You can manipulate the string just like RAM data, the

compiler will automatically read from FLASH so you dont need special progmem-

knowledgeable functions.

You can verify where data is stored by printing out the address:

Serial.print("Address of str $"); Serial.println((int)&str, HEX);

If the address is $2000000 or larger, its in SRAM. If the address is between $0000

and $3FFFF Then it is in FLASH

Pretty-Printing out registers

There's a lot of registers on the SAMD21, and you often are going through ASF or

another framework to get to them. So having a way to see exactly what's going on is

handy. This library from drewfish will help a ton!

https://github.com/drewfish/arduino-ZeroRegs ()

©Adafruit Industries Page 149 of 207

http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879
https://github.com/drewfish/arduino-ZeroRegs

M4 Performance Options

As of version 1.4.0 of the Adafruit SAMD Boards package in the Arduino Boards

Manager, some options are available to wring extra performance out of M4-based

devices. These are in the Tools menu.

All of these performance tweaks involve a degree of uncertainty. There’s no

guarantee of improved performance in any given project, and some may even be

detrimental, failing to work in part or in whole. If you encounter trouble, select the

default performance settings and re-upload.

Here’s what you get and some issues you might encounter…

CPU Speed (overclocking)

This option lets you adjust the microcontroller core clock…the speed at which it

processes instructions…beyond the official datasheet specifications.

Manufacturers often rate speeds conservatively because such devices are marketed

for harsh industrial environments…if a system crashes, someone could lose a limb or

worse. But most creative tasks are less critical and operate in more comfortable

settings, and we can push things a bit if we want more speed.

There is a small but nonzero chance of code locking up or failing to run entirely. If this

happens, try dialing back the speed by one notch and re-upload, see if it’s more

stable.

Much more likely, some code or libraries may not play well with the nonstandard CPU

speed. For example, currently the NeoPixel library assumes a 120 MHz CPU speed

and won’t issue the correct data at other settings (this will be worked on). Other

©Adafruit Industries Page 150 of 207

libraries may exhibit similar problems, usually anything that strictly depends on CPU

timing…you might encounter problems with audio- or servo-related code depending

how it’s written. If you encounter such code or libraries, set the CPU speed to the

default 120 MHz and re-upload.

Optimize

There’s usually more than one way to solve a problem, some more resource-intensive

than others. Since Arduino got its start on resource-limited AVR microcontrollers, the

C++ compiler has always aimed for the smallest compiled program size. The

“Optimize” menu gives some choices for the compiler to take different and often

faster approaches, at the expense of slightly larger program size…with the huge flash

memory capacity of M4 devices, that’s rarely a problem now.

The “Small” setting will compile your code like it always has in the past, aiming for the

smallest compiled program size.

The “Fast” setting invokes various speed optimizations. The resulting program should

produce the same results, is slightly larger, and usually (but not always) noticably

faster. It’s worth a shot!

“Here be dragons” invokes some more intensive optimizations…code will be larger

still, faster still, but there’s a possibility these optimizations could cause unexpected

behaviors. Some code may not work the same as before. Hence the name. Maybe

you’ll discover treasure here, or maybe you’ll sail right off the edge of the world.

Most code and libraries will continue to function regardless of the optimizer settings.

If you do encounter problems, dial it back one notch and re-upload.

Cache

This option allows a small collection of instructions and data to be accessed more

quickly than from flash memory, boosting performance. It’s enabled by default and

should work fine with all code and libraries. But if you encounter some esoteric

situation, the cache can be disabled, then recompile and upload.

Max SPI and Max QSPI

These should probably be left at their defaults. They’re present mostly for our own

experiments and can cause serious headaches.

©Adafruit Industries Page 151 of 207

Max SPI determines the clock source for the M4’s SPI peripherals. Under normal

circumstances this allows transfers up to 24 MHz, and should usually be left at that

setting. But…if you’re using write-only SPI devices (such as TFT or OLED displays), this

option lets you drive them faster (we’ve successfully used 60 MHz with some TFT

screens). The caveat is, if using any read/write devices (such as an SD card), this will

not work at all…SPI reads absolutely max out at the default 24 MHz setting, and

anything else will fail. Write = OK. Read = FAIL. This is true even if your code is using a

lower bitrate setting…just having the different clock source prevents SPI reads.

Max QSPI does similarly for the extra flash storage on M4 “Express” boards. Very few

Arduino sketches access this storage at all, let alone in a bandwidth-constrained

context, so this will benefit next to nobody. Additionally, due to the way clock dividers

are selected, this will only provide some benefit when certain “CPU Speed” settings

are active. Our PyPortal Animated GIF Display () runs marginally better with it, if using

the QSPI flash.

Enabling the Buck Converter on some M4

Boards

If you want to reduce power draw, some of our boards have an inductor so you can

use the 1.8V buck converter instead of the built in linear regulator. If the board does

have an inductor (see the schematic) you can add the line SUPC->VREG.bit.SEL =

1; to your code to switch to it. Note it will make ADC/DAC reads a bit noisier so we

don't use it by default. You'll save ~4mA ().

WipperSnapper Setup

The WipperSnapper firmware and ecosystem are in BETA and are actively being

developed to add functionality, more boards, more sensors, and fix bugs. We

encourage you to try out WipperSnapper with the understanding that it is not

final release software and is still in development.

If you encounter any bugs, glitches, or difficulties during the beta period, or with

this guide, please contact us via http://io.adafruit.com/support

The PyPortal Pynt is not yet WipperSnapper compatible. This page currently only

applies to the PyPortal.

©Adafruit Industries Page 152 of 207

https://learn.adafruit.com/pyportal-animated-gif-display
https://github.com/adafruit/ArduinoCore-samd/issues/128
http://io.adafruit.com/support

What is WipperSnapper

WipperSnapper is a firmware designed to turn any WiFi-capable board into an

Internet-of-Things device without programming a single line of code. WipperSnapper

connects to Adafruit IO (), a web platform designed (by Adafruit! ())

to display, respond, and interact with your project's data.

Simply load the WipperSnapper firmware onto your board, add credentials, and plug it

into power. Your board will automatically register itself with your Adafruit IO account.

From there, you can add components to your board such as buttons, switches,

potentiometers, sensors, and more! Components are dynamically added to hardware,

so you can immediately start interacting, logging, and streaming the data your

projects produce without writing code.

Sign up for Adafruit.io

You will need an Adafruit IO account to use WipperSnapper on your board. If you do

not already have one, head over to io.adafruit.com () to create a free account.

Add a New Device to Adafruit IO

Log into your Adafruit IO () account. Click the New Device button at the top of the

page.

After clicking New Device, you should be on the board selector page. This page

displays every board that is compatible with the WipperSnapper firmware.

©Adafruit Industries Page 153 of 207

https://io.adafruit.com/
https://www.adafruit.com/about
https://io.adafruit.com/
https://io.adafruit.com/

In the board selector page's search bar, search for the PyPortal. Once you've located

the board you'd like to install WipperSnapper on, click the Choose Board button to

bring you to the self-guided installation wizard.

Follow the step-by-step instructions on the page to install Wippersnapper on your

device and connect it to Adafruit IO.

If the installation was successful, a popover should appear displaying that your board

has successfully been detected by Adafruit IO.

©Adafruit Industries Page 154 of 207

Give your board a name and click "Continue to Device Page".

You should be brought to your board's device page.

Next, Visit this guide's WipperSnapper Essentials pages to learn how to interact with

your board using Adafruit IO.

Feedback

Adafruit.io WipperSnapper is in beta and you can help improve it!

©Adafruit Industries Page 155 of 207

If you have suggestions or general feedback about the installation process - visit http

s://io.adafruit.com/support (), click "Contact Adafruit IO Support" and select "I have

feedback or suggestions for the WipperSnapper Beta".

Troubleshooting

If you encountered an issue during installation, please try the steps below first.

If you're still unable to resolve the issue, or if your issue is not listed below, get in

touch with us directly at https://io.adafruit.com/support (). Make sure to click "Contact

Adafruit IO Support" and select "There is an issue with WipperSnapper. Something is

broken!"

I don't see my board on Adafruit IO, it is stuck connecting

to WiFi

First, make sure that you selected the correct board on the board selector.

Next, please make sure that you entered your WiFi credentials properly, there are

no spaces/special characters in either your network name (SSID) or password, and

that you are connected to a 2.4GHz wireless network.

If you're still unable to connect your board to WiFi, please make a new post on the

WipperSnapper technical support forum with the error you're experiencing, the

LED colors which are blinking, and the board you're using. ()

I don't see my board on Adafruit IO, it is stuck "Registering

with Adafruit IO"

Try hard-resetting your board by unplugging it from USB power and plugging it

back in.

If the error is still occurring, please make a new post on the WipperSnapper

technical support forum with information about what you're experiencing, the LED

colors which are blinking (if applicable), and the board you're using. ()

"Uninstalling" WipperSnapper

WipperSnapper firmware is an application that is loaded onto your board. There is

nothing to "uninstall". However, you may want to "move" your board from running

©Adafruit Industries Page 156 of 207

https://io.adafruit.com/support
https://io.adafruit.com/support
https://io.adafruit.com/support
https://forums.adafruit.com/viewforum.php?f=66
https://forums.adafruit.com/viewforum.php?f=66
https://forums.adafruit.com/viewforum.php?f=66
https://forums.adafruit.com/viewforum.php?f=66
https://forums.adafruit.com/viewforum.php?f=66
https://forums.adafruit.com/viewforum.php?f=66

WipperSnapper to running Arduino or CircuitPython. You also may need to restore

your board to the state it was shipped to you from the Adafruit factory.

Moving from WipperSnapper to CircuitPython

Follow the steps on the Installing CircuitPython page () to install CircuitPython on your

board running WipperSnapper.

If you are unable to double-tap the RST button to enter the UF2 bootloader,

follow the "Factory Resetting a WipperSnapper Board" instructions below.

Uploading this sketch will overwrite WipperSnapper. If you want to re-install

WipperSnapper, follow the instructions at the top of this page.

Moving from WipperSnapper to Arduino

If you want to use your board with Arduino, you will use the Arduino IDE to load any

sketch onto your board.

First, follow the page below to set up your Arduino IDE environment for use with your

board.

Setup Arduino IDE

Then, follow the page below to upload the "Arduino Blink" sketch to your board.

Upload Arduino Test/Blink Sketch

Uploading this sketch will overwrite WipperSnapper. If you want to re-install

WipperSnapper, follow the instructions at the top of this page.

Factory Resetting a WipperSnapper Board

Sometimes, hardware gets into a state that requires it to be "restored" to the original

state it shipped in. If you'd like to get your board back to its original factory state,

follow the guide below.

This guide does not have a factory reset page. Follow the steps listed here to update/

re-install the UF2 bootloader ().

•

©Adafruit Industries Page 157 of 207

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://learn.adafruit.com/adafruit-pyportal/setup
https://learn.adafruit.com/adafruit-pyportal/arduino-test
https://learn.adafruit.com/adafruit-pyportal/update-the-uf2-bootloader
https://learn.adafruit.com/adafruit-pyportal/update-the-uf2-bootloader

WipperSnapper Essentials

You've installed WipperSnapper firmware on your board and connected it to Adafruit

IO. Next, to learn how to use Adafruit IO!

The Adafruit IO supports a large number of components. Components are physical

parts such as buttons, switches, sensors, servos, LEDs, RGB LEDs, and more.

The following pages will get you up and running with WipperSnapper as you interact

with your board's LED, read the value of a push button, send the value of an I2C

sensor to the internet, and wirelessly control colorful LEDs.

LED Blink

One of the first programs you typically write to get used to embedded programming is

a sketch that repeatably blinks an LED. IoT projects are wireless, so after completing

this section, you'll be able to turn on (or off) the LED built into your board from

anywhere in the world.

In this demo, we show controlling an LED from Adafruit IO. But the same kind of

control can be used for relays, lights, motors, or solenoids.

©Adafruit Industries Page 158 of 207

Where is the LED on my board?

The PyPortal's status LED is located next

to the Micro-USB port and labeled "ACT".

Create a LED Component on Adafruit IO

On the device page, click the New Component (or "+") button to open the component

picker.

From the component picker, select the LED.

©Adafruit Industries Page 159 of 207

https://learn.adafruit.com//assets/118856
https://learn.adafruit.com//assets/118856

On the Create LED Component form, the board's LED pin is pre-selected.

Click Create Component.

Behind the scenes, Adafruit IO sends send a command to your board running

WipperSnapper telling it to configure "LED Pin" as a digital output.

Your board's page on Adafruit IO shows a new LED component.

©Adafruit Industries Page 160 of 207

Usage

On the board page, toggle the LED component by clicking the toggle switch. This

should turn your board's built-in LED on or off.

NeoPixel LED

Your board has a WS281x RGB LED (NeoPixel, in Adafruit jargon) built in. Boards

running the WipperSnapper firmware can be wirelessly controlled by Adafruit IO to

interact with NeoPixels.

On this page, you'll learn how to change the color and brightness of the NeoPixel

built into your board from Adafruit IO.

©Adafruit Industries Page 161 of 207

Where is the NeoPixel on my board?

The PyPortal contains a built-in NeoPixel

on the back of the board labeled

"STATUS".

Create the NeoPixel Component

On the device page, click the New Component (or "+") button to open the component

picker.

Under the Pixel Components header on the component picker, click NeoPixel.

©Adafruit Industries Page 162 of 207

https://learn.adafruit.com//assets/118863
https://learn.adafruit.com//assets/118863

The board NeoPixel pin is automatically found and selected.

Click Create Component

Behind the scenes, Adafruit IO sends a command to your board running

WipperSnapper firmware telling it to configure the pin as a NeoPixel component with

the settings from the form.

The Device page shows the NeoPixel component.

©Adafruit Industries Page 163 of 207

Set the NeoPixel's RGB Color

Since no colors have been set yet, the color picker's default value is #000000 (black

in hex color code) and appears "off". Let's change that to make the NeoPixel shine

brightly!

On the NeoPixel component, click the gray "No Color Set" button.

A color picker pops open! Next, let's learn how Adafruit IO uses hex color codes to

represent the colors on your NeoPixel.

Hex Colors 101

The color picker on Adafruit IO uses hex color codes to represent Red, Green, and

Blue values. For example, #FF0000 is the hex color code for the color red. The colors

(#FF0000) red component is FF (255 translated to decimal), the green component is

©Adafruit Industries Page 164 of 207

00 and the blue component is 00 . Translated to RGB format, the color is RGB (255,

0, 0) .

Using the color picker, or by manually entering a hex color code, select a color.

When you're ready to set the color of your device's NeoPixel, click FILL WITH COLOR.

 The NeoPixel will immediately glow!

Set NeoPixel Brightness

If the NeoPixel is too bright (or too dim), you can change its brightness. Click the gear/

cog icon on the NeoPixel component to open its settings.

On the NeoPixel component form, set Brightness to a value between 0 (fully off) and

255 (full brightness).

©Adafruit Industries Page 165 of 207

Click the Update Component button to send the updated configuration to your

device.

Read a Push-button

You can configure a board running WipperSnapper to read data from standard input

buttons, switches, or digital sensors, and send the value to Adafruit IO.

From Adafruit IO, you will configure one of the pushbuttons on your board as a push

button component. Then, when the button is pressed (or released), a value will be

published to Adafruit IO.

Parts

The following parts are required to complete this page.

In this demo, we show reading the state of a push-button from WipperSnapper.

But the same kind of control can be used for reading switches, break beam

sensors, and other digital sensors.

©Adafruit Industries Page 166 of 207

Tactile Switch Buttons (12mm square,

6mm tall) x 10 pack

Medium-sized clicky momentary switches

are standard input "buttons" on electronic

projects. These work best in a PCB but

https://www.adafruit.com/product/1119

Half Sized Premium Breadboard - 400 Tie

Points

This is a cute, half-size breadboard

with 400 tie points, good for small

projects. It's 3.25" x 2.2" / 8.3cm x

5.5cm with a standard double-strip in

the...

https://www.adafruit.com/product/64

Breadboarding wire bundle

75 flexible stranded core wires with stiff

ends molded on in red, orange, yellow,

green, blue, brown, black and white.

These are a major improvement over the

"box of bent...

https://www.adafruit.com/product/153

Wiring

You will need a STEMMA JST PH 2mm 3-Pin to Male Header Cable to connect your

PyPortal to a breadboard:

©Adafruit Industries Page 167 of 207

https://www.adafruit.com/product/1119
https://www.adafruit.com/product/1119
https://www.adafruit.com/product/1119
https://www.adafruit.com/product/64
https://www.adafruit.com/product/64
https://www.adafruit.com/product/64
https://www.adafruit.com/product/153
https://www.adafruit.com/product/153

STEMMA JST PH 2mm 3-Pin to Male

Header Cable - 200mm

This cable will let you turn a JST PH 3-pin

cable port into 3 individual wires with

high-quality 0.1" male header plugs on the

end. We're carrying these to match up

with our...

https://www.adafruit.com/product/3893

Using a STEMMA JST PH 2mm 3-Pin to

Male Header Cable:

Connect STEMMA Ground (Black) to one

leg of the push-button.

Connect STEMMA Signal (White) to the

other leg of the push-button.

Create a Push-button Component on Adafruit IO

On the device page, click the New Component (or "+") button to open the component

picker.

From the component picker, select the Push Button.

©Adafruit Industries Page 168 of 207

https://www.adafruit.com/product/3893
https://www.adafruit.com/product/3893
https://www.adafruit.com/product/3893
https://learn.adafruit.com//assets/118870
https://learn.adafruit.com//assets/118870

The "Create Push Button Component" form presents you with options for configuring

the push button.

Start by selecting the board's pin connected to the push button.

The Return Interval dictates how frequently the value of the push-button will be sent

from the board to Adafruit IO.

For this example, you will configure the push button value to be only sent when the

value changes (i.e.: when it's either pressed or depressed).

©Adafruit Industries Page 169 of 207

Check the Specify Pin Pull Direction checkbox.

Select Pull Down to turn on the internal pull-down resistor.

Make sure the form settings look like the following screenshot. Then, click Create

Component.

©Adafruit Industries Page 170 of 207

Adafruit IO sends a command to your WipperSnapper board, telling it to configure the

GPIO pin you selected to behave as a digital input pin and to enable it to pull up the

internal resistor.

Your board page should also show the new push-button component.

Push the button on your board to change the value of the push-button component on

Adafruit IO.

Analog Input (Light Sensor)

Your microcontroller board has both digital and analog signal capabilities. Some pins

are analog, some are digital, and some are capable of both. Check the Pinouts page

in this guide for details about your board.

This page demonstrates using a light sensor as an analog input. However, the

same process can be used for other analog input components on Adafruit IO

such as the potentiometer.

©Adafruit Industries Page 171 of 207

Analog signals are different from digital signals in that they can be any voltage and

can vary continuously and smoothly between voltages. An analog signal is like a

dimmer switch on a light, whereas a digital signal is like a simple on/off switch.

Digital signals only can ever have two states, they are either are on (high logic level

voltage like 3.3V) or off (low logic level voltage like 0V / ground).

By contrast, analog signals can be any voltage in-between on and off, such as 1.8V or

0.001V or 2.98V and so on.

Analog signals are continuous values which means they can be an infinite number of

different voltages. Think of analog signals like a floating point or fractional number,

they can smoothly transiting to any in-between value like 1.8V, 1.81V, 1.801V, 1.8001V,

1.80001V and so forth to infinity.

Many devices use analog signals, in particular sensors typically output an analog

signal or voltage that varies based on something being sensed like light, heat,

humidity, etc.

Analog to Digital Converter (ADC)

An analog-to-digital-converter, or ADC, is the key to reading analog signals and

voltages with a microcontroller. An ADC is a device that reads the voltage of an

analog signal and converts it into a digital, or numeric, value. The microcontroller

can’t read analog signals directly, so the analog signal is first converted into a

numeric value by the ADC.

The black line below shows a digital signal over time, and the red line shows the

converted analog signal over the same amount of time.

©Adafruit Industries Page 172 of 207

Once that analog signal has been converted by the ADC, the microcontroller can use

those digital values any way you like!

Light Sensor

A light sensor (also known as a CdS cell, light-dependent resistor, or photoresistor)

detects light. They change their resistive value (in ohms, Ω) depending on how much

light shines into the photocell.

When a light sensor is exposed to more light, the resistance decreases. When it is

exposed to less light, the resistance increases.

By using a light sensor wired in a specific way (as a voltage divider), we can turn

resistance into voltage. That change is then read by your board's Analog-to-Digital

converter and sent to Adafruit IO.

Where is the Light Sensor on my board?

There is an ambient light sensor on the

side, which points through to the front.

©Adafruit Industries Page 173 of 207

https://learn.adafruit.com//assets/118879
https://learn.adafruit.com//assets/118879

Create a Light Sensor Component

On the device page, click the New Component (or "+") button to open the component

picker.

Under Pin Components, select the Light Sensor.

The name and pin for the light sensor on your board are automatically selected. The P

eriod determines how frequently the light sensor's value will be checked and sent to

Adafruit IO. Set it to check the light sensor value every 30 seconds.

Click Create Component.

©Adafruit Industries Page 174 of 207

The device page shows a new light sensor component. The value of this component

will change every 30 seconds.

Light Sensor Usage

To test the light sensor, try covering the light sensor with a piece of paper. Navigate to

the feed page by clicking the graph icon on the top right corner of the light sensor

component.

On the light sensor feed page, you'll be able to observe a graph of the light sensor

values as they change over time.

©Adafruit Industries Page 175 of 207

I2C Sensor

Inter-Integrated Circuit, aka I2C, is a two-wire protocol for connecting sensors and

"devices" to a microcontroller. A large number of sensors, including the ones sold by

Adafruit, use I2C to communicate.

Typically, using I2C with a microcontroller involves programming. Adafruit IO and

WipperSnapper let you configure a microcontroller to read data from an I2C sensor

and publish that data to the internet without writing code.

The WipperSnapper firmware supports a number of I2C sensors, viewable in list

format here ().

If you do not see the I2C sensor you're attempting to use with WipperSnapper, w

e have a guide on adding a component to Adafruit IO WipperSnapper here ().

The process for adding an I2C component to your board running WipperSnapper is

similar for most sensors.

On this page, you'll learn how to configure an I2C sensor built into a development

board to send data to Adafruit IO. Then you'll learn how to locate, interpret, and

download the data produced by your sensors.

•

©Adafruit Industries Page 176 of 207

https://github.com/adafruit/Wippersnapper_Components/tree/main/components/i2c
https://github.com/adafruit/Wippersnapper_Components/tree/main/components/i2c
https://learn.adafruit.com/how-to-add-a-new-component-to-adafruit-io-wippersnapper
https://learn.adafruit.com/how-to-add-a-new-component-to-adafruit-io-wippersnapper

Where is the I2C sensor on my board?

Your board has an I2C sensor built-in meaning that there's no wiring required!

On the top of the PyPortal (not the Pynt) is

the ADT7410 Analog Devices temperature

sensor with 16-bit 0.0078°C temperature

resolution and 0.5°C temperature

tolerance.

Create ADT7410 Sensor Component

On the device page, click the New Component (or "+") button to open the component

picker.

Under the I2C Components header, click ADT7410.

©Adafruit Industries Page 177 of 207

https://learn.adafruit.com//assets/118885
https://learn.adafruit.com//assets/118885

On the component configuration page, the ADT7410's I2C sensor address should be

listed along with the sensor's settings.

The ADT7410 sensor can measure ambient temperature. This form has individual

options for reading the ambient temperature, in either Celsius or Fahrenheit. You may

select the readings which are appropriate to your application and region.

The Send Every option is specific to each sensor measurement. This option will tell

the board how often it should read from the sensor and send the data to Adafruit IO.

Measurements can range from every 30 seconds to every 24 hours.

©Adafruit Industries Page 178 of 207

For this example, set the Send Every interval for both seconds to Every 30 seconds. C

lick Create Component.

The board page should now show the ADT7410 component you created. After the

interval you configured elapses, the WipperSnapper firmware running on your board

automatically reads a value from the sensor and sends it to Adafruit IO.

Read I2C Sensor Values

Now to take a look behind the scenes at a powerful element of using Adafruit IO and

WipperSnapper. When a new component is created on Adafruit IO, an Adafruit IO

Feed () is also created. This Feed holds your sensor component's values for long-term

storage (30 days of storage for Adafruit IO Free and 60 days for Adafruit IO Plus

plans).

Aside from holding the values read by a sensor, the component feed also holds meta

data about the data pushed to Adafruit IO. This includes settings for whether the data

©Adafruit Industries Page 179 of 207

https://learn.adafruit.com/adafruit-io-basics-feeds
https://learn.adafruit.com/adafruit-io-basics-feeds

is public or private, what license the stored sensor data falls under, and a general

description of the data.

Now, let's take a look at the ADT7410's temperature sensor feed. To navigate to a

component's feed, click on the chart icon in the upper-right-hand corner of the

component.

On the component's feed page, you'll each data point read by your sensor and when

they were reported to Adafruit IO.

Doing more with your sensor's Adafruit IO Feed

We've only scratched the surface of what Adafruit IO Feeds can accomplish for your

IoT projects. For a complete overview of Adafruit IO Feeds, including tasks like

©Adafruit Industries Page 180 of 207

downloading feed data, sharing a feed, removing erroneous data points from a feed,

and more, head over to the "Adafruit IO Basics: Feed" learning guide ().

Build the PyPortal Stand

Here's how to assemble the laser cut acrylic stand for the PyPortal. The kit comes with

six pieces of acrylic and six nylon screws and nuts.

©Adafruit Industries Page 181 of 207

https://learn.adafruit.com/adafruit-io-basics-feeds

Prep

First, remove the protective paper from all

of the acrylic pieces.

©Adafruit Industries Page 182 of 207

https://learn.adafruit.com//assets/72838
https://learn.adafruit.com//assets/72838
https://learn.adafruit.com//assets/72839
https://learn.adafruit.com//assets/72839
https://learn.adafruit.com//assets/72841
https://learn.adafruit.com//assets/72841
https://learn.adafruit.com//assets/72842
https://learn.adafruit.com//assets/72842

©Adafruit Industries Page 183 of 207

Sandwich

Next, do a dry fit of the three clear piece of

acrylic on the back side of the PyPortal to

get everything oriented properly.

The two small pieces are used as spacers

to allow clearance around some of the

larger parts. Lay them onto the board first,

as shown.

Then, place the large clear piece on top,

making sure to align the hole for the reset

and the cutout for the three JST ports.

Complete the sandwich by placing the

stack on top of the black front bezel with

the hole for the light sensor oriented as

shown here.

©Adafruit Industries Page 184 of 207

https://learn.adafruit.com//assets/72849
https://learn.adafruit.com//assets/72849
https://learn.adafruit.com//assets/72850
https://learn.adafruit.com//assets/72850
https://learn.adafruit.com//assets/72851
https://learn.adafruit.com//assets/72851

©Adafruit Industries Page 185 of 207

https://learn.adafruit.com//assets/72852
https://learn.adafruit.com//assets/72852
https://learn.adafruit.com//assets/72853
https://learn.adafruit.com//assets/72853
https://learn.adafruit.com//assets/72854
https://learn.adafruit.com//assets/72854
https://learn.adafruit.com//assets/72855
https://learn.adafruit.com//assets/72855

©Adafruit Industries Page 186 of 207

Legs

Now that the fit and orientation have been

established, we'll install the legs.

The two legs are identical. Pick one and

slot it into the case back as shown.

Place a nut into the captive slot of the leg

and then feed a short screw through from

the front of the clear acrylic case back.

Fasten the screw (not too tight!) and then

repeat for the second leg.

©Adafruit Industries Page 187 of 207

https://learn.adafruit.com//assets/72869
https://learn.adafruit.com//assets/72869
https://learn.adafruit.com//assets/72870
https://learn.adafruit.com//assets/72870
https://learn.adafruit.com//assets/72871
https://learn.adafruit.com//assets/72871

©Adafruit Industries Page 188 of 207

https://learn.adafruit.com//assets/72872
https://learn.adafruit.com//assets/72872
https://learn.adafruit.com//assets/72873
https://learn.adafruit.com//assets/72873

Add Long Screws

To put it all together, we'll use the four

long screws to secure the entire acrylic -

PyPortal - acrylic - acrylic sandwich!

Run the four long screws from the front to

the back, as shown.

©Adafruit Industries Page 189 of 207

https://learn.adafruit.com//assets/72892
https://learn.adafruit.com//assets/72892
https://learn.adafruit.com//assets/72893
https://learn.adafruit.com//assets/72893
https://learn.adafruit.com//assets/72894
https://learn.adafruit.com//assets/72894

©Adafruit Industries Page 190 of 207

https://learn.adafruit.com//assets/72895
https://learn.adafruit.com//assets/72895
https://learn.adafruit.com//assets/72896
https://learn.adafruit.com//assets/72896
https://learn.adafruit.com//assets/72897
https://learn.adafruit.com//assets/72897

©Adafruit Industries Page 191 of 207

Screw It All Together

Finally, add the case back and legs

assemblage and then thread on the four

nuts to secure it all in place.

Be careful not to over-tighten the screws.

Doing so can potentially crack the Pyportal

display!

©Adafruit Industries Page 192 of 207

https://learn.adafruit.com//assets/72922
https://learn.adafruit.com//assets/72922
https://learn.adafruit.com//assets/72923
https://learn.adafruit.com//assets/72923
https://learn.adafruit.com//assets/72924
https://learn.adafruit.com//assets/72924

©Adafruit Industries Page 193 of 207

Bonus! Penny Roll Weight

If you'd like to give your PyPortal a bit of extra heft so it won't get pushed around on

your desk, you can make a great weight for $0.50. A roll of 50 pennies does the trick!

The legs are designed to hold a roll of coins perfectly!

©Adafruit Industries Page 194 of 207

©Adafruit Industries Page 195 of 207

Laser Cutter Files for PyPortal Stand

If you need to replace a piece or just want to make a spare for another PyPortal, here

are the vector files for 1/8" (3mm) acrylic, in Adobe Illustrator format:

pyPortal_CUT_Black.ai

pyPortal_CUT_Clear.ai

Updating ESP32 Firmware

There may come a time when you want to update the firmware on the ESP32 itself.

This isn't something we expect you'll do often if at all, but its good to know how if you

need to.

We have a guide here which details the process of updating the ESP32 firmware on

Airlift All-in-One boards (including the PyPortal, MatrixPortal, and Metro M4 AirLift)

here... ()

©Adafruit Industries Page 196 of 207

https://cdn-learn.adafruit.com/assets/assets/000/073/959/original/pyPortal_CUT_Black.ai?1554157488
https://cdn-learn.adafruit.com/assets/assets/000/073/960/original/pyPortal_CUT_Clear.ai?1554157498
https://learn.adafruit.com/upgrading-esp32-firmware/upgrade-all-in-one-esp32-airlift-firmware
https://learn.adafruit.com/upgrading-esp32-firmware/upgrade-all-in-one-esp32-airlift-firmware
https://learn.adafruit.com/upgrading-esp32-firmware/upgrade-all-in-one-esp32-airlift-firmware

Parsing JSON

Parsing JSON from the Web

Here an example of how you can display text data from the web with PyPortal, by

making an internet-connected quote book. ()

Installing Project Code

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory PyPortal_Quotes/

and then click on the directory that matches the version of CircuitPython you're using

and copy the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 197 of 207

https://learn.adafruit.com/pyportal-adafruit-quote-board/overview
https://learn.adafruit.com/pyportal-adafruit-quote-board/overview

SPDX-FileCopyrightText: 2019 Limor Fried for Adafruit Industries

#

SPDX-License-Identifier: MIT

import time

import board

from adafruit_pyportal import PyPortal

Set up where we'll be fetching data from

DATA_SOURCE = "https://www.adafruit.com/api/quotes.php"

QUOTE_LOCATION = [0, 'text']

AUTHOR_LOCATION = [0, 'author']

the current working directory (where this file is)

cwd = ("/"+__file__).rsplit('/', 1)[0]

pyportal = PyPortal(url=DATA_SOURCE,

 json_path=(QUOTE_LOCATION, AUTHOR_LOCATION),

 status_neopixel=board.NEOPIXEL,

 default_bg=cwd+"/quote_background.bmp",

 text_font=cwd+"/fonts/Arial-ItalicMT-17.bdf",

 text_position=((20, 120), # quote location

 (5, 210)), # author location

 text_color=(0xFFFFFF, # quote text color

 0x8080FF), # author text color

 text_wrap=(35, # characters to wrap for quote

 0), # no wrap for author

 text_maxlen=(180, 30), # max text size for quote & author

)

speed up projects with lots of text by preloading the font!

pyportal.preload_font()

while True:

 try:

 value = pyportal.fetch()

 print("Response is", value)

 except (ValueError, RuntimeError, ConnectionError, OSError) as e:

©Adafruit Industries Page 198 of 207

 print("Some error occured, retrying! -", e)

 time.sleep(60)

JSON

The neat part is that the text is not coming from a file on the device (see how to do

this next), but rather it is grabbed from a website!

Adafruit.com has a PHP script at the adafruit.com/api/quotes.php page. Each time it is

requested, it returns a new quote from a large database of quotes.

In fact, you can run the same query the PyPortal does to see the results. Copy and

paste this link: https://www.adafruit.com/api/quotes.php

into your browser and you'll see a result like this:

[

 {

 "text": "Science, my lad, is made up of mistakes, but they are mistakes which it is

useful to make, because they lead little by little to the truth",

 "author": "Jules Verne"

 }

]

That result is the quote formatted as a JSON (JavaScript Object Notation) array. It is

comprised of a single element with two keys: text and author.

The value of the text key is Science, my lad, is made up of mistakes,

but they are mistakes which it is useful to make, because they

lead little by little to the truth

The value of the author key is Jules Verne

Since this JSON object has a consistent way to return the results to us, the code

we're running on the PyPortal can easily parse the data and display it!

You can see how it's done in this part of code.py:

Set up where we'll be fetching data from

DATA_SOURCE = "https://www.adafruit.com/api/quotes.php"

QUOTE_LOCATION = [0, 'text']

AUTHOR_LOCATION = [0, 'author']

•

•

©Adafruit Industries Page 199 of 207

Then, in the pyportal query we ask for the text and author name from that URL, and

then use the text_ arguments to set the font , position , color , wrap , and max

len of the text when it is displayed.

pyportal = PyPortal(url=DATA_SOURCE,

 json_path=(QUOTE_LOCATION, AUTHOR_LOCATION),

 status_neopixel=board.NEOPIXEL,

 default_bg=cwd+"quote_background.bmp",

 text_font=cwd+"fonts/Arial-ItalicMT-17.bdf",

 text_position=((20, 40), # quote location

 (5, 190)), # author location

 text_color=(0xFFFFFF, # quote text color

 0x8080FF), # author text color

 text_wrap=(35, # characters to wrap for quote

 0), # no wrap for author

 text_maxlen=(180, 30), # max text size for quote & author

)

With all of this prepared, during the main loop of while True: the code will query

the Adafruit quotes page for the JSON data, and display it, and then wait one minute

until repeating the process.

Parsing local JSON files

If you would like to avoid pulling data from a web page or maybe you can't get access

to a specific API key, you can use a "local" JSON file to pull data from.

To implement this local data sourcing method, create a new file and name

it local.txt . Populate this file with the JSON data that you would like to use. For

example, you could use the JSON data provided above and make sure the format of

the data is the same. Save this file on the CIRCUITPY drive in the root.

You should not need to change anything in your code.

And that's it! The JSON data will now be pulled from this local file!

PyPortal Hardware FAQ

For CircuitPython-specific issues, see the CircuitPython software FAQ ().

The PyPortal screen is all white or blank when powered

on.

In shipping, the connector for the display may pop the retention tab(s) (red circles

below). If you see one that is not in the position below, check to see if the orange

©Adafruit Industries Page 200 of 207

https://learn.adafruit.com/adafruit-pyportal/frequently-asked-questions

display ribbon cable is straight. If so, gently push the tab down towards the main

connector.

If you see the ribbon cable crooked, pop both tabs and slide the cable gently so it

is in the connector like the picture and straight. then clip each side down.

Repower the PyPortal afterwards and hopefully you'll see the CircuitPython boot

text on the screen.

I'm using the STEMMA I2C connector to attach sensors

and experiencing issues.

If you look at the pads circled in yellow below, there is a tiny connection between

the V and 5 pads indicating a default of 5V power, which may cause issue in

certain setups. If you are connecting one our sensors and seeing boot or other

issues, try changing the voltage to 3.3V

If you want 3.3 volt power for your I2C connector, carefully cut that tiny trace

between V and 5, then using a soldering iron connect the 3 and V pads. The

PyPortal was not made to switch often between these two values so double check

your I2C data sheets, some sensors can take 3.3 and 5V power so leaving it at 5

should be ok.

©Adafruit Industries Page 201 of 207

I'm seeing "AT" or other text being inserted at the REPL

prompt.

If you're on Linux, and are seeing multi-second delays connecting to the serial

console, or are seeing "AT" and other gibberish when you connect, then the

modemmanager service might be interfering. Just remove it; it doesn't have much

use unless you're still using dial-up modems. To remove, type this command at a

shell:

sudo apt purge modemmanager

What does the status NeoPixel indicate once my code.py

is running?

Once your PyPortal boots up and successfully loads your code.py or main.py, the

status NeoPixel will turn green briefly. Then, the NeoPixel will show one of the

following color codes to indicate the status of the WiFi connection/activity or file

operations:

Red = not connected to WiFi

Blue = connected to WiFi

Yellow = fetching data

Green = got data

Cyan = file opening

My PyPortal Pynt JST STEMMA sockets arent working!

The PyPortal Pynt has the D3 and D4 sockets mislabeled, they should be swapped (to

match the pyportal classic)

•

•

•

•

•

©Adafruit Industries Page 202 of 207

Downloads

Files

ATSAMD51J20 datasheet ()

ADT7410 datasheet ()

EagleCAD PCB files on GitHub ()

Fritzing object in Adafruit Fritzing Library ()

Laser Cutter Files for PyPortal Stand ()

PyPortal 3D Models on GitHub ()

PyPortal Pynt 3D Models on GitHub ()

PDF for PyPortal Board Diagram on GitHub ()

PDF for PyPortal Pynt Board Diagram on GitHub ()

SVG for PyPortal Board Diagram

SVG for PyPortal Pynt Board

Diagram

PyPorta Arcada self-test UF2

PyPortal Schematic and Fab Print

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 203 of 207

http://ww1.microchip.com/downloads/en/DeviceDoc/60001507C.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/adt7410.pdf
https://github.com/adafruit/Adafruit-PyPortal-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20PyPortal%20-%20CircuitPython%20Powered%20Internet%20Display.fzpz
https://learn.adafruit.com/adabox011/build-the-pyportal-stand#laser-cutter-files-for-pyportal-stand-23-21
https://github.com/adafruit/Adafruit_CAD_Parts/tree/master/4116%20PyPortal
https://github.com/adafruit/Adafruit_CAD_Parts/tree/master/4465%20PyPortal%20Pynt
https://github.com/adafruit/Adafruit-PyPortal-PCB/blob/master/Adafruit%20PyPortal%20Pinout.pdf
https://github.com/adafruit/Adafruit-PyPortal-PCB/blob/master/Adafruit%20PyPortal%20Pinout.pdf
https://github.com/adafruit/Adafruit-PyPortal-PCB/blob/master/Adafruit%20PyPortal%20Pynt%20Pinout.pdf
https://cdn-learn.adafruit.com/assets/assets/000/111/281/original/Adafruit_PyPortal_Pinout.svg?1651521470
https://cdn-learn.adafruit.com/assets/assets/000/111/684/original/Adafruit_PyPortal_Pynt_Pinout.svg?1652296379
https://cdn-learn.adafruit.com/assets/assets/000/088/620/original/PyPortal_Arcada_Test.UF2?1582429720

©Adafruit Industries Page 204 of 207

PyPortal Pynt 3D Model

PyPortal Pynt Schematic and Fab Print

©Adafruit Industries Page 205 of 207

©Adafruit Industries Page 206 of 207

©Adafruit Industries Page 207 of 207

	Adafruit PyPortal - IoT for CircuitPython
	Table of Contents
	Overview
	Pinouts
	What is CircuitPython?
	Update the UF2 Bootloader
	Updating the PyPortal Demo Code
	Install CircuitPython
	Installing the Mu Editor
	Creating and Editing Code
	Connecting to the Serial Console
	Interacting with the Serial Console
	The REPL
	CircuitPython Libraries
	CircuitPython Pins and Modules
	Frequently Asked Questions
	Troubleshooting
	"Uninstalling" CircuitPython
	Welcome to the Community!
	PyPortal CircuitPython Setup
	Internet Connect!
	CircuitPython BLE
	Arduino IDE Setup
	Using with Arduino IDE
	Arduino Libraries
	Arduino Test
	Graphics Demos
	Adapting Sketches to M0 & M4
	WipperSnapper Setup
	WipperSnapper Essentials
	LED Blink
	NeoPixel LED
	Read a Push-button
	Analog Input (Light Sensor)
	I2C Sensor
	Build the PyPortal Stand
	Updating ESP32 Firmware
	Parsing JSON
	PyPortal Hardware FAQ
	Downloads

	Overview
	Pinouts
	Microcontroller and Flash
	WiFi
	Display and Display Connector
	Sensors
	microSD Card Slot
	Speaker and Speaker Connector
	I2C Connector
	Digital/Analog Connectors
	Status LED and NeoPixel
	USB Connector
	Reset Button

	What is CircuitPython?
	CircuitPython is based on Python
	Why would I use CircuitPython?

	Update the UF2 Bootloader
	Updating Your Bootloader

	Updating the PyPortal Demo Code
	Step 1 - Update Firmware to Latest
	Step 2 - Update Example Code to Latest
	Step 3 - Check Display & Add WiFi Secrets
	Step 4 - If you are getting odd errors
	Install CircuitPython
	Set up CircuitPython Quick Start!
	PyPortal Default Files

	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.
	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing

	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!
	Back to Editing Code...

	Naming Your Program File
	Connecting to the Serial Console
	Are you using Mu?
	Serial Console Issues or Delays on Linux
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Entering the REPL
	Interacting with the REPL

	Returning to the Serial Console
	CircuitPython Libraries
	The Adafruit Learn Guide Project Bundle
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle

	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle

	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board

	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples
	CircUp CLI Tool

	CircuitPython Pins and Modules
	CircuitPython Pins
	import board
	I2C, SPI, and UART
	What Are All the Available Names?
	Microcontroller Pin Names

	CircuitPython Built-In Modules
	Frequently Asked Questions
	What are some common acronyms to know?
	Using Older Versions
	I have to continue using CircuitPython 6.x or earlier. Where can I find compatible libraries?
	Python Arithmetic
	Does CircuitPython support floating-point numbers?
	Does CircuitPython support long integers, like regular Python?
	Wireless Connectivity
	How do I connect to the Internet with CircuitPython?
	How do I do BLE (Bluetooth Low Energy) with CircuitPython?
	Are there other ways to communicate by radio with CircuitPython?
	Asyncio and Interrupts
	Is there asyncio support in CircuitPython?
	Does CircuitPython support interrupts?
	Status RGB LED
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	Memory Issues
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Unsupported Hardware
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

	Bootloader (boardnameBOOT) Drive Not Present
	You may have a different board.
	MakeCode
	MacOS
	Windows 10
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear or Disappears Quickly
	Device Errors or Problems on Windows
	Serial Console in Mu Not Displaying Anything
	code.py Restarts Constantly
	CircuitPython RGB Status Light
	CircuitPython 7.0.0 and Later
	CircuitPython 6.3.0 and earlier

	Serial console showing ValueError: Incompatible .mpy file
	CIRCUITPY Drive Issues
	Safe Mode
	Entering Safe Mode in CircuitPython 7.x and Later
	Entering Safe Mode in CircuitPython 6.x
	In Safe Mode

	To erase CIRCUITPY: storage.erase_filesystem()
	Erase CIRCUITPY Without Access to the REPL
	For the specific boards listed below:
	For SAMD21 non-Express boards that have a UF2 bootloader:
	For SAMD21 non-Express boards that do not have a UF2 bootloader:

	Running Out of File Space on SAMD21 Non-Express Boards
	Delete something!
	Use tabs
	On MacOS?
	Prevent & Remove MacOS Hidden Files
	Copy Files on MacOS Without Creating Hidden Files
	Other MacOS Space-Saving Tips

	Device Locked Up or Boot Looping
	"Uninstalling" CircuitPython
	Backup Your Code

	Moving Circuit Playground Express to MakeCode
	Moving to Arduino
	Welcome to the Community!
	Adafruit Discord
	CircuitPython.org
	Pull Requests
	Open Issues
	Library Infrastructure Issues
	CircuitPython Localization

	Adafruit GitHub
	Adafruit Forums
	Read the Docs

	PyPortal CircuitPython Setup
	Adafruit CircuitPython Bundle
	Internet Connect!
	What's a secrets file?
	Connect to WiFi
	Requests
	HTTP GET with Requests
	HTTP POST with Requests
	Advanced Requests Usage

	WiFi Manager
	CircuitPython BLE
	CircuitPython BLE UART Example
	On-Board Airlift Co-Processor - No Wiring Needed

	Update the AirLift Firmware
	Install CircuitPython Libraries
	Install the Adafruit Bluefruit LE Connect App
	Copy and Adjust the Example Program
	Talk to the AirLift via the Bluefruit LE Connect App
	Arduino IDE Setup
	https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

	Using with Arduino IDE
	Install SAMD Support
	Install Adafruit SAMD
	Install Drivers (Windows 7 & 8 Only)
	Blink
	Successful Upload
	Compilation Issues
	Manually bootloading
	Ubuntu & Linux Issue Fix
	Arduino Libraries
	Install Libraries
	Adafruit NeoPixel
	Adafruit SPIFlash
	Adafruit Zero DMA
	Adafruit GFX
	Adafruit ILI9341
	Adafruit HX8357
	Adafruit Touchscreen
	Analog Devices ADT7410
	WiFiNINA

	Adafruit ImageReader
	Arduino Test
	Graphics Demos
	TouchPaint
	Amiga Boing!
	Mandelbrot
	Adapting Sketches to M0 & M4
	Analog References
	Pin Outputs & Pullups
	Serial vs SerialUSB
	AnalogWrite / PWM on Feather/Metro M0
	analogWrite() PWM range
	analogWrite() DAC on A0
	Missing header files
	Bootloader Launching
	Aligned Memory Access
	Floating Point Conversion
	How Much RAM Available?
	Storing data in FLASH
	Pretty-Printing out registers
	M4 Performance Options
	CPU Speed (overclocking)
	Optimize
	Cache
	Max SPI and Max QSPI

	Enabling the Buck Converter on some M4 Boards
	WipperSnapper Setup
	What is WipperSnapper
	Sign up for Adafruit.io
	Add a New Device to Adafruit IO
	Feedback
	Troubleshooting
	I don't see my board on Adafruit IO, it is stuck connecting to WiFi
	I don't see my board on Adafruit IO, it is stuck "Registering with Adafruit IO"
	"Uninstalling" WipperSnapper
	Moving from WipperSnapper to CircuitPython
	Moving from WipperSnapper to Arduino
	Factory Resetting a WipperSnapper Board

	WipperSnapper Essentials
	LED Blink
	Where is the LED on my board?
	Create a LED Component on Adafruit IO
	Usage

	NeoPixel LED
	Where is the NeoPixel on my board?
	Create the NeoPixel Component
	Set the NeoPixel's RGB Color
	Hex Colors 101

	Set NeoPixel Brightness

	Read a Push-button
	Parts
	Wiring
	Create a Push-button Component on Adafruit IO

	Analog Input (Light Sensor)
	Analog to Digital Converter (ADC)
	Light Sensor
	Where is the Light Sensor on my board?
	Create a Light Sensor Component
	Light Sensor Usage

	I2C Sensor
	Where is the I2C sensor on my board?
	Create ADT7410 Sensor Component
	Read I2C Sensor Values
	Doing more with your sensor's Adafruit IO Feed

	Build the PyPortal Stand
	Prep
	Sandwich
	Legs
	Add Long Screws
	Screw It All Together
	Bonus! Penny Roll Weight

	Laser Cutter Files for PyPortal Stand
	Updating ESP32 Firmware
	Parsing JSON
	Parsing JSON from the Web
	Installing Project Code
	JSON

	Parsing local JSON files

	PyPortal Hardware FAQ
	The PyPortal screen is all white or blank when powered on.
	I'm using the STEMMA I2C connector to attach sensors and experiencing issues.
	I'm seeing "AT" or other text being inserted at the REPL prompt.
	What does the status NeoPixel indicate once my code.py is running?

	Downloads
	Files
	PyPortal Schematic and Fab Print

	PyPortal Pynt 3D Model
	PyPortal Pynt Schematic and Fab Print

